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Abstract

In single spin Magnetic Resonance Force Microscopy
(MRFM), the objective is to detect the presence of an elec-
tron or nuclear spin in a sample volume by measuring spin-
induced Atto-Newton forces using cantilever nanotechnol-
ogy. In the OSCAR method of single spin MRFM the spins
are manipulated by an external rf field to produce small pe-
riodic deviations in the resonant frequency of the cantilever.
These deviations can be detected by frequency demodula-
tion followed by energy detection. In this paper, we present
an alternative to energy detection based on optimal detec-
tion theory and Gibbs sampling. On the basis of simula-
tions, we show that our detector outperforms the conven-
tional energy detector for realistic MRFM operating con-
ditions. For example, our detector comes within 4dB of
the omniscient matched-filter lower bound and requires 9dB
less SNR than the conventional baseband amplitude or en-
ergy detectors to achieve a 10% false alarm rate and 80%
correct detection rate.

1. INTRODUCTION

Magnetic Resonance Force Microscopy (MRFM) is a
state-of-the-art technique with which physicists can poten-
tially push the limits of force detection to the single-electron
spin level, with sub-angstrom spatial resolution [1], [2].
The experiment involves detection of perturbations of a thin
micrometer-scale cantilever whose tip incorporates a super-
conducting magnet. Any spinning electrons in the sam-
ple will act as magnetic dipoles, exerting perturbing forces
that can be measured from cantilever displacements. There
have been several successful experimental demonstrations
of MRFM for imaging ensembles of coherent spins. For
example, three-dimensional imaging with micrometer spa-
tial resolution has been achieved [3], and forces as small as
1:4 � 10�18 N have been detected [4]. However, despite
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several advances, detection of even an isolated single elec-
tron spin has not yet been accomplished. Progress towards
this goal will require advances in physical measurements
and advances in signal processing of these measurements.

Recently a MRFM method known as OScillating
Cantilever-driven Adiabatic Reversals (OSCAR) [5] has
been proposed to detect single spins. This method, ex-
plained below, uses a modulated external radio frequency
(rf) field to manipulate the electon spins in order to produce
periodic cantilever displacements that can be detected as
small frequency shifts. Detection of these frequency shifts
identifies the presence of the electron spin. If successful,
single electron spin detection could lead to non-destructive
three-dimensional imaging of subsurface atomic structure.
Such a capability could have broad, even revolutionary, ap-
plications in scientific and engineering fields, such as in
vivos protein imaging, imaging subsurface defects in solids,
three-dimensional imaging of impurities in semiconductors,
and quantum computing.

Unfortunately, accurate single-spin detection in OSCAR
is hampered by several factors. The spin-induced frequency
shift signal is extremely weak as a spin induces a frequency
shift of only one part in108. Thus very long integration
times are required to detect such a signal. However, spin
relaxation and spin decoherence significantly reduce the us-
able integration time, especially at room temperature. This
makes the use of cryogenics (cooling the experimental ap-
paratus down to a fraction of a degree Kelvin) necessary
to reduce the masking effects of noise and decoherence.
These effects must be taken into account by the detection
algorithm in order to achieve the most accurate and reli-
able single spin detection. Very simple detectors are the
“baseband energy detector” and “baseband amplitude de-
tector” which operate on a frequency demodulated version
of the cantilever position signal. Such detection schemes
are widely used in MRFM, NMR spectroscopy, MRI, and
other applications.

In this paper, we present a new approach to baseband de-
tection in OSCAR experiments. The detector is based on



a random telegraph model for the baseband signal incor-
porating Poisson-distributed random spin reversals, random
initial spin polarity, and Additive White Gaussian Noise
(AWGN). In order to accurately decide between the hy-
potheses of spin absence and presence, we propose a hy-
brid detection scheme which combines optimalBayesand
General Likelihood Ratio(GLR) detection principles, and
Gibbs sampling. Simulations show that our proposed detec-
tor can significantly outperform the conventional baseband
energy detector for realistic post-detection signal-to-noise
ratios (SNR).

The outline of the paper is as follows. After briefly re-
viewing the OSCAR experiment in Sec. 2, we describe the
proposed signal detection scheme in Sec. 3, and present re-
sults of numerical simulations in Sec. 4.

