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ABSTRACT
Previous work on resource constrained adaptive search
for sparse static targets has produced two-stage allocation
policies with desirable properties. For example, for large
asymptotic SNR, such policies converge to the true region of
interest (ROI) and attain optimal energy allocations relative
to exhaustive search. This work investigates the problem of
extending previous allocation policies toT >> 2 stages,
with particular emphasis on cases where the SNR for any
particular stage is considerably less than the asymptotic
SNR. Furthermore, a new formulation is given that can
account for non-static targets, including a dynamic transi-
tion model for target location and a population model to
account for targets that leave or enter the scene. Under this
formulation, a dynamic adaptive resource allocation policy
(D-ARAP) is proposed that performs well and has low
computational cost. It is shown that this policy provides sig-
nificant gains over an exhaustive search policy in both static
and dynamic target cases with near optimal performance as
T → ∞. Moreover, D-ARAP is shown to be more robust
than a greedy (myopic) policy when there are outliers or
when targets may be obscured for periods of time.

I. MOTIVATION

In recent years, there has been significant interest in learn-
ing the sparse support of a signalβ by intelligently choosing
the measurement matrixX given noisy measurements of the
form

y = Xβ + n (1)

Given conditions onX, compressive sensing and sparse
approximation methods have shown that one can recover
the sparse vectorβ with probability 1 by using many fewer
measurements than the size ofβ. When the user has the
additional degree of freedom to chooseX adaptively as
measurements are acquired, it has been shown that one
can perform significantly better compared to static polices.
Benefits include near-optimal gains in estimation error and
related cost functions [1], provable convergence to the true
support ofβ [1] often at rates significantly faster than non-
adaptive policies [2] and reliably with significantly smaller
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minimum amplitudes below which signal detection is im-
possible [3]. However, the provable gains of the adaptive
algorithms are usually restricted to the asymptotic regime,
either in high signal-to-noise ratio (SNR), or in the large size
of the state, e.g., number of possible target locations. This
work considers applications that only have low to medium
SNR levels, but the scene may be repeatedly probed over
time. For example, consider air traffic control (ATC) that
employs an adaptive radar system to continuously monitor
a scene. Another relevant application consists of real-time
detection systems that may be limited by a finite amount
of computational resources per iteration. In this situation, it
would be desirable to have an adaptive allocation policy for
T ≫ 2 stages that

• optimizes an appropriate time-varying cost function
subject to a per-stage budget. In an ATC system, the
allocation budget is the total time it takes for the radar
to complete one complete cycle.

• accounts for dynamic targets.
• provides significant gains over an exhaustive policy that

allocates the budget evenly over all potential target
locations.

• accomplishes these goals with low computational cost.
This work provides the Dynamic Adaptive Resource Al-
location Policy (D-ARAP) that accomplishes these goals
by using a heuristic approximation to a complicated opti-
mization problem. We show that D-ARAP performs close
to the optimal level asT → ∞, has considerable gains
over an exhaustive search, even for low values ofT , and
outperforms a greedy (myopic) policy in terms of robustness
and convergence.

The rest of the paper is organized as follows. We formalize
the problem in Section II and provide the adaptive sensing
policy in Section III. Performance analysis is given in
Section IV. Finally, in Section V, we conclude and point
to future work.

II. PROBLEM FORMULATION

Consider a spaceX = {1, 2, . . . , Q} containingQ cells
equipped with a probability measureP , and a region of
interest (ROI),Ψ ⊂ X . We assume thatΨ will be a
randomly selected small subset ofX , though its definition is
application specific. In radar target localization, the ROIis



the collection of all cells containing targets and target related
phenomena, e.g., target shadows. In a medical imaging
application, such as early detection of breast cancer, where
tumor boundaries are poorly defined, the ROI may be defined
as the collection of all cells containing targets (a tumor)
plus some neighboring cells. In this work, we generalize the
formulation from [1], [4] to account for a time-varying ROI
so that thatΨ = Ψ(t) is a function of time. Define indicator
functions:

Ii(t) =

{

1, i ∈ Ψ(t)
0, else

(2)

