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Motif Discovery in Tissue-Specific Regulatory
Sequences Using Directed Information

Arvind Rao, Alfred O. Hero III, David J. States, James Douglas Engel

Abstract—Motif discovery for the identification of functional
regulatory elements underlying gene expression is a challeng-
ing problem. Sequence inspection often leads to discovery of
novel motifs (including transcription factor sites) with previously
uncharacterized function in gene expression. Coupled withthe
complexity underlying tissue-specific gene expression, there are
several motifs that are putatively responsible for expression in a
certain cell type. This has important implications in understand-
ing fundamental biological processes such as development and
disease progression.

In this work we present an approach to the identification of
motifs (not necessarily transcription factor sites) and examine
its application to some questions in current bioinformatics
research. These motifs are seen to discriminate tissue-specific
gene-promoter or regulatory regions from those that are not
tissue-specific. There are two main contributions of this work:
Firstly, we propose the use of directed information for such
classification constrained motif discovery, and then, use the
selected features with a support vector machine (SVM) classifier
to find the tissue-specificity of any sequence of interest. Such
analysis yields several novel interesting motifs that merit further
experimental characterization. Furthermore, this approach leads
to a principled framework for the prospective examination of
any chosen motif to be discriminatory motif for a group of co-
expressed/co-regulated genes, thereby integrating sequence and
expression perspectives. We hypothesize that the discovery of
these motifs would enable the large-scale investigation for the
tissue-specific regulatory role of any conserved sequence element
identified from genome-wide studies.

Index Terms—Directed Information, transcriptional regula-
tion, phylogeny, Transcription factor binding sites (TFBS), tissue-
specific genes.

I. I NTRODUCTION

Understanding the mechanisms underlying regulation of
tissue-specific gene expression remains a challenging question.
While all mature cells in the body have a complete copy
of the human genome, each cell type only expresses those
genes it needs to carry out its assigned task. This includes
genes required for basic cellular maintenance (often called
“housekeeping genes”) and those genes whose function is
specific to the particular tissue type that the cell belongs to.
Gene expression by way of transcription is the process of gen-
eration of messenger RNA (mRNA) from the DNA template
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Fig. 1. Schematic of Transcriptional Regulation. Sequencemotifs at the
promoter and the distal regulatory elements together confer specificity of gene
expression via TF binding.

representing the gene. It is the intermediate step before the
generation of functional protein from messenger RNA. During
gene expression (Fig. 1), transcription factor (TF) proteins
are recruited at the proximal promoter of the gene as well
as at sequence elements (enhancers/silencers) which can lie
several hundreds of kilobases from the gene’s transcriptional
start site (TSS). The basal transcriptional machinery at the
promoter coupled with the transcription factor complexes
at these distal, long-range regulatory elements (LREs) are
collectively involved in directing tissue-specific expression of
genes.

One of the current challenges in the post-genomic
era is the principled discovery of such LREs genome-
wide. Recently, there has been a community-wide effort
(http://www.genome.gov/ENCODE/) to find all regulatory el-
ements in1% of the human genome. The examination of
the discovered elements would reveal characteristics typical of
most enhancers which would aid their principled discovery and
examination on a genome-wide scale. Some characteristics of
experimentally identified distal regulatory elements ([21],[19])
are:

• Non-coding elements: Distal regulatory elements are non-
coding and can either be intronic or intergenic regions on
the genome. Hence previous models for gene finding [4]
are not directly applicable. With over 98% of the anno-
tated genome being non-coding, the precise localization
of regulatory elements that underlie tissue-specific gene
expression is a challenging problem.

• Distance/orientation independent: an enhancer can act
from variable genomic distances (hundreds of kilobases)
to regulate gene expression in conjunction with the prox-
imal promoter, possibly via a looping mechanism [34].
These enhancers can lie upstream or downstream of the
actual gene along the genomic locus.
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• Promoter dependent: Since the action at a distance of
these elements involves the recruitment of TFs that direct
tissue-specific gene expression, the promoter that they
interact with is critical.

Although there are instances where a gene harbors tissue-
specific activity at the promoter itself, the role of long range
elements (LREs) remains of interest, e.g: for a detailed un-
derstanding of their regulatory role in gene expression during
biological processes like organ development and disease pro-
gression [18]. We seek to develop computational strategiesto
find novel LREs genome-wide that govern tissue specific ex-
pression for any gene of interest. A common approach for their
discovery is the use of motif-based sequence signatures. Any
sequence element can then be scanned for such a signature
and its tissue-specificity can be ascertained [30].

Thus, our primary question in this regard is: is there a
discriminating sequence property of LRE elements that deter-
mine tissue-specific gene expression - more particularly, are
there any sequence motifs in known regulatory elements that
can aid discovery of new elements [17]. To answer this, we
examine known tissue-specific regulatory elements (promoters
and enhancers) for motifs that discriminate them from a
background set of neutral elements (such as housekeeping
gene promoters). For this study, the datasets are derived from
the following sources:

• Promoters of tissue-specific genes: Before the wide-
spread discovery of long-range regulatory elements
(LREs), it was hypothesized that promoters governed
gene expression alone. There is substantial evidence for
the binding of tissue-specific transcription factors at the
promoters of expressed genes. This suggests that, in
spite of newer information implicating the role of LREs,
promoters also have interesting motifs that govern tissue-
specific expression.
Another practical reason for the examination of promoters
is that their locations (and genomic sequences) are more
clearly delineated on genome databases (like UCSC or
Ensembl). Sufficient data (http://symatlas.gnf.org/) on the
expression of genes is also publicly available for analysis.
Sequence motif discovery is set up as a feature extraction
problem from these tissue-specific promoter sequences.
Subsequently, a support vector machine (SVM) classifier
is used to classify new promoters into specific and
non-specific categories based on the identified sequence
features (motifs). Using the SVM classifier algorithm,
90% of tissue-specific genes are correctly classified based
upon their upstream promoter region sequences alone.

