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ABSTRACT

Optimal measurement selection for inference is combinatori-
ally complex and intractable for large scale problems. Un-
der mild technical conditions, it has been proven that greedy
heuristics combined with conditional mutual information re-
wards achieve performance within a factor of the optimal.
Here we provide conditions under which cost-penalized mu-
tual information may achieve similar guarantees. Specifically,
if the cost of a measurement is proportional to the information
it conveys, the bounds proven in [4] and [10] still apply.

Index Terms— information measures, sensor selection

1. INTRODUCTION

Information gathering subject to resource constraints imposes
significant complexities on modern sensing and actuation sys-
tems. Information-driven methods seek to maximize informa-
tion extraction while limiting resource expenditures via ac-
tive control of the measurement process. Recent sensor signal
processing methods (e.g., [1, 9, 11]) consider mutual informa-
tion as the reward embedded in a dynamic sensing algorithm.
The problem of choosing an optimal subset of measurements
is formulated as a combinatorial optimization problem which
becomes intractable as the number of measurements grows.
Utilizing results from Nemhauser et al [7], [4, 3, 10] provide
theoretical performance bounds that guarantee greedy mea-
surement selection to be within a computable factor of the
optimal selection choice. The bounds depend critically upon
whether the information rewards are submodular. Whereas
the previous results consider selection constraints on pure in-
formation rewards, here we consider explicit costs/penalties
to the reward function. We show a class of penalized rewards
for which submodularity is preserved and thus the guarantees
of [3, 4, 10] are applicable.

1.1. Problem Description

Consider inference of n latent variables X = {X1, . . . ,Xn}

from measurements Z = {Z1, . . . , Zn}. Each Zt is a vec-
tor comprising of Nt measurements. The above can be easily
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extended to the multidimensional case, where each element
of Zt would represent a multidimensional measurement of
Xt. We will denote the indices of these measurements by
Vt = {1, . . . , Nt},∀t ∈ {1, . . . , n} and refer to them as mea-

surement sets herein. In addition, we denote by V = ∪n
t=1V

t.
A common assumption, and necessary to the guarantees

herein, is that measurements are statistically independent con-

ditioned on X (i.e., Zi ⊥⊥ Zj |X). Trivially, the results ex-
tend to the more general case, where the number of latent
variables and measurement sets is not necessarily the same,
so long as conditional independence of measurements is satis-
fied. We describe performance bounds for greedy selection of
measurements in both the batch and sequential settings. The
batch setting treats X as a monolithic hidden variable and Z
as a uniform collection while the sequential setting exploits
the dependency structure of {X1, . . . ,Xn} and the selection
structure of {Z1, . . . , Zn}.

Consequently, in the batch setting there are N =
�n

t=1 Nt

measurements, that are simultaneously available and the goal
is to find the best subset up to size K, where K ≤ N

under an information reward. In the sequential setting,
there are Nt measurements for each hidden state Xt. Ad-
ditionally, let {w1, . . . , wM} denote the order in which
the Vt are visited during greedy selection. Clearly, wl ∈

{1, . . . , n},∀l ∈ {1, . . . ,M}. In addition,
�M

l=1 δ(wl, t) ≤
kt,∀t and

�n
t=1 kt = K, where δ(·, ·) is the Kronecker delta

function. The last constraint implies that at most kt measure-
ments are chosen from the measurement set Vt. Remarkably,
in the sequential setting the greedy heuristic may be imple-
mented without revealing the entire problem structure (e.g., if
the walk corresponds to time) while still yielding perfor-
mance bounds. By contrast, the entire problem structure must
be available during greedy selection in the batch setting.

Furthermore, we consider a reward function f : 2V → R ,
that captures the value of sensing actions, and a cost function
c : 2V → R+ both defined on all subsets of measurements,
V . The evaluation of a single element j, c(j) denotes the cost
of the corresponding measurement. We will assume that the
reward function is submodular.

Definition 1. Submodular Function. Given a finite set V , a

real-valued function f on the set of subsets of V is submodular

if

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) ,∀A,B ⊆ V.



Additionally, we define the set increment function as the
incremental value of adding element j to a set S as:

ρS(j) � f(S ∪ {j})− f(S) .

It trivially holds that: ρ∅(j) = f(j). Equivalently, the set
increment function of a submodular function satisfies:

ρA(j) ≥ ρB(j) ,∀A ⊆ B ⊆ V and j /∈ B.

