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Abstract—Motif discovery for the identification of functional
regulatory elements underlying gene expression is a chalig-

ing problem. Sequence inspection often leads to discoveryf o

novel motifs (including transcription factor sites) with previously
uncharacterized function in gene expression. Coupled witlthe
complexity underlying tissue-specific gene expression, ¢he are
several motifs that are putatively responsible for expressn in a
certain cell type. This has important implications in understand-
ing fundamental biological processes such as developmenhd
disease progression.

In this work we present an approach to the identification of
motifs (not necessarily transcription factor sites) and eamine
its application to some questions in current bioinformatics
research. These motifs are seen to discriminate tissue-syfc
gene-promoter or regulatory regions from those that are not
tissue-specific. There are two main contributions of this wik:
Firstly, we propose the use of directed information for such
classification constrained motif discovery, and then, usehe
selected features with a support vector machine (SVM) clagfger
to find the tissue-specificity of any sequence of interest. 8h
analysis yields several novel interesting motifs that metifurther
experimental characterization. Furthermore, this approach leads
to a principled framework for the prospective examination o
any chosen motif to be discriminatory motif for a group of co-
expressed/co-regulated genes, thereby integrating seaquee and
expression perspectives. We hypothesize that the discoyeof
these motifs would enable the large-scale investigation fahe
tissue-specific regulatory role of any conserved sequenckement
identified from genome-wide studies.

Index Terms—Directed Information, transcriptional regula-
tion, phylogeny, Transcription factor binding sites (TFBS), tissue-
specific genes.

I. INTRODUCTION

Understanding the mechanisms underlying regulation
tissue-specific gene expression remains a challengingigones
While all mature cells in the body have a complete cop
of the human genome, each cell type only expresses th
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Fig. 1.
promoter and the distal regulatory elements together caplecificity of gene
expression via TF binding.

Schematic of Transcriptional Regulation. Sequemegifs at the

representing the gene. It is the intermediate step befare th
generation of functional protein from messenger RNA. Dgirin
gene expression (Fig. 1), transcription factor (TF) pruei
are recruited at the proximal promoter of the gene as well
as at sequence elements (enhancers/silencers) whichecan i
several hundreds of kilobases from the gene’s transcriatio
start site (TSS). The basal transcriptional machinery at th
promoter coupled with the transcription factor complexes
at these distal, long-range regulatory elements (LREs) are
collectively involved in directing tissue-specific expsis of
genes.

One of the current challenges in the post-genomic
era is the principled discovery of such LREs genome-
wide. Recently, there has been a community-wide effort
(http://www.genome.gov/ENCOD)ED find all regulatory el-
ements in1% of the human genome. The examination of
g];e discovered elements would reveal characteristics&ypif
most enhancers which would aid their principled discovery a

amination on a genome-wide scale. Some characteridtics o
égerimentally identified distal regulatory elements [[RB])

genes it needs to carry out its assigned task. This includd§ ) )
genes required for basic cellular maintenance (often aalle * Non-coding elements: Distal regulatory elements are non-
“housekeeping genes”) and those genes whose function is coding and can either be intronic or intergenic regions on

specific to the particular tissue type that the cell belomgs t
Gene expression by way of transcription is the process of gen
eration of messenger RNA (mRNA) from the DNA template
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the genome. Hence previous models for gene finding [4]
are not directly applicable. With over 98% of the anno-
tated genome being non-coding, the precise localization
of regulatory elements that underlie tissue-specific gene
expression is a challenging problem.

Distance/orientation independent: an enhancer can act
from variable genomic distances (hundreds of kilobases)
to regulate gene expression in conjunction with the prox-
imal promoter, possibly via a looping mechanism [34].
These enhancers can lie upstream or downstream of the
actual gene along the genomic locus.



« Promoter dependent: Since the action at a distance of be correctly classified using these identified motifs.
these elements involves the recruitment of TFs that directy\e note that some of the identified motifs might not be

tissue-specific gene expression, the promoter that theXnscription factor binding motifs, and would need to be
interact with is critical. functionally characterized. This is an advantage of outhmet

