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Abstract—We consider the problem of energy constrained and
noise-limited search for targets that are sparsely distributed over
a large area. We propose a multi-scale search algorithm that
significantly reduces the search time of the adaptive resource
allocation policy (ARAP) introduced in [Bashan et all, 2008].
Similarly to ARAP, the proposed approach scans a Q-cell
partition of the search area in two stages: first the entire domain
is scanned and second a subset of the domain, suspected of
containing targets, is re-scanned. The search strategy of the
proposed algorithm is driven by maximization of a modified
version of the previously introduced ARAP objective function,
which is a surrogate for energy constrained target detection
performance. We analyze the performance of the proposed multi-
stage ARAP approach and show that it can reduce mean search
time with respect to ARAP for equivalent energy constrained
detection performance. To illustrate the potential gains of M-
ARAP, we simulate a moving target indicator (MTI) radar system
and show that M-ARAP achieves an estimation performance gain
of 7 dB and a 85% reduction in scan time as compared to an
exhaustive search. This comes within 1 dB of the previously
introduced ARAP algorithm at a fraction of its required scan
time.

I. INTRODUCTION

This work considers the problem of localizing and estimat-
ing targets in noise. We are specifically interested in cases
where targets occupy only a small fraction of the scanned
domain, which we refer to as the region of interest (ROI).
Related problems include detection of tumors in early cancer
detection and surveillance systems using agile radars. In [1],
a novel cost function was introduced, and the solution of a
related minimization problem yielded an asymptotically opti-
mal adaptive resource allocation policy, namely ARAP. In this
work we introduce a multi-scale modification of ARAP (M-
ARAP) and show that it leads to additional performance gains
in search complexity, target localization and target amplitude
estimation.

Bandiera et. al., showed significant performance gains in
detecting targets in heterogeneous noise when one knows the
locations of targets within a scene [2]. They propose an adap-
tive detection scheme that estimates the ROI in an intermediate
step to the target detection problem. Their work suggests
that taking advantage of a probabilistic characterization of the
measurements can lead to significant detection gains. In this
paper, we propose a method for estimating the ROI using a
two-stage resource allocation policy.
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The notion that one can reduce the number of measurements
when sampling sparse signals has been developed by many re-
searchers in recent years. These include compressive sensing,
[3], [4], adaptive testing [5], [6], and adaptive sampling [7],
[8]. The contribution of this paper is most closely related to
the adaptive sampling problem.

Abdel-Samad and Tewfik [8] propose an adaptive sampling
solution to the problem of how to best allocate N measure-
ments to find a single target hidden in Q cells for radar
target localization when N < Q. They propose a hierarchical
approach recursively grouping the Q cells into q < Q groups
in a tree like structure. They assume that the radar beam
pattern can be shaped accordingly and that signal to noise ratio
(SNR) decreases as the group size increases. Their multiple
hypothesis testing approach is computationally intense and
does not easily scale to large N and Q (Q = 64 is used
in their example). The high solution complexity limits the
number of measurements they can allocate at each stage of the
sequential search. On the other hand, our proposed M-ARAP
search strategy is explicitly designed to detect and localize
multiple targets and has lower solution complexity than the
multi-hypothesis testing approach of [8].

Like the M-ARAP approach proposed in this paper, the
adaptive sampling procedure proposed by Haupt, Castro and
Nowak [9], called distilled sensing, is a general sequential
multiple hypothesis testing approach that simultaneously seeks
to localize the target and to test for presence of targets in
the scene under a sensing energy constraint. Like ARAP [1],
the generalized version of the distilled sensing procedure [7]
applies adaptive coordinate-wise thresholding to each pixel,
retaining only those pixels that exceed the threshold for
consideration at the next stage. They show that there exists
a sequence of thresholds and sensing energy parameters that
asymptotically guarantee perfect recovery of the targets at
arbitrarily small false discovery rate. While they have similar-
ities, ARAP approaches introduced here and in [1] differ from
distilled sensing approaches of [7], [9] in important ways. (1)
ARAP approaches adopt a Bayesian framework and generate
a posterior probability of target presence at each pixel. (2)
ARAP approaches use an optimization procedure to select the
sensing energy parameters that are functions of the posterior
probabilities. (3) The ARAP optimization is simply performed
on a surrogate convex performance metric. M-ARAP can be
interpreted as an extension of ARAP that incorporates beam-
forming, i.e. formation of linear combinations of pixels, at the
first stage. This results in improved search performance with
respect to the previous coordinate-wise thresholding method.

To the best of our knowledge, the first multi-scale search
approach was the adaptive pooled blood sample algorithm
introduced in the early 1940’s. Dorfman considered the prob-
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lem of detecting defective members of a large population in
the context of weeding out all syphilitic men called up for
military service [10]. The test was so sensitive and accurate
that Dorfman suggests the following procedure: (1) draw blood
from each candidate, (2) use half of each sample to create a
pool containing a mixture of n individual subjects, (3) test
the pool. If a pool tested positive, the other half sample
of each pool member was individually tested to detect the
defective member. In the case of low disease prevalence rates,
Dorfman showed that one can save a great amount of time
by averaging (pooling) measurements at a first coarse scale.
Dorfman procedures use a binary model (B-model) and do
not account for false alarms or missed detections, which in
our setting is equivalent to an infinite SNR. Therefore they
do not require the additional degree of freedom of resource
allocation and are only concerned with minimizing the total
number of samples required. An optimal group size, n, can
be analytically evaluated for each disease prevalence rate
by optimizing the ratio of the expected number of tests
using the Dorfman procedure and prevalence rate. Dorfman
procedures enjoyed great success due to their simplicity and
effectiveness. Pfeifer modifies the binomial model (M-model)
and considers test values that were either zero (for negative)
or greater than zero (for the degree of contamination) [11].
This way, when a pool is tested positive, each sample of
a subgroup from the pool reveals information regarding the
other pool members; thus even greater savings are achieved.
Nonetheless, the modified model still does not account for
false alarms or missed detections. Although M-ARAP uses
a similar sampling structure to the Dorfman procedure, we
account for the presence of noise, which arises in most signal
processing applications, and this constitutes a major difference.

