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Abstract several advances, detection of even an isolated single elec-
tron spin has not yet been accomplished. Progress towards
this goal will require advances in physical measurements

In single spin Magnetic Resonance Force Microscopy T .
and advances in signal processing of these measurements.

(MRFM), the objective is to detect the presence of an elec-
tron or nuclear spin in a sample volume by measuring spin-  Recently a MRFM method known as OScillating
induced Atto-Newton forces using cantilever nanotechnol- Cantilever-driven Adiabatic Reversals (OSCAR) [5] has
ogy. Inthe OSCAR method of single spin MRFM the spinsheen proposed to detect single spins. This method, ex-
are manipulated by an external rf field to produce small pe- plained below, uses a modulated external radio frequency
riodic deviations in the resonant frequency of the cantilever. (rf) field to manipulate the electon spins in order to produce
These deviations can be detected by frequency demodulaperiodic cantilever displacements that can be detected as
tion followed by energy detection. In this paper, we present small frequency shifts. Detection of these frequency shifts
an alternative to energy detection based on optimal detec-jdentifies the presence of the electron spin. If successful,
tion theory and Gibbs sampling. On the basis of simula- single electron spin detection could lead to non-destructive
tions, we show that our detector outperforms the conven-three-dimensional imaging of subsurface atomic structure.
tional energy detector for realistic MRFM operating con- Such a capability could have broad, even revolutionary, ap-
ditions. For example, our detector comes within 4dB of plications in scientific and engineering fields, such as in
the omniscient matched-filter lower bound and requires 9dB vivos protein imaging, imaging subsurface defects in solids,
less SNR than the conventional baseband amplitude or enthree-dimensional imaging of impurities in semiconductors,
ergy detectors to achieve a 10% false alarm rate and 80% and quantum computing.

correct detection rate. _ ) o
Unfortunately, accurate single-spin detection in OSCAR

is hampered by several factors. The spin-induced frequency
1. INTRODUCTION shift signal is extremely weak as a spin induces a frequency
shift of only one part in10%. Thus very long integration
times are required to detect such a signal. However, spin
Magnetic Resonance Force Microscopy (MRFM) is a relaxation and spin decoherence significantly reduce the us-
state-of-the-art technique with which physicists can poten- able integration time, especially at room temperature. This
tially push the limits of force detection to the single-electron makes the use of cryogenics (cooling the experimental ap-
spin level, with sub-angstrom spatial resolution [1], [2]. paratus down to a fraction of a degree Kelvin) necessary
The experimentinvolves detection of perturbations of a thin to reduce the masking effects of noise and decoherence.
micrometer-scale cantilever whose tip incorporates a super-These effects must be taken into account by the detection
conducting magnet. Any spinning electrons in the sam- algorithm in order to achieve the most accurate and reli-
ple will act as magnetic dipoles, exerting perturbing forces aple single spin detection. Very simple detectors are the
that can be measured from cantilever displacements. Therepaseband energy detector” and “baseband amplitude de-
have been several successful experimental demonstrationgector” which operate on a frequency demodulated version
of MRFM for imaging ensembles of coherent spins. For of the cantilever position signal. Such detection schemes
example, three-dimensional imaging with micrometer spa- are widely used in MRFM, NMR spectroscopy, MRI, and
tial resolution has been achieved [3], and forces as small asther applications.
1.4 x 10~'® N have been detected [4]. However, despite

In this paper, we present a new approach to baseband de-

"RESEARCH PARTIALLY SUPPORTED BY DARPA MOSAIC  tection in OSCAR experiments. The detector is based on
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a random telegraph model for the baseband signal incor- Gain. phase shif Interferometer
porating Poisson-distributed random spin reversals, random

initial spin polarity, and Additive White Gaussian Noise
(AWGN). In order to accurately decide between the hy-
potheses of spin absence and presence, we propose a hy-

Cantilever self-oscillation loop H Optical fiber

A A . N . Piezo- | Cantilever MMagnetic Tip Detector SN
brid detection scheme which combines optirBalyesand Spin absent /
General Likelihood RatigGLR) detection principles, and el :Spi" present?
Gibbs sampling. Simulations show that our proposed detec- m Svoh
tor can significantly outperform the conventional baseband Pulse controller,
energy detector for realistic post-detection signal-to-noise 2 Gtz generater

Clock generator

ratios (SNR).