As in previous work, letp = Pr(Ii(1) = 1) be the
uniform prior probability that a target is in any one cell (i.e.,
the non-informative case). Consider a sequential experiment
where we observe measurementsy(t) : X → RQ at time
t ∈ {1, 2, . . . , T }. Let λ(i, t) > 0 denote the search effort
allocated to celli at time t. For t > 1, we consider
mappings of{λ(i, t)}Qi=1 from past observationsY(t −
1) , {y(1),y(2), . . . ,y(t− 1)}. The choice of{λ(i, t)}i,t
is called a search policy. We focus here on deterministic
mappings ofλ, although a more general random mapping
could also be incorporated into our framework. We assume
that a sample’s ‘quality’ is an increasing function of the
allocated effort to the associated cell, e.g. measured in terms
of information or inverse variance. In general, effort might
be computing power, complexity, cost, or energy that is
allocated to probing a particular cell location. For this work,
we assume the measurement model

yi(t) =
√

λ(i, t)θi(t)Ii(t) + ni(t) (3)

whereθi(t) ∼ N (µ, σ2
θ ) are i.i.d. random variables corre-

sponding to the target amplitudes andni(t) ∼ N (0, 1) is
i.i.d. zero-mean Gaussian noise. Moreover, it is assumed
that the posterior probabilitiesPr(Ψ(t)|Y(t − 1)) can be
computed, e.g., from some signal processing algorithm such
as a Kalman or particle filter.

II-A. Dynamic state model

In this work, we propose a simple dynamic state model to
incorporate targets that may move. In particular, we assume

1) A target in cell i can transition to a neighboring
cell with probability q or stay in the same cell with
probability, 1 − |W

(t)
i |q where W

(t)
i is the set of

neighbors to celli at time t and |W (t)
i |q < 1.

2) The target amplitudes follow a random walk,θi(t) =
θi(t− 1) +N (0,∆2)

For smallp = Pr(Ii(1) = 1), it can be shown that

π
t|t−1
i =

∑

Ψt−1
Wi

Pr(Ii(t) = 1|Ψt−1
Wi

) Pr(Ψt−1
Wi

|Y(t − 1)) (4)

π
t|t
i =

[

1 +
1− π

t|t−1
i

π
t|t−1
i

Pr(yi(t)|Ii(t) = 0)

Pr(yi(t)|Ii(t) = 1)

]−1

, (5)

where π
t|t′

i = Pr(Ii(t) = 1|Y (t′)), Ψt−1
Wi

= {Ij(t −
1)}

j∈W
(t−1)
i

, and Pr(Ii(t) = 1|Ψt−1
Wi

) is a function of
{

π
t−1|t−1
j

}

j∈W
(t−1)
i

. Note that this can be efficiently com-

puted in an iterative fashion (overt) with O(Q) calculations
per stage.

III. ADAPTIVE SEARCH POLICY

III-A. Cost function

In [1] we introduced the following cost function

JARAP (λ) = E

[

Q
∑

i=1

Ii
λ(i, 1) + λ(i, 2)

]

. (6)

Minimizing (6) overλ(i, t) under a total energy constraint
∑Q

i

∑T

t λ(i, t) = λT yielded the search policy ARAP, in the
case whereT = 2 and targets were static, i.e.,Ii(t) = Ii. As
discussed before, this work assumes that the between-stages
allocation is set a priori. Thus, we consider a separable cost
function forT ≫ 2 as

J(λ) = E

[

T
∑

t=1

Q
∑

i=1

Ii
λ(i, t)

]

. (7)

The goal is to minimizeJ(λ) subject to the constraints,
∑Q

i=1 λ(i, t) = λtotal(t), for known{λtotal(t)}t.

