
SENSOR MANAGEMENT PROVISIONING FOR MULTIPLE TARGET RADAR TRACKING
SYSTEMS

Gregory Newstadt Student Member, IEEE, and Alfred O. Hero III, Fellow, IEEE

Dept. of EECS, University of Michigan, Ann Arbor MI 48109-2122, USA
{newstage,hero}@umich.edu

ABSTRACT
System provisioning is the problem of determining the number
of resources required to accomplish a complicated system level
task, e.g. tracking or discriminating between N targets. This is
a central problem in multi-target tracking with synthetic aperture
radars where the number of targets can easily exceed the available
resources. This paper treats the following conservative sensor
provisioning problem: dynamically assign R platforms to process
N moving targets in a way that guarantees that the radar maintains
track on all targets. We propose a solution to this problem that
guarantees a prescribed level of system performance, e.g., multiple
target detection and position uncertainty levels, regardless of the
scenario. The operational context of the paper is computational
provisioning in synthetic aperture radar (SAR) that dynamically
assigns different computers to tracking different targets.

I. INTRODUCTION
The ability to track multiple targets over a large field of view

(FOV) is an integral component of many applications, including
traffic monitoring and anomalous behavior detection, among others.
Synthetic aperture radars provide the capability to produce high res-
olution imagery that is robust to environmental conditions (weather,
lighting, etc.). Previous work [1] has demonstrated that efficient
strategies exist for tracking multiple targets given images formed
from the SAR phase histories. However, the ability to do real-time
tracking of targets with SAR is often limited by the computational
demands of the image formation process.

This work describes a general approach to system provisioning
for multiple ‘sensor’ systems that uses the guaranteed uncertainty
management (GUM) philosophy. In this paper, we focus on the
problem of managing computational resources, where the ‘sensors’
are the CPUs used to form the SAR images of interest from
streaming radar samples. By system provisioning we mean using
physical models for target detection and estimation to specify
fundamental limits on performance (system stability, track entropy,
occupancy rate) for a given provisioning of the system (number of
CPUs, maximum number of FLOPs, desired standard errors). We
have chosen to focus on the computational problem since real-time
adaptive SAR sensors do not currently exist. However, it should be
noted that the methods developed in this paper can be applied to a
wide variety of applications (including managing physical sensors).

The GUM approach is more conservative than standard stochas-
tic scheduling approaches to radar provisioning. In particular, it
carries strict and absolute guarantees on the probability of loss of
track of the system. This is in contrast to average performance
guarantees that have been previously adopted [2] for similar ap-
plications. By using this strict performance approach, the sensor
management problem becomes non-stochastic and leads to strong
results that could not easily be obtained in the less stringent
stochastic scheduling context.

This research was supported in part by AFRL under ATR Center grant
FA8650-07-D-1221-TO1 and by TechFinity Inc, under STTR topic MDA07-
T005.

The rest of the paper is organized as follows. In section II,
we present the target and system models used throughout the
paper. Section III develops the theory for guaranteed uncertainty
management for a track-only radar including stability conditions
and radar provisioning for multiple targets. In section IV, this
theory is extended to a multi-purpose system that engages in
tracking and other activities such as discrimination and search.
Finally, section V presents a numerical example for typical radar
parameters.

II. TARGET AND SYSTEM MODELS
II-A. System Model

Assume that streaming samples from a single SAR sensor are
available from an X-band sensor with standard parameters (f0 ≈ 10
GHz, BW ≈ 500 MHz, τPRI ≈ 10−3). Without loss of generality,
we will assume that the radar platform travels in the x-direction.

We are interested in the computational burden associated with
standard image formation from the radar samples using back-
projection [3]. The number of FLOPs associated with this process is
proportional to the number of radar samples Np and the number of
pixels in the formed image, also proportional to Np. The required
time to detect and/or track within a target cell is then

T = κN2
p , κ = αradarτCPU (1)

where τCPU is the number of seconds/FLOP associated with the
CPU and αradar is the number of FLOPs/N2

p that is dependent
on the radar. For concreteness in this work, we assume that κ ≈
3e10−7 using a 2.8 GHz CPU.