2. DESCRIPTION OF EXPERIMENT

Figure 1 is a schematic description of the OSCAR exper-
iment. In OSCAR, a superconducting magnet is placed at
the tip of a cantilever which sits at a distance of approxi-
mately150 Angstroms above a sample. In the presence of
an applied rf field, electrons in the sample undergo mag-
netic resonance if the rf field frequency matches the Lar-
mor frequency. Those electrons lying in the resonance slice
(a spherical surface of points that are equidistant from the
cantilever tip) will interact with the magnetic tip. If the can-
tilever is forced into mechanical oscillation by positive feed-
back, the tip oscillation induces small shifts in the Larmor
frequencies of the spins. Specifically, the tip motion gives
rise to an oscillating magnetic field which sweeps the Lamor
frequency of the spins in the resonance slice back and forth
through resonance. This causes the spin to reverse polar-
ity synchronously with the cantilever motion, and in return,
the spin reversals affect the cantilever motion by changing
the effective stiffness of the cantilever. When electron spin
is present the spin-cantilever interaction can be detected by
measuring small shifts in the period of cantilever oscillation
using laser interferometric cantilever position sensing. For
more details about OSCAR, see [6], [7], [8].

A classical (non-quantum) electro-mechanical descrip-
tion of the spin-cantilever interactions can be developed in
the framework adopted by Berman [9] and Rugar [4]. We
briefly review this framework here. Consider a spin in a ro-
tating frame which rotates at the frequency of the applied
rf magnetic field,B1 (Fig. 2). The effective magnetic field
Be� (t) in this frame is given by

Be� (t) = B1î+�Bo(t)k̂; (1)

whereî andk̂ are unit vectors in thex andz directions in
the rotating frame,B1 is the amplitude of the rf magnetic
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Fig. 1. Schematic of the MRFM experiment.

field, Bo(t) is the z-direction magnetic field caused by the
magnetic tip of the cantilever, and�Bo(t) = Bo(t)�!rf =

is the off-resonance field magnitude (
 is the gyromagnetic
ratio). Spins are in resonance on the spherical shell defined
by those spatial locations for which!rf matches the Larmor
frequency
Bo(t).

If �Bo(t) varies sufficiently slowly such that the Cyclic
Adiabatic Inversion (CAI) criterion

d�Bo(t)

dt
� 
B2

1 (2)

is met, the spin can be assumed to be perpetually aligned
or anti-aligned with the vectorBe� (t). This is thespin-
lock condition. Let the vertical position of the cantilever
tip be denoted byz wherez = 0 denotes its rest (undis-
placed) position. Under the influence of the external rf field
B1(t), electron-spin forces, and random (thermal) force
noiseFn(t), the displacement of the cantilever tip obeys the
simple harmonic oscillator equation:

m�z(t) + � _z(t) + kz(t) =
j�jG2z(t)p
G2z(t)2 +B2

1

+ Fn(t);

(3)

wherem is the cantilever’s effective mass,k is the can-
tilever spring constant,� is the friction coefficient char-
acterizing cantilever energy dissipation,j�j is the magni-
tude of the spin magnetic moment,G = @Boz=@z is the
z-direction field gradient at the spin location. The natural
mechanical resonance frequency of the cantilever is given
by !o =

p
k=m, and� can be related to the cantilever

quality factor,Q, via� = k=(!oQ).

Under the small tip displacement approximationjGzj �
B1, we obtain

m�z(t) + � _z(t) + (k +�k)z(t) � Fn(t); (4)



where�k = �j�jG2=B1. This shift in spring constant
results in a shift�!o in the resonant frequency of the can-
tilever:

�!o � �
1

2
!o
j�jG2

B1
: (5)

In OSCAR, theB1 field is turned off everyTskip seconds
over half of a cycle duration (�=!o) to cause periodic tran-
sitions between thespin-lockandanti-spin-lockspin states
(see middle panel of Fig. 3). In the spin-lock state the
spin aligns with the fieldBe� (t) and in the anti-lock state
the spin aligns with�Be� (t). Therefore, the frequency
shift �!o of the cantilever alternates between the two val-
ues� 1

2!o(j�j)G
2=B1 with periodTskip . In the absence of

noise (Fn(t) = 0 in (3)) the cantilever displacement can be
expressed as the frequency modulated (FM) signal:

z(t) = A cos

�
!ot+

Z t

0

�s(t0)dt0 + �

�
: (6)

