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Abstract

Motivated by Chernoff’s bound on asymptotic probability of error we propose the alpha-divergence measure and
a surrogate, the alpha-Jensen difference, for feature classification, indexing and retrieval in image and other databases.
The alpha-divergence, also known as Renyi divergence, is a generalization of the Kullback-Liebler divergence and
the Hellinger affinity between the probability density characterizing image features of the query and the density
characterizing features of candidates in the database. As in any divergence-based classification problem, the alpha-
divergence must be estimated from the query or reference object and the objects in the database. The surrogate for the
alpha-divergence, called the alpha-Jensen difference, can be simply estimated using non-parametric estimation of the
joint alpha-entropy of the merged pairs of feature vectors. Two methods of alpha-entropy estimation are investigated:
(1) indirect methods based on parametric or non-parametric density estimation over feature space; and (2) direct
methods based on combinatorial optimization of minimal spanning trees or other continuous quasi-additive graphs
over feature space. On the basis of mean square error convergence rate comparisons the minimal graph entropy
estimator can have better better performance than an indirect entropy estimator implemented with plug-in density
estimates. We illustrate these results for estimation of dependency in the plane and geo-registration of images.

1 Introduction

A database of imagesX = fXigKi=1 is queried for content which is closely related to a reference imageX0. The
answer to the query is a partial re-indexing of the database in decreasing order of similarity to the reference image
using an index function. This content-based retrieval problem arises in geographical information systems, digital
libraries , medical information processing, video indexing, multi-sensor fusion, and multimedia information retrieval
[38, 42, 41, 40]. Common methods for image indexing and retrieval are color histogram matching and texture matching
using cross correlation. While these methods are computationally simple they often lack accuracy and discriminatory
power.

There are three key ingredients to image retrieval and indexing which impact the accuracy and computation effi-
ciency:
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1. selection of image features which discriminate between different image classes yet posess invariances to unim-
portant attributes of the images, e.g. rigid translation, rotation and scale;

2. application of an index function that measures feature similarity and is capable of resolving important differences
between images;

3. query processing and search optimization which allow fast implementation.

While these ingredients are all closely linked, this paper is primarily concerned with the appropriate choice of
the feature similarity measure and its optimization. We consider the class of�-divergences, also known as R´enyi
divergences, and a surrogate function called the�-Jensen difference. The�-divergences can be roughly viewed as
distances between the probability models underlying the query and the database of images. A special case of�-
divergence is the Kullback-Liebler (KL) divergence which has been applied to indexing and image retrieval by Stoica,
Zerubia and Francos [40] and Do and Vetterli [10]. A related quantity is the�-Jensen difference which is a function
of the joint�-entropy of pairs of feature vectors derived from the query and images in the database. The�-Jensen
difference was proposed independently by Ma [31, 30] for registering pairs of image modalities and by He, Ben-Hamza
and Krim [19] for registering an arbitrary number of image modalities. Another special case of the� divergence is
the�-information which is a generalization of the Shannon mutual information. Although we do not explore this
extension here, the�-information can be further generalized to the “f -information” which has been treated in a recent
paper [35] for medical image registration and generalizes the mutual-information method of Viola and Wells [45]

Here we motivate the�-divergence for indexing by decision theoretic considerations and large deviation theory
of detection and classification. A result of this paper is that use of the KL divergence (� = 1) can be suboptimal
relative to the more general�-divergence. In particular, we establish that when the feature densities are difficult to
discriminate (close together in a weighted sup-norm metric) the theoretically optimal choice of� is � = 1=2 which
corresponds to the Hellinger affinity, related monotonically to the Hellinger-Battacharya distance, as contrasted to the
KL divergence. We compare the local discrimination capabilities of the�-divergence and the�-Jensen difference. In
particular we show that for discrimination between pairs of close feature densities the�-divergence admits a value
� = 1=4 which is universally optimal while for the�-Jensen difference the optimal value of� depends on the feature
density pair.

When either the�-divergence or the�-Jensen difference are used to perform indexing, they must be estimated
from the query and the database. In this paper we focus on estimation of the�-Jensen difference. When a smooth
parametric model for the feature densities exists this entropy metric is a smooth non-linear function of these parameters
and parametric estimation techniques such as maximum likelihood can be applied [41, 40]. For the parametric case,
the entropy estimation error decreases at rate1=

p
n wheren is the size of the training sample of feature vectors

used for density estimation. When there exists no suitable parametric model for the feature densities non-parametric
density estimation methods can be applied to estimate the�-divergence or the�-Jensen difference. This technique
is called a “density plug-in” method. On the other hand, minimal graph entropy estimation techniques, introduced
in Hero and Michel [23], can be applied to directly estimate the�-Jensen difference. Using recent random graph
convergence rates derived by Hero and Ma [20] for densities of bounded variation, we show that the convergence rate
of non-parametric plug-in methods based on density plug-in estimation are slower than the rate of direct minimal-
graph estimation methods implemented with the minimal spanning tree (MST) or other “continuous quasi-additive”
graphs.

Finally, we show how minimal graphs can be applied to estimation of�-divergence, when a consistent estimator
of the reference density is available; estimation of the�-mutual information and�-Jensen difference. For purposes of
illustration, we apply these results to a geo-registration problem.

2



2 Statistical Framework

Let X0 be a reference image, called the query, and consider a databaseXi, i = 1; : : : ;K of images to be indexed
relative to the query. LetZi be a feature vectors extracted fromXi. We assume that imageXi’s feature vectorZi is
realizationZ generated by a j.p.d.f.f(Zj�) which depends on a vector of unknown parameters� lying in a specified
parameter space�. Under this probabilistic model thek-th observed image feature vectorZk is assumed to have
been generated from modelf(Zj�k), where�k is called the “true parameter” underlyingZk, k = 1; : : : ;K. Under
this statistical framework the similarity between imagesX0; Xi is reduced to similarity between feature probability
modelsf(Zj�0); f(Zj�i).

2.1 Divergence Measures of Dissimilarity

Define the densitiesfi = f(Zj�i), i = 0; : : : ;K. The�-divergence betweenfi andf0 of fractional order� 2 [0; 1] is
defined as [36, 7, 2]

D�(fikf0) =
1

�� 1
ln

Z
f0

�
fi(z)

f0(z)

��

dz

=
1

�� 1
ln

Z
f�i (z)f

1��
0 (z)dz (1)

Note thatD�(fikf0) = D�(�ik�0) is indexed by�i and�0.