II-B. Target Model
Assume that at time 0 a target is detected in a radar cell

C0 = {z = (x, y) : −σx 6 x− x̄ 6 σx,−σy 6 y− ȳ 6 σy} (2)

where z̄ = [x̄, ȳ] is the center position of the cell. From a radar
signal processing algorithm, an estimate (x̂, ŷ, v̂x, v̂y, âx, ây) of
target positions and velocities is extracted, along with a set of stan-
dard errors (σx, σy, σvx, σvy, σax, σay). This could be the output
of a Kalman filter, sigma tracker, particle filter or other common
tracking algorithm. From these estimates and standard errors a
confidence region for x, y, vx, vy having coverage probability of
at least 1− εT can be specified. In particular, assume that

[x̂− σx, x̂+ σx] × [ŷ − σy, ŷ + σy]×
[v̂x − σvx, v̂x + σvx] × [v̂y − σvy, v̂y + σvy]

[âx − σax, âx + σax] × [ây − σay, ây + σay] (3)

is such a region. With probability no less than 1 − εT , after an
elapsed time of τ seconds from the last revisit of the target, the
above confidence region will map to the union of an uncountable
number of segments, which can be described by the set

Fig. 1. The small radar cell contains a target with high certainty
immediately after revisit. If the target trajectory is (vx, vy, ax, ay)
with confidence (σvx, σvy, σax, σay), then we can be confident that
a target at the center of the radar cell (left) will lie in the rectangular
region after an elapsed time of τ secs. When the target can lie
anywhere in the radar cell, then we can only be confident that the
target will lie in the union of all induced rectangular regions (right).

Cτ = {(x, y) : −εx(τ) 6 x− r̂x(τ) 6 εx(τ),

−εy(τ) 6 y − r̂j(τ) 6 εy(τ)} (4)

where εj(τ) = σj+σvjτ+σajτ
2/2 and r̂j(τ) = ĵ+v̂jτ+âjτ

2/2
for j = x, y. See Fig. 1 for illustration. The area of this region is
|Cτ | = 4εx(τ)εy(τ).

In SAR tracking non-zero velocities can cause errors in the cross-
range (x-) direction [4]. Note that these errors will depend only
on the standard errors (σvx, σvy, σax, σay), since images can be
focused to v̂x, v̂y, âx, ây with no additional computational cost. For
a maximum error of δd, this augmented region and its associated
area is

h(Cτ , δd) = {(x, y) : (u, v) ∈ Cτ , x ∈ u+ [−δd, δd], y = v} (5)
|h(Cτ , δd)| = 4(εx(τ) + δd)εy(τ) (6)

We are interested in resolving targets within a cell size, denoted
|C0|. Due to real-time constraints, we assume that only streaming
data is available. Thus, after τ seconds since the last revist, the
system will be occupied by the task of forming subimages in
h(Cτ , δd) to reduce uncertainty on the target parameters back down
to a 1 − εT confidence region of size |C0|. Thus, the load on the
CPU is given by

q(τ) = κN2
pγ(τ ; δd), (7)

where γ(τ ; δd) = |h(Cτ ,δd)|
|h(C0,δd)|

− 1 is the growth of the confidence
region. Note that δd does not depend on τ , but only on the target’s
trajectory (vx, vy, ax, ay), which is arbitary for any target, and the
number of pulses, Np, which is fixed by the user.

For R CPUs and N targets, let qr,n(τ) denote the load (in
seconds) on the r-th CPU to revisit and update the n-th target
after an elapsed time of τ :

qr,n(τ) = κN2
p (r, n)γr,n(τ ; δd), (8)

where γr,n and Np(r, n) are analogously defined as CPU and target
dependent quantities that guarantee the performance criteria.

III. GUARANTEED UNCERTAINTY MANAGEMENT
The problem of utilizing available CPUs in an optimal fashion

to detect and track targets falls in the framework of dynamic
scheduling of multiple servers to multiple queues (targets) [5],
[6]. The sensor manager must assign CPUs to queues of target-
revisit jobs in queues that grow as time elapses. Each job may have
different service requirements. Generally, solving for the optimal
allocation of servers to queues is a difficult, if not intractable,
problem. However, several sub-optimal strategies have been pro-
posed. A suboptimal prioritized longest queue (PLQ) strategy is
to assign free servers to the longest queues, where each queue

is processed by the server that is best matched to the service
requirements. The following implementation of this strategy is
the ‘largest weighted queue length’ policy proposed in [6] for
heterogeneous multiqueueing systems. Let N ⊂ {1, 2, . . . , N} be
the number of target tracks not in the process of being revisited.

Prioritized longest queue (PLQ) sensor scheduling policy:
When a CPU r is unoccupied and available for assignment to
updating a target track then either

1) idle the CPU if all target tracks are in process of being
revisited (N is empty).

2) deploy the CPU on the target n ∈ N that maximizes the
weighted service time maxn∈N qr,n(τn), where τn is the
elapsed time since the last revisit of target n.