HereA is the cantilever oscillation amplitude,� is a random
phase, and�s is equal to0 if no spin coupling occurs, while
it is equal to a periodic square wave of period2Tskip and
of amplitudej�!oj if spin coupling occurs. Thus, in this
ideal noiseless case, the presence of spin coupling can be
perfectly detected either by detecting a spectral peak near
j�!oj radians in the periodogram or by frequency demod-
ulation of z to baseband (incorporating subtraction of the
known center frequency!o) followed by amplitude detec-
tion, energy detection, or other algorithm, as discussed be-
low. As baseband and narrowband are equivalent repre-
sentations we focus on the baseband method here. These
methods implement the information-preserving preprocess-
ing step of correlation of the baseband signal against the
known square wave signal derived fromB1. The resultant
signal, which we cally(t), forms the statistic which is used
for spin detection, as illustrated in Fig. 3.

Unfortunately, in a practical (non-ideal) experiment the
cantilever displacement signalz(t) is degraded by several
factors which reduce correlation peak detection accuracy.
One factor is the presence of laser interferometric measure-
ment noise. This adds a noise floor to the demodulated
square wave signal�s(t). Another, more important, factor is
spin relaxation which over a period of time causes the spin
to go out of alignment with the effective fieldBe� . While
several models for single-spin relaxation have been pro-
posed [9, 10] a full understanding of the physics of single-
spin relaxation interactions with cantlevers remains open.
One model is that the single spins maintain spin lock or anti-
lock states but spontaneously and asychronously change
polarity during the course of measurement at some rate�
flips/second. In the sequel we develop an optimal single-
spin detection approach under a random Poisson model for
these polarity flips.
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Fig. 2. In the coordinate system rotating at!rf , the off-resonance
field�Bo, and therefore the effective fieldBe� (t), vary with time.
Under the spin lock assumption, the spin always follows�Be� (t).

3. SIGNAL DETECTION IN NOISE

The signal detectors we will consider operate on the
baseband output signaly(t) of the frequency demodulator,
e.g. a Phase-Lock Loop (PLL), followed by multiplication
by a square wave referencep(t) 2 f�1g of period2Tskip ,
whose transitions are synchronous with the (known) rf turn-
off times (see Fig. 3).
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Fig. 3. Baseband detector frequency demodulates the interfer-
ometric signal, correlates the output against a square wavep(t)
whose transitions are synchronous with the turn-off times of the
rf field B1(t), and generates a test statistic, e.g. accumulated
squared frequency deviations, for detecting presence of a spin.

We model the baseband outputy(t) of the frequency de-
modulator and correlator as a random telegraph plus ad-
ditive Gaussian white noise (see lower panel of Fig. 3).
Let [0; T ] be the total measurement time period, and let
f�ig; i = 1::N , be the time instants within this period at



which spin reversals occur. We assumef�ig are the arrival
times of a Poisson process with intensity�. Consequently
N is a Poisson random variable with rate�T [11]. Thus,
y(t) = s(t) + v(t) wherev(t) is AWGN with variance =
�2v , ands(t) is a random telegraph signal containing only
the random transitions:

s(t) = �j�!oj

NX
i=0

(�1)ig(
t� �i

�i+1 � �i
); (7)

where� is a random variable that takes on�1 with equal
probability, representing a random initial spin polarity,�0 =
0, �N+1 = T , andg(t) is the standard rectangle function:
g(t) = 1 for t 2 [0; 1] andg(t) = 0 otherwise.

The baseband spin detection problem is to design a test
between the two hypotheses:

H0 (spin absent): y(t) = v(t)

H1 (spin present): y(t) = s(t) + v(t) (8)

for t 2 [0; T ].

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

time (ms)

C
an

til
ev

er
 p

os
iti

on
 (

nm
)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

time (ms)

R
f f

ie
ld

 A
m

pl
itu

de
 (

G
au

ss
)

0 0.5 1 1.5 2 2.5 3
−0.01

−0.005

0

0.005

0.01

time (ms)

F
re

qu
en

cy
 s

hi
ft 

(H
z)

solid: true frequency shift
dotted: measurement from interferometer 

Fig. 4. Top: Sample cantilever position signal,z(t), at 10 kHz.
Middle: Sample rf magnetic field magnitude,B1, has synchronous
half-cycle skips at 1 ms, 2 ms, and 3 ms. Bottom: In the presence
of a single spin,�s in Eq. 6 has both deterministic transitions due
to the rf skips at 1 ms, 2 ms and 3 ms, and random ones due to
spin relaxation. The random transitions,f�ig, occur as a Poisson
process. The initial polarity is� = 1 for this example. The noisy
signal at bottom is�s with AWGN contamination.