In ARAP [1], we assumed independent and identical dis-
tribution (i.i.d.) of targets among pixels and presented a two
stage approach for resource allocation under a fixed energy
constraint. In this paper we look at detecting and estimating
targets under additional sampling constraints. Since targets are
assumed to be sparse, a logical approach is to use a coarse
measurement scale to reduce the number of samples used at
the first stage. The modified version of ARAP (M-ARAP) is
introduced to select locations and energy levels with which
areas in the scanned domain are re-sampled on a fine grid.
The two measurements can be later combined to both detect
and estimate the region of interest (ROI) and its content.
In [1], we showed ARAP to be asymptotically optimal and
the estimation gains were inversely proportional to the signal
sparsity. In the modified version, performance continues to
depend on sparsity, as well as the extent of the multi-scaling
(which is directly related to the number of samples taken) and
the inherent contrast of the signal.

The first contribution of this work is the specification of a
multi-scale algorithm that adaptively allocates search resources
according to the posterior probability of target presence at
each pixel and an overall sensing energy constraint. The
second contribution of this work is a mathematical analysis
of the asymptotic behavior of M-ARAP under the assumption
that there is at most one target per region and that the
target amplitudes are non-random. This analysis establishes:

convergence to the true ROI, specification of bounds on the
expected number of samples and on ‘wasted’ resources due to
multi-scaling, specification of a lower bound on the asymptotic
gain in estimation in terms of the multi-scale support size,
and identification of a ’detectability index’, d that can be used
to predict performance across contrast level, scale, and SNR.
Our simulations show that the predicted gains continue to hold
under less restrictive assumptions. In particular, we show that
with sufficient ’detectability’ and a sparsely distributed set of
targets (sparsity 0.1%), we improve estimation accuracy by
more than 9 [dB] while using less than 20% of the number of
measurements used by an exhaustive sampling scheme.

The rest of this paper is organized as follows. In Section
II, we introduce our notation. In Section III, we introduce
the search problem and define the cost function. Section IV
discusses the proposed M-ARAP search method and analyzes
its properties. In Section V, we compare the performance of
our adaptive multi-scale approach to exhaustive search. In
Section VI, we apply M-ARAP to an MTI radar simulation.
We conclude and point to future work in Section VII.

II. NOTATION

The following is a list of notation used throughout the paper:

• Q - Number of cells in search space.
• L - Scale factor between stages, with L a factor of Q.
• Nt - # of measurements at stage t.
• N - # of total measurements, with N =

∑2
t=1 Nt.

• X = {1, 2, . . . , Q} - Discrete space of Q cells.
• Ψ ⊆ X - Subset of X referred to as the ROI.
• Ii - indicator function of the ROI such that

Ii =
{

1, i ∈ Ψ
0, Otherwise for i ∈ {1, 2, . . . , Q}. (1)

• Hj - Indicator function of the j-th support region.
• Ψ̂ ⊆ X - Estimated ROI, learned from measurements.
• λ(i, t) ∈ [0, λT ] - Search effort allocated to cell i at stage

t.

• λT =
2∑

t=1

Q∑
i=1

λ(i, t) - Total search effort.

• Y = {y(1), y(2)} ∈ RN - Set of measurements.
• ỹj(1) - Measurement of the j-th support region for t = 1.
• p̃Hj |y(1) - Posterior probability for target existence in j-th

support region.
• ν - A selectable parameter (see [1] for details).
• w̃j - A quantity that is a function of p̃Hj |y(1) and ν, used

in the allocation of resources to cells at stage 2.
• τ(·) - A sorting operator for w̃j’s, so that

w̃τ(1) � w̃τ(2) � · · · w̃τ(N1).

• u(·) - The discrete unit step function.
• ·̃ - Tilde notation, used to denote the energy allocation or

measurement applied to the support region (as opposed
to an individual cell.)

III. PROBLEM FORMULATION

Consider a space X containing Q cells equipped with a
probability measure P , and a region of interest (ROI), Ψ ⊆ X .
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In the sequel, Ψ will be a randomly selected small subset
of X . Exact definition of the ROI is application dependent.
In radar target localization, the ROI is the collection of all
cells containing targets and target related phenomena, e.g.,
target shadows. In a medical imaging application, such as early
detection of breast cancer, where tumor boundaries are poorly
defined, the ROI may be defined as the collection of all cells
containing targets (a tumor) plus some neighboring cells.

Let Ii be an indicator function defined in (1) and {p i =
Pr(Ii = 1)}Q

i=1 be an associated set of prior probabilities.
As in [1] we consider the case of non-informative priors, so
that the Ii’s are i.i.d. and pi = p = E{ |Ψ|

Q } for all i. Let
IΨ = [I1, . . . , IQ]T be a vector corresponding to the set of
all indicators and (·)T denote the transpose operator. We say
that the presence of a target affects cell i if i ∈ Ψ. As in
[1], targets are assumed static, so Ii is constant over time. We
define the random vector of N observations, Y : X → RN

and consider the conditional probability p(Y |IΨ).

Consider a sequential experiment where at the first stage
we observe y(1) : X → RN1 with N1 < Q, and at the
second stage we observe a selected subset of y(2) : X →
RQ, i.e., we observe yi(2) for i ∈ Ψ̂, defined in (2). This
formulation allows us to limit the total number of observations
to N = N1 + |Ψ̂|, where |Ψ̂| is the number of elements of
Ψ̂. Let λ(i, t) � 0 denote the search effort allocated to cell i
at time t, under total energy constraint λT . Let {λ(i, 2)}Q

i=1

be a mapping from past observations y(1) to the probability
simplex that we call an effort allocation policy. The set Ψ̂ is
formally defined as

Ψ̂ = {i ∈ X : λ(i, 2) > 0}. (2)

The combination of {λ(i, t)}, N1, and Ψ̂ is termed a search
policy. We focus here on deterministic mappings λ, although
a more general random mapping could also be incorporated
into our framework. We assume that a sample’s ‘quality’ is
an increasing function of the allocated effort to the associated
cell, e.g. measured in terms of information or inverse variance,
called a precision parameter in [7]. In general, effort might be
computing power, complexity, cost, or energy that is allocated
to acquiring a particular cell location. In [1] we introduced the
following cost function

J(λ) =
Q∑

i=1

νIi + (1 − ν)(1 − Ii)
λ(i, 1) + λ(i, 2)

, (3)

with ν ∈ [ 12 , 1]. Minimizing (3) subject to a total energy
constraint λT for the case of N1 = Q yielded ARAP, which
is summarized below1.