�-Divergence: Special cases

When specialized to various values of� the�-divergence can be related to other well known divergence measures.
Two of the most important examples are the Hellinger affinity2 ln

R p
fi(z)f0(z)dz obtained when� = 1=2, and is

related to the Hellinger-Battacharya distance squared,

DHellinger(fikf0) =

Z �p
fi(z)�

p
f0(z)

�2
dz

= 2
�
1� exp

�
1

2
D 1

2

(fi k f0)
��

;

and the Kullback-Liebler (KL) divergence [29], obtained when�! 1,

lim
�!1

D�(fi; f0) =

Z
f0(z) ln

f0(z)

fi(z)
dz:

Only when� = 1=2 is the divergence monotonically related to a true distance metric between two densities.

When the densityf0 dominatesf1 and is uniform over a compact domainZ � supportffig the�-divergence
reduces to the�-entropy, also known as the R´enyi entropy:

H�(fi) =
1

1� �
ln

Z
Z

f�i (z)dz (2)

3 �-divergence as an Index Function

The ordered sequence of increasing�-divergence measuresD�(f(1)kf0); : : : ; D�(f(K)kf0); induces an indexing,
which we call the “true indexing,” of the images

Xi � Xj , D�(fikf0) < D�(fjkf0)
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This indexing is unimplementable given only theZi’s since it requires the underlying probability modelsfi be known
to the query processor. The non-statistical indexing problem can now be stated as: given a sequence of divergences
fD�(�ik�0)gKi=1 find the sequence of indicesi1; : : : ; iK which minimizeD�(�ikk�0) over the setf1; : : : ;Kg �
fi1; : : : ; ik�1g, k = 1; : : : ;K.

Special cases of the indexing problem are

1. Content-based retrieval: the query is the density of an image object and the database consists of image densities
which may “contain” the object in the sense that the object may only be found as a scaled, rotated or ortho-
projected version of the query in the database. An invariant feature set is very important for this application.

2. Image registration: the database consists ofK copies ofZ0 which are rotated, translated and possibly locally
deformed. The indexi1 finds the pose/orientation in the database closest to that of the query. An invariant
feature set is not desirable in this application. When the feature vectorZi is defined as the set of pixel pair
gray levels associated with each pair of imagesXi; X0 and the mutual information criterion is applied to the
pixel pair histogram one obtains the method of Viola and Wells [45]. The MI criterion is equivalent to the KL
divergence between the joint distribution of the pixel-pair gray levels and the product of the marginal feature
distributions.

3. Target detection: the query is the distribution of the observations and the database is partitioned into of a family
of densitiesfi = f(Zj�i) part of which corresponds to the “target-absent” hypothesis and the rest to “target-
present.” Target detection is declared if the closest density in the database is in the latter set.

4. Performing parameter estimation by minimizing the Hellinger-Battacharya distance is known as minimum-
Hellinger-distance-estimation (MHDE) introduced by Beran [5]. While there are obvious similarities, relations
of MHDE to indexing will not be explored in this paper.

3.1 Un-normalized�-Divergence and the Chernoff Error Exponent

Here we argue appropriateness of the�-divergence on the basis of large deviations theory results on the exponential
rate of decay of the Bayes-optimal classifier between two densities. Note that the Bayes classification error probability
below is different from that defined by Vasconcelos [43, 42] in that here the decision error is averaged over an ensemble
of image models. Define the un-normalized�-divergence as the -log integral in the definition (2) of the�-divergence:

Du
�(f1kf0) = � ln

Z
f�(Zj�1)f1��(Zj�0) dZ = (1� �)D�(f1kf0)

Assume that from an i.i.d. sequence of imagesX(1); : : : ; X(n) we extract feature vectorsZ = [Z(1); : : : ; Z(n)] each
having densityf(Zj�) for some� 2 �. Consider testing the hypotheses

H0 : � 2 �0

H1 : � 2 �1

where�0 and�1 partition the parameter space�. In the context of image retrieval the parameter range�1 could
cover theK densities of the images in the database while parameter range�0 covers densities outside of the database.
In this case testingH0 vs.H1 is tantamount to testing whether the query lies in the database (H1) or not (H0). If H1

is decided then sequential hypothesis testing could subsequently be performed to completely search the database for
specific query matches by successive refinement of the parameter space�1 over a depthlog2(K) binary tree.

Let f(�) be a prior over� and assume thatP (H1) =
R
�1

f(�)d� andP (H0) = 1 � P (H1) are both positive.
Then for any test ofH0 vs.H1 define the average probability of error

Pe(n) = �(n)P (H1) + �(n)P (H0)
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where�(n) and�(n) are Type II and Type I errors of the test, respectively, which depend on� in general. The�-
divergence measure can be related to the minimum attainable probability of error through the Chernoff bound of large
deviations theory [8]:

lim inf
n!1

1

n
lnPe(n) = � sup

�2[0;1]

Du
�(f1kf0); (3)

wheref1(Z) =
R
�1

f(Zj�)f(�)d� andf0(Z) =
R
�0

f(Zj�)f(�)d�. The quantitysup�2[0;1] D
u
�(f1kf0) in (3) is

called theChernoff exponentwhich gives the asymptotically optimal rate of exponential decay of the error probability
for testingH0 vsH1. The optimal� = �o which attains the maximum in (3) is obtained by finding the value of�
which maximizesDu

�(f1kf0).

�o = argmax�2[0;1]

Z
f
�

1 (Z)f
1��

0 (Z) dZ (4)

3.2 Selection of�

We have empirically determined that for an image indexing problem arising in georegistration (see Section 5) the value
of � leading to highest resolution seems to cluster around either1 or 1=2 corresponding to the KL divergence and the
Hellinger affinity respectively [30]. The determining factor appears to be the degree of differentiation between the
densitiesffigKi=0. If the densities are very similar, i.e. difficult to discriminate, then the indexing performance of the
Hellinger affinity distance (� = 1=2) was observed to be better that the KL divergence (� = 1). This is consistent
with the asymptotic local analysis below.

A locally optimum� can be explored by asymptotic analysis of the Chernoff exponent. Specifically, the following
is a direct result of Proposition 7 in Appendix A.

Proposition 1

Du
�(f0kf1) =

�(1� �)

2

Z
(f0(x) � f1(x))

2

f0(x) + f1(x)
dx+ o(�2); (5)

where� 2 [0; 1] is

� = 2 sup
x

jf1(x)� f0(x)j
f1(x) + f0(x)

:

Recall that the detection error probability decreases exponentially with Chernoff exponentsup�2[0;1]D
u
�(f1kf0). A

consequence of (5) is that to order�2 the optimum value of� in the Chernoff exponent is1=4.

As an illustrative example consider the case wheref0 andf1 are multivariate Gaussian densities. The KL infor-
mation for such a Gaussian feature model was adopted in [41, 40] for performing image indexing. Letf(x;�;�) be
a reald-dimensional normal density with mean vector� and non-singular covariance matrix�. The un-normalized
�-divergenceDu

�(f1kf0) = Du
�(f(x;�1;�1)kf(x;�0;�0)) of order� is given by (see Proposition 8 in Appendix B).