Conditioned on the random parametersf�ig; N; �, the
signals(t) is deterministic and known. Under this condi-
tioning theoptimaldetection structure would be the simple
matched filter [12]

1

T

Z T

0

y(t0)s(t0; �; � ; N)dt0
H1

>
<

H0

� (9)

where s(t;�; � ; N) is a synthesized random telegraph
signal of the form (7) parametrized byj�!oj (assumed
known),�; � andN . The value� is a threshold that can
either be set to satisfy aprobability of false alarmcontraint
PF � �, � 2 [0; 1], or as a function of the prior probabili-
tiesa ln[P (H0)=P (H1)]+bwherea; b are known constants.
In the former case the detector is called themost powerful
(MP) test of level�, which has maximumprobability of de-
tection(PD), while in the latter case the detector is called
the minPe detector as it achieves minimum average proba-
bility of decision error (minPe).

As the values of the random parameters are always un-
known we call the detector (9) theomniscient matched fil-
ter, which is unimplementable. However, as the omniscient
matched filter is optimal for known parameter values it es-
tablishes a useful upper bound on performance.

Perhaps the simplest baseband detection scheme, and the
most widespread in MRFM applications, is theamplitude
detectorwhich acts as if there were no random flips and
declares a spin present if the magnitude of the average am-
plitude of the correlator output exceeds a threshold����� 1T

Z T

0

y(t0)dt0

�����
H1

>
<

H0


 (10)

where
 is a threshold set to give the desiredPF . Improved
performance can be obtained by explicitly accounting for
the equally likely intial polarity and assuming AWGN to de-
rive the minPe detector. Under the assumption thaty(t) is
a random polarity constant imbedded in AWGN, the minPe
test for presence ofs(t) is similar to (10) except that it im-
plements a “soft” non-linearitycosh(�) in place of the ab-
solute valuej � j:

cosh

 
��2
v

Z T

0

y(t0)dt0

!
H1

>
<
H0


: (11)

The performance of the cosh amplitude detector (11) be-
comes identical to the standard amplitude detector (10)
whenT � �v minf�v=j�!j; 1g.

When there are random transitions over the integration
period[0; T ] the performance of the amplitude detector suf-
fers from decoherence. Indeed as the number of random
flips increases the average amplitude ofy(t) converges to
zero. As the energy ofs(t) is independent of the number of
transitions, the transition times, and the intial polarity, it is
natural to propose anenergy detector[12]Z T

0

[y(t0)]2dt0
H1

>
<
H0


 (12)

where
 is a threshold set to give the desiredPF . It can
be shown that the energy detector is a minPe test for the



case thatv(t) is additive white gaussian noise,s(t) =
�!o cos(2�t=Tskip + �), and� is uniformly distributed
over [0; 2�] [13]. It can also be shown that the energy de-
tector is the minPe test under a Gaussian approximation to
the random telegraph process in the limit of high SNR [14].

As we will show in the sequel, the performance of the
amplitude and energy detectors can be far from the optimal
performance achieved by the omniscient matched filter de-
tector.

3.1. The Hybrid Bayes/GLR Detector

The minPe detector for a signal with random parame-
ters is a Bayes likelihood ratio test that averages an omni-
scient likelihood ratio test statistic over all random parame-
ters [13]:

log�(y) (13)

= log
E� ;N [E� [f (y; � ; N; �jH1)]]

f(yjH0)

H1

>
<

H0

�:

As above� is a threshold selected to achieve a desired level
� of PF . The functionf is the joint p.d.f offy(t)gt2[0;T ]
parameterized by the random parameters� ; N; �, and
Ex[�jA] denotes conditional expectation over random vari-
ablesx given eventA.

