1 Relevance and Impact of Proposed Work

Ultrasonography is a relatively low cost diagnostic imaging modality that is widely available in
many hospitals and community clinics. It would thus be practical and cost effective to perform
successive ultrasound exams on patients to assess effectiveness of treatment and recovery from
soft tissue lesions and inflammations. However, to make reliable comparisons between two
time-seperated ultrasound scans accurate image registration is required to quantify subtle but
important changes in the lesion. Investigation of ultrasound image registration is relatively new
and not widespread. Ounly recently, with single voxel mutual information techniques, has such
registration appeared to be very promising. The significantly improved registration methods
outlined in this proposal may be a critical key to making routine serial ultrasound studies of
soft tissues practical and informative.

1.1 Potential Impact on Ultrasound Imaging

New cases of breast cancer are diagnosed in over 190,000 americans per year. It is the second
leading cause of cancer death in women and one out of nine women will develop breast cancer
during their lifetime [1]. Survival rates can be greatly enhanced by early detection of asymp-
tomatic breast lesions. However in mammographic screening of women with dense breasts, up
to 45% of cancers are currently missed by community practitioners [33]. Our research to im-
prove registration accuracy could aid diagnosis of benign and malignant masses by facilitating
visual or automatic comparison with the structures in the same region at the time of a previous
examination. Image volume registration may aid tracking of response to cancer therapy as well.
Success in these goals should lead to earlier detection and diagnosis of many breast cancers,
as well as reduced pain and uncertainty for those with suspicious lesions and more appropriate
dosages and selections of therapies.

Sports and recreational injuries to muscles and other soft tissues, such as tendon tears,
ruptures, and dislocations, affect many thousands of americans every year. The incidence of
debilitating trauma to muscolo-skeletal tissues is expected to increase as our nation enters a new
era of uncertainty possibly involving terrorist acts and other acts of violence. Recovery from
such trauma is a slow process during which periodic musculoskeletal ultrasonography can provide
crucial information affecting judgements on treatment planning, secondary diagnosis, and the
need for surgical intervention [2]. Accurate registration of soft tissue ultrasound image volumes
will prove essential for efficient detection and quantification of changes that are indicative of
processes such as: decreased bursal inflammation, decreased fluid collection around joints, or
reductions of cyst or lesion sizes.

1.2 Broader Impact of Work

The registration methods that we propose to investigate are widely applicable to a spectrum
of areas extending well beyond our focus on 3D ultrasound imaging. Other medical imaging
modalities such as magnetic resonance imaging (MRI), positron emission tomography (PET),
single photon emission tomography (SPECT), X-ray computed tomography (CT), rely on accu-
rate image registration for both clinical applications, such as CT-guided radiation therapy and
treatment planning, and research applications, such as PET brain activiation studies. Image



registration is also crucial in the rapidly progressing area of biological imaging including reg-
istering within and between modalities such as computational sectioning microscopy (COSM),
confocal microscopy, and atomic force microscopy (AFM). Our research is also directly appli-
cable to geo-registration applications involving fusion of information from electro-optical (EO),
acoustic, and radar sensors for remote detection of agricultural yields, minefields, and under-
ground facilities. Finally, by adding a fourth dimension (time) to our image source model our
methods can be implemented in video registration applications for homeland security such as:
face recognition, gait recognition, and camera surveillance.

2 Problem Statement and Background

New techniques developed by our ultrasound (UL) group in Basic Radiological Sciences (see
http://www.ultrasound.med.umich.edu/) are ready for evaluation and refinement in clinical
studies and include: registration of serial studies in single and multiple scan modes, creation of
expanded 3D fields of view, a moderately fast, manual method of segmenting ellipsoidal volumes,
quantification of vascularity in regions of interest, and improved UL imaging by compounding
(combining multiple views for improved image contrast to noise ratio) using image volume based
registration (IVBaR)[7-10]. Work is also progressing on computer aided diagnosis (CAD) of UL
masses [34], with potential links between UL and x-ray CAD. What is needed is a much more
accurate and robust registration method to provide the needed confidence in the registration for
studies with a wider range of image quality. Segmentation of artifacts, such as acoustic shadows
and reverberations, is particularly important, for the artifacts can be the dominant ”informa-
tion” in some cases, and yet are affected strongly by subtle changes in the UL view. Figure 1
shows examples of three typical but very different breast scans which illustrate the challenge of
image registration for this application.

Figure 1: 2D slices from three 3D ultrasound breast scans. From top to bottom are: case 151,
case 142 and case 162. The image slice chosen from Case 151 (image slice 40) had significant
connective tissue structure. Case 142 (slice 35) had a distinct malignant tumor, while Case 162
(slice 60) was degraded due shadowing.