1λ∗
1 � λT /Q and can be selected, based on criteria specified in [1].

Algorithm 1: Two stage Adaptive Resource Allocation Pol-
icy (ARAP) λARAP

Step 1: Allocate λARAP (i, 1) = λ∗
1 to each cell and measure

y(1).
Step 2: Given y(1) compute probabilities, pIi|y(1)

�
= Pr(Ii =

1|y(1)), and wi
�
= νpIj |y(1) + (1 − ν)(1 − pIj |y(1)),

then rank order the wi’s.
Step 3: Use λ∗

1 and the ordered statistics wτ(i) to find an
optimal threshold k0.

Step 4: Given k0, apply λARAP (i, 2), the energy allocation, to
cell i as

λARAP (τ(i), 2) = λ(τ(i), 2) = (4)(
λT − k0λ

∗
1∑Q

j=k0+1
√

wτ(j)

√
wτ(i) − λ∗

1

)
u(τ(i) − k0),

and measure y(2).

Define |Ψ| to be the number of elements in Ψ, and Ψc �=
X \Ψ, the relative complement of Ψ. As in our previous work,
we make the sparsity assumption |Ψ| � |Ψc|. In this case, the
bounds on the cost function and the gain over an exhaustive
search described in [1] are valid. For ARAP the normalized
number of observations, N ∗ = Q+(Q−k0)

Q = 1+(1− k0
Q ), is a

random variable that was shown to converge in probability to
1 + p at high SNR and large Q, where p = E{ |Ψ|

Q }. Our goal
in this work is to add a multi-scale sampling constraint on top
of the fixed energy constraint to limit the total search time
and the number of measurements. Thus, we modify ARAP as
follows: Keep N1 < Q and let N ∗ be a random variable with
bounded mean, E{N ∗}. Note that we do not intend to solve
a new optimization problem but rather to modify an existing
optimal solution, namely ARAP, in a manner that suits the
additional constraints.

IV. SEARCH POLICY UNDER TOTAL EFFORT AND

MULTI-SCALE SAMPLING CONSTRAINTS

Let Θ = [Θ1, . . . , ΘQ]T be a random vector where Θi ∼
N (µθ, σ

2
θ) are i.i.d. random variables (r.v.) corresponding to

the target amplitudes, and (·)T denotes vector transpose. Let
IΨ be a vector of indicators marking whether or not cell i
contains a target. Consider the following measurement model:

ỹ(t) = H(t)diag

{√
λ̃(t)
}

diag{Θ} IΨ + n(t), (5)

where H(t) is an (Nt × Q) matrix describing the “beam-
forming” measurement operator, λ̃(t) is a vector describing
resource allocation at time t, [

√
x]i denotes

√
xi, diag {x} is

a square matrix with [diag {x}]ii = xi and [diag {x}]ij = 0
for i �= j, and n(t) ∼ N (0, σ2INt×Nt) where INt×Nt is an
(Nt × Nt) identity matrix. The beamforming operator H(t)
simply forms linear combinations of neighboring pixels and is
what distinguishes M-ARAP from ARAP. In our model (5),
both H(t) and λ̃(t) are design parameters that satisfy the user-
defined constraints. We propose the following simple design.
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Define L to be a factor of Q, and define the column vectors
gL,0L ∈ R

L:

gL = L times




1
L
...
1
L

 , 0L = L times


 0

...
0

 (6)

Then, we consider the beamforming matrix for the first stage
measurements (defined through the transpose)

H(1) =


gL 0L 0L · · · 0L

0L gL 0L · · · 0L

0L 0L gL · · · 0L

...
...

...
. . .

...
0L 0L 0L · · · gL


︸ ︷︷ ︸

Q
L times

T

∈ R(Q/L)×Q (7)

Hence, an element-wise version of the first stage measurement
model (5) is given by

ỹj(1) =

√
λ̃1

L

jL∑
i=(j−1)L+1

θiIi + nj(1), (8)

j = 1, 2, . . . , N1,

where ỹj(1) is the j-th element of ỹ(1). Let Xj = {(j −
1)L+1, . . . , jL−1, jL} denote the support of the j-th row of
H(t), and note that |Xj | = L for all j. With small p, large Q,
and L � Q the probability that Xj contains more than one
target is negligible. Let Hj denote the indicator function of
the event, “Ii = 1 for some i ∈ Xj .” Then we know that

ỹj(1)|(Hj = 0) ∼ N (0, σ2), (9)

ỹj(1)|(Hj = 1) ∼ N
(√

λ̃1

L
µθ, σ

2 +
λ̃1

L2
σ2

θ

)

As in [1], the knowledge of these two distributions will be
used to focus measurements at the second stage based on the
received measurements at the first stage, using posterior prob-
abilities derived from the first stage measurements. Second
stage measurements are defined with H(2) = IQ×Q, which
gives the element-wise version

yj(2) =
√

λ(j, 2)θjIj + nj(2), j = 1, 2, . . . , Q. (10)

A. Multi-scale version of ARAP

We define the following resource allocation policy based on
ARAP:

Algorithm 2: Two stage Multi-scale Adaptive Resource Al-
location Policy (M-ARAP) λM

Step 1: Allocate λ̃M−ARAP (j, 1) = λ̃∗
1 to each support Xj and

measure ỹ(1) in (5).

Step 2: Compute probabilities p̃Hj |ỹ(1)
�
= Pr(Hj = 1|y(1))

and w̃j
�
= νp̃Hj |y(1) + (1 − ν)(1 − p̃Hj |y(1)) over each

support region.
Step 3: Rank order the w̃j’s using (13), then use λ̃∗

1 and the
ordered statistic w̃τ(j) to find a threshold k̃0 via (14)
and (15).