III-B. Discussion of optimal policies

Similar to previous work, the omniscient allocation at time
t is given by

λomn(i, t) =
λtotal(t)

|Ψ(t)|
Ii(t) (8)

yielding an optimal cost ofJ(λomn) = (pQ)2. At the
other extreme, define the exhaustive policy asλE(i, t) =
λtotal(t)/Q for all i. This yields the cost,J(λE) = pQ2.
Thus the gain of the omniscient policy compared to an
exhaustive search is

G(λomn) = −10 log(pQ)2/(pQ2) = −10 logp (dB), (9)

which is identical to the omniscient gain in [1]. Consider
also the policy that knows the target locations at the last
state,Ψ(t − 1). When targets can transition between cells,
q > 0, then a proportion of the budget must be used to search
neighboring cells. We term this the ‘optimal’ policy since
any policy that is based solely on previous measurements
cannot perform better than this policy. The optimal policy is
defined as

λopt(i, t) =
λtotal(t)

|Ψ(t)|

wij(t)
∑

k∈W
(t−1)
j

wkj(t)
Ij(t− 1). (10)



Fig. 1. The myopic cost (14) is plotted as a function of the
floor percentage,α. It can be seen that in this case, a large
deviation inα leads to a small deviation from the minumum
cost (α = 0).

where wij(t) =
√

Pr(Ii(t) = 1|Ij(t− 1) = 1). With this
policy, one can analyze the loss incurred by searching the
neighborhood cells. This can be shown to be

Loss = 10 log
wjj(t)

∑

k∈W
(t−1)
j

wkj(t)
(dB) (11)

III-C. Myopic approach

In general, optimizing (7) with the given budget con-
straints is combinatorially hard asT increases. If we consider
a suboptimal approach by choosing the allocation to thet-th
stage given all previous allocations and measurements, the
{λ(i, t)}i that minimizes (7) is

λ(i, t) =
λtotal(t)

√

Pr(Ii(t)|Y(t − 1))
∑Q

j=1

√

Pr(Ij(t)|Y(t − 1))
(12)

This myopic approach will tend to track well the targets that
have already been detected, but have little ability to recover
missed targets.

III-D. Exploitation vs. Exploration: A Heuristic Ap-
proach

We suggest a simple (but still suboptimal) approach to
allocate a percentage of the budgetλtotal(t) to all cells,
yielding the allocation policy that we term D-ARAP:

λ̃α(i, t) =
α(t)λtotal(t)

Q
+ (1− α(t))λ(i, t), (13)

whereα(t) ∈ (0, 1) andλ(i, t) is given by (12). In general,
choosingα(t) is still a difficult problem. This work proposes
a heuristic approximation to optimizing equation (7) that
provides significant gains over an exhaustive search at a
low computational cost. To understand this heuristic, it is
illustrative to look at Figure 1 which plots the myopic cost

Ct,α(λ) = E

[

Q
∑

i=1

Ii(t)

λ̃α(i, t)

∣

∣Y(t − 1)

]

(14)
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Fig. 2. The left hand plot shows the selection ofα̃ within
γ = 0.1 of the minimum myopic cost. Each curve represents
a different transition model, withq = 1 (blue), q = 0.8
(green), andq = 0.4 (red). We see that, as expected,α̃ is
high for low SNR and decays to a value near zero for high
SNR. Simulation was limited toα > 0.1 which accounts for
the apparent lower bound in the results. The right hand plot
shows the selection of̃α within γ = 0.1 of the minimum
myopic cost, with a SNR loss that depends onq, defined in
equation (11).

for varyingα(t) when λ̃α(i, t) is chosen according to (13).
By definition,Ct,α is optimized whenα(t) = 0. However,
as seen in the illustration, large deviations inα(t) do not
always lead to large deviations in the cost. Letγ control the
deviations that we are willing to tolerate, so that

α̃(t) = argmax
α

{α : Ct,α(λ) < (1 + γ)Ct,0(λ)} (15)

This strategy allocates as much energy to the floor proba-
bility as we can, under the condition that the myopic cost
is within (100γ)% of the minimum myopic cost. At low
SNR, we would expect that̃α will be large and decay to
zero as SNR improves. Figure 2 shows simulation-based
results for selecting̃α(2) for γ = 0.1 and three transition
probabilities to neighboring cells,q = 1, 0.8, 0.4. In the left-
hand plot, we show the raw selections as a function of the
total SNR for a 2-stage problem. Note that, as expected,
α̃ decays to near zero as SNR grows. The right-hand plot
shows the curves shifted by the loss given in (11). Note that
with this correction, the selections of̃α are nearly identical
for all 3 values ofq, suggesting that (11) may be useful as
a performance index.