The outline of the paper is as follows. After briefly re-
viewing the OSCAR experiment in Sec. 2, we describe the
proposed signal detection scheme in Sec. 3, and present re-
sults of numerical simulations in Sec. 4.

Fig. 1. Schematic of the MRFM experiment.

field, B,(t) is the z-direction magnetic field caused by the

magnetic tip of the cantilever, amilB, (t) = B, (t) —wrs /7y

is the off-resonance field magnitudeié the gyromagnetic

ratio). Spins are in resonance on the spherical shell defined
Figure 1 is a schematic description of the OSCAR exper- by those spatial locations for which; matches the Larmor

iment. In OSCAR, a superconducting magnet is placed atfreauencyyBo (t).

the tip of a cantilever which sits at a distance of approxi- ¢ AB,(#) varies sufficiently slowly such that the Cyclic

mately1_50 Angstroms above a sample. In the presence of pjispatic Inversion (CAI) criterion

an applied rf field, electrons in the sample undergo mag-

netic resonance if the rf field frequency matches the Lar- dAB,(t) )

mor frequency. Those electrons lying in the resonance slice —a < B (2)

(a spherical surface of points that are equidistant from the

cantilever tip) will interact with the magnetic tip. If the can- is met, the spin can be assumed to be perpetually aligned

tilever is forced into mechanical oscillation by positive feed- or anti-aligned with the vectoB.(¢). This is thespin-

back, the tip oscillation induces small shifts in the Larmor lock condition. Let the vertical position of the cantilever

frequencies of the spins. Specifically, the tip motion gives tip be denoted by wherez = 0 denotes its rest (undis-

rise to an oscillating magnetic field which sweeps the Lamor placed) position. Under the influence of the external rf field

frequency of the spins in the resonance slice back and forthB; (¢), electron-spin forces, and random (thermal) force

through resonance. This causes the spin to reverse polamoiseF, (t), the displacement of the cantilever tip obeys the

ity synchronously with the cantilever motion, and in return, simple harmonic oscillator equation:

the spin reversals affect the cantilever motion by changing

2. DESCRIPTION OF EXPERIMENT

i [ i i G?z(t
Fhe effective stlﬁpess of_the cgntllever. When electron spin mE() + T2() + ka(t) = ||G*2(t) L),
is present the spin-cantilever interaction can be detected by G22(t)? + B?
measuring small shifts in the period of cantilever oscillation 3)
using laser interferometric cantilever position sensing. For
more details about OSCAR, see [6], [7], [8]. wherem is the cantilever’s effective mass, is the can-

A classical (non-quantum) electro-mechanical descrip- tilever spring constantl” is the friction coefficient char-

tion of the spin-cantilever interactions can be developed in 2Cterizing cantilever energy dissipatidp| is the magni-

the framework adopted by Berman [9] and Rugar [4]. We tude of the spin magnetic momertt, = 0B, /0= is the
briefly review this framework here. Consider a spin in a ro- 2-direction field gradient at the spin location. The natural
tating frame which rotates at the frequency of the applied mechanical resonance frequency of the cantilever is given
tf magnetic field B, (Fig. 2). The effective magnetic field P°Y “@o = V/k/m, andI" can be related to the cantilever
B,z (t) in this frame is given by quality factor,@, vial’ = k/(w.Q).

B.y(t) = Bii + ABo(t)fc, 1) Underthg small tip displacement approximatj6ry| <
. . B, we obtain
wheretz andk are unit vectors in the andz directions in
the rotating framep; is the amplitude of the rf magnetic mzZ(t) + T2(t) + (k + Ak)z(t) =~ Fo(t), (4)



where Ak = —|u|G?/B,;. This shift in spring constant Cantilever
results in a shiftAw, in the resonant frequency of the can- 7z=0  ——
tilever:

[
~_ Bo

N
Aw, =~ 5%Wo B (5)
In OSCAR, theB; field is turned off everyl,;;, seconds
over half of a cycle durationt(/w,) to cause periodic tran-
sitions between thepin-lockandanti-spin-lockspin states
(see middle panel of Fig. 3). In the spin-lock state the
spin aligns with the field .z (¢) and in the anti-lock state
the spin aligns with-B.g(¢). Therefore, the frequency
shift Aw, of the cantilever alternates between the two val-
ues=tiw,(|u|)G? /By with periodT;,. In the absence of
noise ¢, (t) = 0 in (3)) the cantilever displacement can be
expressed as the frequency modulated (FM) signal:

¢
2(t) = Acos <wot+/ §(t’)dt’+0>. (6)
0

HereA is the cantilever oscillation amplitudéjs a random
phase, and is equal ta0 if no spin coupling occurs, while
it is equal to a periodic square wave of perigfi;, and
of amplitude|Aw,| if spin coupling occurs. Thus, in this
ideal noiseless case, the presence of spin coupling can be 3. SIGNAL DETECTION IN NOISE

perfectly detected either by detecting a spectral peak near

|Aw,| radians in the periodogram or by frequency demod-

ulation of z to baseband (incorporating subtraction of the ~ The signal detectors we will consider operate on the
known center frequency,) followed by amplitude detec- baseband output signa(t) of the frequency demodulator,
tion, energy detection, or other algorithm, as discussed be-£.9. a Phase-Lock Loop (PLL), followed by multiplication
low. As baseband and narrowband are equivalent repreby a square wave referenpgt) € {£1} of period27y,,
sentations we focus on the baseband method here. Theswhose transitions are synchronous with the (known) rf turn-
methods implement the information-preserving preprocess-Off times (see Fig. 3).

ing step of correlation of the baseband signal against the

Fig. 2. In the coordinate system rotatingaty, the off-resonance
field AB,, and therefore the effective fidl.4 (¢), vary with time.
Under the spin lock assumption, the spin always folles#. s (¢).

known square wave signal derived frd. The resultant Detector M,

signal, which we caly(t), forms the statistic which is used

for spin detection, as illustrated in Fig. 3. measurementof Frequency | @20, Satisic | 1) )
from interferometer (PLL) generator

Unfortunately, in a practical (non-ideal) experiment the
cantilever displacement signa(t) is degraded by several N
factors which reduce correlation peak detection accuracy. \ U
One factor is the presence of laser interferometric measure- R
ment noise. This adds a noise floor to the demodulated

sqgare Wav? 5|gn§(t). Another, .more lmportant, factor is ._Fig. 3. Baseband detector frequency demodulates the interfer-
Spin relaxatlon which ovgr a period O_f t'me causes the SPN ometric signal, correlates the output against a square wa(te

to go out of alignment with the effective fieB.;. While whose transitions are synchronous with the turn-off times of the
several models for single-spin relaxation have been pro-r field Bi(t), and generates a test statistic, e.g. accumulated
posed [9, 10] a full understanding of the physics of single- squared frequency deviations, for detecting presence of a spin.
spin relaxation interactions with cantlevers remains open.

One model is that the single spins maintain spin lock or anti-

lock states but spontaneously and asychronously change We model the baseband output) of the frequency de-
polarity during the course of measurement at some Xxate modulator and correlator as a random telegraph plus ad-
flips/second. In the sequel we develop an optimal single- ditive Gaussian white noise (see lower panel of Fig. 3).
spin detection approach under a random Poisson model foiLet [0, 7] be the total measurement time period, and let
these polarity flips. {ri},i = 1..N, be the time instants within this period at

from clock generator



which spin reversals occur. We assufne} are the arrival ~ where s(¢; ¢, 7, N) is a synthesized random telegraph
times of a Poisson process with intensity Consequently  signal of the form (7) parametrized HAw,| (assumed
N is a Poisson random variable with rat@& [11]. Thus, known), ¢, 7 and N. The valuey is a threshold that can

y(t) = s(t) + v(t) wherewv(t) is AWGN with variance =  either be set to satisfy@obability of false alarntontraint
o2, ands(t) is a random telegraph signal containing only Pr < a, a € [0,1], or as a function of the prior probabili-
the random transitions: tiesaIn[P(Hy)/P(H;)]+bwherea, b are known constants.
N In the former case the detector is called thest powerful
st) = ¢|Aw,] Z(_l)zg( 't Ti ), @) (MP_) test oerve'h, WhICh has maximumrobability c_)fde-
= Tit1 — Ti tection(Pp), while in the latter case the detector is called

the minPe detector as it achieves minimum average proba-
where¢ is a random variable that takes en with equal bility of decision error (minPe).
probability, representing a random initial spin polarity,=
0, 7v+1 = T, andg(t) is the standard rectangle function: ~ As the values of the random parameters are always un-
g(t) = 1fort € [0,1] andg(t) = 0 otherwise. known we call the detector (9) ttmmniscient matched fil-
ter, which is unimplementable. However, as the omniscient
The baseband spin detection problem is to design a tesinatched filter is optimal for known parameter values it es-
between the two hypotheses: tablishes a useful upper bound on performance.