Du
�(f(x;�1;�1)kf(x;�0;�0)) = � 1

2
ln

j�0j�j�1j1��
j��0 + (1� �)�1j| {z }

Term A

+
�(1� �)

2
��T (��0 + (1� �)�1)

�1��| {z }
Term B

(6)

where�� = �1 � �0.

The divergence consists of two termsA andB. A is equal to zero when�0 = �1 andB is equal to zero when
�0 = �1. TermA is the log of the ratio of the determinants of the geometric mean and the arithmetic means of�1 and
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�0 with mean weights� and1� �. TermB is the quadratic difference of mean vectors normalized by the arithmetic
mean of�1 and�0 with mean weights� and1� �.

An asymptotic expansion yields the following expression for the case that�� = 0, i.e. equal means,

Du
�(f1kf0) =

�(1� �)

4
tr(�1 � �0)

2 + o(tr(�1 � �0)
2):

so that locally the Chernoff exponent increases in the trace norm of the differences between the feature covariances
and, as expected,� = 1=4 is optimal.

4 Divergence and Entropy Estimation

In practice the image model parameters�k’s are unknown so that the actual relative ordering of�-divergences
fD�(�kk�0)gKk=1 is also unknown. The statistical problem of indexing can be stated as follows: based on a sin-

gle realizationXk = X
(1)
k of the k-th image,k = 0; : : : ;K, estimate the actual rank ordering of�-divergences

fD�(�kj�0)gKk=1 between feature distributions. Divergence estimation is closely related to entropy estimation which
has a long history in the statistics and information theory communities.

Estimation of entropy is an important problem that arises in statistical pattern recognition, adaptive vector quan-
tization, image registration and indexing, and other areas. Non-parametric estimation of Shannon entropy has been
of interest to many in non-parametric statistics, pattern recognition, model identification, image registration and other
areas [18, 27, 1, 44, 4, 45, 11]. Estimation of�-entropy arises as a step towards Shannon entropy estimation, e.g.,
Mokkadem [32] constructed a non-parametric estimate of the Shannon entropy from a convergent sequence of�-
entropy estimates. However, estimation of the�-entropy is of interest in its own right. The problem arises in vector
quantization where R´enyi entropy is related to asymptotic quantizer distortion via the Panter-Dite factor and Bennett’s
integral [15, 34]. The�-entropy parametrizes the Chernoff exponent governing the minimum probability of error in
binary detection problems [26, 6]. It also has been used for image registration from multiple modalities via the�-
Jensen difference [31, 30, 19]. The most natural estimation method is to substitute a non-parametric density estimator
f̂ into the expression for entropy. This method has been widely applied to estimation of the Shannon entropy and
is called “plug-in” estimation in [4]. Other methods of Shannon entropy estimation discussed in [4] include sample
spacing estimators, restricted tod = 1, and estimates based on nearest neighbor distances.

Three general classes of methods can be identified: parametric estimators, non-parametric estimators based on
density or function estimation, and non-parametric estimators based on direct estimation. The first two methods can
be classified asplug-in techniques where a parametric or non-parametric density estimatef̂ or function estimatecf�
are simply plugged into the divergence formula. When an accurate parametric model and good parameter estimates
are available parametric plug-in estimates of divergence are attractive due to their1=

p
n convergence properties. An

analytical parametric form of the divergence can often be derived over the parametric class of densities considered and
maximum likelihood can be used to estimate parameters in the divergence formula. This approach was adopted under
a multivariate Gaussian image model by Stoicaetal [40] for image retrieval. For Gaussianf1 andf0 the KL divergence
D1(f1kf0) has a simple closed form expression, which can be derived as the limit of (37) as� ! 1, and the authors
in [40] proposed using maximum likelihood or least squares estimates of the mean and covariance parameters of each
image.

Non-parametric plug-in divergence estimates do not benefit from closed form parametric expressions for diver-
gence but avoid pitfalls of model dependent estimates. For example, when a non-parametric estimate off̂ or ofcf� are
available the following plug-in estimates of�-entropy are natural

H�(f̂) =
1

1� �
ln

Z
f̂�(z)dz (7)

6



H�(cf�) = 1

1� �
ln

Z cf�(z)dz: (8)

For the special case of estimation of Shannon entropylim�!1H�(f) = � R f(z) ln f(z)dz recent non-parametric
estimation proposals have included: histogram estimation plug-in [16]; kernel density estimation plug-in [1]; and
sample-spacing density estimator plug-in [17]. The reader is referred to [4] for a comprehensive overview of work
in non-parametric estimation of Shannon entropy. The main difficulties with non-parametric methods are due to the
infinite dimension of the spaces in which the unconstrained densities lie. Specifically: density estimator performance
is poor without stringent smoothness conditions; no unbiased density estimators generally exist; density estimators
have high variance and are sensitive to outliers; the high dimensional integration in (7) might be difficult.

The problems with the above methods can be summarized by the basic observation: on the one hand parame-
terizing the divergence and entropy functionals with infinite dimensional density function models is a costly over-
parameterization, while on the other hand artificially enforcing lower dimensional density parametrizations can pro-
duce significant bias in the estimates. This observation has motivated us to develop direct methods which accurately
estimate the entropy without the need for performing artificial low dimensional parameterizations or non-parametric
density estimation [21, 23, 22]. These methods are based on constructing minimal graphs spanning the feature vectors
in the feature space. The overall length of these minimal graphs can be used to specify a strongly consistent estimator
of entropy for Lebesgue continuous densities. In particular, letZ(n) = fZ(1); : : : ; Z(n)g and define the Euclidean
functional of order: L = L(Z(n)) = mine2E

P
e jej the overall length of a graph spanningn i.i.d. vectorsZ(i) in

IRd each with densityf . Here 2 (0; d) is real,e are edges in a graph connecting pairs ofZ(i)’s and the minimization
is over some suitable subsetsE of the

�
n
2

�
edges of the complete graph. Examples include the minimal spanning tree

(MST), Steiner tree (ST), minimal matching bipartite graph, and traveling salesman tour. The asymptotic behavior of
L over random pointsZ(n) asn!1 has been studied for over half a decade [3, 46, 39] and, based on these studies,
in [23] we gave conditions under which

Ĥ�(Z(n)) = lnL(Z(n))=n� � ln�L;d (9)

is an asymptotically unbiased and almost surely consistent estimator of the un-normalized�-entropy off where
� = (d � )=d and�L ;d is a constant bias correction depending on the graph minimality criterion overE but
independent off .

As shown in [23], optimal pruning of greedy implementations of the minimal graph can robustify the entropy esti-
mator against outliers from contaminating distributions. This procedure consists of constructing thek-minimal graph
which is defined as the minimum weight minimal graph spanning anyk out of then points in the realization off .
DivergenceD�(f1kf0) between the observed feature densityf and a reference feature densityf0 can be estimated
similarly via performing a preprocessing step before implementing the minimal-graph entropy estimator. In this pre-
processing step one applies a measure transformation on the feature space which converts the reference density to a
uniform density over the unit cube [22].