2.1 Past Approaches to Image Registration

Registration of an image to a database of rotated and translated exemplars constitutes an im-
portant image retrieval and indexing application which arises in biomedical imaging, digital
libraries, georegistration, and other areas. Let X, be a the reference image and consider a
secondary image X; and sequence of deformed secondaries X; = T;(X1), i = 1,2,.... Let Z,
Z; be feature vectors extracted from Xy, X; and define the joint histogram fo;(20,2;) and the
marginal histograms fy(zo), fi(z;). The similarity between features Zy and Z; can be gauged
by the difference between f(zg, z;) and the product f(zp)f(z;) which measures statistical depen-
dence. Alternative measures of dependency are cross correlation, higher order cross-moments
like joint kurtosis, and mutual-information (MI) methods based on the entire feature histogram.

The simple single-pixel mutual-information method introduced by Viola and Wells [36]
is an example of the general MI approach. Their technique has been refined and adapted by
several medical image registration groups including a group at The University of Michigan (UM)
Dept. of Radiology [27, 28, 23]. In all of these groups the MI-based technique have supplanted
previous correlation methods due to its superior performance. The UM method, called MIAMI
Fuse® functions as follows. A randomly or intelligently chosen set of voxels, called control
points, are selected in the secondary image and associated with knot positions on a thin-plate
spline. The bending resistance of the thin plate spline causes a smooth deformation of the
entire voxel grid on the secondary image as the control points are moved around. A sequence
of deformations is defined by successive movements of the control point positions giving rise to
the sequence of deformed secondary images X; = T;(X1), ¢ = 1,2,... obtained by interpolation
of X; onto the deformed grid. Let Xy and X; be N x N images (N? pixels). In single-
pixel registration techniques such as MIAMI-fuse®, for each iteration i a set of feature pairs
{(Zo(k), Z;(K)) {C\Zl are defined as the successive pairs of gray levels (typically ranging from 0-
255) of the lexicographically indexed primary and deformed secondary images, respectively. A
two dimensional gray level empirical histogram fo,i(zo, i), 20,2 € {0,...,255}, is then generated
from these feature pairs {(Zy(k), Zz(k))}k]\z1 yielding an extended point cloud in the plane if the
images are not registered and a straight line if they are perfectly registered (see Figure 2). A
good feature matching criterion would be a measure of the degree of independence between Zj
and Z;, or equivalently the degree to which the f07i(2’0,2’i) can be factored into the product
fo(z0) fi(z), where fo(zo) and f;(z) are the marginals. The Shannon MI is one such feature
matching criterion

~
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Registration occurs when this registration function is maximized, and the search over deforma-
tions T; for this maximum is performed by an iterative optimization algorithm.

When the image volumes are identical except for rotation, translation and small deforma-
tions, the MI will exhibit a very sharp peak over 1 = 1,2,... for that deformation 7T; which
achieves perfect registration of the images, as in the perfectly registered example shown in the
left panel of Fig 2. However the assumption that there exists a perfect registration is unrealistic
in practical cases where cancer detection, diagnosis and treatment response are the goal. In
the latter case, the reference and secondary images are genuinely somewhat different from each
other due to biological changes and differences in the imaging, such as speckle, positioning of



Figure 2: Single-pizel gray-level histogram fo,i for registering a single slice to rotated rotated
version of itself (relative rotation angle = 5%). The slice is taken from the ultrasound breast
image shown in first panel of Fig 1. Horizontal and vertical azes range over the gray levels (0-
255). Observe that a straight line is obtained (panel at right) when perfect registration occurs.
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Figure 3: Same as in Fig. 2 except that primary and secondary images are taken from adjacent
slices separated by 2mm. Due to the presence of speckle we do not obtain a straight line even
when images are registered (left panel).

the tissues during compression, and angle dependence of UL scattering from tissue boundaries.
In addition, the tissues are distorted out of a given image plane as well as within it leading to
poor performance of slice-by-slice (2D) registration. As a result, even registered images will not
be perfectly correlated (see Fig. 3) and the MI peak will not be as sharp as in the idealized
situation. The combination of fully 3D feature registration techniques and more sensitive feature
matching measures that we propose in this grant proposal can overcome these problems.