Although there are instances where a gene harbors tissu#stead of constraining ourselves to the degeneracy prese
specific activity at the promoter itself, the role of long gan in TF databases (like TRANSFAC/JASPAR), we look for all
elements (LREs) remains of interest, e.g: for a detailed ugequences of a fixed length.
derstanding of their regulatory role in gene expressiomndur
biological processes like organ development and disease pr
gression [18]. We seek to develop computational strategies
find novel LREs genome-wide that govern tissue specific ex-Using microarray gene expression data, ([14],[37]) pregos
pression for any gene of interest. A common approach for thein approach to assign genes into tissue-specific and non-
discovery is the use of motif-based sequence signaturgs. Apecific categories using an entropy criterion. Variatian i
sequence element can then be scanned for such a signatgession and its divergence from ubiquitous expression
and its tissue-specificity can be ascertained [30]. (uniform distribution across all tissue types) is used tkena

Thus, our primary question in this regard is: is there #is assignment. Based on such assignment, several feature
discriminating sequence property of LRE elements thatrdetéke CpG island density, frequency of transcription factuotif
mine tissue-specific gene expression - more particularly, @ccurrence, can be examined to potentially discriminageeh
there any sequence motifs in known regulatory elements tf&pP groups. Other work has explored the existence of key
can aid discovery of new elements [17]. To answer this, waotifs (transcription factor binding sites) in the prontste
examine known tissue-specific regulatory elements (prersotOf tissue-specific genes ([41],[1]). Based on the successes
and enhancers) for motifs that discriminate them from rgported in these methods, it is expected that a principled
background set of neutral elements (such as housekeep@¥gmination and characterization of every sequence motif

gene promoters). For this study, the datasets are derived fridentified to be discriminatory might lead to improved irgig
the following sources: into the biology of gene regulation. For example, such a

p f i ii Sef h id strategy might lead to the discovery of newer TFBS motifs,
* romc(;te:js_ 0 t|ssue—s%peim IC genexe orel tt N V\III e gE\s well as those underlying epigenetic phenomena.
sprea Iscovery ol fong-range reguiatory - €lements g, o purpose of identifying discriminative motifs from

(LREs), it was hypothesized t_hat promo_ters governege training data (tissue-specific promoters or LRES), our
gene expression alone. There is substantial evidence for

o . g L roach is as follows:

the binding of tissue-specific transcription factors at th P _ _ _ _ o
promoters of expressed genes. This suggests that, irt Variable selectionFirstly, sequence motifs that discrim-
spite of newer information implicating the role of LREs, inate _between tissue-spepific and .non—speclific elements
promoters also have interesting motifs that govern tissue- 2aré discovered. In machine learning, this is a feature
specific expression. selection problem with features being the counts of
Another practical reason for the examination of promoters ~ Séguence motifs in the training sequences. Without loss of
is that their locations (and genomic sequences) are more generality, six-nucleotide motifs (hexamers) are used as
clearly delineated on genome databases (like UCSC or motif features. This is based on the observation that most
Ensembl). Sufficient datdtp://symatlas.gnf.orgion the transcription factc_)r binding motifs have a 5-6 nucleotifje
expression of genes is also publicly available for analysis ~ €ore sequence with degeneracy at the ends of the motif. A
Sequence motif discovery is set up as a feature extraction Similar setup has been introduced in ([S], [12],[38]). The
problem from these tissue-specific promoter sequences. Motif search space is, thereforela= 4096 dimensional
Subsequently, a support vector machine (SVM) classifier ©One. The presented approach, however, does not depend
is used to classify new promoters into specific and 0N motif length and can be scaled according to biological
non-specific categories based on the identified sequence Knowledge. _ _ _
features (motifs). Using the SVM classifier algorithm, ~ FOr variable (motif) selection, a novel feature selection
90% of tissue-specific genes are correctly classified based @PpProach (based on an information theoretic quantity
upon their upstream promoter region sequences alone. ~ called directed information - DI) is proposed. The

« Known long range regulatory elements (LRE) motifs improved performance of this criterion over using mutual
To analyze the motifs in LRE elements, we examine information for motif selection is also demonstrated.
the results of the above approach on the Enhancer Classifier designAfter discovering discriminating motifs
Browser dataset http://enhancer.lbl.goy/ which has using the above DI step, a SVM classifier that separates
results of expression of ultraconserved genomic elements the samples between the two classes (specific and non-
in transgenic mice [32]. An examination of these specific) from this motif space, is constructed.
ultraconserved enhancers is useful for the extractionApart from this novel feature selection approach, several
of discriminatory motifs to distinguish the regulatoryquestions pertaining to bioinformatics methodology can be
elements from the non-regulatory (neutral) ones. Hepmtentially answered using this framework - some of these
the results indicate that up to 95% of the sequences care:

II. CONTRIBUTIONS




« Are there common motifs underlying tissue-specific excategories. The performance of this DI based feature $stect
pression that are identified from tissue-specific promotersetric is subsequently evaluated in the context of the SVM
and enhancers? - in this paper, an examination of motifkassifier.
(from promoters and enhancers) corresponding to brain-
specific expression is done to address this question.