Note that choosing̃α(t) according to (15) still varies as
a function of the staget. Figure 3(a) shows the selection
of α̃(t) as a function ofλtotal(t) (x-axis) andt (various
curves). As expected, as either the SNR ort increases, the
floor percentage decreases, reflecting the refinement in our
estimate of the ROI,Ψ(t). Moreover, Figure 3(b) plots the
various selections of̃α(t) as a function of observed SNR,
defined as

∑T
t=1 λtotal(t). The excellent agreement among

all of the curves suggests that we can use a functional
approximation to selecting̃α(t) without having to explicitly
calculate the functions for eacht.
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Fig. 3. In general,α(t, λtotal(t)) as computed in (15)
depends on both the stage,t and the SNR for that stage,
λtotal(t). This plot shows the selection ofα for various
values, showing that we can approximateα(t, λtotal(t))
by a simpler function of the ‘observed SNR’, defined as
∑

t λtotal(t).
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Fig. 4. This figure shows a comparison of the proposed
policy (D-ARAP, blue) with the myopic policy (green) as
a function of gains in cost over an exhaustive search in a
worst-case analysis (static,q = 0), where the target returns
θi(t) are set to various values,θ0 < µθ = 1.

IV. PERFORMANCE ANALYSIS

IV-A. Comparison to the Myopic Policy

In this section, D-ARAP is compared to the myopic policy
that setsα(t) = 0 for all t. In Figure 4, we compare the poli-
cies to an exhaustive search in the static case (q = 0) for a
long horizon,T = 500. In this analysis, we setθi(t) = θ0 for
various values ofθ0 = (0.50, 0.55, 0.60, 0.65, 0.70, 0.75).
Note that for low values ofθ0, noisy measurements may
cause missed detections that could adversely affect the
myopic policy allocations. Indeed, for low values ofθ0,
noisy measurements can cause missed targets that are never
recovered by the myopic policy forθ0 < 0.75. On the
other hand, D-ARAP is monotonically increasing for all
θ0 > 0.5, suggesting greater robustness than the myopic
policy. Moreover, even whenθ0 = 0.75, D-ARAP converges
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Fig. 5. This figure shows the performance gain in cost for
D-ARAP (left) as well as the difference in gains compared
to the myopic policy (right) as a function of SNR and stage
number in the case where 25% of the scene is obscured for
3 consecutive stages andq = 0.3.
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Fig. 6. These plots show the gains in cost over an exhaustive
search for various values ofλtotal (curves) and transition
probabilities,q = 0 (left) andq = 0.3 (right).

to the optimal gain in fewer stages than the myopic policy.
In Figure 5, D-ARAP is also compared to the myopic

policy in the unobservable case where 25% of the scene is
obscured at each stage for 3 consecutive stages (rotating cells
after 3 stages,T = 40) and targets can move with transition
probability, q = 0.3. A non-myopic approach would likely
spend additional resources on locations that are going to
be obscured in the near future. Although D-ARAP does
not explicitly allocate resources in this manner, the results
presented here show that D-ARAP significantly outperforms
the myopic policy for larger SNR values. Moreover, D-
ARAP has monotonically increasing behavior ast or SNR
→ ∞, in contrast to the myopic policy, which performs
significantly worse in the asymptotic SNR regions.