III-A. Balance equations guaranteeing system stability
Balance equations for stable operation of the system are equa-

tions that guarantee that at the time of revisit of a target its
service load has not grown larger than it was at the previous
revisit. With a single CPU, we drop the index r from qr,n(τ).
We also assume that these functions have been indexed such that
q1(τ) > q2(τ) > . . . qN (τ), i.e. the targets have been ranked in
decreasing order of service load, and that the CPU revisits the
targets in this order (PLQ). Define the service load functions (in
seconds), q(i)(τ) as follows

q(1)(τ) = q1(τ)

q(2)(τ) = q2(q(1)(τ) + τ)

...
q(N)(τ) = qN (q(N−1)(τ) + τ) (9)

Next define the system loading function

Q(N)(τ) =

N∑
i=1

q(i)(τ), (10)

which is stable when Q(N)(τ) < τ (critically when Q(N)(τ) = τ).
If a solution exists, let τ = τ∗ be the solution of the balance
equation

Q(N)(τ) = τ. (11)

Proposition 1: For a single CPU tracking N targets the PLQ
policy is stable, in the sense that the system maintains bounded
tracking errors, if the following conditions hold:

1) a solution to (11) exists;
2) the revisit rate is at least 1/τ∗;
3) The max target trajectory is such that τ∗ � Tcell, where

Tcell = maxt,j=(x,y){vjt+ ajt
2/2 6

√
σ2
x + σ2

y}.
The value τ∗ can be interpreted as the steady state total time
required for the CPU to cycle through a complete sequence of
target revisits. Tcell is an upper bound on the time required for a
target to move out of the neighborhood of a single radar cell. The
stability result of Proposition 1 is tight in the sense that the system
becomes unstable if Conditions 1 and 2 are not satisfied. When
stability of the PLQ policy is guaranteed, we have a tight bound
on the associated tracking error.

Corollary 1: If the system is stable in the sense of Proposition
1, then the entropy of the tracking error of the i-th target will never
exceed H∗(i) = ln |Cτ∗(i)|.

The proof of the above proposition is straightforward but we
do not provide details here. The full proof relies on the fact that
q(i)(τ) is monotonic increasing in τ . We then use mathematical
induction to obtain equations (9) as the time required to service
the targets, and apply standard load balancing condition of optimal
scheduling theory to obtain (11).

III-B. A simple slope criterion for stability
The system load function Q(N)(τ) defined in (10) is zero at τ =

0 and is smooth, differentiable, and monotonic increasing. Thus a
necessary condition for the balance equation (11) to have a solution
is that its derivative be less than or equal to 1 at the point τ = 0.
By induction the derivative [Q(N)]′(0) = dQ(N)(τ)/dτ |τ=0 can
be shown to be of the form:

[Q(N)]′(0) =

N∑
j=1

j∑
k=1

N∏
i=N−k+1

q′i(0) 6
N∑
j=1

j∑
k=1

(q′0)k, (12)

where we have defined q′0 = maxi q
′
i(0). If mini q

′
i(0) > 1, then

necessarily [Q(N)]′ > 1 so that Q(N)(τ) > τ and the system
is unstable. If q′0 < 1, then the system may be stable. To obtain
closed form results we will derive sufficient conditions on N that
guarantee stability by using the upper bound on the right of (12)
instead of the exact expression in the middle of (12). This upper
bound is attained when all service load functions are identical,
qi(0) = qj(0) in which the conditions derived below will also be
necessary. Therefore, the conditions will be tight for a worst case
scenario but will be more stringent than might be required for a
typical scenario. As q′0 > 0, the series summation formula applied
to the right hand side of (12) gives the following proposition:

Proposition 2: A solution τ∗ to the balance equation (11) exists
if and only if

[Q(N)]′(0) =
q′0

1− q′0

(
N − q′0

1− q′0
(1− [q′0]N)

)
< 1 (13)

Note that for our scenario, we can obtain q′0 by differentiating (6)
plugging into (7), and evaluating at τ = 0, yielding

q′0 = κN2
p (σxσy)−1[σvxσy + σvy(σx + δd)] (14)

Define Nmax as the maximum value of N such that the inequality
in Proposition 2 is satisfied. When the CPU is tasked to track Nmax
targets then the system will be stable (however, we must still verify
that the associated τ∗ is such that condition 3 of Proposition 1 is
satisfied). In the case N = Nmax the CPU is fully utilized and
operating at maximum efficiency. When q′0 is small, Nmax can be
found approximately as

Nmax = (1− q′0)/q′0 + q′0/(1− q′0) (15)

Furthermore, since 0 6 1 − [q′0]N 6 1, we can assert that if the
number of targets N exceeds Nmax in (15), then no solution to
the balance equations exists and the system diverges.