Step 4: Given k̃0, define the energy allocation to support region
j as

λ̃(τ(j), 2) = (11) λT − k̃0λ̃
∗
1∑Q

l=k̃0+1

√
w̃τ(l)

√
w̃τ(j) − λ̃∗

1

u(τ(j) − k̃0),

Step 5: Define the energy allocation to cell i in support region
j as

λM (i, 2) =
λ̃(j, 2)

L
(12)

for j = 1, 2, . . . , N1, and measure y(2) using H(2) =
IQ×Q and [λ(2)]i = λM (i, 2).

To complete the definition of M-ARAP, define the permuta-
tion operator τ corresponding to the rank ordering of the w̃ j ’s
as

τ(j) = arg min
i=1,...,N1

{w̃i : w̃i � w̃τ(j−1)}, j ∈ {1, 2, . . . , N1},
(13)

with w̃τ(0)
�
= 0. Whenever the r.h.s. of (13) is not unique, we

select an arbitrary i satisfying w̃τ(1) � w̃τ(2) � · · · � w̃τ(N1).
Then, assuming w̃τ(1) > 0, define k̃0, the threshold parameter,
as k̃0 = 0 if

λT

λ̃∗
1

>

∑N1
j=1

√
w̃τ(j)√

w̃τ(1)

, (14)

otherwise k̃0 ∈ {1, . . . , N1 − 1} is the integer satisfying∑N1

j=k̃0+1

√
w̃τ(j)√

w̃τ(k̃0+1)

<
λT

λ̃∗
1

− k̃0 �
∑N1

j=k̃0+1

√
w̃τ(j)√

w̃τ(k̃0)

(15)

A proof of the existence and uniqueness of k̃0 in (15), as well
as a discussion of its properties, is given in [1]. Note that the
definition of k̃0 is identical to ARAP for a search space of size
N1 = Q/L. For N1 = Q, M-ARAP is completely equivalent
to ARAP, provided that λ̃∗

1 is correctly defined. To define λ̃∗
1,

let

λ̃∗
1 = arg min

λ̃1∈
(
0,

λT
N1

) E

{
Q∑

i=1

νIi + (1 − ν)(1 − Ii)
λ̃1
L + λ(i, 2)

}
, (16)

where λ(i, 2) is defined in (12) substituting λ̃1 for λ̃∗
1. Note

that λ(i, 2) depends on p̃Hj |ỹ(1), which, in turns depends
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on the distribution of target amplitudes, Θ. To analyze the
performance of M-ARAP, we first establish properties of
p̃Hj |ỹ(1).

B. Detectability index and asymptotic properties of p̃Hj |ỹ(1)

when ν = 1

Let |Xj | = L denote an observed support size for the first
stage in M-ARAP. Let the true mean sparsity of the observed
signal be p = E{|Ψ|}

Q . Define the detectability index as

d =
|E{ỹj(1)|Hj = 1} − E{ỹj(1)|Hj = 0}|√

var(ỹj(1)|Hj = 0)
. (17)

Substituting (9) into (17) yields

d =
µθ

L

√
λ̃1

σ2
, (18)

which is proportional to µθ and to the square root of effective
SNR λ̃1

Lσ2 . Therefore, for a specified false alarm rate, we expect
the power of the likelihood ratio test (LRT) performed on y(1)
to increase as either the inherent contrast µθ or effective SNR
increase. In this section, we analyze asymptotic properties of
M-ARAP, where by asymptotic we mean high SNR and large
Q. We further assume that Xj contains at most one target,
and that the target amplitude variance, σ2

θ = 0. Under these
assumptions, we can establish Claim 1, Claim 2, and Claim 3
given below.

Claim 1: p̃Hj |ỹ(1) → Hj in probability as SNR → ∞.
Derivation of Claim 1: Under the assumptions that Xj

contains at most one target and σ2
θ = 0, the first stage

measurement reduces to

ỹj(1) =

√
λ̃1Hjµθ

L
+ nj(1) =

√
γ1Hjµθ + nj(1) (19)

where γ1 = λ̃1/L2. In [1] we proved that p̃Hj | ˜Y (1) → Hj in
probability as γ1 → ∞. Thus, Claim 1 follows directly from
this result, noting that SNR → ∞ implies γ1 → ∞.

In [1] we used the asymptotic consistency property of
p̃Hj | ˜Y (1) to show that the threshold parameter k̃0 converges
to the true number of empty search cells (1 − p)Q of the
scanned domain (recall that |Ψ̂| = Q − k̃0). For λM we can
provide an asymptotic bound on k̃0 that holds in probability.
The logic behind the bound is that if p can be used to bound
K , the number of support regions Xj that contain targets, then
k̃0 � Q − KL. Therefore, we have the following:

Claim 2: The normalized number of samples N ∗ used by
M-ARAP, defined as

N∗ =
N1 + |Ψ̂|

Q
, (20)

is bounded between 1
L and 1

L + p∗L, where p∗ is the true
sparsity of the underlying domain, in the sense that

lim
SNR→∞

Pr
(

1
L

� N∗ � 1
L

+ p∗L
)

= 1, (21)

for sufficiently large Q.

Derivation of Claim 2: To prove (21) note first that

N∗ =
N1 + |Ψ̂|

Q
=

1
L

+
|Ψ̂|
Q

� 1
L

. (22)

It suffices to show

lim
SNR→∞

Pr

(
|Ψ̂|
Q

� pL

)
= 1. (23)

In [1], it was shown that if pIi|y(1) → Ii in probability as
SNR → ∞, then

k̃0 → Z ∼ Bin (S, 1 − r) (24)

in probability as SNR → ∞ for a search space of size S
and sparsity r. Recalling that k̃0 is calculated using ARAP
for S = Q/L and r = pL, it follows that k̃0 → Z ∼
Bin (Q/L, 1− pL) as SNR → ∞. Using the definition of Ψ̂
from (2), we have

|Ψ̂| = |{i ∈ X : λ(i, 2) > 0}| (25)

=

∣∣∣∣∣∣
Q/L⋃
j=1

{i ∈ Xj : Hj = 1}
∣∣∣∣∣∣ (as SNR → ∞)

=
Q/L∑
j=1

|{i ∈ Xj : Hj = 1}| (for disjoint Xj)

=
Q/L∑
j=1

LHj = L

Q/L∑
j=1

Hj = L
(
Q/L − k̃0

)
Since, k̃0 ∼ Bin (Q/L, 1 − pL) as SNR → ∞, we have

E
[
|Ψ̂|
Q

]
→ pL and var

(
|Ψ̂|
Q

)
→ pL(1−pL)

Q as SNR → ∞.

