ADAPTIVE SEARCH FOR DYNAMIC TARGETS UNDER RESOURCE CONSTRAINTS
Gregory Newstadt, Sudent Member, IEEE, Eran Bashan, and Alfred O. Hero 1ll, Fellow, IEEE

Dept. of EECS, University of Michigan, Ann Arbor MI 48109-24, USA
{newstage,hefg@umich.edu

ABSTRACT minimum amplitudes below which signal detection is im-
Previous work on resource constrained adaptive seargbossible [3]. However, the provable gains of the adaptive
for sparse static targets has produced two-stage allocati@lgorithms are usually restricted to the asymptotic regime
policies with desirable properties. For example, for largegither in high signal-to-noise ratio (SNR), or in the largees
asymptotic SNR, such policies converge to the true region off the state, e.g., number of possible target locationss Thi
interest (ROI) and attain optimal energy allocations ireéat work considers applications that only have low to medium
to exhaustive search. This work investigates the problem d8NR levels, but the scene may be repeatedly probed over
extending previous allocation policies 6 >> 2 stages, time. For example, consider air traffic control (ATC) that
with particular emphasis on cases where the SNR for angmploys an adaptive radar system to continuously monitor
particular stage is considerably less than the asymptoti@ scene. Another relevant application consists of read-tim
SNR. Furthermore, a new formulation is given that candetection systems that may be limited by a finite amount
account for non-static targets, including a dynamic transiof computational resources per iteration. In this situatio
tion model for target location and a population model towould be desirable to have an adaptive allocation policy for
account for targets that leave or enter the scene. Under this > 2 stages that
formulation, a dynamic adaptive resource allocation golic . optimizes an appropriate time-varying cost function
(D-ARAP) is proposed that performs well and has low subject to a per-stage budget. In an ATC system, the
computational cost. It is shown that this policy provides si allocation budget is the total time it takes for the radar
nificant gains over an exhaustive search policy in bothcstati to complete one complete cycle.
and dynamic target cases with near optimal performance as.« accounts for dynamic targets.
T — oo. Moreover, D-ARAP is shown to be more robust « provides significant gains over an exhaustive policy that
than a greedy (myopic) policy when there are outliers or  allocates the budget evenly over all potential target

when targets may be obscured for periods of time. locations.
« accomplishes these goals with low computational cost.
[. MOTIVATION This work provides the Dynamic Adaptive Resource Al-

In recent years, there has been significant interest inJeartcation Policy (D-ARAP) that accomplishes these goals
ing the sparse support of a sigrtaby intelligently choosing by using a heuristic approximation to a complicated opti-

the measurement matr given noisy measurements of the Mization problem. We show that D-ARAP performs close
form to the optimal level asI' — oo, has considerable gains

y=XB+n (1) overan exhaustive search, even for low valuesi'ofand

) N ) . outperforms a greedy (myopic) policy in terms of robustness
Given conditions onX, compressive sensing and sparsegn( convergence.

approximation methods have shown that one can recover The rest of the paper is organized as follows. We formalize
the sparse vecto# with probability 1 by using many fewer the problem in Section Il and provide the adaptive sensing
measurements than the size @f When the user has the policy in Section Ill. Performance analysis is given in

additional degree of freedom to choo3e adaptively as gection IV. Finally, in Section V, we conclude and point
measurements are acquired, it has been shown that ofef,ture work.

can perform significantly better compared to static polices
Benefits include near-optimal gains in estimation error and Il. PROBLEM EORMULATION
related cost functions [1], provable convergence to the tru
support of 3 [1] often at rates significantly faster than non-
adaptive policies [2] and reliably with significantly snell

Consider a spac&” = {1,2,...,Q} containing@ cells
equipped with a probability measur®, and a region of
interest (ROI),¥ C X. We assume thatV will be a

This research was supported in part by AFRL under ATR Centantg 'andomly selected small subset®f though its definition is
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the collection of all cells containing targets and targ&dtesl  where wt‘t, = Pr(L;(¢t) = 1Y (¢)), \I/tmjil = {L;(t —
phenomena, e.g., target shadows. In a medical |mag|ng)} ew =D and Pr(Z;(t) = 1|}, ') is a function of
application, such as early detection of breast cancer, avher t 1le—1
tumor boundaries are poorly defined, the ROl may be deflneé } ewt’
as the collection of all cells containing targets (a tumor)puted in an iterative fashion (ovexwith O(Q) calculations
plus some neighboring cells. In this work, we generalize thger stage.
formulation from [1], [4] to account for a time-varying ROI

so that thatl = W (¢) is a function of time. Define indicator M
functions:

Note that this can be efficiently com-

. ADAPTIVE SEARCH POLICY
n L ie¥() I11-A. Cost function
Lit) = { 0, else (2)

In [1] we introduced the following cost function
the non-informative case). Consider a sequential expeétime Jarap(A Z (i, 1) + /\ (i 2)] ©)
where we observe measuremeptg) : X — RY at time
t e {1,2,...,T}. Let A(,t) > 0 denote the search effort M|n|m|zmg (6) over \(z,t) under a total energy constraint
allocated to celli at time ¢. For t > 1, we consider Z Zt Ai,t) = Ar yielded the search policy ARAP, in the
mappings of{)\(i,t)}?zl from past observation¥ (t —  case wherd = 2 and targets were static, i.€,(t) = I;. As
1) £ {y(1),y(2),...,y(t = 1)}. The choice of{A(i,t)},,  discussed before, this work assumes that the betweensstage
is called a search policy. We focus here on deterministi@llocation is set a priori. Thus, we consider a separable cos
mappings of)\, although a more general random mappingfunction for7 > 2 as
could also be incorporated into our framework. We assume T
that a sample’s ‘quality’ is an increasing function of the - E ZZ 1i . @)
allocated effort to the associated cell, e.g. measuredinste — = (i)
of information or inverse variance. In general, effort ntigh _ _
be computing power, complexity, cost, or energy that ISThe goal is to minimizeJ(\) subject to the constraints,
allocated to probing a particular cell location. For thisro  2ort A(i: ) = Atotar(t), for known {Aora(t)},.
we assume the measurement model

As in previous work, letp = Pr(l;(1) = 1) be the
uniform prior probability that a target is in any one cele(j.

= /A, 1)0; ()T () + ni(t) (3) l1-B. Discussion of optimal policies
Whereb‘i(t) N(u,%) are i.i.d. random variables corre- _Similar to previous work, the omniscient allocation at time
sponding to the target amplitudes ang(t) ~ A(0,1) is ! 1S given by
i.i.d. zero-mean Gaussian noise. Moreover, it is assumed Atotar (t)
that the posterior probabilitieBr(¥(¢)[Y (¢ — 1)) can be Aomn (1, 1) = 70 Ii(t) (8)
computed, e.g., from some signal processing algorithm such
as a Kalman or particle filter. yielding an optimal cost of/(\omn) = (pQ)%. At the

other extreme, define the exhaustive policy )as(i,t) =

ll-A. Dynamic state model Miotat(t)/Q for all 4. This yields the costJ(\g) = pQZ.

Thus the gain of the omniscient policy compared to an
In this work, we propose a simple dynamic state model tQ, 4 istive search is

incorporate targets that may move. In particular, we assume
1) A target in celli can transition to a neighboring G(Aomn) = —101log(pQ)?/(pQ?) = —10logp (dB), (9)
cell with probablhty% or stay in the same cell with

probability, 1 lq where W Y is the set of which is identical to the omniscient gain in [1]. Consider

. ) also the policy that knows the target locations at the last
neighbors to celh at timet¢ and |W;"|¢ < 1. o
. ¢ state,¥(¢ — 1). When targets can transition between cells,
2) The target amplitudes follow a random watk(t) = .
0;(t — 1) + N(0, A?) q > 0, then a proportion of the budget must be used to search
¢ ’ neighboring cells. We term this the ‘optimal’ policy since

For smallp = PY(I’(l) = 1), it can be shown that any policy that is based solely on previous measurements

ﬂ_;ﬁ\t 1 Z Pr(l;(t) = 1|\I/t 1) Pr(\pt 1|Y(t “1) (@) car!not perform better than this policy. The optimal poligy i
= defined as
Wi B 1 . o )\total (t) Wi (t) .
[, 1= A Py (0|1 (1) = 0) - Aopt (i, 1) = OIS wkj(t)lj(t -1). (10
‘ =t Pr(y()|L(t) =1) | kew (D
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Fig. 2. The left hand plot shows the selection @fwithin