• Known long range regulatory elements (LRE) motifs:
To analyze the motifs in LRE elements, we examine
the results of the above approach on the Enhancer
Browser dataset (http://enhancer.lbl.gov/) which has
results of expression of ultraconserved genomic elements
in transgenic mice [32]. An examination of these
ultraconserved enhancers is useful for the extraction
of discriminatory motifs to distinguish the regulatory
elements from the non-regulatory (neutral) ones. Here
the results indicate that up to 95% of the sequences can

be correctly classified using these identified motifs.

We note that some of the identified motifs might not be
transcription factor binding motifs, and would need to be
functionally characterized. This is an advantage of our method
- instead of constraining ourselves to the degeneracy present
in TF databases (like TRANSFAC/JASPAR), we look for all
sequences of a fixed length.

II. CONTRIBUTIONS

Using microarray gene expression data, ([14],[37]) proposes
an approach to assign genes into tissue-specific and non-
specific categories using an entropy criterion. Variation in
expression and its divergence from ubiquitous expression
(uniform distribution across all tissue types) is used to make
this assignment. Based on such assignment, several features
like CpG island density, frequency of transcription factormotif
occurrence, can be examined to potentially discriminate these
two groups. Other work has explored the existence of key
motifs (transcription factor binding sites) in the promoters
of tissue-specific genes ([41],[1]). Based on the successes
reported in these methods, it is expected that a principled
examination and characterization of every sequence motif
identified to be discriminatory might lead to improved insight
into the biology of gene regulation. For example, such a
strategy might lead to the discovery of newer TFBS motifs,
as well as those underlying epigenetic phenomena.

For the purpose of identifying discriminative motifs from
the training data (tissue-specific promoters or LREs), our
approach is as follows:

• Variable selection: Firstly, sequence motifs that discrim-
inate between tissue-specific and non-specific elements
are discovered. In machine learning, this is a feature
selection problem with features being the counts of
sequence motifs in the training sequences. Without loss of
generality, six-nucleotide motifs (hexamers) are used as
motif features. This is based on the observation that most
transcription factor binding motifs have a 5-6 nucleotide
core sequence with degeneracy at the ends of the motif. A
similar setup has been introduced in ([5], [12],[38]). The
motif search space is, therefore a46 = 4096 dimensional
one. The presented approach, however, does not depend
on motif length and can be scaled according to biological
knowledge.
For variable (motif) selection, a novel feature selection
approach (based on an information theoretic quantity
called directed information - DI) is proposed. The
improved performance of this criterion over using mutual
information for motif selection is also demonstrated.

• Classifier design: After discovering discriminating motifs
using the above DI step, a SVM classifier that separates
the samples between the two classes (specific and non-
specific) from this motif space, is constructed.

Apart from this novel feature selection approach, several
questions pertaining to bioinformatics methodology can be
potentially answered using this framework - some of these
are:
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• Are there common motifs underlying tissue-specific ex-
pression that are identified from tissue-specific promoters
and enhancers? - in this paper, an examination of motifs
(from promoters and enhancers) corresponding to brain-
specific expression is done to address this question.

• Do these motifs correspond to known motifs (transcrip-
tion factor binding sites)? - we show that several motifs
are indeed consensus sites for transcription factor binding,
although their real role can only be identified in conjunc-
tion with experimental evidence.

• Is it possible to relate the motif information from the
sequence and expression perspectives to understand regu-
latory mechanisms? - this question is addressed in Section
XI.C.

• How useful are these motifs in predicting new tissue-
specific regulatory elements? - this is partly explained
from the results of SVM classification.

This work differs from that in ([5], [12]), in several aspects.
We present the DI based feature selection procedure as part
of an overall unified framework to answer several questions
in bioinformatics, not limited to finding discriminating motifs
between two classes of sequences. Particularly, one of the
advantages is the ability to examine any particular motif
as a potential discriminator between two classes. Also, this
work accounts for the notion of tissue-specificity of promot-
ers/enhancers (in line with more recent work in [20],[32],[14],
[37],[16]). Also, this framework enables the principled integra-
tion of various data sources to address the above questions.
These are clarified in the Results (Section: XI).

III. R ATIONALE

The main approaches to finding common motifs driving
tissue-specific gene regulation are summarized in ([19], [21]).
The most common approach is to look for TFBS motifs that
are statistically over-represented in the promoters of theco-
expressed genes based on a background (binomial or Poisson)
distribution of motif occurrence genomewide.

In this work, the problem of motif discovery is set up as
follows. Using two annotated groups of genes, tissue-specific
(‘ts’ ) and non-tissue specific (‘nts’), hexamer motifs that best
discriminate these two classes are found. The goal would be
to make this set of motifs as small as possible - i.e. to achieve
maximal class partitioning with the smallest feature subset.

Several metrics have been proposed to find features with
maximal class label association. From information theory,
mutual information is a popular choice [31]. This is a sym-
metric association metric and does not resolve the direction of
dependency (i.e if features depend on the class label or vice
versa). It is important to find features that induce the class
label. Feature selection from data implies selection (control)
of a feature subset that maximally captures the underlying
character (class label) of the data. There is no control overthe
label (a purely observational characterization).

With this motivation, a new metric for discriminative
hexamer subset selection, termed “directed information” (DI),
is proposed. Based on the selected features, a classifier is used
to classify sequences to tissue-specific or non-tissue-specific

categories. The performance of this DI based feature selection
metric is subsequently evaluated in the context of the SVM
classifier.

IV. OVERALL METHODOLOGY

The overall schematic of the proposed procedure is outlined
below (Fig. 2).

Examine sequences 
(promoters/enhancers) 

from Tissue Expression Atlas

Tissue-specific
sequences Neutral sequences

Build Co-occurrence 
matrices for training data.

Parse sequences to obtain relative counts.
Preprocess.

Feature (motif) Selection (DI/MI) 
and Classification (SVM)

Biological Interpretation
of top ranking motifs

TRAINING DATA

Fig. 2. An overview of the proposed approach. Each of the steps are outlined
in the following sections.