H, (spin absent): y(t) = v(t) Perhaps the simplest baseband detection scheme, and the
H (spin present): y(t) = s(t)+v(t) (8) most widespread in MRFM applications, is tamplitude
detectorwhich acts as if there were no random flips and
fort € [0,T]. declares a spin present if the magnitude of the average am-
plitude of the correlator output exceeds a threshold

1 T
T/ y(t)dt'
0

° 0s ! ,.m;‘-fms) : 25 s wherev is a threshold set to give the desirBd. Improved
; ‘ ‘ ‘ ‘ ‘ performance can be obtained by explicitly accounting for
15t 1 the equally likely intial polarity and assuming AWGN to de-

Hy
z (10)
Hop

Cantilever position (nm)
N A o ko

rive the minPe detector. Under the assumption tfaf is

L - : — : - ! a random polarity constant imbedded in AWGN, the minPe
' tme () ‘ ‘ test for presence of(t) is similar to (10) except that it im-

plements a “soft” non-linearityosh(e) in place of the ab-

solute valud e |:

solid: true frequentcy shift
dotted: measuremet from interferometer

_ . . ) T Hy
° o8 ' ime (ms) z 2 cosh 0172/ y(t)dt' z . (1)
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Fig. 4. Top: Sample cantilever position signal(t), at 10 kHz. .
Middle: Sample rf magnetic field magnitud®,, has synchronous The performance of the cosh amplitude detector (11) be-

half-cycle skips at 1 ms, 2 ms, and 3 ms. Bottom: In the presenceOMeS identical to the standard amplitude detector (10)

of a single spin3 in Eq. 6 has both deterministic transitions due WhenT' < o, min{o, /|Aw|, 1}.
to the rf skips at 1 ms, 2 ms and 3 ms, and random ones due to
spin relaxation. The random transition§s; }, occur as a Poisson
process. The initial polarity i® = 1 for this example. The noisy
signal at bottom i with AWGN contamination.

When there are random transitions over the integration
period|0, T'] the performance of the amplitude detector suf-
fers from decoherence. Indeed as the number of random
flips increases the average amplitudey¢f) converges to
zero. As the energy of(¢) is independent of the number of

. h h transitions, the transition times, and the intial polarity, it is
. Condlthned on t_g rgndom parametérs}, IV, qb the _ natural to propose aenergy detectofl2]
signal s(t) is deterministic and known. Under this condi-

tioning theoptimaldetection structure would be the simple T 12t fil
matched filter [12] /0 [y(@))"dt < 7 (12)
0
I m where~ is a threshold set to give the desirég. It can
— ) s(t Nydt' > 9 g 9 '
T /0 y(#)s(#, ¢, 7, N) < 7 ©) be shown that the energy detector is a minPe test for the



case thatv(t) is additive white gaussian noise(t) = simplified by invoking the Cameron-Martin formula [16]:
Aw, cos(2nt/Tskip + 0), andd is uniformly distributed

over [0, 27] [13]. It can also be shown that the energy de- A B 1 T o
tector is the minPe test under a Gaussian approximation ta°% (y) = max log cosh o2 /0 y(@)s™ (T, N)dt
the random telegraph process in the limit of high SNR [14]. T
L[ st N2 (15)
As we will show in the sequel, the performance of the a2 /o 5T

amplitude and energy detectors can be far from the optimal

performance achieved by the omniscient matched filter de-where s*(¢; 7, V) is the synthesized telegraph wave (7)

tector. having initial polarityp = 1 and parametrized by and
N.

3.1. The Hybrid Bayes/GLR Detector . . )
3.2. Solution via Gibbs Sampling

The minPe detector for a signal with random parame-
ters is a Bayes likelihood ratio test that averages an omni-
scient likelihood ratio test statistic over all random parame-

The maximization in (15) by exhaustive search over the
uncountably infinite dimensional space of possible parame-
ters{{r;}, N} is impractical. An alternative, which is guar-

ters [13]: anteed to converge to the maximizing solution, is to search
over a reduced set of these parameters generated by Gibbs
log A(y) (13) Sampling [17], [18]. As we know the Poisson intensky
Ern By [f (y; 7, N, 6| HL)]] fil we can generate samplér; }, N} from theprior Poisson
= log — 7(y[Ho) z distribution so as to maximize the log-likelihood function.
YiHo Ho As these samples are more likely (on the average) to mimic

the behavior of the actual randomly generated parameters
As above is a threshold selected to achieve a desired level we obtain a reduction in search complexity.