IV-B. Comparison to Optimal/Exhaustive Policies

This section now considers the case where targets are
completely observable and have few outliers (µθ = 1,
σ2
θ = 1/36, ∆2 = 1/64). We let Q = 10, 000, p = 0.001,

andT = 40, and compare performance in terms of gains in
cost and MSE over an exhaustive policy and probability of
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Fig. 7. This plot shows the MSE gains with respect to
an exhaustive search for estimatingθi as function of stage
number, t. The solid lines show the results of D-ARAP
for the static case (blue,q = 0) and dynamic case (green,
q = 0.3). The dashed lines show the MSE gains using the
optimal policy (red,q = 0, and black,q = 0.3)

0 10 20 30 40
0

0.5

1

Stage, t

P
ro

b.
 D

et
ec

tio
n 

fo
r

F
al

se
 A

la
rm

 R
at

e 
=

 1
e−

4

SNR Per Stage = −5 dB

0 10 20 30 40
0

0.5

1

Stage, t

P
ro

b.
 D

et
ec

tio
n 

fo
r

F
al

se
 A

la
rm

 R
at

e 
=

 1
e−

4

SNR Per Stage = 0 dB

0 10 20 30 40
0

0.5

1

Stage, t

P
ro

b.
 D

et
ec

tio
n 

fo
r

F
al

se
 A

la
rm

 R
at

e 
=

 1
e−

4

SNR Per Stage = 5 dB

0 10 20 30 40
0

0.5

1

Stage, t

P
ro

b.
 D

et
ec

tio
n 

fo
r

F
al

se
 A

la
rm

 R
at

e 
=

 1
e−

4

SNR Per Stage = 10 dB

 

 

DARAP with q = 0.0
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Fig. 8. These plots compare the probability of detection for
a fixed probability of false alarm (10−4) as function of the
stage number,t. The four subplots show different values
of λtotal(t) in increasing order. Within each subplot, the
two solid lines show the results of D-ARAP forq = 0 and
q = 0.3, while the dashed lines show the results from an
exhaustive search.

detection for a small fixed false alarm rate. Figure 6 shows
gains in the cost given by equation 6 for various values
of λtotal(t) (curves) for the static case (q = 0, left) and
the dynamic case (q = 0.3, right). In both cases, the cost
gains are approximately monotonically increasing int. For
the static case, the actual gains approach the optimal gain,
regardless of the per-stage-budgetλtotal. For the dynamic
case, the upper bound on performance depends onλtotal,
but reaches the optimal gain (taking into account the loss in
equation (11)) for SNR=10dB.

Figure 7 shows the MSE gains of targets tracked using a
modified Kalman filter with respect to an exhaustive search
for estimatingθi(t) as a function oft. The blue and green
curves (q = 0, 0.3, respectively) show the results using D-
ARAP, while the red and black curves (q = 0, 0.3, respec-

tively) show the results using the optimal policy. We see
D-ARAP performs favorably in comparison to the optimal
policy for both the low SNR case (left plot, SNR=0 dB per
stage) afterT = 40 stages and the higher SNR case (right
plot, SNR=10 dB per stage) afterT ≪ 40 stages.

Finally, Figure 8 shows the probability of detection for a
fixed probability of false alarm (10−4) as a function oft.
Note that the probability of detection for D-ARAP consis-
tently approaches 1 regardless of transition probabilities, as
t andλtotal(t) approach infinity. Moreover, they approach 1
significantly faster than the exhaustive search, which doesn’t
always have consistent results forq > 0 (in particular for
SNR < 10 dB). Finally, note that for the larger values of
λtotal(t), D-ARAP approachesPd = 1 within very few
stages.

V. CONCLUSIONS AND FUTURE WORK

This work extended previous work to a multiple stage
allocation policy by collapsing the previous 2-stage ARAP
into a sequence of 1-stage allocations. A heuristic approach
to approximating the solution of a complicated optimization
problem was provided that performed well in simulation at
low computational cost. These results showed asymptotic
consistency in time, significant gains over an exhaustive
policy alternative, and increased robustness over a myopic
(greedy) policy.

Future work plans to compare to existing work in the field
of partially observable Markov decision processes, to derive
analytical results such as provable consistency ast → ∞
and/or performance bounds, to consider alternate allocation
strategies forα(t) (i.e., strategies that save measurements
and/or consider regions that will obscured in the near future),
and to apply our policy to an appropriate real-world problem,
such as allocating dwell times for an air traffic control radar
system.
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