Below we present our approach to find promoter-specific or
enhancer-specific motifs.

V. M OTIF ACQUISITION

A. Promoter motifs:

1) Microarray Analysis: Raw microarray data
is available from the Novartis Foundation (GNF)
[http://symatlas.gnf.org/]. Data is normalized using RMA
from the Bioconductor packages for R [cran.r-project.org/].
Following normalization, replicate samples are averaged
together. Only 25 tissue types are used in our analysis
including: Adrenal Gland, Amygdala, Brain, Caudate
Nucleus, Cerebellum, Corpus Callosum, Cortex, Dorsal Root
Ganglion, Heart, HUVEC, Kidney, Liver, Lung, Pancreas,
Pituitary, Placenta, Salivary, Spinal Cord, Spleen, Testis,
Thalamus, Thymus, Thyroid, Trachea, and Uterus.

In this context, the notion of tissue-specificity of a gene
needs clarification. Suppose there areN genes,g1, g2, . . . , gN

andT tissue types (in GNF:T = 25), we construct aN × T
tissue specificity matrix :M = [0]N×T . For each gene
gi, 1 ≤ i ≤ N , let gi,[0.5T ] = median(gi,k), ∀k ∈ 1, 2, . . . , T ;
gi,k being the expression level of gene′i′ in tissue′k′. Define,
each entryMi,k as,
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Mi,k =

{

1 if gi,k ≥ 2gi,[0.5T ];
0 otherwise.

Now consider the N dimensional vector mi =
∑T

k=1 Mi,k, 1 ≤ i ≤ N i.e. summing all the columns of each
row. The inter-quartile range of′m′ can be used for‘ts’ /‘nts’
assignment. Gene indices′i′ that are in quartile 1 (=3), are
labeled as‘ts’ , and those in quartile 4 (= 22), are labeled as
‘nts’.

With this approach, a total of1924 probes representing
1817 genes were classified as tissue-specific, while2006
probes representing2273 genes were classified as non tissue-
specific. In this work, genes which are either heart-specificor
brain-specific are considered. From the tissue-specific genes
obtained from the above approach,45 brain-specific gene pro-
moters and118 heart-specific gene promoters are obtained. As
mentioned in SectionII, one of the objectives is to find motifs
that are responsible for brain/heart specific expression and also
correlate them with binding profiles of known transcription
factor binding motifs.

2) Sequence Analysis:Genes (‘ts’ or ‘nts’) associated with
candidate probes are identified using the Ensembl Ensmart
[http://www.ensembl.org/] tool. For each gene, sequence from
2000bp upstream and 1000bp down-stream upto the start of
the first exon relative to their reported TSS is extracted from
the Ensembl Genome Database (Release 37). The relative
counts of each of the46 hexamers are computed within each
gene-promoter sequence of the two categories (‘ts’ and ‘nts’)
- using the ‘seqinr’ library in the R environment. A t-test
is performed between the relative counts of each hexamer
between the two expression categories (‘ts’ and ‘nts’) and the
top 1000 significant hexamers (

−→
H = H1, H2, . . . , H1000) is

obtained. The relative counts of these hexamers is recomputed
for each gene individually. This results in two hexamer-gene
co-occurrence matrices, - one for the‘ts’ class (dimension
Ntrain,+1×1000) and the other for the‘nts’ class (dimension
Ntrain,−1 × 1000). Here Ntrain,+1 and Ntrain,−1 are the
number of positive training and negative training samples,
respectively.

The input to the feature selection procedure is a gene
promoter - motif frequency table (Table I). The genes relevant
to each class are identified from tissue microarray analysis,
following steps1 and2 above, and the frequency table is built
by parsing the gene promoters for the presence of each of the
46 = 4096 possible hexamers.

B. LRE motifs:

To analyze long range elements which confer tis-
sue specific expression, the Mouse Enhancer database
(http://enhancer.lbl.gov/) is examined. This database has a
list of experimentally validated ultraconserved elementswhich
have been tested for tissue specific expression in transgenic
mice [32], and can be searched for a list of all elements
which have expression in a tissue of interest. In this work, we
consider expression in tissues relating to the developing brain.

Ensembl Gene ID AAAAAA AAAAAG AAAAAT AAAACA
ENSG00000155366 0 0 1 4
ENSG000001780892 6 5 5 6
ENSG00000189171 1 2 1 0
ENSG00000168664 6 3 8 0
ENSG00000160917 4 1 4 2
ENSG00000163655 2 4 0 1
ENSG000001228844 8 6 10 7
ENSG00000176749 0 0 0 0
ENSG00000006451 5 2 2 1

TABLE I
THE ‘ MOTIF FREQUENCY MATRIX’ FOR A SET OF GENE-PROMOTERS. THE

FIRST COLUMN IS THEIRENSEMBLGENE IDENTIFIERS AND THE OTHER
4 COLUMNS ARE THE MOTIFS. A CELL ENTRY DENOTES THE NUMBER OF

TIMES A GIVEN MOTIF OCCURS IN THE UPSTREAM(-2000TO +1000BP

FROM TSS)REGION OF EACH CORRESPONDING GENE.

According to the experimental protocol, the various regions
are cloned upstream of a heat shock protein promoter (hsp68-
lacz), thereby not adhering to the idea of promoter specificity
in tissue-specific expression. Though this is of concern in that
there is loss of some gene-specific information, we work with
this data since we are more interested in tissue expression and
also due to a paucity of public promoter-dependent enhancer
data .

This database also has a collection of ultraconserved el-
ements that do not have any transgenic expression in-vivo.
This is used as the neutral/background set of data which
corresponds to the‘nts’ (non-tissue specific class) for feature
selection and classifier design.

As in the above (promoter) case, these sequences (seventy
four enhancers for brain-specific expression) are parsed for the
absolute counts of the4096 hexamers, a co-occurrence matrix
(Ntrain,+1 = 74) is built and then t-testp − values are used
to find the top 1000 hexamers (

−→
H’ = H ′

1, H
′
2, . . . , H

′
1000) that

are maximally different between the two classes (brain-specific
and brain-non-specific).