III-C. Extension to multiple CPUs
When there are R > 1 CPUs to manage we can obtain stability

conditions in a similar manner to the previous section. Define
the ratio of targets per CPU b = ceil(N/R) as the smallest
integer greater than N/R. Define q(τ) = maxn,r qr,n(τ) and
the service load, q(b)(τ) = q(q(b−1)(τ) + τ). In analogy to
the previous section, the system loading function is defined as
Q(b)(τ) =

∑b
i=1 q

(i)(τ). Stability conditions and slope conditions
can be derived in a similar fashion to the previous section by
replacing N with b = ceil(N/R). The details are omitted here,
but can be found in [7].

III-D. Determining track-only system occupancy
We can use the Propositions to determine the efficiency of the

system in terms of its occupancy rates, defined as one minus the
proportion of time a CPU in the system is idle. We assume that the
CPUs are scheduled under the PLQ policy. In steady state a stable
system of R CPUs will be at maximum utilization when the system

is critically stable. This occurs when there are approximately b∗ =
N/R targets per CPU where b∗ is the solution to the equation

q′0
1− q′0

(
b− q′0

1− q′0
(1− [q′0]b)

)
= 1 (16)

Define Nmax = floor(b∗R). At this critically stable operating point
of Nmax targets, the CPUs are fully occupied performing just-in-
time revisits of the targets. In this case the maximum service load
that each target places on the system is Q(Nmax/R)(τ∗) where τ∗

is the solution of Q(Nmax/R)(τ) = τ . When the same system is
assigned to track a fewer number N < Nmax of targets, there will
be idle time. We define the occupancy of the track-only system as
ρ = τ∗/τε, where τε is the value of τ that satisfies

Q(N/R)(τ) = Q(Nmax/R)(τ∗). (17)

The interpretation is that τε is operating point of the system that
results in the same loading for the underloaded system tracking N
targets as the fully loaded system tracking Nmax targets.

IV. MULTI-PURPOSE SYSTEM PROVISIONING
Finally we turn to scenarios when the system may be engaged

in other tasks in addition to tracking. From a computational
standpoint, this could be as basic as time needed for transfer of
data and communication. At a more abstract level, tasks could
include discrimination of targets and/or wide area search for new
targets. This is handled by building in headroom into the track
update stability equations. Let ∆ be the additional load (s) spent
after each revisit on tasks other than tracking. Consider the case of
a single CPU and N targets. For a given ∆, the stability condition
is that there must exist a solution, τ = τ∗ such that

Q(N)(τ,∆) +N∆ = τ, (18)

where Q(N)(τ,∆) =
∑N
i=1 q

(i)(τ,∆) and q(N)(τ,∆) =
qN (q(N−1)(τ)+τ+∆). Note that since the qi’s are monotonically
increasing, we have the bound

Q(N)(τ,∆) 6 Q(N)(τ + ∆), (19)

where Q(N)(τ) is the simpler function defined in (10). Therefore,
for specified ∆, a sufficient condition for stability is that there exist
a τ = τ∗ such that

Q(N)(τ + ∆) +N∆ = τ. (20)

Rexpressing this in terms of the variable u = τ + ∆, we have the
equivalent condition that there exist a solution u = u∗ to

Q(N)(u) = u− (N + 1)∆. (21)

IV-A. Load margin, excess capacity, and occupancy
The load margin represents the maximum additional load that

can be accommodated by a tracking system that must perform joint
operations such as tracking, detection, etc. The load margin ∆max

is defined as the maximum value ∆ for which a solution u to (21)
exists. When there are N targets and the multi-purpose system
spends ∆ 6 ∆max seconds per update performing other tasks we
define the excess capacity

cexcess(∆) = 1−∆/∆max. (22)

Likewise, we define the multi-purpose system occupancy as

ρ(∆) = 1− [(∆max −∆)N]/Q(N)(u∗). (23)

Fig. 2. This figure demonstrates various combinations of N/R. The
diagonal line, called the stability boundary, separates two regions
of operation. When the load curve is below the diagonal, track is
maintained on all targets. Above the stability line, the system is
unstable. The red line (N/R = 17) shows the fully provisioned
case (ρ = 100%). The blue dashed line (N/R = 9) is always
below the stability line, showing an overprovisioned case where
the system keeps all targets in track and has a lot of headroom to
spare. The green line (N/R = 30) is always above the stability
line, representing an underprovisioned case where the system is
overwhelmed and tracks are lost. Yellow circles show the locations
on the N/R=(17,9) curves with equal system loads.

Fig. 3. The system provisioning matrix specifies stability region
(dark) as a function of the numbers of radars and the number targets
for track-only radar.