As contrasted with density-based estimates of entropy, minimal graph entropy estimators enjoy the following prop-
erties: they can have faster asymptotic convergence rates (see next sub-section), especially for non-smooth densities
and for low dimensional feature spaces; they completely bypass the complication of chosing and fine tuning parameters
such as histogram bin size, density kernel width, complexity, and adaptation speed; the� parameter in the�-entropy
function is varied by varying the interpoint distance measure used to compute the weight of the minimal graph. On
the other hand, the need for combinatorial optimization may be a bottleneck for a large number of feature samples, for
example the MST or the k-NNG are “almost linear” algorithms of complexityO(n logn).

Whenf0 is known the�-divergence can be estimated by minimal graph methods using the measure transformation
method outlined [22]. For unknownf0 and unknownf1 the existence of consistent minimal-graph estimators of
D�(f1kf0) is an open problem. The sequel of this paper will be concerned with an alternative index function, called
the�-Jensen difference, which is a function of the joint entropy of the query and candidate image feature sets. This
function can be estimated using the entropy estimation techniques discussed above.

7



4.1 Robust Entropy Estimation: thek-MST

In Hero and Michel [23] we established strong convergence results for a greedy approximation to the following min-
imal k-point Euclidean graph problem. Assume that one is given a setXn = fx1; : : : ; xng of n random points in the
unit cube[0; 1]d of dimensiond � 2 following a Lebesgue densityf . Fix k and denote byXn;k a k-point subset of
Xn, 0 < k � n. The minimal k-point Euclidean graph problem is to find the subset of pointsXn;k and the set of edges
connecting these points such that the resultant graph has minimum total weightL(Xn;k). This problem arises in many
combinatorial optimization problems, see references in [23] for a partial list. In addition to these problems, in [23] we
noted that the weight functionk-minimal graph could be useful for robust estimation of the R´enyi entropy of order�,
where� = (d� )=d 2 (0; 1) is specified by the dimensiond � 2 and a weight exponent 2 (0; d) on the Euclidean
distance between vertices of the graph. The intuition is that thek-MST tends to only accept those points that are most
clustered near each other, thereby the rejected points tend to be stragglers outside of thek cluster. In Hero and Michel
[23] we established almost sure (a.s.) convergence of the normalized weight function of a greedy approximation to the
a class ofk-point minimal graphs including thek-MST. This normalized weight function converges to a limit which,
for k � n, is a close approximation to the entropy integral in (9). The influence function was investigated in Hero and
Michel [23] and quantitatively establishes thek-MST as a robust estimator of entropy.

The greedy approximation was introduced in [23] to reduce the exponential complexity of the exactk-MST algo-
rithm yet retain its outlier resistant properties. This greedy approximation involves the following partitioning heuristic:
dissect the support of the densityf , assumed to be[0; 1]d, into a set ofmd cells of equal volumes1=md; rank the cells
in increasing order of numbers of points contained; starting with the highest ranked cell and continuing down the list
compute the minimal spanning graphs in each cell until at leastk points are covered. Stitching together these small
graphs gives a graph which is an approximation to thek-minimal graph and, whenk = �n, for which the log of
the normalized weight function̂Ln;k=k

� converges to an approximation of the R´enyi entropy of order�. The com-
putational advantage of the greedy algorithm comes from its divide-and-conquer multi-resolution structure: it only
requires solving the difficult non-linear minimal graph construction on cells containing smaller numbers of points.
When� = 1 this greedy approximation reduces to a partitioning approximation to the full minimal graph spanning all
of then points. By selecting the “progressive-resolution parameter”m as a functionm(n) of n we obtain an adaptive
multi-resolution approximation to thek-MST.

4.2 Entropy Estimator Convergence Comparisons

It can be shown that whenf is a density supported on the unit cube[0; 1]d the bias and variance of direct minimal-
graph entropy estimators (9) and indirect density plug-in entropy estimators (7) converge to zero as a function of the
numbern of i.i.d. observations [23, 1]. Here we attack a harder problem: comparing the asymptotic convergence rates
of the mean square error.

The estimators discussed below will be of the form̂H� = 1
1�� ln Î�, whereÎ� will be a consistent estimator of

the integral

I�(f) =

Z
f�(z)dz:

Given estimates off andf� define the density plug-in estimatorI�(f̂) and function plug-in estimatorI�( bf) as

I�(f̂) =

Z
f̂�(x)dx (10)

and

I�( bf) =

Z cf�(x)dx: (11)
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Define the direct graph-based estimatorÎ� as

Î� = L(Z1; : : : ; Zn)=(�L;dn
(d�)=d) (12)

where(d� )=d = �. A standard purturbation analysis ofln(z) establishes that

jĤ� �H�(f)j =
1

1� �

jÎ� � I�(f)j
I�(f)

+ o(jÎ� � I�(f)j):

Thus as a function ofn the asymptotic rate of convergence ofĤ� �H�(f) will be identical to that of̂I� � I�(f). In
the sequel we will therefore focus on the convergence ofÎ�.

4.3 Plug-In Estimators

Modern methods of non-parametric density estimation attempt to minimize the estimation error as the density varies
over a function space. Common spaces of variation which are considered are the H¨older spaces�d(�; c), Besov spaces
B�
p;q , and the space of functions of bounded variationBV(c; d). We will restrict the densityf on [0; 1]d, and associated

functions, to one of thesed-dimensional function spaces in this report.

The class�d(�; c) of order-� Hölder continuous functions over[0; 1]d are defined as

�d(�; c) =
n
f(x) : jf(x) � pb�cx (z)j � c kx� zk�

o
wherepkx(z) is the Taylor polynomial (multinomial) off of orderk expanded about the pointx, kxk denotes theL2
norm andb�c is defined as the greatest integer strictly less than�. As � becomes large the class�d(�; c) contains
functions which are increasingly smooth. For example,�d(1; c) is the space of Lipschitz functions and�d(1; c)
contains all infinitely differentiable functions.

The classB�
p;q(c) of Besov functions over[0; 1]d is defined

B�
p;q(c) =

n
f : kfkp + kf � T (f)kl�p;q � c

o
wherekfkp is the standardLp norm andkf �T (f)kl�p;q is a norm of the approximation error of the best dyadic spline
approximation tof of orderr, wherer is determined by�, p andq (see Devore and Popov [9]).

The classBV(c; d) of functions over[0; 1]d is defined as [37]

BV(c; d) =

(
f : sup

fzig

X
i

jf(zi)� f(zi�1)j � c

)
; (13)

where the maximum is taken over all countable subsetsfz1; z2; : : :g of points in[0; 1]d.