3 Proposed Methods

We take a novel approach to image registration that gets around the disadvantages of previous
single pixel- or voxel-based registration techniques. The key to our approach is the inclusion of
higher order image features combined with generalized information divergence criteria for feature
matching. We will use inductive learning to select the most relevant and robust features (curves,
edges, textures and simple spatial relations) from a large set of previously collected scans, e.g.
of breast or Achilles tendon. These features are organized in an efficient hierarchical database,
called a randomized feature tree. To register a secondary image to a reference image, coincidence
histograms of the features captured by the feature tree for the reference and secondary images
are constructed. The coincidence histograms are used to register the images by optimizing a
new class of registration functions over the space of deformations of the secondary image. This
class of registration functions includes the mutual a-information and the (negative) a-Jensen
difference which will be estimated using a combination of feature density estimation and a novel
minimal graph matching technique developed by Hero and co-workers [26, 15]. Our framework



specializes to the standard (MIAMI-Fuse®) registration method when the features are single-
pixel gray levels and o« = 1 for which the mutual a-information is equivalent to Shannon MI. The
generality of our approach has the following advantages: 1) use of optimized feature matching
measures can lead to much more stable registration function having much higher discrimination
capability; and 2) use of higher order features can capture non-local spatial information which
is ignored by previous algorithms.

3.1 Optimal Feature Matching Criteria

We adopt a systematic decision-theoretic framework for selecting the registration function. In
this framework we assume that the feature point cloud, e.g. either panel of Fig. 3, is a random
realization of some unknown underlying joint density fp;. A good registration function will
satisfy the following criteria: 1) high average accuracy over an ensemble of feature realizations
from joint density fo;, corresponding to accuracy averaged over a large representative image
database; 2) high accuracy for a single realization of feature points from f;, corresponding to
accuracy for a single pair of images; 3) robustness to outliers, i.e. spurious features that would
normally confound registration; 4) fast algorithm implementation.

Optimal registration functions which satisfy the above criteria will be developed and studied
in a systematic three step process. First we study theoretically optimal omniscient registration
functions which have access to the ensemble statistics of the image database, i.e., the exact
feature density function fo;. These ensemble statistics will depend on the medical imaging
application. Then, we explore methods of optimal empirical estimation of an omniscient regis-
tration function based on a single pair of images. Optimal estimation strategies will also depend
on the medical imaging application. Finally we will explore fast and robust implementations of
these empirical registration function estimates using graph matching techniques.

3.1.1 Omniscient Registration Functions

The above considerations have led us to propose the class of a-information criteria (« € [0, 1])
and their close relatives, the a-Jensen differences.

As above let fj(20,2;) be the true (ensemble) joint density between feature vectors of the
primary and deformed secondary images. The (ensemble) a-information is defined as

1
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When specialized to various values of « the a-information reduces to well known infor-
mation measures such as the Battacharya-information (o = 1/2), and Shannon MI used in
MIAMI-Fuse® (o = 1). The a-information is a special case of “f-information” which has been
investigated in a recent paper [32] for medical image registration and also generalizes the mutual-
information method of Viola and Wells [36]. However, as shown by Hero and his co-workers [15],
the a-divergence is the most appropriate member of the f-information class as it is directly re-
lated to the minimum attainable decision error incurred when trying to discriminate between an
independent (factorizable) and a dependent (nonfactorizable) feature density fo;(zo,2;) based
on a finite number of feature samples. In particular, large deviations theory asserts that there
exists a theoretically optimal value of « that optimizes the discrimination performance. This



value of « is generally not equal to the value & = 1 corresponding to the standard Shannon MI
and depends on the class of feature densities fp; under consideration.

A closely related quantity to be investigated is the (ensemble) a-Jensen difference. The
a-Jensen difference is of interest due to the existence of simple low complexity estimators using
minimal spanning graphs over the feature pairs {(Zy(k), Zz(lf))}/{c\z1 The a-Jensen difference is

AI{oz(/Baanfl) é Ha(/BfO + (1 - 5)]01) - [/BHa(fO) + (1 - 5)Ha(f1)] , @€ (Ov 1)? (3)

where
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is the a-entropy of the probability density f and § € [0,1] is a primary-secondary mixing
parameter. We have chosen 3 propportional to the ratio of the total number of feature incidences
in the primary image relative to the secondary image. The a-Jensen difference is minimized
when fo = f1 taking on a value of zero there. Minimzing the a-Jensen difference was originally
proposed by us [26, 25] for geo-registration applications including SAR and electro-optical radar
imaging A generalization was recently proposed by He, Ben-Hamza and Krim [14] for registering
an arbitrary number of image modalities. The a-Jensen difference was proposed several years
before by one of the PI’s long time collaborators O. Michel for classifying image differences in
the time-frequency plane [29].