« Do these motifs correspond to known maotifs (transcrip-
tion factor binding sites)? - we show that several motifs The overall schematic of the proposed procedure is outlined
are indeed consensus sites for transcription factor bg]dirbelow (Fig. 2).
although their real role can only be identified in conjunc-

IV. OVERALL METHODOLOGY

tion with experimental evidence. Examine sequences

o Is it possible to relate the motif information from the (promoters/enhancers)
sequence and expression perspectives to understand regu- from Tissue Expression Atlas
latory mechanisms? - this question is addressed in Section /MN
XI.C.

o How useful are these motifs in predicting new tissue- Tissue-specific

Neutral sequences

specific regulatory elements? - this is partly explained sequences
from the results of SVM classification.

This work differs from that in ([5], [12]), in several aspect
We present the DI based feature selection procedure as part
of an overall unified framework to answer several questions
in bioinformatics, not limited to finding discriminating rifs
between two classes of sequences. Particularly, one of the

sequences to obtain relativg€ounts.
Preprocess.

Build Co-occurrence
matrices for training data.

advantages is the ability to examine any particular motif \1/

as a potential discriminator between two classes. Alsa, thi Feature (motif) Selection (DIMI)
work accounts for the notion of tissue-specificity of promot and Classification (SVM)
ers/enhancers (in line with more recent work in [20],[3P4]i

[37],[16]). Also, this framework enables the principleddgra- \L

tion of various data sources to address the above questions. Biological Interpretation
These are clarified in the Results (Section: XI). of top ranking motifs

Fig. 2. An overview of the proposed approach. Each of thessaep outlined
in the following sections.

The main approaches to finding common motifs driving
tissue-specific gene regulation are summarized in ([19])[2 Below we present our approach to find promoter-specific or
The most common approach is to look for TFBS motifs th&nhancer-specific motifs.
are statistically over-represented in the promoters ofcie
expressed genes based on a background (binomial or Poisson) V. MOTIF ACQUISITION
distribution of motif occurrence genomewide. )
In this work, the problem of motif discovery is set up ad\ Promoter motifs:
follows. Using two annotated groups of genes, tissue-fipeci 1) Microarray  Analysis: Raw  microarray data
(‘ts’) and non-tissue specifitngs’), hexamer motifs that bestis available from the Novartis Foundation (GNF)
discriminate these two classes are found. The goal would [tetp://symatlas.gnf.org/ Data is normalized using RMA
to make this set of motifs as small as possible - i.e. to aehiefirom the Bioconductor packages for Rr@n.r-project.orgj.
maximal class partitioning with the smallest feature subse Following normalization, replicate samples are averaged
Several metrics have been proposed to find features widgether. Only 25 tissue types are used in our analysis
maximal class label association. From information theoricluding: Adrenal Gland, Amygdala, Brain, Caudate
mutual information is a popular choice [31]. This is a symNucleus, Cerebellum, Corpus Callosum, Cortex, Dorsal Root
metric association metric and does not resolve the dinecfo Ganglion, Heart, HUVEC, Kidney, Liver, Lung, Pancreas,
dependency (i.e if features depend on the class label or vRguitary, Placenta, Salivary, Spinal Cord, Spleen, ¥esti
versa). It is important to find features that induce the cla3fialamus, Thymus, Thyroid, Trachea, and Uterus.
label. Feature selection from data implies selection @t In this context, the notion of tissue-specificity of a gene
of a feature subset that maximally captures the underlyingeds clarification. Suppose there &fegenesgi, g2,. .., gn
character (class label) of the data. There is no control theer and T tissue types (in GNFT' = 25), we construct aV x T
label (a purely observational characterization). tissue specificity matrix :M = [0]yxr. For each gene
With this motivation, a new metric for discriminativeg;,1 <i < N, let g; jo.57) = mediarig; ), vk € 1,2,...,T,
hexamer subset selection, termed “directed informati@n},( g being the expression level of gefiéin tissue’k’. Define,
is proposed. Based on the selected features, a classifiseds weach entryM, ;. as,
to classify sequences to tissue-specific or non-tissuerape