We have the following simple results which are given without proof.

Proposition 2 Assume that the Lebesgue densityf is in a function spaceC and thatf̂ is a plug-in estimator with
uniform rms convergence rate of orderO(n�r) overC. If

R
f��1(z)dz <1 then

E

����I�(f̂)� I�(f)
���2�1=2 = O(n�r): (14)
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Whenf� 2 C = BV(C; d) Proposition 2 can be tightened

Proposition 3 Assume the Lebesgue densityf is such thatf� 2 BV(C; d). Let cf� be a plug-in estimator with
uniform rms convergence rate of orderO(n�r) overBV.

E

����I�(cf�)� I�(f)
���2�1=2 = O

�
n�r

�
: (15)

4.4 Minimal Graph Estimators

For a direct minimal-graph estimator (12) exact convergence rates have been elusive except in some special cases.
Even for a uniform densityf , exact rates are known only ford = 2 [39, 46]. Only bounds on convergence rates are
available for this case whend > 2 and these bounds form the basis for proving the convergence results discussed
below. For example it has been shown [46] that whenf is a uniform density the normalized MST length functional
L=n

(d�)=d converges to the integral�L ;dI�(f) with rate upper bounded byO(n�1=d). This bound is tight for
d = 2. In [20] we establish that the rms convergence rate of the normalized MST functional is upper bounded by
n�1=(d+1) for arbitrary densityf such thatf� is of bounded variation. This result holds under the assumptions that
the minimal graph is continuous quasi-additive. This rate is better than the best possible rate attainable by an entropy
plug-in estimator. Specifically, in [20] we establish the following

Proposition 4 Assume that the Lebesgue densityf on [0; 1]d is such thatf� 2 BV(C; d) where� 2 [1=2; (d�1)=d],
d � 2. Then, forp = 1; 2; : : :, and any plug-in estimatorI�(cf�)

sup
f�2BV(C;d)

E1=p
h���I�(cf�)� I�(f)

���pi � O
�
n�1=(d+2)

�
; (16)

while for the MST-based entropy estimatorÎ�

sup
f�2BV(C;d)

E1=p
h���Î� � I�(f)

���pi � O
�
n�1=(d+1)

�
: (17)

4.4.1 Achievability of Minimal Graph Estimator Bound

Some of the comments below are explored in more detail in Hero and Ma [20]. It is unknown whether the bound (17)
is tight except in the cased = 2, for which the bound only holds for� = 1=2, i.e. estimation of the Hellinger affinity.
We point out that the general bound (17) also holds for other continuous quasi-additive graphs such as thek nearest
neighbor graph. When� < 1=2 a potentially slower bound of orderO(maxfn�1=(d+1); n��=2g) is available When
f� 2 BV(C; d) we conclude from Proposition 4 that the worst case convergence raten�1=(d+1) of the minimal graph
estimator is faster than the best raten�1=(d+2) of a plug-in estimator using a non-parametric function estimate off�.
In particular, this implies that the rate of convergence of the MST estimator of the Hellinger affinity (� = 1=2) is
faster than any estimator based on minimax density estimation. However, the assumption0 < � � (d� 1)=d prevents
the application of the rms convergence rate bound (17) to estimates of the Shannon entropy(� ! 1). In particular,
we cannot use it to bound the rms of a minimal-graph based analog to the method of Mokkadem [32] in which one
estimates Shannon entropy by a sequenceÎ�n(f̂n) of �-entropy estimators where�n < 1 andlimn!1 �n = 1.

If it is known a priori that f is piecewise constant with known regions of support a faster rate of convergence
bound for the minimal graph estimator than (17) is available:O

�
max

�
n�1=d

	�
. Thus for piecewise constantf the

histogram plug in estimator has1=
p
n rms convergence rate and we conclude that the minimal graph and plug-in
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estimators have identical convergence rate ford = 2. On the other hand, ford > 2 the histogram plug-in estimator
has faster rms convergence rate for piecewise constantf . Finally we mention a shortcoming of the minimal graph
estimator: it is not consistent for estimating�-entropy of any singular components of off , e.g. dirac delta functions.

Finally we point out that the extension of the rate of convergence bound (17) to the greedyk-MST algorithm is an
open problem.

4.4.2 Achievability of Plug-In Estimator Bound

The issue of achievability of the minimax bound (16) in Proposition 4 by a specific estimator is of course of interest but
appears to be an open question. Thus the bound may be optimistic and the gap between convergence rates of plug-in
and minimal graph estimators of entropy may be even larger than indicated in Proposition 4. Two classes of estimators
have been introduced for non-parametric function estimation: linear Parzen-Rosenblatt kernel density estimators and
non-linear wavelet shrinkage estimators.

Parzen-Rosenblatt (PR) kernel density estimators are defined as

f̂(z) =
1

nhdn

nX
i=1

V

�
z � Zi

hn

�
(18)

whereV (z) is a kernel function satisfying
R
V (z)dz = 1,

R
zjV (z)dz < 1, j = 1; 2; : : : ; b�c, andhn is a positive

sequence satisfyinghn ! 0 andnhn !1. For fixed and known� the estimator (18) has minimax rate of convergence
over the Hölder class�d(�; c) when the kernel-widthhn is chosen as:hn = an�1=(2�+d) for some positive constant
a [25, 28]. The PR estimator has root MISE (rms) asymptotic convergence rate which is constant over�d(�; c) and
given by

sup
f2�d(�;c)

E

�Z
(f̂(x)� f(x))2dx

�1=2
= O

�
n��=(2�+d)

�
(19)

for a positive constantC. Such linear estimators can achieve rate exponentr = 1=d + 2 uniformly over�d(1; c).
However, they cannot uniformly achieve this rate over the larger spaceBV(C; d).

Minimax wavelet shrinkage methods of function estimation were introduced by Donoho and are discussed in detail
in a discussion paper by Donohoetal [14]. Therein the authors show that wavelet shrinkage function estimators can
be made to have rms convergence rates of orderO

�
n(lnn)

e�=(2�+d)
�

uniformly over functions inB�
p;q, wheree is a

positive constant given by Donohoetal [12]. For� > d=p this rate exponent is nearly equal to the minimax MISE
rate exponent�=(2� + d) over the Besov space of functionsB�

p;q [14, 13]. As pointed out by these authors,BV
can be sandwiched betweenB1

1;1 andB1
1;1 so therefore if this “nearly minimax” result could be extended to the case

� = 1 for some generalized class of multidimensional wavelet shrinkage estimators we would have nearly optimal
rms convergence rate exponent(lnn)e1=(d + 2) of the plug-in entropy estimate over the space ofBV functions. As
far as we know, existence of such a generalization is an open question.