The next three sections clarify the preprocessing, featurese-
lection and classifier design steps to mine these co-occurrence
matrices for hexamer motifs that are strongly associated with
the class label. We note that though this work is illustrated
using two class labels, the approach can be extended in a
straightforward way to the multi-class problem.

VI. PREPROCESSING

From the above,Ntrain,+1 × 1000 and Ntrain,−1 × 1000
dimensional co-occurrence matrices are available for the
tissue-specific and non-specific data, both for the promoter
and enhancer sequences. Before proceeding to the feature
(hexamer motif) selection step, the counts of theM =
1000 hexamers in each training sample need to be normal-
ized to account for variable sequence lengths. In the co-
occurrence matrix, letgci,k represent the absolute count of
the kth hexamer,k ∈ 1, 2, . . . , M in the ith gene. Then, for
each genegi, the quantile labeled matrix hasXi,k = l if
gci,[ l−1

K
M ] ≤ gci,k < gci,[ l

K
M ], K = 4. Matrices of dimension

Ntrain,+1 × 1001, Ntrain,−1 × 1001 for the specific and
non-specific training samples are now obtained. Each matrix
contains the quantile label assignments for the1000 hexamers
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(Xi, i ∈ (1, 2, . . . , 1000)), as stated above, and the last column
has the corresponding class label (Y = −1/ + 1).

VII. D IRECTED INFORMATION AND FEATURE SELECTION

The primary goal in feature selection is to find the minimal
subset of features (from hexamers:

−→
H /

−→
H’ ) that lead to maximal

discrimination of the class label (Yi ∈ (−1/ + 1)), using
each of thei ∈ (1, 2, . . . , (Ntrain,+1 + Ntrain,−1)) genes
during training. We are looking for a subset of the variables
(Hi,1, . . . , Hi,1000) which are directionally associated with the
class label (Yi). These hexamers putatively influence/induce
the class label (Fig. 3). As can be seen from [33], there is
considerable interest in discovering such dependencies from
expression and sequence data. Following [10], we search for
features (inmeasurementspace) that induce the class label (in
observationspace).

Fig. 3. Causal Feature discovery for two class discrimination, adapted from
[10]. Here the variablesX1 andX2 discriminateY , the class label.

One way to interpret the feature selection problem is the
following: Nature is trying to communicate a source symbol
(Y ∈ {−1/ + 1}), corresponding to the gene class label
(‘nts/ts’), to us. In this setup, an encoder that extracts frequen-
cies of a particular hexamer (Hi) maps the source symbol (Y )
to Hi(Y ). The decoder outputs the source reconstructionŶ
based on the received codewordci(Y ) = Hi(Y ).

We observe that there are several possible encoding
schemesci(Y ) that the encoder could potentially use(i =
1, 2, . . . , 1000), each corresponding to feature extraction via
a different hexamerHi. An encoder is the mapping ruleci :
Y → Hi. The ideal encoding scheme is one which induces the
most discriminative partitioning of the code (feature) space, for
successful reconstruction ofY by the decoder. The ranking
of each encoder’s performance over all possible mappings
yields the most discriminative mapping. This measure of per-
formance is the amount of information flow from the mapping
(hexamer) to the class label. Using mutual information as one
such measure indeed identifies the best features [31], but fails
to resolve the direction of dependence due to its symmetric
natureI(Hi; Y ) = I(Y ; Hi). The direction of dependence is
important since it pinpoints those features that induce theclass
label (not vice-versa). This is necessary since these classlabels

are predetermined (given to us by biology) and the only control
we have is the feature space onto which we project the data
points, for the purpose of classification. This loosely parallels
the use the directed edges in bayesian networks for inference
of feature-class label associations [10].

Unlike mutual information (MI), directed information (DI)
is a metric to quantify the directed flow of information.
It was originally introduced in ([22], [23]) to examine the
transfer of information from encoder to decoder under feed-
back/feedforward scenarios and to resolve directivity during
bidirectional information transfer. Given its utility in the
encoding of sources with memory (correlated sources), this
work demonstrates it to be a competitive metric to MI for
feature selection in learning problems. DI answers which of
the encoding schemes (corresponding to each hexamerHi)
leads to maximal information transfer from the hexamer labels
to the class labels (i.e. directed dependency).

The DI is a measure of the directed dependence between two
vectorsXi = [X1,i, X2,i, . . . Xn,i] andY = [Y1, Y2, . . . , Yn].
In this case,Xj,i = quantile label for the frequency of hexamer
i ∈ (1, 2, . . . , 1000) in the jth training sequence.Y =
[Y1, Y2, . . . , Yn] are the corresponding class labels (−1, +1).
For a block lengthN , the DI is given by [23]:

I(XN
i → Y N ) =

N
∑

n=1

I(Xn
i ; Yn|Y

n−1) (1)

Using a stationarity assumption over a finite-length memory
of the training samples, a correspondence with the setup in
([23], [40]) can be seen. As already known [6], the mutual
information I(XN ; Y N ) = H(XN) − H(XN |Y N ), where
H(XN) andH(XN |Y N ) are the Shannon entropy ofXN and
the conditional entropy ofXN given Y N , respectively. With
this definition of mutual information, the Directed Information
simplifies to,

I(XN → Y N ) =

N
∑

n=1

[H(Xn|Y n−1) − H(Xn|Y n)]

=

N
∑

n=1

{[H(Xn, Y n−1) − H(Y n−1)] − [H(Xn, Y n) − H(Y n)]}

(2)

Using (2), the Directed information is expressed in terms of
individual and joint entropies ofXn andY n. This expression
implies the need for higher-order entropy estimation from
a moderate sample size. A Voronoi tessellation [24] based
adaptive partitioning of the observation space can handle
N = 5/6 without much complexity.