Moreover, var
(

|Ψ̂|
Q

)
→ 0 as Q → ∞. Thus, |Ψ̂|

Q → pL in the
mean square sense. This establishes Claim 2.

Claim 3: The expected proportion of the scanned area that
is empty of targets at the second stage is bounded with
probability, in the sense that

Pr

(
|Ψ � Ψ̂|

Q
� p(L − 1)

)
= 1. (26)

Derivation of Claim 3: This result is established similarly to
Claim 2. In particular, note that when SNR → ∞

|Ψ � Ψ̂| =

∣∣∣∣∣∣
Q/L⋃
j=1

{i ∈ Xj , i /∈ Ψ : Hj = 1}
∣∣∣∣∣∣ (27)

=
Q/L∑
j=1

|{i ∈ Xj : Hj = 1} � {i ∈ Xj , i ∈ Ψ : Hj = 1}|

=
Q/L∑
j=1

|{i ∈ Xj : Hj = 1}| − |{i ∈ Xj , i ∈ Ψ : Hj = 1}|

=
Q/L∑
j=1

(L − 1)Hj = (L − 1)
(
Q/L − k̃0

)
This leads to E

[
|Ψ�Ψ̂|

Q

]
= p(L − 1) and var

(
|Ψ�Ψ̂|

Q

)
=

(L−1)2

LQ p(1 − pL) → 0 as SNR, Q → ∞. Thus, |Ψ�Ψ̂|
Q →
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p(L−1) in the mean square sense (which implies convergence
in probability as required). This establishes Claim 3.

Claim 3 provides a bound that can be used to evaluate the
tradeoff between reducing the number of measurements and
increasing the expected estimation gains. Specifically, use the
cost function (3) and assume that asymptotically we learn Ψ̂
at almost no cost. Then an optimal allocation policy is given
by

λNo(i, 2) =

{
λT

|Ψ̂| , i ∈ Ψ̂
0, otherwise

. (28)

Hence, λNo(i) = λT

|Ψ̂|Ii∈Ψ̂ and with ν = 1 the expected cost
is

J(λNo) =
∑
i∈Ψ

1

λT /|Ψ̂| =
|Ψ̂||Ψ|

λT
. (29)

At the same time, the cost associated with an exhaustive search
policy λU (i) = λT

Q is given by J(λU ) = Q|Ψ|
λT

. Define the gain
function

G(λ) = 10 log
J(λU )
J(λ)

, (30)

then

G(λNo) = 10 log
Q

|Ψ̂| = 10 log
Q

|Ψ| + |Ψ � Ψ̂| . (31)

Using Claim 3 we obtain

G(λNo) � 10 log
Q

pQ(1 + L − 1)
= 10 log

1
p
− 10 logL,

(32)
where 10 logL is the gain penalty that we pay due to multi-
scale search.

C. Discussion of performance for clustered targets

The assumption that only a single target may appear in
a support region may not hold when apparent targets clump
together. This scenario arises in radar target detection where
large scattering objects may occupy consecutive pixels on the
radar screen and appear as a cluster of targets. Nevertheless,
the overall area occupied by targets is small compared to the
area a scanning radar system covers. As another example, in
early detection of cancer tumors such as in breast cancer,
the diameter of a typical tumor is a few millimeters to 1.5
centimeters. Hence, on a fine grid a tumor may appear as
a cluster of targets, yet, its overall volume is very small
compared to the volume of the entire breast.

In these cases we speculate that the performance of M-
ARAP with clustered targets is lower bounded by the per-
formance in the case of single-pixel targets. Indeed, if we
let Ξj be the total number of targets in support j, with
E|Ξj | = E|Ξ| � 1, and Claim 1 still holds, then it can be
shown that

G(λNo) � 10 log
1
p
− 10 log(1 + L − E|Ξ|), (33)

where 10 log(1+L−E|Ξ|) � 10 logL is the gain penalty that
we pay due to multi-scaling. In other words, having clustered
targets within a support region tends to reduce the gain penalty
due to multi-scale processing.

Despite the limitations of the single deterministic target-per-
region assumption in Section IV-B to obtain asymptotic limits,
we believe that M-ARAP’s predicted performance gains will
hold under broader conditions. This belief is supported by our
numerical results shown in the next section. Note that the gains
established in Section IV-B require only that the posterior
probabilities, p̃Hj | ˜Y (1) converge to the indicator function Hj ,
which may not require the assumption of a single target per
multi-resolution cell.

V. PERFORMANCE COMPARISONS

A. Estimation

Assume that cell l belongs to the ROI, i.e., Il = 1. Here
we introduce an estimate of target amplitude θ l using the
measurement pair (ỹ(1), y(2)). Assuming these amplitudes
are independent and obey a Gaussian prior distribution, θ l ∼
N (µθ, σ

2
θ), we can derive the conditional mean estimator

(CME) θ̂l = E[θl|ỹ(1), y(2)], which is the minimum mean
squared error (MSE) estimator. As a baseline, we will compare
this estimator to the CME E{θl|y(0)} under an exhaustive
search policy, where

yi(0) =
√

λ0θiIi + ni(0), ni(0) ∼ N (0, σ2) (34)

and λ0 = λT

Q . The MSE of the CME for an exhaustive search
policy is given by

var{θl|yl(0)} = σ2
θ − λ0σ

4
θ

σ2 + λ0σ2
θ

=
σ2

θ

1 + λ0
σ2

θ

σ2

. (35)

Recall from equation (9) that ỹj(1)|Hj = r is Gaussian for
r = 0, 1. Thus, we know for Il = 1 and l ∈ Xj that

ỹj(1)|Il = 1 ∼ N
(√

λ̃1

L
µθ, σ

2 +
λ̃1

L2
σ2

θ

)
. (36)

The conditional distribution of y l(2) given ỹ(1) is also Gaus-
sian and defined as

yl(2)|Il = 1, ỹ(1) ∼ N
(√

λM (i, 2)µθ, σ
2 + λM (i, 2)σ2

θ

)
.