While the expectation over� in (13) is simple to eval-
uate, the expectation overff�ig; Ng is very difficult since
the integration region is of very high dimension. An alter-
native to this second expectation is to use the Generalized
Likelihood Ratio (GLR) principle. The GLR consists of re-
placing the unknown parameters byMaximum Likelihood
(ML) estimates.

log�(y) (14)

= log
max� ;N fE� [f (y; � ; N; �jH1)]g

f(yjH0)

H1

>
<

H0

�;

where, again,� is a threshold chosen for a desiredPF .
Note that in (14) we have averaged over� while we
have maximized overff�ig; Ng, hence leading to a hy-
brid Bayes/GLR test. It is well known that for a sufficiently
large integration time the minPe and GLR tests are identical
(see for example [15]). Thus we can assert that the hybrid
Bayes/GLR test is an asymptotically optimal test.

As y(t) is a conditionally Gaussian random process
givenf�ig andN , the log-likelihood function in (14) can be

simplified by invoking the Cameron-Martin formula [16]:

log�(y) = max
� ;N

�
log cosh

�
1

�2v

Z T

0

y(t)s+(t; � ; N)dt

��

�
1

�2v

Z T

0

(s+(t; � ; N))2dt (15)

where s+(t; � ; N) is the synthesized telegraph wave (7)
having initial polarity� = 1 and parametrized by� and
N .

3.2. Solution via Gibbs Sampling

The maximization in (15) by exhaustive search over the
uncountably infinite dimensional space of possible parame-
tersff�ig; Ng is impractical. An alternative, which is guar-
anteed to converge to the maximizing solution, is to search
over a reduced set of these parameters generated by Gibbs
Sampling [17], [18]. As we know the Poisson intensity�,
we can generate samplesff�ig; Ng from theprior Poisson
distribution so as to maximize the log-likelihood function.
As these samples are more likely (on the average) to mimic
the behavior of the actual randomly generated parameters
we obtain a reduction in search complexity.

The general description of the Gibbs sampler is as fol-
lows. Supposed there is a random vector variableX =
[x1; x2; : : : ; xp]

T having density functionfX from which
we want to sample. Suppose also that we can simulate the
i-th element ofX given samples (already simulated) of the
other elements:

Xijx1; x2; : : : ; xi�1; xi+1; : : : ; xp

� fi(xijx1; x2; : : : ; xi�1; xi+1; : : : ; xp) for i = 1::p

(16)

Then a Markov sequence,x(t) = [x
(t)
1 ; : : : ; x

(t)
p ]T , can be

simulated by the recursion

X
(t+1)
1 � f1(x1jx

(t)
2 ; : : : ; x(t)p )

X
(t+1)
2 � f2(x2jx

(t+1)
1 ; x

(t)
3 ; : : : ; x(t)p )

...

X(t+1)
p � fp(xpjx

(t+1)
1 ; x

(t+1)
2 ; : : : ; x

(t+1)
p�1 )

(17)

After a certain amount of burn-in timeTb,X(t); t > Tb; will
have stationary distributionfX. In our case, sincef�ig are
Poisson-distributed, the conditional distributions are easy to
sample from, since they are conditionally uniform.



4. SIMULATION METHODS AND RESULTS

The objective of our first two simulations was to com-
pare the detection performance of the matched filter, the en-
ergy detector, the amplitude detector, and the Bayes/GLR
detector on the basis of Receiver Operating Characteristic
(ROC) curves, which are obtained by empirically generat-
ing the pairs(PF ; PD) for each detector. In our simula-
tions, the four decision rules (9), (12), and (14) were used
to generate the ROC curves in the Matlab 6.1 environment.
Based on the Monte Carlo methodology [17], we generated
samplesfy(i)d (n)g, yd(n) = y(nTs), under both Hypothe-
sis 0 and 1, whereTs was the sampling period. The samples
were input to the detector being evaluated, andPD andPF
were statistically calculated. 500 detection trials were per-
formed under each hypothesis. For each ROC curve, the
above process was repeated with a range of decision thresh-
old values�. This range of thresholds was chosen in order
to adequately sample the domainPF 2 [0; 1]. For the range
of experimental parameters investigated the cosh amplitude
detector (11) and the ordinary amplitude detector (10) had
virtually identical performance so only the latter detector’s
performance is compared below.