IIl. RATIONALE



Ensembl Gene ID AAAAAA  AAAAAG  AAAAAT  AAAACA

. ENSG00000155366 0

Mp=4 L gk = 2gi057); ENSG000001780892

! 0 otherwise ENSG00000189171

ENSG00000168664

ENSG00000160917

ENSG00000163655

Now consider the N dimensional vector m; =  ENSG000001228844

ENSG00000176749

Zk 1 M, 1 <i < N i.e. summing all the columns of each £y\sco0000006451
row. The inter-quartile range dfn’ can be used foits’/‘nts’ TABLE |

assignment. Gene indicéé that are in quartile 1 (=3), are Tue woriF FREQUENCY MATRIX' FOR A SET OF GENEPROMOTERS THE

labeled asts’, and those in quartile 4 (= 22), are labeled asIrRsT coLUMN IS THEIRENSEMBLGENE IDENTIFIERS AND THE OTHER
’ 4 COLUMNS ARE THE MOTIFS A CELL ENTRY DENOTES THE NUMBER OF

nts’.
. . . TIMES A GIVEN MOTIF OCCURS IN THE UPSTREAM-2000T70 +10008P
With this approach, a total 0924 probes representing FROM TSS)REGION OF EACH CORRESPONDING GENE

1817 genes were classified as tissue-specific, whil®6

probes representin2R73 genes were classified as non tissue-

specific. In this work, genes which are either heart-speoific

brain-specific are considered. From the tissue-specifiegemccording to the experimental protocol, the various region

obtained from the above approadh, brain-specific gene pro- are cloned upstream of a heat shock protein prombtspg8-

moters and 18 heart-specific gene promoters are obtained. Aacz), thereby not adhering to the idea of promoter specificity

mentioned in Sectioti/, one of the objectives is to find motifsin tissue-specific expression. Though this is of concermat t

that are responsible for brain/heart specific expressidratso there is loss of some gene-specific information, we work with

correlate them with binding profiles of known transcriptiothis data since we are more interested in tissue expressibn a

factor binding motifs. also due to a paucity of public promoter-dependent enhancer
2) Sequence Analysissenes s’ or ‘nts’) associated with data .

candidate probes are identified using the Ensembl EnsmarThis database also has a collection of ultraconserved el-

[http://www.ensembl.or§itool. For each gene, sequence fronements that do not have any transgenic expression in-vivo.

2000bp upstream and 1000bp down-stream upto the startToifis is used as the neutral/lbackground set of data which

the first exon relative to their reported TSS is extractednfrocorresponds to thants’ (non-tissue specific class) for feature

the Ensembl Genome Database (Release 37). The relatiedection and classifier design.

counts of each of thé® hexamers are computed within each As in the above (promoter) case, these sequences (seventy

gene-promoter sequence of the two categories (‘ts’ and) ‘ntfour enhancers for brain-specific expression) are pargettiéo

- using the'seqinr’ library in the R environment. A t-test absolute counts of thé)96 hexamers, a co-occurrence matrix

is performed between the relative counts of each hexan{@¥,,;, +1 = 74) is built and then t-tesp — values are used

between the two expression categorlesi (@nd'nts’) and the g find the top 1000 hexamerlsl(_ H{ H}, ..., Hjy) that

top 1000 significant hexamer$d( = Hy, Ha, ..., Hioo0) IS are maximally different between the two classes (braircifipe

obtained. The relative counts of these hexamers is reca@dpuénd brain-non-specific).

for each gene individually. This results in two hexamer@en The next three sections clarify the preprocessing, featere

co-occurrence matrices, - one for tts’ class (dimension |ection and classifier design steps to mine these co-oawcare

Nirain,+1 % 1000) and the other for thénts’ class (dimension matrices for hexamer motifs that are strongly associated wi

Nirain,—1 x 1000). Here Niygin,+1 and Nirqin,—1 are the the class label. We note that though this work is illustrated

number of positive training and negative training samplegsing two class labels, the approach can be extended in a

o
RONFRPNOOO N
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respectively. straightforward way to the multi-class problem.
The input to the feature selection procedure is a gene
promoter - motif frequency table (Table I). The genes raiéva V. PREPROCESSING

to each class are identified from tissue microarray analysis
following stepsl and2 above, and the frequency table is built From the aboveNi,4in,+1 x 1000 and Niyqin,—1 % 1000

by parsing the gene promoters for the presence of each of ¢i@ensional co-occurrence matrices are available for the
46 = 4096 possible hexamers. tissue-specific and non-specific data, both for the promoter