(37)
The Naive Bayes approximation [12] to E{θ l|y(1), yl(2)} is
derived under the assumption that (y(1), y l(2)) defined in (36)
and (37), respectively, are independent. This is suboptimal but
serves as a good comparison benchmark. Let l ∈ X j , vl =
[ỹj(1) yl(2)]T , then the Naive Bayes estimator is given by

θ̂l
�
= E{θl|vl, Il = 1} (38)

= µθ + cov(θl, vl)T cov−1(vl)(vl − E{vl}).
where

cov(θl, vl) = σ2
θ


√

λ̃1λM (l, 2)

L

T

, (39)

cov(vl) =

 σ2 + λ̃1
L2 σ2

θ σ2
θ

√
λ̃1λM (l,2)

L

σ2
θ

√
λ̃1λM (l,2)

L σ2 + λM (l, 2)σ2
θ

 , (40)
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E{vl} = µθ


√

λ̃1λM (l, 2)

L

T

. (41)

Simulation results are shown in Figs. 1-2. In both figures
we plot the MSE performance gain g(λ), defined as

g(λ) = 10 log
var(θl|yl(0))

MSE(θ̂l)
(42)

as a function of SNR (Fig. 1) and the detectability index given
in (18) (Fig. 2). Monte-Carlo simulations were used to estimate
the MSE of (38). We chose Q = 12, 000, p = 1

1000 , and
each point on the figure represents the median MSE based
on 500 realizations. We let signal to noise ratio, defined as
10 log λT /Q

σ2 , vary from 0 to 40 [dB], used contrast level µθ ∈
{2, 4, 8}, and set σ2

θ = 1
16 . Different lengths L were simulated

for the first stage, but we present here the cases of L = 8 and
L = 32 since it is enough to understand the general trends.
Curves with different markers and colors represent different
contrast levels µθ .

Note that, in contrast to ARAP, we do not claim optimality
of the naive Bayes amplitude estimator that we proposed for
M-ARAP. Indeed the optimal gain of 30 [dB] is not attained.
Moreover, asymptotic gains decrease as L increases. This is
natural since the posterior probabilities p̃Hj |ỹ(1) are identical
within each support. Hence, if the resource allocation scheme
λM suspects that a target exists in Xj , all cells within this
support receive the same effort allocation for the second stage.
As L increases, this translates to wasted resources according
to Claim 3. Fig. 1 shows asymptotic gain of 21 [dB] for L = 8
and 15 [dB] for L = 32, both agreeing with (32).

In Fig. 2 we plot estimation gains vs. the detectability index
since it incorporates both the contrast level and the scale in
a single parameter. We see that the detectability index is a
reasonable predictor of the performance of M-ARAP across
contrast levels and scales. In the transition region between
no gain (i.e., index values less than 2.5) and asymptotic gain
(index values greater than 10), we see some discrepancies
among the curves. These discrepancies are greatest when L
is smallest or µθ is largest. This corresponds to situations
where the assumption of independent measurements in the
naive Bayes estimator breaks down. It is hypothesized that
with a better estimator that accounts for dependence between
Y (1) and Y (2), the aforementioned discrepancies would be
less apparent.

B. Normalized number of samples, N ∗

The normalized number of samples N ∗ is lower bounded
by 1

L , and hence there is a tradeoff between estimation gain
and reduction in number of measurements. We show here that
if the detectability index is sufficiently high (d > 5 in our
case) we can both save measurements (according to Claim 2)
and enjoy significant estimation gain within the ROI. Fig. 3
shows the expected saving in measurements or N ∗ for the
scenario depicted in Fig. 2. Black curves represent L = 8,
blue curves represent L = 16, and purple curves represent
L = 32. Combining the information on both figures shows
measurement saving relative to estimation gain. For example,

for d = 5, M-ARAP with L = 8 yields about 10 [dB]
performance gain in estimation while using only 18% of the
number of samples used by an exhaustive search. Similar
performance gain is achieved by M-ARAP for L = 32 with
d = 5 and about 8% of the samples. Note that in all three
cases, N∗ converges to the upper bound in Claim 2 (0.133,
0.0785, and 0.06325 for L = 8, 16, 32 respectively).
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Fig. 1. We plot estimation gains as a function of SNR for different contrast
levels. The upper plot show gains for L = 8 while the lower plot show gains
for L = 32. In the upper plot, significant gains of 10 [dB] are achieved for
all contrasts at SNR values less than 17 [dB]. In the lower plot, 10 [dB] gains
occur at high contrasts at SNR less than 20 [dB]. Note that the asymptotic
lower bound on the gain (32) yields 21.0 [dB] and 15.0 [dB] for L = 8 and
L = 32 respectively, which agree well with the gains in these plots.
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Fig. 2. Estimation gains (in MSE) are plotted against detectability index
for L = 8 and L = 32. Note that the detectability index can be used as a
reasonable predictor of MSE gain, regardless of the actual contrast, SNR, or
scale.
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L = 8; µθ = 2

L = 8; µθ = 4
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L = 16; µθ = 2
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L = 16; µθ = 8

L = 32; µθ = 2
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Fig. 3. We plot the normalized number of samples N∗ as a function of
detectability index for L = 8, 16, 32, and different contrast levels µθ ∈
{2, 4, 8}. These N∗ values are associated with estimation gains seen in Fig.
2. For example for a relatively low detectability index of d = 5 and L = 8,
estimation performance gain of 10 [dB] is achieved with less than 18% of the
sampling used by exhaustive search. Similar gains are achieved for d = 5,
L = 32, and less than 8% of the samples.

Our previous experience with ARAP and M-ARAP [13]
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in the context of detection tasks suggest that optimizing the
energy allocation between the two stages is difficult and very
much application dependent. This will negatively affect perfor-
mance if noise variance σ2 is unknown and must be estimated
from the data. Since M-ARAP is a coarser version of ARAP,
we present detection performance only in the context of the
moving target indicator example given in Section VI-A, where
we compute false discovery rate test for target detections using
M-ARAP as compared to exhaustive search (see Fig. 8).