The relationship between MI and DI is given by [23],
DI: I(XN → Y N ) =

∑N

i=1 I(X i; Yi|Y
i−1).

MI: I(XN ; Y N ) =
∑N

i=1 I(XN ; Yi|Y
i−1)

= I(XN → Y N ) + I(0Y N−1 → XN).
To clarify, I(XN → Y N ) is the directed information

from X to Y , whereasI(0Y N−1 → XN) is the directed
information from a (one-sample) delayed version ofY N to
XN . From [40], it is clear that DI resolves the direction of
information transfer (feedback or feedforward). If there is no
feedback/feedforward,I(XN → Y N ) = I(XN ; Y N).
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From the above chain-rule formulations for DI and MI, it is
clear that the expression for DI is permutation-variant (i.e., the
value of the DI is different for a different ordering of random
variables). Thus, we instead find theIp(X

N → Y N ), a DI
measure for a particular ordering of theN random variables
(r.vs). The DI value for our purpose,I(XN → Y N ) is an
average over all possible sample permutations given by,
I(XN → Y N ) = 1

N !

∑N !
p=1 Ip(X

N → Y N). For MI, how-
ever,Ip(X

N ; Y N ) = I(XN ; Y N ) because, MI is permutation-
invariant (i.e., independent of r.v ordering). As can be readily
observed, this problem is combinatorially complex, and hence,
a monte-carlo sampling strategy (1000 trials) is used for
computingI(XN → Y N ). This is because we find that about
1000 trials yields a DI confidence interval (CI) that is only
20% more than the corresponding CI obtained from10, 000
trials of the data, a far more exhaustive number.

To select features, we maximizeI(XN → Y N ) over the
possible pairs (

−→
X , Y ). This feature selection problem for the

ith training instance reduces to identifying which hexamer
(k ∈ (1, 2, . . . , 4096)) has the highestI(Xk → Y ).

The higher dimensional entropy can be estimated using
order statistics of the observed samples [24] by iterative parti-
tioning of the observation space until nearly uniform partitions
are obtained. This method lends itself to a partitioning scheme
that can be used for entropy estimation even for a moderate
number of samples in the observation space of the underlying
probability distribution. Several such algorithms for adaptive
density estimation have been proposed ([42],[27],[29]) and can
find potential application in this procedure. In this methodol-
ogy, a Voronoi tessellation approach for entropy estimation
because of the higher performance guarantees as well as the
relative ease of implementation of such a procedure.

The above method is used to estimate the true DI between
a given hexamer and the class label for the entire training set.
Feature selection comprises of finding all those hexamers (Xi)
for which I(XN

i → Y N ) is the highest. From the definition of
DI, we know that0 ≤ I(XN

i → Y N ) ≤ I(XN
i ; Y N ) < ∞. To

make a meaningful comparison of the strengths of association
between different hexamers and the class label, we use a
normalized score to rank the DI values. This normalized
measureρDI should be able to map this large range ([0,∞])
to [0, 1]. Following [13], an expression for the normalized DI
is given by:
ρDI =

√

1 − e−2I(XN→Y N ) =
√

1 − e−2
P

N

i=1
I(Xi;Yi|Y i−1).

Another point of consideration is to estimate the significance
of the DI value compared to a null distribution on the DI value
(i.e. what is the chance of finding the DI value by chance from
theN -length seriesXi andY ). This is done using confidence
intervals after permutation testing (Sec:V III).

VIII. B OOTSTRAPPEDCONFIDENCE INTERVALS

In the absence of knowledge of the true distribution of
the DI estimate, an approximate confidence interval for the
DI estimate (̂I(XN → Y N )), is found using bootstrapping
[8]. Density estimation is based on kernel smoothing over the
bootstrapped samples [35].

The kernel density estimate for the bootstrapped DI (with
n = 1000 samples),Z , ÎB(XN → Y N ) becomes,

f̂h(Z) = 1
nh

∑n

i=1
3
4 [1 − ( zi−z

h
)2]I(

∣

∣

zi−z
h

∣

∣ ≤ 1) with h ≈

2.67σ̂z andn = 1000. ÎB(XN → Y N ) is obtained by finding
the DI for each random permutation of theX , Y series,
and performing this permutationB times. As is the clear
from the above expression, the Epanechnikov kernel is used
for density estimation from the bootstrapped samples. The
choice of the kernel is based on its excellent characteristics
- a compact region of support, the lowest AMISE (asymptotic
mean squared error) and favorable bias-variance tradeoff [35].

We denote the cumulative distribution function
(over the bootstrap samples) of̂I(XN → Y N ) by
F

ÎB(XN→Y N )(ÎB(XN → Y N )). Let the mean of the
bootstrapped null distribution beI∗B(XN → Y N ). We denote
by t1−α, the(1−α)th quantile of this distribution i.e.{t1−α :

P ([
ÎB(XN→Y N )−I∗

B
(XN→Y N )

σ̂
] ≤ t1−α) = 1 − α}. Since we

need the truêI(XN → Y N ) to be significant and close to 1,
we needÎ(XN → Y N ) ≥ [I∗B(XN → Y N )+ t1−α× σ̂], with
σ̂ being the standard error of the bootstrapped distribution,

σ̂ =

√

[ΣB

b=1
Îb(XN→Y N )−I∗

B
(XN→Y N )]2

B−1 ; B is the number of
bootstrap samples.

This hypothesis test is done for each of the1000 motifs,
in order to select the top′d′ motifs based on DI value,
which is then used for classifier training subsequently. This
leads to a need for multiple-testing correction. Because the
Bonferroni correction is extremely stringent in such settings,
the Benjamini-Hochberg procedure [3], which has a higher
false positive rate, but a lower false negative rate is used in
this work.

IX. SUPPORTVECTORMACHINES

From the top′d′ features identified from the ranked list
of features having high DI with the class label, a support
vector machine classifier in these′d′ dimensions is designed.
A SVM is a hyperplane classifier which operates by finding
a maximum margin linear hyperplane to separate two dif-
ferent classes of data in high dimensional (D > d) space.
The training data hasN(= Ntrain,+1 + Ntrain,−1) pairs
(x1, y1), (x2, y2), . . . , (xN , yN ), with xi ∈ Rd and yi ∈
{−1, +1}.