4.5 �-Jensen Difference Index Function

Here we study an alternative index function based on the Jensen entropy difference. This index function was inde-
pendently proposed by Ma [30] and Heetal [19] for image registration problems. Letf0 andf1 be two densities and
� 2 [0; 1] be a mixture parameter. The�-Jensen difference is the difference between the�-entropies of the mixture
f = �f0 + (1� �)f1 and the mixture of the�-entropies off0 andf1 [2]:

4H�(�; f0; f1)
4
= H�(�f0 + (1� �)f1)� [�H�(f0) + (1� �)H�(f1)] ; � 2 (0; 1): (20)
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The�-Jensen difference is measure of dissimilarity betweenf0 andf1: as the�-entropyH�(f) is concave inf it is
clear from Jensen’s inequality that4H�(�; f0; f1) = 0 iff f0 = f1 a.e.

The�-Jensen difference can be motivated as an index function as follows. Assume that two sets of labeled feature
vectorsZ0 = fZ(i)

0 gi=1;:::;n0 andZ1 = fZ(i)
1 gi=1;:::;n1 are extracted from imagesX0 andX1, respectively. Assume

that each of these sets consist of independent realizations from densitiesf0 andf1, respectively. Define the union
Z = Z0 [ Z1 containingn = n0 + n1 unlabeled feature vectors. Any consistent entropy estimator constructed on
the unlabeledZ(i)’s will converge toH�(�f0 + (1� �)f1) asn!1 where� = limn!1 n0=n. This motivates the
following consistent minimal-graph estimator of Jensen difference (20) for� = n0=n:

d4H�(�; f0; f1)
4
= Ĥ�(Z0 [ Z1)�

h
�Ĥ�(Z0) + (1� �)Ĥ�(Z1)

i
; � 2 (0; 1):

whereĤ�(Z0 [ Z1) is the minimal-graph entropy estimator (9) constructed on then point union of both sets of
feature vectors and̂H�(Z0), Ĥ�(Z1) are constructed on the individual sets ofn0 andn1 feature vectors, respectively.
We can similarly define the density-based estimator of Jensen difference based on entropy estimates of the form (7)
constructed onZ0 [ Z1, Z0 andZ1.

For some indexing problems the marginal entropiesfH�(fi)gKi=1 over the database are all identical so that the
indexing functionfH�(�f0+(1��)fi)gKi=1 is equivalent tof4H�(�; f0; fi)gKi=1. This fact was used in Maetal [31]
for registering a query image to a database of images which are generated by entropy-preserving rigid transformations
of a reference image.

4.6 Comparisons of�-Jensen Difference and�-Divergence

The local discrimination capabilities of the�-Jensen difference and the�-divergence can easily be compared using
the results (Propositions 6 and 7) obtained in Appendix A:

lnD�(f0kf1) = ln

0@Ef 1
2

24 f0 � f1
f 1

2

!2
351A+ C1 + o(�2) (21)

ln4H�(�; f0; f1) = ln

0@E ~f�
1

2

24 f0 � f1
f 1

2

!2
35+

�

1� �

 
E ~f�

1

2

"
f0 � f1
f 1

2

#!2
1A+ C2

+o(�2) (22)

whereEf [g(x)] =
R
f(x)g(x) dx, ~f�1

2

(x)
4
=

f�1
2

(x)
R
f�
1

2

(x) dx
is a “tilted” pdf,� is a term that decreases in the difference

f0 � f1, andC1, C2 are constants independent off0; f1.

There are a number of interesting properties oflnD�(f0kf1) andln4H�(�; f0; f1):

� Up to order�2 the leading terms in (21) and (22) are the curvatures of the log�-divergence and the log
�-Jensen difference, respectively. These curvatures are a measure of the sensitivity of these index functions
for discriminating between density pairsf0; f1. The discrimination capability of the�-divergence is locally
independent of� while that of the�-Jensen difference depends on�.

� When� approaches 0, tail differences between the two densitiesf0 andf1 are influential on4H�(�; f0; f1).
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� When� approaches 1, central differences between the two densities become highly pronounced in4H�(�; f0; f1).
Therefore, if the feature densities differ in regions where there is a lot of mass one should choose� close to 1 to
ensure locally optimum discrimination with4H�(�; f0; f1).

� 4H�(�; f0; f1) has maximal discriminative capability when� = 1
2 , i.e., when two images yield the same

number of feature vectors.

4.7 Estimation of�-Divergence

Here we describe extensions of the entropy estimation procedures described above to information divergence estima-
tion. Let g(x) be a reference density on IRd which dominates the densityf(x) of a sample pointx = [x1; : : : ; xd]T

in the sense that for allx such thatg(x) = 0 we havef(x) = 0. The plug-in estimator of the�-divergence based on
independent estimation ofg andf will have rms convergence rateO(n�1=(d+2)) whenf� andg1�� are of bounded
variation. As described below, wheng(x) is known andf� is of bounded variation the minimal graph estimator can
be applied, achieving faster rms convergence rate of at worstO(n�1=(d+1)).

As introduced in Hero and Michel [22] minimal graph divergence estimation is performed by constructing a
minimal graph on a transformed sample where the transformation corresponds to a change of measure which flat-
tens the reference distributiong. For anyx such thatg(x) > 0 let g(x) have the product representationg(x) =
g(x1)g(x2jx1) : : : g(xdjxd�1; : : : ; x1) whereg(xkjxk�1; : : : ; x1) denotes the conditional density associated withg(x)
of thek-th component. In what follows we will ignore the setfx : g(x) = 0g since, asf(x) = 0 over this set, it has
probability zero. Now consider generating the vectory = [y1; : : : ; yd]T 2 IRd by the following vector transformation

y1 = G(x1) (23)

y2 = G(x2jx1)
...

...

yd = G(xdjxd�1; : : : ; x1)

whereG(xj jxj�1; : : : ; x1) = R xj
�1

g(~xj jxj�1; : : : ; x1)d~xj is the cumulative conditional distribution of thej-th com-
ponent, which is monotone increasing except on the zero probability setfx : g(x) = 0g. Thus, except for this
probability zero set, the conditional distribution has an inversexj = G�1(yj jxj�1; : : : ; x1) = G�1(yj jyj�1; : : : ; y1)
and it can be shown (via the standard Jacobian formula for transformation of variables) that the induced joint density,
h(y), of the vectory takes the form:

h(y) =
f(G�1(y1); : : : ; G�1(ydjyd�1; : : : ; y1))
g(G�1(y1); : : : ; G�1(ydjyd�1; : : : ; y1)) (24)

Now letL(Yn) denote the length of the greedy approximation to the MST constructed on the transformed random
variablesYn = fY1; : : : ; Yng. Then, by the consistency property of the MST estimator, we know that

Ĥ�(Yn)! 1

1� �
ln

Z
h�(y)dy (a:s:) (25)

and, from Section 4.4, the r.m.s. convergence rate will beO(n�1=(d+1)). Making the inverse transformationy ! x
specified by (23) in the above integral, noting that, by the Jacobian formula,dy = g(x)dx, and using the expression
(24) for h, it is easy to see that the integral in the right hand side of (25) is equivalent to the R´enyi information
divergence off(x) with respect tog(x)

1

1� �
ln

Z
h�(y)dy =

1

1� �
ln

Z �
f(x)

g(x)

��

g(x)dx:
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Hence we have established thatĤ�(Yn) is a strongly consistent estimator of the R´enyi information divergence above.
The results of Hero and Ma [20] and Hero and Michel [23] can thus be easily be extended to classification against any
arbitrary distributionfo, and not just the uniform distribution initially studied by Hoffman and Jain [24] and Hero and
Michel [21]. This extension also holds for thek-MST described in Section 4.1.