V. EXAMPLE APPLICATION
For specified standard errors on tracking accuracy, e.g., available

from Kalman tracking covariance estimates, the above results can
be used to generate tables and curves on the required number of
CPUs, their revisit rates, and their occupancy, for tracking N targets
with prescribed track error (entropy). For this scenario, we assume

1) A radar with parameters defined in Section II.
2) Np = 250 corresponding to Pf=10−6, Pd>0.99 for detect-

ing a Swerling II target at a SNR=0dB ([8], Fig. 12.23.)
3) Target cell given by (σx, σy)=(6, 0.3) m.
4) Target trajectory, (vx, vy)=(5, 5) m/s, (ax, ay)=(0, 0) m/s2,

with std. errors (σvx, σvy)=(1,1) m/s (σax, σay)=(1,1) m/s2.
5) Tcell = 0.923 seconds.

V-A. Loading of track-only system
Figure 2 shows results for various numbers of R CPUs and

N targets, such that N/R = 9, 17, 30, respectively. The figure
provides a graphical view of the different stability regions as
a function of revisit time, τ , and the target-to-CPU ratio. The
different curves represent an overprovisioned system, a critically
stable system, and an underprovisioned system, respectively.

Figure 3 provides a graphical representation of stability in track-
only provisioning as a function of the number of N targets and R
CPUs. The figure shows a matrix whose (i, j) entry is equal to 1
if i CPUs can track j targets stably and equal to 0 otherwise. The
dark areas represent the stable operating region.

V-B. Multi-purpose system provisioning
Figure 4 illustrates a computation of the excess capacity, occu-

pancy, and load margin for the same radar as in the previous section

Fig. 4. System loading curves for computing occupancy and excess
capacity for the multi-purpose radar tracking example. Fully loaded
track-only radar load curve at top is shown for comparison.

but when it is tracking only 9 targets and can devote resources to
other tasks. Unlike the case of 17 targets that only intersects the
diagonal line y(u) = u − ∆ when ∆ = 0, there is a substantial
load margin for the case of 9 targets, ∆max = 0.206/N secs. At
this full utilization operating point the radar devotes approximately
11% of its time to tracking and the rest of its time to other tasks.
The distance between the upper and lower diagonal lines y(u) = u
and y(u) = u−∆maxN is 0.206 secs. If the actual load for other
tasks was set to only ∆ = 0.06/N secs, giving cexcess = 0.70 and
an occupancy of ρ(∆) = 0.76, the system would be idle 24% of
the time.

VI. CONCLUSIONS
This paper has proposed a conservative approach to sensor

resource management for multiple target tracking subject to typical
computational resource constraints. The approach requires finding
solutions to load balance equations that guarantee system stabil-
ity. These solutions yield the minimal system requirements for
provisioning radars. The solutions guarantee stable tracking with
prescribed level of statistical confidence. The provisioning results
given here are conservative and specify the system requirements,
steady state occupancy, revisit times, and track entropy in terms
of the PQL sensor scheduling policy. The PQL policy will always
perform at least as well as the performance predictions we provide.
One can expect considerably better performance of the system
than these predictions for typical scenarios, although there exists
a scenario (namely, all targets are equally difficult to track) where
the predictions are exact. Less stringent provisioning requirements
might be explored using a stochastic optimization.

VII. REFERENCES
[1] G. Newstadt, E. Zelnio, L. Gorham, and A. Hero III, “Detec-

tion/tracking of moving targets with synthetic aperture radars,”
in SPIE Conference Series, vol. 7699, 2010, p. 16.

[2] A. Hero, D. Castan, D. Cochran, and K. Kastella, “Foundations
and applications of sensor management,” 2007.

[3] M. Soumekh, Synthetic aperture radar signal processing with
MATLAB algorithms. Wiley, 1999, vol. 138.

[4] J. Fienup, “Detecting moving targets in SAR imagery by
focusing,” Aerosp. Electron. Syst., IEEE Trans., vol. 37, no. 3,
pp. 794–809, 2001.

[5] P. Brémaud, Point processes and queues, martingale dynamics.
Springer, 1981.

[6] K. Wasserman, G. Michailidis, and N. Bambos, “Optimal
processor allocation to differentiated job flows,” Performance
Evaluation, vol. 63, no. 1, pp. 1–14, 2006.

[7] A. O. H. III, “Sensor management provisioning for multiple
target radar tracking systems,” Univ. of Michigan, CSPL, Tech.
Rep. 407, 2008.

[8] H. Meikle, Modern radar systems. Artech House Publishers,
2008.