An SVM is a maximum margin hyperplane classifier in a
non-linearly extended high dimensional space. For extending
the dimensions fromd to D > d, a radial basis kernel is used.

The objective is to minimize||β|| in the hyperplane{x :
f(x) = xT β + β0}, subject to
yi(x

T
i β + β0) ≥ 1 − ξi∀i, ξi ≥ 0,

∑

ξi ≤ constant [11].

X. SUMMARY OF OVERALL APPROACH

Our proposed approach is as follows. Here, the term ’se-
quence’ can pertain to either tissue-specific promoters or LRE
sequences, obtained from the GNF SymAtlas and Ensembl
databases or the Enhancer Browser.

1) The sequence is parsed to obtain the relative
counts/frequencies of occurrence of the hexamer in that
sequence and to build the hexamer-sequence frequency
matrix. The ‘seqinr’ package in R is used for this
purpose. This is done for all the sequences in the specific
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(class“+1”) and non-specific (class“−1”) categories.
The matrix thus hasN = Ntrain,+1 + Ntrain,−1 rows
and46 = 4096 columns.

2) The obtained hexamer-sequence frequency matrix is pre-
processed by assigning quantile labels for each hexamer
within the ith sequence. A hexamer-sequence matrix is
thus obtained where the(i, j)th entry has the quantile
label of thejth hexamer in theith sequence. This is done
for all the N training sequences consisting of examples
from the−1 and+1 class labels.

3) Thus, two submatrices corresponding to the two class la-
bels are built. One matrix contains the hexamer-sequence
quantile labels for the positive training examples and the
other matrix is for the negative training examples.

4) To select hexamers that are most different between
the positive and negative training examples, a t-test is
performed for each hexamer, between the‘ts’ and ‘nts’
groups. Ranking the corresponding t-test p-values yields
those hexamers that are most different distributionally
between the positive and negative training samples. The
top 1000 of these hexamers are chosen for further
analysis. This step is only necessary to reduce the
computational complexity of the overall procedure -
computing the DI between each of the 4096 hexamers
and the class label is relatively expensive.

5) For the top K = 1000 hexamers which are most
significantly different between the positive and negative
training examples,I(XN

k → Y N ) and I(XN
k ; Y N )

reveals the degree of association for each of thek ∈
(1, 2, . . . , K) hexamers. The entropy terms in the di-
rected information and mutual information expressions
are found using a higher-order entropy estimator. Using
the procedure of Sec:V II, the raw DI values are
converted into their normalized versions. Since the goal
is to maximizeI(Xk → Y ), we can rank the DI values
in descending order.

6) The significance of the DI estimate is obtained based
on the bootstrapping methodology. For every hexamer,
a p = 0.05 significance with respect to its bootstrapped
null distribution yields potentially discriminative hexam-
ers between the two classes. The Benjamini-Hochberg
procedure is used for multiple-testing correction. Rank-
ing the significant hexamers by decreasing DI value
yields features that can be used for classifier (SVM)
training.

7) Train the Support Vector Machine classifier (SVM) on
the top ′d′ features from the ranked DI list(s). For
comparison with the MI based technique, we use the
hexamers which have the top′d′ (normalized) MI values.
The accuracy of the trained classifier is plotted as a
function of the number of features (d), after ten-fold
cross-validation. As we gradually consider higher′d′,
we move down the ranked list. In the plots below, the
misclassification fraction is reported instead. A fraction
of 0.1 corresponds to10% misclassification.

Note: An important point concerns the training of the SVM
classifier with the top′d′ features selected using DI or MI

(step7 above). Since the feature selection step is decoupled
from the classification step, it is preferred that the top′d′

motifs are consistently ranked high among multiple draws of
the data, so as to warrant their inclusion in the classifier.
However, this does not yield expected results on this data
set. Briefly, a kendall rank correlation coefficient [15] was
computed between the rankings of the motifs between multiple
data draws (by sampling a subset of the entire dataset), for
both MI and DI based feature-selection. It is observed that
this coefficient is very low in both MI and DI, indicating
a highly variable ranking. This is likely due to the high
variability in data distribution across these multiple draws (due
to limited number of data points), as well as the sensitivityof
the data-dependent entropy estimation procedure to the range
of the samples in the draw. To circumvent this problem of
inconsistency in rank of motifs, amedian DI/MI value is
computed across these various draws and the top′d′ features
based on the median DI/MI value across these draws are
picked for SVM training [10].

XI. RESULTS

A. Tissue specific promoters

We use DI to find hexamers that discriminate brain-specific
and heart-specific expression from neutral sequences. The
negative training sets are sequences that are not brain or heart-
specific, respectively. Results using the MI and DI methods
are given below (Figs. 5 and 7). The plots indicate the
SVM cross-validated misclassification accuracy (ideally0) for
the data as the number of features using the metric (DI or
MI) is gradually increased. We can see that for any given
classification accuracy, the number of features using DI is
less than the corresponding number of features using MI.
This translates into a lower misclassification rate for DI-based
feature selection. We also observe that as the number of
features′d′ is increased the performance of MI is the same
as DI. This is expected since, as we gather more features
using MI or DI, the differences in MI vs. DI ranking are
compensated.

An important point needs to be clarified here. There is a
possibility of sequence composition bias in the tissue-specific
and neutral sequences used during training. This has been
reported in recent work [38]. To avoid detecting GC rich
sequences as hexamer features, it is necessary to confirm
that there is no significant GC-composition bias between the
specific and neutral sets in each of the case studies. This is
demonstrated in Figs. 4, 6 and 8. In each case, it is observed
that the mean GC-composition is almost same for the specific
vs. neutral set. However, in such studies, it is necessary to
select for sequences that do not exhibit such bias. In Figs.
6 and 8, even the distribution of GC-composition is similar
among the samples. For Fig. 4, even though the distributions
are slightly different, the box plots indicate similarity in mean
GC-content.