4.7.1 Application to robust divergence estimation

Here we applied thek-MST to robustly classify a triangular vs. uniform density on the plane. 256 samples were
simulated from a triangle-uniform mixture densityf = (1� �)f1 + �f0 wheref1(x) = ( 1

2
� jx1 � 1

2
j)( 1

2
� jx2 � 1

2
j)

is a (separable) triangular shaped product density andf0 = 1 is a uniform density, both supported on the unit square
x = (x1; x2) 2 [0; 1]2. The Rényi information divergencesI(f; f0) andI(f; f1) were estimated bŷH�(Xn) and
Ĥ�(Yn), respectively, for� = 1

2
( = 1 in the k-MST construction).Yn was obtained by applying the mapping

y = (y1; y2) = (F1(x
1); F1(x

2)) to the data sampleXn, whereF1(u) is the marginal cumulative distribution function
associated with the triangular density.

In a first sequence of experiments the estimatesĤ�(Xn) andĤ�(Yn) of the respective quantitiesI(f; f0) and
I(f; f1) were thresholded to decide between the hypothesesH0 : � = 0 vs. H1 : � 6= 0 andH0 : � = 1 vs.
H1 : � 6= 1, respectively. The receiver operating characteristic (ROC) curves are indicated in Figures 1 and 2. Note
that, as expected, in each case the detection performance improves as the difference between the assumedH0 andH1

densities increases.

In a second sequence of experiments we selected two realizations of the triangle-uniform mixture model for the
values� = 0:1 and� = 0:9. For the former case the triangular is the dominating density and for the latter case the
uniform is the dominating density. In each case thek-MST was implemented (k = 90) as a robust clustering algorithm
to identify data points from the dominating densities - in the former case thek-MST was applied directly toXn while
in the latter case it was applied toYn. The resultingk-MST quantitiesĤ�(Xn;k) andĤ�(Yn;k) can be interpreted as
robust estimates of the uncontaminated R´enyi information divergencesI(f1; f0) andI(f0; f1). respectively. Figure
3-5 illustrate the effectiveness of these estimates as “outlier rejection” algorithms.
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ROC − H −, N=256, ε=.1,.3,.5,.7,.9 ; ref=Unif.
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P
D

Figure 1: ROC curves for the Ŕenyi information divergence test for detecting triangle-uniform mixture densityf =
(1 � �)f1 + �f0 (H1) against the uniform hypothesisf = f0 (H0). Curves are decreasing in� over the range
� 2 f0:1; 0:3; 0:5; 0:7; 0:9g.

4.8 Estimation of Dependency in the Plane

One indexing application is to rank order images according to the degree of feature dependence. For example, if two
featuresX andY are horizontal and vertical changes over local neighborhoods of pixels one can search for evidence
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Figure 2:Same as Figure 1 except test is against triangular hypothesisf = f1 (H0). Curves are increasing in�.
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Figure 3:A scatterplot of a 256 point sample from triangle-uniform mixture density with� = 0:1. Labels ’o’ and ’*’
mark those realizations from the uniform and triangular densities, respectively. Superimposed is thek-MST imple-
mented directly on the scatterplotXn with k = 230.
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Figure 4:A scatterplot of a 256 point sample from triangle-uniform mixture density with� = 0:9 in the transformed
domainYn. Labels ’o’ and ’*’ mark those realizations from the uniform and triangular densities, respectively. Super-
imposed is thek-MST implemented on the transformed scatterplotYn with k = 230
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Figure 5: Same as Figure 4 except displayed in the original data domain.

of anisotropy by evaluating a measure of statistical dependence ofX andY . One possible measure is the mutual
�-information

MI�(X;Y ) =
1

�� 1
ln

Z
f�(X;Y )(f(X)f(Y ))1��dXdY:

This quantity converges to the standard Shannon mutual information in the limit as� ! 1 and is equal to zero if and
only if X;Y are independent.

Assume that the “two-dimensional function”f(X;Y )� and “one-dimensional functions”f1��(X) andf1��(Y )
are all of bounded variation. If one could find minimax plug-in estimates based on independent estimates off(X;Y )�,
f1��(X) and f1��(Y ), e.g. each based on separate segements of the data sample, this would result in overall
rms convergence rate no less thanO(n�1=2) (O(n�1=2) contributed by minimax estimation of the two-dimensional
function andO(n�1) contributed by minimax estimation of the one dimensional functions). Note that this plug-in
estimation procedure requires a.e. positive estimates off1��(X) andf1��(Y ) or at least these marginal density
estimates should dominate the joint estimate off(X;Y )�.

A hybrid method of estimation of the mutual�-information which has fasterO(n�2=3) rms convergence rate is
the following. Step 1: generate estimatesf̂(X) and f̂(Y ) of the one-dimensional functions using minimax density
estimation applied toX andY components. Such estimates will converge a.s. with rms rates greater thann�1,
when the marginals densities are of bounded variation. Step 2: apply the separable measure transformationdxdy !
f̂(x)f̂(y) to the plane, as described in the previous section, and implement the MST estimator on the the(X;Y )
realization imbedded into the transformed coordinates. The resultant estimator will converge a.s. to the mutual�-
information with rms convergence rate bounded above byO(n�2=3). This procedure easily generalizes to estimating
the�-mutual information of ad dimensional sample(X;Y; : : : ; Z) for which the rms convergence rates of the minimax
plug in estimator is no less thanO(n�1=(d+2)) and that of the hybrid estimator isO(n�1=(d+1)). For an application of
multi-dimensional�-mutual information estimation to image registration see Neemuchwalla andetal [33].