3.1.2 Empirical Registration Functions

In practice the joint feature density fy; is unknown so that the above ensemble registration
functions are unimplementable. The statistical problem of registration can be stated as follows:
based on a single realization {(Zy(k), Zz(k))},]jil of joint features, e.g. the point cloud illustrated
in either of the panels of Fig. 3 corresponding to a single image pair, empirically estimate the
ensemble a-information or the ensemble a-Jensen difference. This estimation problem is closely
related to entropy estimation which has a long history in the statistics and information theory
communities [13, 22, 3, 35, 5, 7, 30].

The approach to empirical estimation that will be taken here is motivated by our recent work
in entropy estimation [20, 16, 15]. We will investigate two different techniques: density plug-in
techniques and minimal graph techniques. Each of these methods has its own complementary
strengths and weaknesses which justify considering both of them for registration applications.

Density plug-in methods are in widespread use for estimation of Shannon mutual-information
and other entropy functions [36, 28, 5]. These methods involve non-parametric density estima-
tion, such as the histogram binning method or kernel density estimators, to yield empirical
estimates of fj;(z0,2;) and its marginals which are subsequently substituted into an ensemble
formula, e.g. (2) or (3). For example, when a non-parametric estimate of fo,z' is available the
plug-in estimate of a-information is D ( f[]’i I fo fl) The main difficulties with density plug-in
methods are due to the infinite dimension of the spaces in which the unconstrained densities lie.
Specifically: density estimator performance is poor without stringent smoothness conditions;
no unbiased density estimators generally exist; density estimators have high variance and are
sensitive to spurious outliers; for high dimensional feature spaces the integration in (2) might
be difficult.



A more direct estimation method which applies to continuously valued features is based on
constructing minimal graphs that span the feature point realizations. For example, to estimate
the a-entropy of the primary image’s feature density fp, the minimal spanning tree (MST)
method constructs a graph that spans all of the feature realization points {Zg(k)}ljfjl in such
a way so as to minimize the total length of the graph’s edges, examples are shown in Fig. 4.
Specifically, if the MST puts an edge between Zy(i) and Zy(j) the edge has length |[le;;|| =
|1 Zo(7) — Zo(7)]|” where || - || is Euclidean distance and v = (1 — «)d, where d is the dimension of
the feature vector Zy(k). This method can be applied to estimation of the a-Jensen difference by
constructing the MST over the merged sample {Zo(lf)}kNj1 U {Zz(k)}k]\z1 and selecting § = 1/2
in (3). Minimal graph techniques can also be extended to estimation of a-information but for
lack of space we will not discuss this here (see [15]).
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Figure 4: Illustration of MST estimator of entropy for two dimensional features (d = 2) and
edge weight exponent v = 1. Left column: MST results for uniform feature density fo on the unit
square. Right column: MST results for pyramidal feature density fo on the unit square. First
row: n = 100 realizations of each feature density; Second row: MST for each case. Third row:

total length of MST increases with rate n'T = /1 and rate constants equal to the a-entropy of
fo,a=210=1/2.

General minimal graph techniques for entropy estimation were introduced by Hero and
Michel [18, 19, 20]. We showed the remarkable fact that the length of a minimal spanning
graph, such as a minimal spanning tree (MST) or k-nearest neighbors graph (k-NNG), forms a
strongly consistent estimator of the a-entropy. Furthermore, recently obtained theoretical results
of Hero and Ma [16] assert that the minimal graph estimator of entropy can be significantly more
accurate (lower mean-squared error) than plug-in estimators. Here « is related to the dimension



of the feature space and can be varied over 0 to 1 by using different length weighting exponents
v.

We have shown [20, 16] that minimal graph estimators have several advantages over standard
plug-in estimators of entropy and mutual information: 1) they do not require specification of
difficult auxiliary parameters such as bin size and kernel width; and 2) as shown by Hero and
Ma [17], their estimation error can converge to zero much faster than that of density estimation
methods; 3) fast implementations exist using MST and k-NNG constructions; 4) optimal pruning
methods can be applied to these graphs to render the a-entropy estimates robust to anomalous
feature points, e.g. points due to speckle or tumors not present in both images. We believe
that such pruning methods will be effective for registering two medical images where one of the
images has small lesions. These minimal graph techniques have been applied with success to
geo-registration problems by us [26]. A representative example is shown in Figs. 4 which shows
a minimal spanning tree and its pruned version using a combinatorial optimization technique
known as the k-point MST (see publications [26, 15] for explanation).