Next, some of the motifs that discriminate between tissue-
specific and non-specific categories for the brain promoter,
heart promoter and brain enhancer cases respectively are
listed in Table II. Additionally, if the genes encoding for
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Fig. 4. GC sequence composition for brain-specific promoters and house-
keeping (hkg) promoters.
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Fig. 5. Misclassification accuracy for the MI vs. DI case (brain promoter
set). Accuracy of classification is∼ 0.9 i.e. 93%.

these TFs are expressed in the corresponding tissue [26],
a (*) sign is appended. In some cases, the hexamer motifs
match the consensus sequences of known transcription factors
(TF). This suggests a potential role for that particular TF in
regulating expression of tissue-specific genes. This matching
of hexamer motifs with TFBS consensus sites is done using
the MAPPER engine (http://bio.chip.org/mapper/). It is to
be noted that a hexamer-TFBS match does not necessarily
imply the functional role of the TF in the corresponding tissue
(brain or heart). However, such information would be usefulto
guide focused experiments to confirm their role in-vivo (using
techniques such as chromatin immunoprecipitation).

As is clear from the above results, there are several other
motifs which are novel or correspond to non-consensus motifs
of known transcription factors. Hence, each of the identified
hexamers merit experimental investigation. Also, though we
identify as many as200 hexamers in this work (please see
Supplementary data), we have reported only a few due to space
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Fig. 6. GC sequence composition for heart-specific promoters and house-
keeping (hkg) promoters.
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Fig. 7. Misclassification accuracy for the MI vs. DI case (heart promoter
set)

constraints.
In the context of the heart-specific genes,

we consider the cardiac troponin gene (cTNT,
ENSEMBL:ENSG00000118194), which is present in the
heart promoter set. An examination of the high DI motifs for
the heart-specific set yields motifs with the GATA consensus
site, as well as matches with the MEF2 transcription factor.It
has been established earlier that GATA-4, MEF2 are indeed
involved in transcriptional activation of this gene [25] and the
results have been confirmed by ChIP [2].

B. Enhancer DB

Additionally, all the brain-specific regulatory elements
profiled in the mouse Enhancer Browser database
(http://enhancer.lbl.gov/), are examined for discriminating
motifs. Fig. 8 shows that the two classes have similar
GC-composition. Again, the plot of misclassification accuracy
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Brain Heart Brain
promoters promoters enhancers

Ahr-ARNT (*) Pax2 HNF-4 (*)
Tcf11-MafG (*) Tcf11-MafG (*) Nkx2

c-ETS (*) XBP1 (*) AML1
FREAC-4 Sox-17 (*) c-ETS (*)

T3R-alpha1 FREAC-4 Elk1 (*)
GATA(*)

TABLE II
COMPARISON OF HIGH RANKING MOTIFS(BY DI) ACROSS DIFFERENT

DATA SETS. THE (*) SIGN INDICATES TISSUE-SPECIFIC EXPRESSION OF

THE CORRESPONDINGTF GENE.

vs. number of features in the MI and DI scenarios reveal
the superior performance of the DI-based hexamer selection
compared to MI (Fig. 9).

In this case, the enhancer sequences are ultraconserved, thus
obtained after alignment across multiple species. The exami-
nation of these sequences identified motifs that are potentially
selected for regulatory function across evolutionary distances.
Using alignment as a prefiltering strategy helps remove bias
conferred by sequence elements that arise via random mutation
but might be over-represented. This is permitted in programs
like Toucan [1] and rVISTA (http://rvista.dcode.org/).
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Fig. 8. GC sequence composition for brain-specific enhancers and neutral
non-coding regions.

As in the previous case, some of the top ranking motifs
from this dataset are also shown in TableII. The (*) signed
TFs indicate that some of these discovered motifs indeed
have documented high expression in the brain. The occurrence
of such tissue-specific transcription factor motifs in these
regulatory elements gives credence to the discovered motifs.
For example,ELK-1 is involved in neuronal differentiation
[39]. Also, some motifs matching consensus sites of TEF1 and
ETS1 are common to the brain-enhancer and brain-promoter
set. Though this is interesting, an experiment to confirm the
enrichment of such transcription factors in the populationof
brain-specific regulatory sequences is necessary.
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Fig. 9. Misclassification accuracy for the MI vs. DI case (brain enhancer
set).
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C. Quantifyingsequence-basedTF influence

A very interesting question emerges from the above pre-
sented results. What if one is interested in a motif that is
not present in the above ranked hexamer list for a particular
tissue-specific set? As an example, consider the case for
MyoD, a transcription factor which is expressed in muscle
and has a putative activity in heart-specific genes [28]. In
fact, a variant of its consensus motif - CATTTG is indeed

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(x
)

Empirical CDF

Fig. 11. Cumulative Distribution Function for bootstrapped
I(Pax2 motif:GTTCC → Y ); Y is the class label (UB/non-UB). True
Î(GTTCC→ Y) = 0.9792.
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in the top ranking hexamer list. The DI based framework
further permits investigation of the directional association of
the canonicalMyoD motif (CACCTG) for the discrimination
of heart-specific genes vs. housekeeping genes. This is shown
in Fig. 10. As is observed,MyoD has a significant directional
influence on the heart-specific vs. neutral sequence class label.
This, in conjunction with the expression level characteristics
of MyoD, indicates that the motif CACCTG is potentially
relevant to make the distinction between heart-specific and
neutral sequences.

Another theme picks up on something quite traditionally
done in bioinformatics research - finding key TF regulators
underlying tissue-specific expression. Two major questions
emerge from this theme.

1) Which putative regulatory TFs underlie the tissue-
specific expression of a group of genes?

2) For the TFs found using tools like TOUCAN [1], can
we examine the degree of influence that the particular
TF motif has in directing tissue-specific expression?