The one dimensional density estimation step in the hybrid procedure can be circumvented by considering a related
measure to the mutual�-information: the mutual�-entropy difference

�0H�(X;Y ) = H�(X;Y )�H�(X)�H�(Y )

=
1

1� �
ln

R
f�(X;Y )dXdYR

f�(X)dX
R
f�(Y )dY

(26)

which also converges to the standard Shannon mutual information in the limit as� ! 1. Given an i.i.d. sample
f(Xi; Yi)gni=1 the length of the MSTL(f(Xi; Yi)gni=1)gni=1)=n� converges w.p.1 to the numerator of (26) times
the scale factor�L ;d, � = (d � )=d. Furthermore, letf�(i)gni=1 be a permutation function, selected at random.
ThenL(f(X�(i); Y�(i)gni=1))=n� converges w.p.1 to the denominator of (26) times the same scale factor. It can be
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concluded that a consistent estimator of�0H�(X;Y ) is given by the ratio

c�0H�(X;Y ) =
1

1� �
ln

L(f(Xi; Yi)gni=1)
L(fX�(i); Y�(i)gni=1)

which does not depend on the factor�L ;d. By comparing this statistic to a threshold we obtain a simple test for
dependence of two random variablesX;Y based onn i.i.d. observations. To reduce bias for finiten it is suggested

that the denominatorL�


def
= L(fX�(i); Y�(i)gni=1) be replaced by a sample averageL�

 = 1=j�jP�2� L
�
 where

� is a set of randomly selected permutation functions�. Whenf(X;Y )�, f1��(X) andf1��(Y ) are of bounded
variation the minimax rms convergence rate of the mutual�-entropy difference will beO(n�2=3).

5 Application to Geo-Registration

It is desired to register two images taken on different sensor planes by potentially different sensor modalities for geo-
registration applications. Our objective is to register two types of images — a set of electro-optical(EO) images and
a terrain height map. For this multisensor image registration problem, there usually exists distortions between the
two types of images. The distortions are due to difference acquisition conditions of the images such as shadowing,
diffraction, terrain changes over time, clouds blocking the illumination sources, seasonal variations, etc. Existence of
such differences between the images to be registered requires that the registration algorithms to be robust to noise and
other small perturbations in intensity values. Here we describe an application of minimal graph entropy estimation to
a feature set which is the set of gray level pixels.

For this image registration problem the set of EO images are generated from thea priori digital elevation model
(DEM)1 of a terrain patch (the terrain height map) at different look angles (determined by the sensor’s location) and
with different lighting positions. With different sensor and light locations, we can simulate the distortions mentioned
above. For example, shadows are generated by taking into account both the sensor location and the lighting location as
follows. The scene is first rendered using the lighting source as the viewing location. Depth values (distance from the
light source) are generated for all pixels in the scene and stored in a depth buffer. Next, the scene is rendered using the
sensor’s location as the viewpoint. Before drawing each pixel, its depth value as measured from the sensor is compared
to the transformed depth value as measured from the light source. This comparison determines if a particular pixel is
illuminated by the source. Shadows are placed on those pixels that fail this comparison.

Geo-registration of a EO reference image to DEM’s in an image database is accomplished by selecting a candidate
DEM image from the database and projecting it into the EO image plane of the reference image. The objective is to
find the correct viewing angle such that the corresponding EO image is the best match to the EO reference image.
Figure 6 shows an DEM projected into the EO image plane with viewing angles (290, -20, 130) and the reference EO
image. Clearly they are not aligned.

For matching criterion we use the�-Jensen difference, with� chosen arbitrarily as0:5, applied to grey level
features extracted from the reference images and candidate EO images derived from the DEM database. For illustration
purposes we selected a very simple set of features via stratified sampling of the grey levels with centroid refinements.
This sampling method produces a set ofn three dimensional feature vectorsZi = (xi; yi; F (xi; yi)) whereF (x; y)
is a sample of the grey level at planar positionx; y. The pointsf(xi; yi)gni=1 approximate the centroids of Voronoi
cells andfF (xi; yi)gni=1 correspond to the set ofn samples of the image from which we could reconstruct the original
image with minimum mean square error. For more details see [30]. When the union of features from reference and
target images are rendered as points in three dimensions we obtain a point cloud of features over which the MST can
be constructed and the Jensen difference estimated.

1DEM stores the terrain height information in a three dimensional array where each element of the array consists of the locations (x and y
coordinates) and the height of the terrain at that location.
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Image at 290,−20,130 rotation
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Figure 6: Misaligned EO and reference images

Figure 7 illustrates the MST-based registration procedure over the union of the reference and candidate image
features for misaligned images, while Figure 8 shows the same for aligned images. In both Figures 7(a) and 8(a),
circle points denote the pixels from ImageX1 and cross points denote the pixels from ImageX0. From Figures 7(a)
and 8(a) we see that for misaligned images, the representation points have larger distances than those for aligned
images. Therefore the corresponding MST for the misaligned images has a longer length than that for the aligned
images (Figures 7(b) and 8(b)).

We repeat this MST construction process over the union of reference features and features derived from each of the
images in the DEM database. The MST length can then be plotted in Figure 9. The x-axis stands for the image index,
which corresponds to the viewing angles from the aircraft. The minimum of MST length indicates the best matching
of the EO image and the reference image, which corresponds to the registered pair in Figure 10.

6 Conclusion

In this report we have discussed and compared�-divergence and�-entropy estimation techniques using minimal graph
estimation and density plug-in methods. We have also considered the�-Jensen difference for performing indexing and
image retrieval. We have investigated the estimation of�-Jensen difference using density plug-in estimators and the
MST minimal graph method. We demonstrated theoretical advantages of the latter method for indexing planar features
or higher dimensional features with feature densities of bounded variation.

Appendix A

Proposition 5 Let f 1

2

def
= 1

2 (f0 + f1). The following local representation of the fractional Rényi entropy of a convex
mixture�f0 + (1� �)f1 holds for all�; � 2 [0; 1]:

H�(�f0 + (1� �)f1)
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Figure 7: MST demonstration for misaligned images
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Figure 8: MST demonstration for aligned images
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Figure 10: Co-registered EO-terrain maps
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This completes the proof of Proposition 5. �

Proposition 6 The following asymptotic representation of the fractional Jensen difference of two densitiesf0 andf1
holds for all�; � 2 [0; 1]:
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where�x = (f0(x) � f1(x))=f 1

2

(x). Substituting (27), (32) and (33) into (20), we obtain the expression (31) for the
Jensen difference. This completes the proof of Proposition 6 �

Proposition 7 The�-divergence of fractional order� 2 (0; 1) between two densitiesf0 andf1 has the local repre-
sentation
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This completes the proof of Prop. 7. �
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Appendix B

Proposition 8 Letf1(x) = f(x;�1;�1) andf0(x) = f(x;�0;�0) be multivariated-dimensional Gaussian densities
with vector means�1, �0 and positive definite covariance matrices�1;�0. The Ŕenyi divergence of order� between
f1 andf0 is
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Start from the definition
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whereId is thed� d identity matrix.

By completion of the square and elementary matrix manipulations it is straightforward to show that for anyd-
element vectorm and positive definited� d covariance matrixAZ
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matrix algebra we obtain (37).

This completes the proof of Prop. 8. �
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