3.2 Higher Order Feature Selection

As an alternative to single-pixel features we will investigate higher order features which capture
spatial dependencies such as edges, ridges, organ outlines, and other non-local structure. When
added to single-pixels such features can produce much more robust features for registration. Two
different types of features will be investigated: randomized feature trees which organize simple
local image features into a hierarchy of subimages of increasing complexity, and randomized
databases of local features selected by independent component analysis (ICA). These feature
structures will allow us to sidestep the issue of rigidly defining non-local image configurations and
clusters such as, image gradients, boundary detectors, distinct points, discriminating structures
or other statistical parameters. For each of these methods we will investigate methods of bagging,
boosting and randomization for feature selection from a representative image database used for
training.

3.2.1 Randomized Feature Trees

Randomized feature trees were introduced by Amit and Geman [4] for shape recognition from
binary transcriptions of handwriting and other computer vision applications. A set of primitive
local features, called tags, are selected which provide a coarse description of the topography
of the intensity surface in the vicinity of a voxel. Local image configurations, e.g. subimages
associated with 4 x 4 pixel neighborhoods, are captured by coding each pixel with labels derived
from the tags. Non-local spatial features are then captured by cataloging pairs of tags which
are in particular relative spatial configurations.

The tags will be selected by the adaptive thresholding technique as described by Geman
and Koloydenko [11] which was introduced to study the invariant characteristics of natural
images. Let A be a positive granularity parameter. The quantized value assigned to a pixel
within a 4 x 4 sub-image depends on the gray values of its neighbors. The darkest pixel(s) are
assigned 0, the next brightest pixel(s) are assigned 0 if the difference is less than A and label
1 otherwise, the next brightest pixel(s) are assigned label 2 if the difference is less than A, and
so on. Using this scheme on our ultrasound image database tags associated with the relatively



uniform background areas (dark or bright) with small spatial variances are correctly classified as
speckle and can be easily eliminated. Such tags are irrelevant to the image registration and our
preliminary studies indicate that their elimination results in a reduction by almost 75% of the
total number of possible tag types. The remaining 25% tag types were observed to distinguish
straight and curved edges in the images.

Once selected, the tag features are efficiently organized on a tree structured database, called
the feature tree, as illustrated in Figures 5 and 6 for 4 x 4 tag subimages. For the purposes of
image registration, the primary and deformed secondary images Xy and X; will each be dropped
down the feature tree and incidences and coincidences of features at all of the nodes of the two
trees are counted. The counter is incremented for every coincidence of a particular feature
pair occurring at a common position within each of the two images. This results in a feature
coincidence histogram f(zo,z). The histogram marginals f(z) and f(z;) of the coincidence
histogram are extracted by summing over one of its arguments. These will be then used in the
mutual a-information formula (2) to come up with a registration score for the images.
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Figure 5: Part of feature tree data structure.
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Figure 6: Leaves of feature tree data structure.

Feature trees have had the most success in pattern recognition when a large number of
features, tags, and spatial relationships are used. The resultant high computation load is re-
duced by exploiting the recursive partitioning property of the tree hierarchy: for binary trees the
search complexity is reduced from K to log2(K) and for quad trees further search complexity
reductions are obtained, where K is the number of features considered. Additional reductions in
average search complexity are obtained by putting the most common and discriminating feature
tags near the top of the tree and pruning a large number of the remaining tags. Discovery
of the most discriminating spatial relationships and the most discriminatory local features is
essential for finding the most convenient feature organization in the tree. We plan to investigate



various methods for organizing features and pruning including tree balancing techniques, Huff-
man coding methods, and inductive learning using randomization [4], bagging [6] and boosting
[10]. These latter methods were developed for classification and are based on a forest of differ-
ent feature trees. Each of these feature trees is constructed from randomly sampling from the
database of images and the classifier is obtained by aggregation of decisions of the trees, e.g.
using majority voting or averaging of the posterior distributions, to produce the most stable
and informative features. We will extend these methods to image registration in two ways: 1)
substitution of more appropriate feature selection criteria than the standard miss-classification
error; and 2) aggregating trees by averaging the computed a-information or a-Jensen values.
Examples of feature selection criteria to be investigated are: the curvature of the empirical reg-
istration function and the number of coincident features for co-registered images compared to
the average number of coincident features for misregistered images.

3.2.2 ICA Features

Independent components analysis (ICA) is an iterative method which is closely related to the
projection pursuit technique of non-linear regression and was applied to images by Olshausen,
Hyvérinen and others [24, 31, 21]. ICA is an extension of the better known singular value
decomposition (SVD) methods and have been shown to yield sparse low dimensional feature
spaces for natural images. We apply the method of ICA to the ultrasound registration problem
as follows. Based on a random sample of a large number of M x M subimages from the
representative training database of ultrasound images we construct a basis of a small number p
of M x M subimages which decomposes the database of subimages into

p
X;=> awSk
k=1

where {S} are statistically independent components (M x M images) and ay are coefficients
which approximate each subimage X; in the database. The selection of of independent com-
ponents is performed using an independence criterion such as kurtosis, likelihood, or minimum
description length (MDL).