] ] _ ] ~ = 0.1 of the minimum myopic cost. Each curve represents
Fig. 1. The myopic cost (14) is plotted as a function of they jifferent transition model, witly = 1 (blue), ¢ = 0.8

floor percentagey. It can be seen that in this case, a |arge(green), and; = 0.4 (red). We see that, as expectedjs
deviation in« leads to a small deviation from the minumum high for low SNR and decays to a value near zero for high

cost @ = 0). SNR. Simulation was limited ta. > 0.1 which accounts for

the apparent lower bound in the results. The right hand plot
shows the selection ok within v = 0.1 of the minimum
|ényopic cost, with a SNR loss that dependsgmiefined in
equation (11).

where w;;(t) = +/Pr(l;(t) = 1|I;(t — 1) = 1). With this
policy, one can analyze the loss incurred by searching th
neighborhood cells. This can be shown to be

il __as) @ i

wi; (t) for varying a(t) when (¢, t) is chosen according to (13).
By definition, C, ,, is optimized whenx(t) = 0. However,

) as seen in the illustration, large deviationsdf¢) do not

I11-C. Myopic approach always lead to large deviations in the cost. hetontrol the

In general, optimizing (7) with the given budget con-deviations that we are willing to tolerate, so that

straints is combinatorially hard gsincreases. If we consider

a suboptimal approach by choosing the allocation totitie a(t) = argmax{a: Cra(N) < (14+79)Cio(N)}  (15)

stage given all previous allocations and measurements, the ¢

{A(,8)}; that minimizes (7) is This strategy allocates as much energy to the floor proba-
Motat (H)/Pr{L(OY (t — 1)) pility_ as we can, under the_cpndition that_ the myopic cost
SN O (12) is within (100+)% of the minimum myopic cost. At low
J=1 J SNR, we would expect thak will be large and decay to
This myopic approach will tend to track well the targets thatzero as SNR improves. Figure 2 shows simulation-based
have already been detected, but have little ability to recov results for selectingy(2) for v = 0.1 and three transition
missed targets. probabilities to neighboring cellg,= 1, 0.8, 0.4. In the left-
hand plot, we show the raw selections as a function of the
I11-D. Exploitation vs. Exploration: A Heuristic Ap- total SNR for a 2-stage problem. Note that, as expected,
proach a decays to near zero as SNR grows. The right-hand plot

We suggest a simple (but still suboptimal) approach tc§hows the curves shifted by the loss given in (11). Note that
allocate a percentage of the budget.(¢) to all cells with this correction, the selections aéf are nearly identical

Loss = 10 log

(t—1)
kEWS

(i t) =

yielding the allocation policy that we term D-ARAP: for all 3 values .qu’ suggesting that (11) may be useful as
a performance index.
:\a(i,t) — M + (1 — a(t)A(i, t), (13) Note that choosingi(t) according to (15) still varies as
Q a function of the stage. Figure 3(a) shows the selection

wherea(t) € (0,1) and A(4, t) is given by (12). In general, of &(t) as a function ofA\;.:qi(t) (x-axis) andt (various
choosingx(t) is still a difficult problem. This work proposes curves). As expected, as either the SNRt ancreases, the
a heuristic approximation to optimizing equation (7) thatfloor percentage decreases, reflecting the refinement in our
provides significant gains over an exhaustive search at estimate of the ROl (¢). Moreover, Figure 3(b) plots the
low computational cost. To understand this heuristic, it isvarious selections ofi(¢) as a function of observed SNR,
illustrative to look at Figure 1 which plots the myopic cost defined asZtT:1 Atotal(t). The excellent agreement among

0 all of the curves suggests that we can use a functional

Cral) = E [Z ~L‘(t) Y (t - 1)] (14) approximation to selecting(¢) without having to explicitly

= Aalist) calculate the functions for eaah
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Fig. 3. In general, a(f, Aiorar (t)) as computed in (15) gig 5. This figure shows the performance gain in cost for
depends on both the stageand the SNR for that stage, p_ARAP (left) as well as the difference in gains compared
Atotal (). This plot shows the selection af for various {4 the myopic policy (right) as a function of SNR and stage

values, showing that we can approximai€t, Aiotai(f))  number in the case where 25% of the scene is obscured for
by a simpler function of the ‘observed SNR’, defined as3 consecutive stages and= 0.3.
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713 search for various values of,.;,; (curves) and transition
Stage.t probabilities,q = 0 (left) andq = 0.3 (right).