a of Pr. The functionf is the joint p.d.f of{y(t) };cf0, 1

parameterized by the random parametetsV,$, and The general description of the Gibbs sampler is as fol-
E,[-|A] denotes conditional expectation over random vari- 0Ws. Supposed there is a random vector variaile=
ablesx given eventd. [z1,T2,...,7,]T having density functiorfx from which
_ . _ o we want to sample. Suppose also that we can simulate the
While the expectation oves in (13) is simple to eval-  j-th element ofX given samples (already simulated) of the

uate, the expectation ovéfr;}, N} is very difficult since  other elements:

the integration region is of very high dimension. An alter-

native to this second expectation is to use the Generalized Xilz1,To,y ooy Ti 1, Tit1y - Tp
Likelihood Ratio (GLR) principle. The GLR consists of re-

~ fi(z; ey L1, Tl - - - fori =1..

placing the unknown parameters Maximum Likelihood fil@ilan, oz, Bict, T, - 2p) ' b
(ML) estimates. (16)

Then a Markov sequence® = [z\", ... z{"]T, can be

log A(y) " (14) simulated by the recursion
~ log max- N {Ey [f (y; 7, N, ¢|H1)]} >1 n
F(ylHo) P XU fiael D)
Xét'H) fg(m2|m§t+1),mét), e ,;L“;f))

where, againy is a threshold chosen for a desiréy:.
Note that in (14) we have averaged owvgrwhile we :
have maximized ovef{r;}, N}, hence leading to a hy- XD o fr|r
brid Bayes/GLR test. It is well known that for a sufficiently P PR
large integration time the minPe and GLR tests are identical
(see for example [15]). Thus we can assert that the hybrid
Bayes/GLR test is an asymptotically optimal test.

§t+1) xét—i—l), L (t 1))

Y

(17)

After a certain amount of burn-in tinig, X(®) ¢ > Tj, will
have stationary distributiofix. In our case, sincér;} are

As y(t) is a conditionally Gaussian random process Poisson-distributed, the conditional distributions are easy to
given{r; } andN, the log-likelihood function in (14) canbe sample from, since they are conditionally uniform.



4. SIMULATION METHODS AND RESULTS detection level the energy detector and amplitude detector
require SNR’s of at least -14dB and -17.5dB, respectively,
while the hybrid Bayes/GLR detector only requires -26dB.

The objective of our first two simulations was to com- AS compared to the amplitude detector this represents an
pare the detection performance of the matched filter, the en/mprovement of almost 9dB in SNR performance using our
ergy detector, the amplitude detector, and the Bayes/GLRProposed detector. Furthermore, the performance of our hy-
detector on the basis of Receiver Operating CharacteristicPrid Bayes/GLR detector is only 4dB worse than the per-
(ROC) curves, which are obtained by empirically generat- formgnce bound of -30dB established py the matched filter
ing the pairs(Py, Pp) for each detector. In our simula- for this level of Pp. Note that the amplitude detector om_Jt-
tions, the four decision rules (9), (12), and (14) were used Performs the energy detector for low SNR but not for high
to generate the ROC curves in the Matlab 6.1 environment SNR-This is explained by the fact that even though energy
Based on the Monte Carlo methodology [17], we generateddet?Ctor |s_not affected by random flips, at low SNR its out-
samples{yf;) ()}, ya(n) = y(nT;), under both Hypothe- put is dominated by the noise variance.
sis 0 and 1, wher€&; was the sampling period. The samples  |n another simulation, we investigated the role of the
were input to the detector being evaluated, &adand Pr number of Gibbs samples on performance of the hybrid
were statistically calculated. 500 detection trials were per- Bayes/GLR detector, shown in Figure 9. It is evident that
formed under each hypothesis. For each ROC curve, theperformance improves as we increase the number of Gibbs
above process was repeated with a range of decision threshsamples. For example, &= = 0.1, Pp, increases from ap-
old valuesy. This range of thresholds was chosen in order proximately 0.35 to 0.65 if we increase the number of Gibbs
to adequately sample the domd?a € [0, 1]. Fortherange  samples from 100 to 500. It increases further to around 0.9
of experimental parameters investigated the cosh amplitudesnd 0.95 if 500 or 5000 Gibbs samples are used, respec-
detector (11) and the ordinary amplitude detector (10) hadtively. Such improvements in performance are significant
virtually identical performance so only the latter detector’s puyt yield diminishing returns as the number of Gibbs sam-
performance is compared below. ples is increased beyond 500.