As an example, using the ICA algorithm a set of 8 x 8 basis vectors were learned from 10
consecutive image slices extracted from a single ultrasound volume scan of the breast (Casel51)
shown in Fig. 1. Here ICA was implemented using Olshausen’s SPARSENET code (available from
http://redwood.ucdavis.edu/bruno/). 64 of the ICA basis vectors are shown in Fig. 7. Only
basis elements that corresponded to distinct edge or texture information in the associated basis
were retained, resulting in a total of approximately 256 different types. Two different methods of
constructing the feature vectors Zy and Z; will be investigated: 1) a tag assigned to a particular
pixel is the feature type that has least Euclidean distance from the 8 x 8 sub-image centered
there; 2) sub-images of the reference and secondary images are projected onto the ICA basis
and either the coefficients or residuals are used to construct the joint histogram. In method
1 standard plug-in estimates of the a-information or a-Jensen difference will be used. In the
latter case the joint histogram is the realization of a continuous density fo; and the minimal
graph methods of Hero etal will give more accurate estimates of the a-information or a-Jensen
difference.
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Figure 7: Estimated ICA basis set for ultrasound breast image database

3.2.3 Spatially Organized Features

By including selected spatial relationships between local tag and ICA features as part of the
feature set, one can enhance registration performance. We capture these relationships by super-
imposing a disk over each pixel and detecting the simultaneous occurrence in the disk of a tag or
feature of given type at the center of the sector and another tag of given type in some outlying
spatial sector, e.g. in sectors NW, NE, SE, SW. This additional spatial information can be used
to discriminate and eliminate undesired regions, e.g. shadow regions, from each image and also
to introduce useful local geometric invariances into the registration process. Local invariance is
an attractive property in non-rigid image registration, since it allows pixel neighborhoods (tags)
to undergo relative displacement without affecting the overall registration. For example local
invariance can be built into the features to allow the registration algorithm to be insensitive to
small relative offsets between boundaries due to small compression deformations in one of the
two images.

4 Preliminary Results

For illustration we used the database of ultrasound breast images represented by the three images
in Figure 1. We simulated the decorrelating effect of speckle in two different scans of the same
slice of breast by registering a slice to a rotated version of a proximal slice approximately 2mm
(up to four correlation lengths) away along the depth of the scan. Feature tree and ICA feature
selection were performed without randomization, bagging or boosting. Randomization would
be expected to provide even better results than those obtained here. The a-information was
estimated from the features using plug-in histogram binning methods. For each of the feature
sets investigated we searched over the choice of & in a-information registration criterion which
maximized the curvature, i.e. yielded the most highly resolved peak.

Shown in Figure 8 are typical trajectories (left figure) of the a-information registration
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Figure 8: Resolution of a-information as function of alpha for case 151

151 142 162 151/8 | 151/16 | 151/32
pixel 0.3/0.9 | 0.6/0.3 | 0.6/0.3
tag 05/36 | 05/38 | 0.4/14
spatial-tag | 0.99/14.6 | 0.99/8.4 | 0.6/8.3
ICA 0.7/4.1 | 0.7/39 | 0.99/7.7

Table 1: Numerator =optimal values of a and Denominator = mazximum resolution of mutual
a-information for registering various images (Cases 151, 142, 162) using various features (pizel,
tag, spatial-tag, ICA). 151/8, 151/16, 151/32 correspond to ICA algorithm with 8, 16 and 32
basis elements run on case 151.

function over rotation angles applied to the secondary image slice for the standard single-pixel
features and various values of a. Right panel of Figure 8 is a plot of the local (magnitude) cur-
vature computed by parabolic interpolation of each trajectory about its peak. A high curvature
value is better than a low value since it implies higher sensitivity to small misregistration angle
errors. Note that the highest peak curvature does not occur for « = 1 meaning that that the
standard Shannon MI criterion is sub-optimal. Shown in Table I are resolution-optimizing «
values and resultant optimal peak curvature values for each of the three breast image cases and
different sets of features. Note that the resolution optimizing value of « are close to 1 only in
3 out of the 12 cases studied. Note also that all of the proposed feature based methods have
significantly higher resolution than the standard single-pixel (column labeled “pixel” in Table I)
registration method. Systematic methods for determining the optimal value of « is one of the
aims of future work as is the issue of optimally combining the single-pixel, ICA and tag features.