Submodularity, a discrete analogue to convexity [2], captures
the notion of “diminishing returns”. Specifically, when the set
increment function is the conditional mutual information, the
expected information contained in a prospective measurement
is higher when conditioned on the set of measurementsA than
set B,∀ A ⊆ B: ρA(j) = I(X;Zj |ZA) ≥ I(X;Zj |ZB) =
ρB(j), where Z

S is defined as Z
S � {Zj |j ∈ S} for some

S ⊆ V [5]. Costs are assumed to be non-negative and addi-
tive

c(S) =
�

j∈S
c(j) . (1)

Under the assumption of conditionally independent measure-
ments, conditional mutual information is a monotone sub-
modular function [4]. Such functions have the property that
f(A) ≤ f(B), ∀A ⊆ B, or equivalently ρS(j) ≥ 0,∀j ∈

V,S ⊆ V .
We define the greedy heuristic in the batch setting as

gj = arg max
u∈{1,...,n}\Gj−1

I(X;Zu
| Z

g1 , . . . , Z
gj−1) .

That is, choose the measurement with highest reward at step j

conditioned on previous measurements. We denote the greedy
solution at step (j−1)th as Gj−1 � g1:j−1. Via [7], the greedy
solution over monotone submodular functions is guaranteed
to be at least (1− 1/e) ≈ 0.63 of the optimal reward.

Greedy selection in the sequential setting is considered in
[10]. The essential difference is that sets of measurements are
visited in sequence with selection restricted to the current set.
In this case, greedy selection is defined as

gj = arg max
u∈{1,...,nwj }\Gj−1

I(X;Zu
wj

| Z
g1
w1

, . . . , Z
gj−1
wj−1

) .

While the proof method of [7] does not extend to the se-
quential setting, [8, 10] showed that the reward of the greedy
heuristic is no worse than 1/2 of the optimal for any visit-
ing sequence when the reward function is monotone and sub-
modular. We next discuss conditions under which penalized
information rewards may achieve similar guarantees.

2. METHOD

A natural approach is to consider penalized information re-
wards where the expected information gain is discounted by
a cost function multiplied by a conversion factor. A difficulty

arises in that such functions may not be submodular and fur-
thermore may not be monotone, rendering the previous guar-
antees inapplicable. Consistent with the above, we define the
batch greedy heuristic for non-monotone submodular func-
tions as follows:

gj = arg max
u∈{1,...,n}\Gj−1

ρGj−1(u) , (2)

and similarly the sequential greedy heuristic as:

gj = arg max
u∈{1,...,nwj }\Gj−1

ρGj−1(u) .

Consider the subset of size less or equal to K that solves the
following optimization:

O = arg max
S⊆V,|S|≤K

f(S) (3)

We assume that f(∅) = 0 and that the greedy heuristic
given in (2) terminates in L steps. Following Nemhauser
et al [7] and assuming a worst-case negative reward, ρS(j) ≥
−θ,∀j ∈ V,S ⊆ V , the following bound holds:

f(G) ≥

"
1−

L
K

„
1−

1
K

«L
#

f(O)− Lθ

„
1−

1
K

«L

. (4)

As K grows, this bound is of less utility.
As stated, the results of [10] apply to the sequential setting

when the reward is submodular and monotone. Unfortunately,
the latter property is not satisfied here. However, one can in-
troduce kt auxiliary measurements for each measurement set
Vt

,∀t ∈ {1, . . . , n} that have no information value and incur
no cost. Such measurements are equivalent to choosing no
measurements at a given step. Introduction of these measure-
ments guarantees that greedy selection becomes nonnegative
and that the greedy solution terminates in exactly K steps.
Let us further assume that the optimal solution O has size
K
∗, where K

∗ ≤ K. We can introduce K − K
∗ auxiliary

variables, and thus obtain an optimal solution of size K with
the same reward as the one of size K

∗.
Then, defining the function f

�(S) = f(S)+|S|θ, it is eas-
ily shown that f

�(·) is both submodular and monotone. Thus
the known bound applies:

f
�(O) ≤ 2f

�(G) ⇔ f(O) ≤ 2f(G) + Kθ .

where O and G are the optimal and greedy selections under
the original f(·).

2.1. Penalized Mutual Information

Consider the following reward function

f(S) = max
�
I(X;ZS)− λc(S), 0

�
,

where λ is a positive regularization parameter reflecting the
relative value of information with respect to costs. Such a re-
ward function reflects the notion that negative rewards should



result in taking no action. However, it can be shown that this
reward function is not submodular and, as such, does not read-
ily come with provable performance guarantees.

However, the related reward function, denoted as penalized-

MI is
f(S) = I(X;ZS)− λc(S) ,

where c(S) has been defined in (1). This set function is sub-
modular, hence Eq. 4 holds with θ = λcmax and cmax being
the worst-case cost. However, this reward is non-monotone,
i.e., the increment function

ρS(j) = f(S ∪ {j})− f(S) = I(X;Zj
| Z

S)− λc(j) ,

can conceivably incur negative increments and the bounds for
the sequential case (cf. [10]) no longer apply.