C. Computational complexity comparison

The computation of the search policy in M-ARAP requires
computing N1 = Q(1/L) posterior probabilities (O(N1)),
sorting the probabilities (O(log N1) operation), and compu-
tation of the second stage allocations (O(|Ψ̂|)). Thus, the
complexity of M-ARAP is

CM−ARAP = O(N1) + O(log N1) + O(|Ψ̂|) = O(N) (43)

where N is the number of total measurements used by M-
ARAP. Assuming that the asymptotic properties of the pre-
vious section hold, N → Q(1/L + pL) so that the com-
plexity of M-ARAP is O (Q(1/L + pL)). Note that ARAP
is just a special case of M-ARAP for L=1. Moreover, the
computational complexity of the Abdel-Samad and Tewfik
algorithm (henceforth referred to as AS-T) is given by the
authors as O(tN 2), where t = log2(Q) is the number of
stages in their hierarchical binary search [14]. Thus, the ratio
of computational complexity between M-ARAP and AS-T
is O(N log2 Q). Table I shows the dB gain in number of
measurements between the AS-T algorithm and M-ARAP for
p = 0.01 and various values of Q, and L. This comparison
highlights the computational burden of AS-T, which requires
significantly more computations than M-ARAP in all cases
studied.

Distilled sensing only requires calculation of an allocation
once for each stage in its implementation. The authors state
that the number of stages should be chosen to be K =
1 +
⌈

log2 log2 Q
log2(2−∆)

⌉
[7], where we choose ∆ = 0.9 for our

comparison. Then the ratio of computational complexity to M-
ARAP can be calculated as O(K/N). However, it should be
noted that although DS has lower computational complexity,
the number of measurements is generally larger than M-ARAP.
Under the assumption that exactly one half of the cells with
Ii = 0 are removed at each stage of DS, the expected number
of measurements can be derived as

E[NDS ] = pQK + 2(1 − p)Q(1 − 2−K) (44)

We set Q = 12000, p = 0.001 and compare DS to M-
ARAP for L = 1, 8, 32 over a range of SNR. Figure 4(a)
plots the loss in computational complexity between M-ARAP
and DS. In the studied case, DS requires 26 dB, 17 dB, and
14 dB fewer computations asymptotically than M-ARAP for
L = 1, 8, 32, respectively. Figure 4(b) plots the gain in the
cost function over exhaustive search as a function of SNR
for all four algorithms. It is seen that DS outperforms M-
ARAP for low SNR values, but its asymptotic performance
is significantly lower (which is to be expected, considering

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN M-ARAP AND

AS-T FOR m=2 IN DB

Q ARAP M-ARAP M-ARAP
(M-ARAP, L=1) L=8 L=32

128 30.0 23.1 20.8
1024 40.5 33.6 31.3
8192 50.7 43.8 41.5

that ARAP optimizes this cost function). Figure 4(c) plots the
gain as a function of the detectability index, and shows that for
d > 5, M-ARAP outperforms DS at all given scales. Finally,
Figure 4(d) plots the percentage of measurements used by M-
ARAP compared to DS as a function of detectability index.
In (a) and (d), yellow markers indicate the points on the curve
where the performance of DS is approximately equal to that
of M-ARAP. It is seen that M-ARAP saves considerably on
measurements at all observed scales.

VI. APPLICATION: MOVING TARGET

INDICATION/DETECTOR

Moving target indication (MTI) radars provide the capability
to detect targets reflections having differential radial motion
with respect to an interfering background (called clutter) that
might typically consist of reflections from terrain, sea, weather,
or chaff. A typical application of such radar is surveillance,
e.g., to detect low-flying aircraft moving over terrain through
possible weather disturbances. The function of the MTI radar
is to reject returns from terrain and weather so to maintain
adequate target detection [15]. In many cases MTI radar
suppresses clutter by more than 20 [dB].

In the following section we use a simplified MTI simulation
to illustrates potential benefits yielded by M-ARAP. A full
and realistic emulation of MTI is outside the scope of this
paper. We simulate a field of view (FOV) about 66 [km2]
with pixel dimensions of 20 × 20 [m2] and radar resolution
cell of 100× 100× 150 [m3]. A sparsity level of p = 0.0007
was selected and Q = 4082. We chose identical targets with
target reflection coefficient (per pixel) representing an aircraft
similar to an Airbus A-320. An operating point of 0.1 was
selected for the Radar Cross Section (RCS) and this parameter
was varied in simulation from 0.01 to 1. Target velocities were
normally distributed with vt ∼ N (200, 49) centered at 200
[m/s]. Rain intensity was random between 0-6 [mm/hr] and
spatial correlation on the order of 1 [km2]. Maximal clutter
velocity was 30 [m/s] and targets were randomly placed within
the clutter regions. A simple second order FIR line canceler
was implemented (frequency response of sin2 ωT

2 ) with the
pass band centered at 200 [m/s]. The Swerling II noise model
(Exponential) was used as a measurement noise model and
the total energy budget was λT = NQ pulses, i.e., N pulses
transmitted at each grid stop.

Note that this model violates the assumption of single-
pixel targets that we have used for the performance prediction
analysis. However, as hypothesized earlier, we believe that
the performance with clustered targets will not be negatively
impacted as compared to the single-target scenario. Indeed,
for the case where target returns add constructively to the
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Fig. 4. In (a), we plot the loss in computational complexity of M-ARAP (L = 8, 32) and ARAP (L = 1) vs distilled sensing (DS). We see that DS requires
significantly fewer computations than M-ARAP and ARAP. In (b), we plot the gain in cost function over an exhaustive search given by (30) for M-ARAP
(L = 8, 32), ARAP (L=1), and DS. For lower values of SNR, DS outperforms all versions of M-ARAP. However, the asymptotic performance of DS is lower
than M-ARAP. In (c), the same gains are plotted as a function of the detectability index. In (d), the percentage of total measurements between M-ARAP
and DS is plotted. In (a) and (d), yellow markers indicate the points on the curve where the performance of DS equals M-ARAP. It is seen that in all cases,
M-ARAP uses significantly fewer measurements to get similar performance to DS.

measurement, clustered targets will actually increase the de-
tectability index.