These preliminary results are promising and there remain several important research issues
that we will investigate during this grant period. These issues include: selection of features,
feature organization in the feature tree, selection of alpha parameter, numerical optimization of
the mutual alpha-information, validation and comparison by simulation and experiment.
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5 Research Plan

We will develop and test our new approaches to registration to increase accuracy and robustness
for 3D ultrasound image registration. Our research plan will be comprised of several components:
1) investigation of different types of features for enhancing the capability of the feature tree to
discriminate misregistered images in the presence of speckle noise, shadowing and distortions;
2) investigation of the new registration functions, and in particular optimum choices of alpha
to sharpen the registration peak; 3) development of fast minimal graph implementations using
hierarchies of minimal spanning trees; 4) exploration and compensation for failure modes of the
registration algorithm by controlled studies of robustness of the algorithm to increasing amounts
of distortion; 5) validation of results with a database of real medical ultrasound images. Initially
all of these tasks will be guided by a database of unannotated ultrasound breast images that have
been previously acquired from 80 subjects. Later in the project we validate these techniques on
muscolo-skeletal scans, e.g. shoulder and achilles tendon, when similar 3D volumetric ultrasound
data becomes available. Throughout this work we will perform numerical optimization and grid
deformation using, respectively, the Carver-Mead simplex algorithm and the control-point driven
thin plate spline software which is implemented in the MIAMI Fuse®.

1. Feature Selection

Initially we will concentrate on registration of 2D slices for optimizing the proposed feature
selection procedure before moving to 3D extensions. Spatial relationships between tags will be
explored that can detect anomolous regions or shadows, and these will be included into the
feature tree for additional robustness. Combinations of single-pixels, tags, and ICA features will
also be investigated. We will implement randomization, bagging and boosting methods using
a subset of 24 of the 80 subjects and evaluate improvements in registration performance on
24 image volumes randomly selected from the rest of the 80 subjects. The 24 subjects chosen
for training set will be representative of the eight different classes of breast tissue complexity.
Initially, to gauge pre-screened registration performance of our new method we will generate and
apply separate sets of features for each class. However, we will also investigate universal sets of
features which can automatically screen out false breast classes during the registration process.
We will extend the feature selection algorithms to 3D volumes using ICA and feature tree tags
in order to eliminate out of plane distortion effects inherent to 2D registration methods. We
will also extend these techniques to include 3D color power mode Doppler image information as
well as gray scale imaging. Computational issues in 3D feature selection and processing will be
addressed (see item 3 below).

2. Study of New Registration Functions

We have shown [15] that there exists a theoretically optimal value of « for detecting the
peak of the a-information trajectory over the set of transformations T;. This theory also suggests
that the optimal value of « is small when fy; is close to fof;, i.e. when the registration is very
coarse, while o tends towards 1 for nearly perfectly registered images. Thus we will investigate
the idea of varying « over the course of registration: a coarse registration regime for which « is
small in the initial iterations and increases to a fine regime in the final iterations. In between
these extremes « might be made to increase continuously or step through only a few values over
the iterations.

These issues and others will be studied for the simpler-to-compute « Jensen difference.
We will also undertake a theoretical and experimental comparison between the registration
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performance of the o Jensen difference and the a-information. When the primary image volume
is exactly equal to a deformation of the secondary image volume then, based on previous study
[15], we know that the « Jensen difference and the a-information are both optimized at the true
deformation. When there are gray level differences in addition to deformations between the two
images we strongly suspect that each of these optimizations will yield different registrations. We
will to characterize these differences through a combination of parameteric approximations, e.g.
a multivariate Gaussian density, to the feature distributions, asymptotic expansions about the
optimum deformation, and simulation studies.

The choice of alpha also plays a role in controlling the number of maxima in the registration
function. Maintaining a small number of local maxima will be important as exhaustive search
is impractical for fully 3D registration having many degrees of freedom in the transformation
sequence {T;} applied to the secondary image. The presence of many local maxima in the
registration function makes it necessary to reinitialize the maximization several times to make
sure that convergence to a global maximum has occurred. The selection of a will be investigated
through a combination of analysis, simulation, and experiment with real scans to try and identify
what schedules of « yield the fastest possible convergence of the registration algorithm.