The optimal solution, however, can be shown (via con-
tradiction) to contain only non-negative increments. Further-
more, via the introduction of kt auxiliary measurements for
each measurement set Vt, the increments of the greedy solu-
tion will be non-negative as well.

2.2. Cost Proportional to Expected Information Reward

Typically, one would expend resources proportionate to the
informational value of a measurement given the information
that is already gathered. Here, we consider a proportional cost
structure such that under certain conditions penalized MI is
both submodular and monotone. Hence, the sequential guar-
antees of the greedy heuristic hold.

Consider costs which are proportional to the expected in-
formation gain of a measurement.

cS(j) � rjI(X;Zj
| Z

S) ,

where rj is a nonnegative constant associated to each mea-
surement. The increment function thus becomes

ρS(j) = I(X;Zj
| Z

S)−λcS(j) = (1−λrj)I(X;Zj
| Z

S),

which can be easily shown to be submodular. An additional
requirement that ensures well-posedness is:

f(S ∪ {j}) = ρS(j) + ρ∅(S) = ρj(S) + ρ∅(j) ⇔
cS(j) + c∅(S) = cj(S) + c∅(j) ,

where c∅(j) = c(j) represents the cost of measurement Zj .
Consequently, we must have that rj = r,∀j. If, furthermore,
r ≤

1
λ and c(j) ≤ rI(X;Zj | Z

S),∀j ∈ V and S ⊆ V

, the reward function is non-decreasing as well. Therefore,
the batch and sequential guarantess in [4] and [10] will apply,
respectively.

3. RESULTS

Here we present an experiment whose purpose is to demon-
strate the following counter-intuitive result. If one de-
composes the penalized reward into the information gain,

I(X;ZS), and the cost c(S) it is possible for greedy selec-
tion of penalized rewards to achieve a higher information gain
than greedy selection of non-penalized rewards.

We consider the following linear state-space model:

Xt+1 = FXt + Ut

Z
j
t+1 = H

j
t+1Xt+1 + Wt ,

where t = {1, . . . , T}, j = {1, 2}, F captures linear dynam-
ics, Ut ∼ N (0, Q) is driving noise, and Wt ∼ N (0, σ

2
t ) is

measurement noise. We set λ = 0.5 and consider T = 10
time points. For odd time points, we obtain two measure-
ments which extract the position in x and y. For even
time points, only the position in x is extracted. In addi-
tion, the variances of the noisy measurements are: (σ1

t )2 =
16, (σ2

t )2 = 64 for odd time points, while (σ1
t )2 = 1 for

even time points. In addition, we set the costs such that
c(1) = 0.5, c(2) = 0.05,∀t ∈ {1, . . . , T}.

Let GI denote the set obtained using greedy MI as the re-
ward function and GP denote the set obtained using greedy
PMI. In Figure 1(top), we see that I(X;ZGI

) is lower than
I(X;ZGP

), despite the fact that the GP selections incorpo-
rate penalties. The reason is twofold, first the greedy heuristic
using MI as the reward selects measurements without regard
to costs and second, the costs are structured in a way that the
greedy choices for PMI prefer to measure the y-position of a
latent variable when only the measurement of the x-position
is available in neighboring nodes. This is not to say that
there is a general method for adapting cost structures so that
greedy PMI outperforms MI, rather that the two, in general,
are not comparable and that it is quite possible (as our ex-
ample shows) that PMI may yield better information rewards
than pure MI.

Figure 1(middle) compares I(X;ZGI
) − λc(GI) with

I(X;ZGP
) − λc(GP ). Not surprisingly, the latter is supe-

rior to the former. We also see that the monotone behavior
induced by the introduction of auxiliary variables results in
non-negative increments GP . Lastly, Figure 1(bottom) shows
that the posterior entropy of each latent variable is lower for
GP as compared to GI .

4. DISCUSSION

We have shown that when costs are proportional to expected
information gain and that the constant of proportionality satis-
fies certain conditions, penalized information rewards can be
made to be monotone and submodular. The consequence of
which is that the batch and sequential guarantees for greedy
selection as compared to the optimal selection described in
[4, 10] hold. Additionally, we presented simulations to illus-
trate the difference in unpenalized versus penalized measure-
ment selection in an example tracking problem which illus-
trates the difficulty of directly comparing penalized to non-
penalized rewards.
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Fig. 1. Owing to the particular cost structure (top) GI results
in a lower information reward than GP . (middle) GP outper-
forms GI (as expected) in terms of penalized increments. The
introduction of auxiliary measurements yields non-negative
increments. (bottom) The posterior entropy of each hidden
variable is consistently lower for GP as compared to GI .