The simulation parameter values were chosen according
to typical OSCAR experimental values. The signal dura-
tion T was 3secs. and the sampling periodTs was .5 ms.
The signal amplitude,js(t)j, was9:28 � 10�4 Hz accord-
ing to (5), and we used the following parameter values:
B1 =2 Gauss,G = 2 � 1010 Gauss/m,!o =10 kHz, and
j�j = 9:28 � 10�28 J/Gauss. Two values of�, the aver-
age number of transitions per second, were evaluated. The
detector noise was assumed AWGN and the noise variance
was adjusted to investigate the effect of SNR, which is de-
fined as10log10[(1=T )

R T
0 js(t)j2dt=�2v ].

We ran the Gibbs sampler for 5000 iterations for the hy-
brid Bayes/GLR detector. Figures 5 and 5 show ROC curves
for SNR = -25 dB and -20 dB, respectively, for� = 1 event-
per-second. In both cases, our hybrid Bayes/GLR detector
outperformed significantly all the other detectors except for
the unimplementable matched filter. The matched filter had
complete information about the parameters, and as a result
it achieved almost perfect detection for both SNR values.
In Figure 7 the value of� was increased to 10 events-per-
second and SNR was held at -20dB. As expected all the
detection performances of all detectors degrade, with the
exception of the matched filter whose performance does not
depend on�. In Figure 8 the power curves for all detectors
are plotted as a function of SNR for� = 1. In this figure all
detectors perform at the same false alarm ratePF = 0:1 and
we can make a quantitative SNR comparison by fixing the
detection performance level atPD = 0:8, say. To attain this

detection level the energy detector and amplitude detector
require SNR’s of at least -14dB and -17.5dB, respectively,
while the hybrid Bayes/GLR detector only requires -26dB.
As compared to the amplitude detector this represents an
improvement of almost 9dB in SNR performance using our
proposed detector. Furthermore, the performance of our hy-
brid Bayes/GLR detector is only 4dB worse than the per-
formance bound of -30dB established by the matched filter
for this level ofPD. Note that the amplitude detector out-
performs the energy detector for low SNR but not for high
SNR.This is explained by the fact that even though energy
detector is not affected by random flips, at low SNR its out-
put is dominated by the noise variance.

In another simulation, we investigated the role of the
number of Gibbs samples on performance of the hybrid
Bayes/GLR detector, shown in Figure 9. It is evident that
performance improves as we increase the number of Gibbs
samples. For example, atPF = 0:1, PD increases from ap-
proximately 0.35 to 0.65 if we increase the number of Gibbs
samples from 100 to 500. It increases further to around 0.9
and 0.95 if 500 or 5000 Gibbs samples are used, respec-
tively. Such improvements in performance are significant
but yield diminishing returns as the number of Gibbs sam-
ples is increased beyond 500.
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and hybrid Bayes/GLR detector, at SNR = -25dB and� = 1 event-
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mentable.

5. CONCLUSION

In this paper we presented a hybrid Bayes/GLR approach
to detecting the presence of single spins for the OSCAR
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and hybrid Bayes/GLR detector, at SNR = -20dB and� = 10
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MRFM experiment. We have shown by simulation that the
Bayes/GLR detector performs significantly better than the
energy detector. The improvement in detection performance
is due to the fact that, unlike the energy and amplitude de-
tectors, the new detector estimates the unknown values of
the random spin reversal times and the initial polarity. An
interesting extension of our results would be to assume that
the frequency shiftj�!oj is also unknown. This would lead
to a hybrid Bayes/GLR detector which detects the peak over
the spectrum of the signal in addition to maximizing over
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studied in this paper forPF = 0:1 and� = 1 event-per-second.
At PD = 0:8 the hybrid Bayes/GLR detector performs within 4dB
of the bound established by the matched filter.
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Fig. 9. Juxtaposition of ROC curves of hybrid Bayes/GLR [detec-
tor, obtained with different numbers of Gibbs samples in the max-
imization step, at SNR = -20 dB and� = 10 events-per-second.
Performance improves as the number of Gibbs samples increases.

the number and positions of the transitions.

The hybrid Bayes/GLR detector was derived using a
baseband signal model consisting of a random telegraph
wave with Poisson transitions and AWGN. This signal
model is theoretically justified under the spin-lock assump-
tion. The validity of the spin-lock assumption remains to
be established. More sophisticated signal models of the
cantilever displacement measurements, and associated de-
tection methods which bypass frequency demodulation and
operate directly on those measurements, are currently under



investigation.
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