Based on M-ARAP we suggest the following measurement
scheme: (1) define a coarse grid pattern; (2) use N1 < N
pulses to measure each point on the coarse grid; (3) use M-
ARAP to decide where and how to rescan the domain in
a restricted fine grid; and (4) rescan the searched domain
according to the pulse allocation of M-ARAP. An example
of a single realization is given in Fig. 5.

A. MTI performance analysis

The first question addressed in implementing M-ARAP is
how to choose N1. One approach is to use the data shown
in Fig. 5 in [1], where the optimal energy allocation at the
first step is calculated for ARAP. In the simulations below
we sweep over the range {4, 8, 16} of N values. Performance
was evaluated in terms of estimation MSE gain and area under
the curve (AUC) of the false discovery rate (FDR) Q-ROC
curve. The results are shown in Figure 6. Note that the fewer
pulses used (e.g., N = 4) the more crucial it is to select N1

appropriately.
We evaluate potential gains in both estimation MSE as well

as performance of a false discovery rate type of target detection
and localization. We used the estimator suggested in Section
V-A and compared it to the CME implemented with exhaustive
search, as given in (35). Results are seen in Fig. 7. Note that
M-ARAP has nearly the same performance as measured by
estimation gain as compared to ARAP (blue and green dotted
lines), yet the number of measurements is significantly reduced
(red solid line). For example, with an RCS of 1, the estimation
gain differs by less than 1 dB, but M-ARAP uses only about
14% of the measurements.

We also compare false discovery rate and compare Q-ROC
curves. Fig. 8 displays the two curves for both exhaustive
and M-ARAP search. RCS value of 0.1 was selected and
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Fig. 5. Moving target indication example. We set targets RCS to 0.1 and
chose N = 8 and N1 = 5. (a) A single realization of targets in clutter.
Figures (b) and (d) zoom in on to the yellow rectangular to allow easier
visualization of the improved estimation due to M-ARAP. (b) Portion of the
estimated image when data was acquired using exhaustive search and MTI
filtration. Figures (c) and (d) are due to M-ARAP search scheme where multi-
scale was set to a coarse grid search of 3 × 3 pixels at the first stage. (c)
Estimated ROI Ψ̂ that is searched on a fine resolution level on stage two. (d)
Portion of the estimated image when data was acquired using M-ARAP.

it is clearly seen that M-ARAP provides better detection
performance for equivalent false discovery rates.

Finally, we note that although the assumption of single-pixel
targets may not be validated in this application, the perfor-
mance in terms of estimation gain and probability detection is
still significantly better than an exhaustive search with many
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Fig. 6. Simulated gain in estimation and detection performances as a function
of N1 the number of pulses used in the uniform search stage. The operating
point of RCS=0.1 was selected. The upper plot displays gains in estimation
MSE. Note that with N = 16 and N1 equals 7 or 8 yields almost 8 [dB]
gains in MSE. The lower plot shows difference in the area under the curve
of an FDR test as a function of N1. For N = 8, 16, the exhaustive search
yield an almost optimal curve and there is less room for improvement

fewer measurements than with ARAP.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a modification, called M-ARAP, of our
previously proposed two-stage adaptive resource allocation
policy (ARAP) by incorporating multi-scale search. We have
established that M-ARAP reduces the number of required mea-
surements for equal gain in target search performance. Specific
examples showed 9-15 [dB] gain in estimation performance,
for detectability index d = 5, using less than 18% of the
samples needed to perform an exhaustive search.

The M-ARAP method introduced here has not been opti-
mized for detection, and this is a useful area for future work.
Potential applications of M-ARAP include air-traffic control,
airport security screening, and early detection of breast cancer
tumors.

The research in this paper was partially supported by Air
Force Office of Scientific Research award FA9550-06-1-0324
and by Air Force Research Laboratory award FA8650-07-D-
1221-TO1.
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compared to an exhaustive search, respectively. The dash-dotted curve with
diamond markers represent N∗ the number of measurements used by M-
ARAP divided by Q with the corresponding Y-axis values on the right hand
side of the figure. For both M-ARAP and ARAP a total of four pulses per
cell (N = 4) was selected as the energy budget of which three were used at
the first stage (N1 = 3) for all RCS values. Recall that for ARAP we have
N∗ > 1. Our results clearly illustrate that significant estimation gains can
be obtained using M-ARAP with a fraction of the number of measurement
required by ARAP.
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Fig. 8. The two curves on the above figure represent an FDR detection test.
One hundred runs in a Monte-Carlo simulation were used to generate each
point on the curves. Radar cross section coefficient of 0.1 was selected, N = 4
(four pulses) was the overall energy budget, and N1 = 3 was used in the
first scan for M-ARAP. It is clearly evident that M-ARAP yield significantly
better detection performance for equivalent false discovery rate levels.
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Nationale Supérieure des Télécommunications, Paris (1999), Lucent Bell
Laboratories (1999), Scientific Research Labs of the Ford Motor Company,
Dearborn, Michigan (1993), Ecole Nationale Superieure des Techniques
Avancees (ENSTA), Ecole Superieure d’Electricite, Paris (1990), and M.I.T.
Lincoln Laboratory (1987 - 1989).

Alfred Hero is a Fellow of the Institute of Electrical and Electronics Engi-
neers (IEEE). He has been plenary and keynote speaker at major workshops
and conferences. He has received several best paper awards including: a
IEEE Signal Processing Society Best Paper Award (1998), the Best Original
Paper Award from the Journal of Flow Cytometry (2008), and the Best
Magazine Paper Award from the IEEE Signal Processing Society (2010). He
received a IEEE Signal Processing Society Meritorious Service Award (1998),
a IEEE Third Millenium Medal (2000) and a IEEE Signal Processing Society
Distinguished Lecturership (2002). He was President of the IEEE Signal
Processing Society (2006-2007). He sits on the Board of Directors of IEEE
(2009-2011) where he is Director Division IX (Signals and Applications).

Alfred Hero’s recent research interests have been in detection, classification,
pattern analysis, and adaptive sampling for spatio-temporal data. Of particular
interest are applications to network security, multi-modal sensing and tracking,
biomedical imaging, and genomic signal processing.