The simulation parameter values were chosen according . e
to typical OSCAR experimental values. The signal dura- ogmﬂ KR R )
tion T was 3secs. and the sampling periBdwas .5 ms. R o w T
The signal amplitudels(t)|, was9.28 x 10~* Hz accord- oot £ i
ing to (5), and we used the following parameter values: 0.7555
B; =2 Gauss(@ = 2 x 10'° Gauss/mw, =10 kHz, and
|u] = 9.28 x 1072 J/Gauss. Two values of, the aver-
age number of transitions per second, were evaluated. The
detector noise was assumed AWGN and the noise variance
was adjusted to investigate the effect of SNR, which is de- 03

fined asl0logio[(1/T) [ |s(t)|?dt/o2].
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We ran the Gibbs sampler for 5000 iterations for the hy- oat _ayesIGLR detocor (5000 Gibbs samples)
brid Bayes/GLR detector. Figures 5 and 5 show ROC curves 05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
for SNR = -25 dB and -20 dB, respectively, for= 1 event- S et
per-second. In both cases, our hybrid Bayes/GLR detector
outperformed significantly all the other detectors except for Fig. 5. Simulated Receiver Operating Characteristic (ROC)
the unimplementable matched filter. The matched filter hadcurves for the matched filter, energy detector, amplitude detector,
complete information about the parameters, and as a resul@nd hybrid Bayes/GLR detector, at SNR = -25dB and 1 event-
it achieved almost perfect detection for both SNR values. per-second. Unlike the other detectors, the matched filter assumes
In Figure 7 the value ok was increased to 10 events-per- complete information on the parameter values and is not imple-
second and SNR was held at -20dB. As expected all theMentable.
detection performances of all detectors degrade, with the
exception of the matched filter whose performance does not
depend on\. In Figurg 8 the power curves for aI_I detectors 5. CONCLUSION
are plotted as a function of SNR far= 1. In this figure all
detectors perform at the same false alarm Fate= 0.1 and
we can make a quantitative SNR comparison by fixing the  In this paper we presented a hybrid Bayes/GLR approach
detection performance level B = 0.8, say. To attain this  to detecting the presence of single spins for the OSCAR
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Fig. 8. The power curvesRp vs. SNR) for the four detectors
studied in this paper foP» = 0.1 and A = 1 event-per-second.
At Pp = 0.8 the hybrid Bayes/GLR detector performs within 4dB
of the bound established by the matched filter.

Fig. 6. Simulated Receiver Operating Characteristic (ROC)
curves for the matched filter, energy detector, amplitude detector,
and hybrid Bayes/GLR detector, at SNR =-20dB and 1 event-
per-second.
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. . . . . Fig. 9. Juxtaposition of ROC curves of hybrid Bayes/GLR [detec-
Fig. 7.  Simulated Re_celver Operating Charactgrlstlc (ROC) tor, obtained with different numbers of Gibbs samples in the max-
curves for the matched filter, energy detector, amplitude detector, imization step, at SNR = -20 dB and = 10 events-per-second

and hybrid Bayes/GLR detector, at SNR = -20dB dnd= 10 Performance improves as the number of Gibbs samples increases.
events-per-second.

. . . the number and positions of the transitions.
MRFM experiment. We have shown by simulation that the

Bayes/GLR detector performs significantly better than the  The hybrid Bayes/GLR detector was derived using a
energy detector. The improvementin detection performancebaseband signal model consisting of a random telegraph
is due to the fact that, unlike the energy and amplitude de-wave with Poisson transitions and AWGN. This signal
tectors, the new detector estimates the unknown values oimodel is theoretically justified under the spin-lock assump-
the random spin reversal times and the initial polarity. An tion. The validity of the spin-lock assumption remains to
interesting extension of our results would be to assume thatbe established. More sophisticated signal models of the
the frequency shiffAw, | is also unknown. This would lead cantilever displacement measurements, and associated de-
to a hybrid Bayes/GLR detector which detects the peak overtection methods which bypass frequency demodulation and
the spectrum of the signal in addition to maximizing over operate directly on those measurements, are currently under



investigation.

[14] A. Hero, M. Ting, C.-Y. Yip, and Cyrille Hory. Opti-
mal strategies for single spin detection in MRF.

preparation 2003.
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