• To address thefirst question, we examine the TFs revealed
by DI/MI motif selection and compare these to the TFs
discovered from TOUCAN [1], underlying the expression
of genes expressed on daye14.5 in the degenerating
mesonephros and nephric duct (TS22). This set has about
43 genes (includingGata2). These genes are available in
the Supplementary data.
Using TOUCAN, the set of module TFs are combinations
of the following TFs: E47, HNF3B, HNF1, RREB1,
HFH3, CREBP1, VMYB, GFI1. These were obtained
by aligning the promoters of these43 genes (−2000bp
upstream to+200bp from the TSS), and looking for over-
represented TF motifs based on the TRANSFAC/JASPAR
databases.
Using the DI based motif selection, a set of200 hexam-
ers are found that discriminate these43 gene promoter
sequences from the background housekeeping promoter
set. They map to the consensus sites of several known
TFs, such as (identified frombio.chip.org/mapper/)
Nkx, Max1, c-ETS, FREAC4, Ahr-ARNT, CREBP2, E2F,
HNF3A/B, NFATc, Pax2, LEF1, Max1, SP1, Tef1, Tcf11-
MafG, many of which are expressed in the developing
kidney (http://www.expasy.org/). Moreover, we observe
that the TFs that are common between the TOUCAN
results and the DI based approach:FREAC4, Max1,
HNF3a/b, HNF1, SP1, CREBP, RREB1, HFH3 are
mostly kidney-specific. Thus, we believe that this obser-
vation makes a case for finding all (possibly degenerate)
TF motif searches from TRANSFAC, and filtering them
based on tissue-specific expression subsequently. Such a
strategy yields several more TF candidates for testing and
validation of biological function.

• For thesecondquestion, we examine the following sce-
nario. TheGata3gene is observed to be expressed in the
developing ureteric bud (UB) during kidney development.
To find UB specific TF regulators, conserved TF modules
can be examined in the promoters of UB-specific genes.
These experimentally annotated UB-specific genes are

obtained from the Mouse Genome Informatics database
at http://www.informatics.jax.org/. Several programs are
used for such analysis, like Genomatix [41] or Toucan
[1]. Using Toucan, the promoters of the various UB
specific genes are aligned to discover related modules.
The top-ranking module in Toucan containsAHR-ARNT,
Hox13, Pax2, Tal1alpha-E47, Oct1. Again, the power of
these motifs to discriminate UB-specific and non-specific
genes, based on DI, can be investigated.
For this purpose, we check if thePax2 binding motif
(GTTCC [7]) indeed induces kidney specific expression
by looking for the strength of DI between the GTTCC
motif and the class label (+1) indicating UB expression
(Fig. 11). This once again adds to computational evidence
for the true role ofPax2 in directing ureteric bud specific
expression [7]. The main implication here is that, from
sequence data, there is strong evidence for thePax2motif
being a useful feature for UB-specific genes. This is
especially relevant given the documented role ofPax2
([9]) directing ureteric-bud expression of theGata3gene,
one of the key modulators of kidney morphogenesis. Both
the MyoD and Pax2 studies indicate the relevance of
principled data integration using expression ([36],[26])
and sequence modalities.

D. Observations

With regard to the feature selection and classification results,
in both studies (enhancers and promoters), we observe that
about 100 hexamers are enough to discriminate the tissue-
specific from the neutral sequences. Furthermore, some se-
quence features of these motifs at the promoter/enhancer
emerge.

• There is higher sequence variability at the promoter since
it has to act in concert with LREs of different tissue types
during gene regulation.

• Since the enhancer/LRE acts with the promoter to confer
expression in only one tissue type, these sequences are
more specific and hence their mining identifies motifs that
are probably more indicative of tissue-specific expression.

We however, reiterate that the enhancer dataset that we study
uses thehsp68-laczas the promoter driven by the ultracon-
served elements. Hence there is no promoter specificity in this
context. Though this is a disadvantage and might not reveal
all key motifs, it is the best that can be done in the absence
of any other comprehensive repository.

The second aspect of the presented results highlight two
important points. Firstly, the identified motifs have a strong
predictive value as suggested by the cross-validation results as
well as TableII. Moreover, DI provides a principled method-
ology to investigate any given motif for tissue-specificityas
well as for identifying expression-level relationships between
the TFs and their target genes, (SecXI : C).

XII. C ONCLUSIONS

In this work, a framework for the identification of hexamer
motifs to discriminate between two kinds of sequences (tissue-
specific promoters or regulatory elements vs non-specific
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elements), is presented. For this feature selection problem,
a new metric - the ‘directed information’ (DI) is proposed.
In conjunction with a support vector machine classifier, this
method was shown to outperform the state-of-the-art method
employing undirected mutual information. We also find that
only a subset of the discriminating motifs correlate with
known transcription factor motifs and hence the other motifs
might be potentially related to non-consensus TF binding
or underlying epigenetic phenomena governing tissue-specific
gene expression. The superior performance of the directed-
information based variable selection suggests its utilityto more
general learning problems. As per the initial motivation, the
discovery of these motifs can aid in the prospective discovery
of other tissue-specific regulatory regions.

We have also examined the applicability of DI to prospec-
tively resolve the functional role of any TF motif in a biolog-
ical process, integrating other sources (literature, expression
data, module searches).

XIII. F UTURE WORK

Several opportunities for future work exist within this
proposed framework. Multiple sequence alignment of pro-
moter/regulatory sequences across species would be a useful
preprocessing step to reduce false detection of discriminatory
motifs. The hexamers can also be identified based on other
metrics exploiting distributional divergence between thesam-
ples of the“ + 1” and “ − 1” classes. Furthermore, there
is a need for consistent high-dimensional entropy estimators
within the small sample regime. A very interesting direction
of potential interest is the formulation of a stepwise hexamer
selection algorithm, using the directed information for maxi-
mal relevance selection and mutual information for minimizing
between-hexamer redundancy [31]. This analysis is beyond the
scope of this work but an implementation is available from the
authors for further investigation.
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