Fig. 4. This figure shows a comparison of the proposed
policy (D-ARAP, blue) with the myopic policy (green) as to the optimal gain in fewer stages than the myopic policy.
a function of gains in cost over an exhaustive search in a In Figure 5, D-ARAP is also compared to the myopic
worst-case analysis (statig,= 0), where the target returns policy in the unobservable case where 25% of the scene is
0;(t) are set to various valuey < pp = 1. obscured at each stage for 3 consecutive stages (rotatlag ce
after 3 stages]’ = 40) and targets can move with transition
probability, ¢ = 0.3. A non-myopic approach would likely
IV. PERFORMANCE ANALYSIS spend additional resources on locations that are going to
be obscured in the near future. Although D-ARAP does
not explicitly allocate resources in this manner, the issul
In this section, D-ARAP is compared to the myopic policy presented here show that D-ARAP significantly outperforms
that setsxy(¢) = 0 for all ¢. In Figure 4, we compare the poli- the myopic policy for larger SNR values. Moreover, D-
cies to an exhaustive search in the static cgse () fora  ARAP has monotonically increasing behaviortasr SNR
long horizon,T" = 500. In this analysis, we sé&;(t) = 6, for ~— oo, in contrast to the myopic policy, which performs
various values ofjy = (0.50,0.55,0.60,0.65,0.70,0.75).  significantly worse in the asymptotic SNR regions.
Note that for low values of,, noisy measurements may
cause missed detections that could adversely affect the _ ) _ .
myopic policy allocations. Indeed, for low values 6§, | V-B- Comparison to Optimal/Exhaustive Policies
noisy measurements can cause missed targets that are neverhis section now considers the case where targets are
recovered by the myopic policy fof, < 0.75. On the completely observable and have few outlieyy (= 1,
other hand, D-ARAP is monotonically increasing for all o7 = 1/36, A? = 1/64). We letQ = 10,000, p = 0.001,
6o > 0.5, suggesting greater robustness than the myopiand7 = 40, and compare performance in terms of gains in
policy. Moreover, even whety, = 0.75, D-ARAP converges cost and MSE over an exhaustive policy and probability of

IV-A. Comparison to the Myopic Policy
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Fig. 7. This plot shows the MSE gains with respect togNR < 10 dB). Finally

an exhaustive search for estimatifigas function of stage
number,t. The solid lines show the results of D-ARAP
for the static case (blug, = 0) and dynamic case (green,

g = 0.3). The dashed lines show the MSE gains using the

optimal policy (red,q = 0, and black,g = 0.3)
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tively) show the results using the optimal policy. We see
D-ARAP performs favorably in comparison to the optimal
policy for both the low SNR case (left plot, SNR=0 dB per
stage) afterl’ = 40 stages and the higher SNR case (right
plot, SNR=10 dB per stage) aftdt <« 40 stages.

Finally, Figure 8 shows the probability of detection for a
fixed probability of false alarm10—4) as a function oft.
Note that the probability of detection for D-ARAP consis-
tently approaches 1 regardless of transition probals|ites
t and \01q(t) @approach infinity. Moreover, they approach 1
significantly faster than the exhaustive search, which nfbes
always have consistent results fer> 0 (in particular for
note that for the larger values of
Aotal(t), D-ARAP approaches?; = 1 within very few
stages.

V. CONCLUSIONS AND FUTURE WORK

This work extended previous work to a multiple stage
allocation policy by collapsing the previous 2-stage ARAP
into a sequence of 1-stage allocations. A heuristic approac
to approximating the solution of a complicated optimizatio
problem was provided that performed well in simulation at
low computational cost. These results showed asymptotic
consistency in time, significant gains over an exhaustive
policy alternative, and increased robustness over a myopic
(greedy) policy.

Future work plans to compare to existing work in the field
of partially observable Markov decision processes, toveeri
analytical results such as provable consistency as oo
and/or performance bounds, to consider alternate allwtati

Fig. 8. These plots compare the probability of detection forstrategies fora(t) (i.e., strategies that save measurements
a fixed probability of false alarm1(—%) as function of the ~and/or consider regions that will obscured in the near &)tur

stage number¢. The four subplots show different values and to apply our policy to an appropriate real-world problem
of Arorai(t) in increasing order. Within each subplot, the such as allocating dwell times for an air traffic control nada

two solid lines show the results of D-ARAP fgr= 0 and

system.

q = 0.3, while the dashed lines show the results from an
exhaustive search.
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