3. Algorithm Acceleration

As explained above, the implementation of the randomized feature trees and randomized
ICA feature classifiers requires two computationally intensive steps: 1) the learning or training
of features from a representative database of images; and 2) the implementation of the classifiers
to collect coincidence data from the primary and transformed secondary images. In both steps
the incidence (tag) or projection (ICA) of every feature (or feature candidate) must be computed
at every voxel in the two images, a very time consuming task for 3D image volumes. We will
implement simple pre-processing algorithms that can reduce the number of features and feature
candidates to be explored. In the learning phase the feature filters will be used which a priori
eliminate many irrelevant feature candidates that are not present in both images. Such features
include speckle and shadowing which can be identified by local intensity discontinuities, consis-
tently dark (low intensity) tags or ICA basis images, and discriminating spatial relationships
between local features. In both the learning and implementation phases we will apply 2D and
3D fast algorithms based on matched filtering and mathematical morphology [12] to identify
and eliminate from consideration voxels associated with these irrelevant features.

We will also investigate fast minimal spanning tree (MST) approximations for approximat-
ing the a-information and a-Jensen difference registration functions. The plain vanilla MST has
polynomial runtime complexity in the number of feature points n, e.g. it has O(n?) complexity in
the plane. Recently approximate MST algorithms with nearly O(nlogn) complexity have been
implemented [9]. Even faster algorithms can be implemented by partitioning heuristics, like the
heuristic we recently introduced in [16]. Initial results are quite promising on a hierarchical
scheme where the MST is only run on the centroids of a k-means algorithm, yielding average
complexity of O(klogk) + O(nlog(n/k)). We will investigate optimal choice of k to minimize
runtime yet maintain adequate registration performance. In general it is unclear to what extent
approximation of the MST will affect registration accuracy. This important tradeoff between
runtime and approximation error will be studied both experimentally and via analysis.

4. Sensitivity Studies and Robust Algorithms

We will investigate robust density estimation and the k-point MST for rejection of irrelevant
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spurrious features that degrade registration performance. As mentioned above, in the case of [CA
features (projection coefficients of the image onto ICA basis) the feature densities are continuous,
but with unknown degree of smoothness. For this case both adaptive kernel density estimation
and edgelet-curvelet based shrinkage estimators will be investigated as plug-in estimators of
the a-information registration function. These types of density estimators are known to attain
minimax error performance over smooth classes of densities [8] and we have obtained similar
minimax results [16] for the associated plug-in estimates of the registration function. The pruned
MST estimator of a-Jensen difference will also be evaluated, where pruning will be implemented
to reject spurrious features using the k-point MST framework proposed by Hero etal [20, 15].
Such MST estimators of the a-Jensen registration function can be shown to attain minimax
error when the feature densities are not smooth, e.g they contain step or ridge discontinuities
[16]. We will resolve the relative advantages of plug-in vs. MST estimators by studying the
smoothness properties of the ICA feature density.

To improve robustness, we will also investigate feature types that can indicate the presence
and location of anomalies which can be subsequently pruned from the feature tree to enhance
registration accuracy. This study will entail identifying the failure modes of the registration
algorithm when presented with images having varying degrees of anatomical differences, e,g, due
to tumors. We will insert such anomalous regions into speckle contaminated replicates of a single
image volume. Performance will be evaluated by both registration accuracy, i.e. distance of
registration function peak from true rotation/translation/defoemation, and by post-registration
constrast of the anomolous region determined from the difference between the registered primary
ad secondary images.

5. Validation and comparison by simulation and experiment

We will develop techniques to modify a copy of an image enough to make registration
nontrivial while allowing rigorous truth data on registration success. The developed tags, feature
sets and tree structures will be evaluated in comparison with the existing single-pixel techniques
for accuracy and robustness on 2D data from 24 subjects not used for training of the registration
methods. This comparison will be done with the new methods alone and in combination with the
single pixel techniques. Use of the best combination of features plus single voxel techniques at the
optimized value of « will be compared with single voxel alone at &« = 1 to establish superiority of
our methods on a real database. After integration of the new methods into a module of MTAMI
Fuse® and development of 3D tags, features and tree structures, this comparative validation
on the 24 subjects will be repeated with registration of nonlinearly-warped 3D gray scale and
color flow volumes. Initially, successful registration will be declared if the algorithm produces a
difference image with mean-squared-error less than 1% of maximum constrast. It is too early
to estimate the variances to calculate the statistical power of this test but we will evaluate
experimental p-values to establish statistical significance. We will then modify the registration
criterion by accounting for spatially localized displacement errors which can be calculated for
thousands of points in each scan volume. In the event that high computational complexity
prevented whole volume registration we will reduce the study to registering half of the total
image volume or less, either through truncation or downsampling of the original whole volume
image. Final registration displacement error as a function of the eight classes of breast tissue
complexity will be plotted as a function of breast class and we will evaluate the slope of the fit
by confidence limits on that slope.
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