and enhancer sequences. Before proceeding to the feature
_ (hexamer motif) selection step, the counts of thé =
B. LRE motifs: 1000 hexamers in each training sample need to be normal-
To analyze long range elements which confer tiszed to account for variable sequence lengths. In the co-
sue specific expression, the Mouse Enhancer databaseurrence matrix, leyc; , represent the absolute count of
(http://enhancer.lbl.goy/ is examined. This database has the k* hexamerk € 1,2,..., M in thei** gene. Then, for
list of experimentally validated ultraconserved elemeavitich each geney;, the quantile labeled matrix ha¥;, = [ if
have been tested for tissue specific expression in transgepi; ;:—1 1y < 96k < 96 JLmp K =4 Matrices of dimension
mice [32], and can be searched for a list of all elemenmmm 41 X 1001, Nipgin,—1 x 1001 for the specific and
which have expression in a tissue of interest. In this work, wion-specific training samples are now obtained. Each matrix
consider expression in tissues relating to the developiamb contains the quantile label assignments for the0 hexamers



(X;,i€(1,2,...,1000)), as stated above, and the last columare predetermined (given to us by biology) and the only @ntr

has the corresponding class lab®l £ —1/ + 1). we have is the feature space onto which we project the data
points, for the purpose of classification. This loosely pais

VII. DIRECTEDINFORMATION AND FEATURE SELECTION the use the directed edges in bayesian networks for inferenc

The primary goal in feature selection is to find the minimef feature-class label associations [10].

subset of features (from hexamek/H’) that lead to maximal _ Unlike mutual information (MI), directed information (DI)
discrimination of the class label{ € (—1/ + 1)), using IS @ metric to quantify the directed flow of information.
each of thei € (1,2,.... (Nyain+1 + Nirain.—1)) gENES It was originally introduced in ([22], [23]) to examine the
during training. We are looking for a subset of the variabld€nsfer of information from encoder to decoder under feed-
(H.1,. .., Hi1000) Which are directionally associated with thePack/feedforward scenarios and to resolve directivityiryr
class label ¥;). These hexamers putatively influence/inducgidirectional information transfer. Given its utility inhe
the class label (Fig. 3). As can be seen from [33], there §c0ding of sources with memory (correlated sources), this
considerable interest in discovering such dependencigs frWOrk demonstrates it to be a competitive metric to MI for
expression and sequence data. Following [10], we search foRture selection in learning problems. DI answers which of

features (inmeasuremergpace) that induce the class label (if1€ €ncoding schemes (corresponding to each hexaifer
observationspace). leads to maximal information transfer from the hexamerlgbe

to the class labels (i.e. directed dependency).

The DI is a measure of the directed dependence between two
vectorsX; = [X1,;, Xo,is... Xni andY = [¥1,Y5,...,Y,].
In this caseX; ; = quantile label for the frequency of hexamer
i € (1,2,...,1000) in the ;' training sequenceY =
[Y1,Y2,...,Y,] are the corresponding class labels1(+1).
For a block lengthV, the DI is given by [23]:

N
IXN = yN) =Y I(X Y,y (1)
n=1

Using a stationarity assumption over a finite-length memory
of the training samples, a correspondence with the setup in
([23], [40]) can be seen. As already known [6], the mutual
information 7(X™; YY) = H(XN) — H(XN|YYN), where
H(XN)andH (XY |Y¥) are the Shannon entropy &f¥ and
the conditional entropy o given YV, respectively. With
this definition of mutual information, the Directed Infortizm

X4

Fig. 3. Causal Feature discovery for two class discrimimgtadapted from

[10]. Here the variables\; and X, discriminateY’, the class label. simplifies to,

One way to interpret the feature selection problem is the N
following: Nature is trying to communicate a source symbol (X" — y%) = Z[H(X”|y”—1) — H(X"|Y™)]
(Y € {-1/ + 1}), corresponding to the gene class label n=1

(‘nts/ts’), to us. In this setup, an encoder that extracts frequen- N

cies of a particular hexamefi() maps the source symbd'j = Z{[H(X”, Y* ) - HY" Y] - [H(X™,Y") - HY™)]}
to H;(Y). The decoder outputs the source reconstruction n=1

based on the received codewardY) = H;(Y). )

We observe that there are several possible encodindJsing (2), the Directed information is expressed in terms of
schemesc;(Y) that the encoder could potentially use = individual and joint entropies oK™ andY ™. This expression
1,2,...,1000), each corresponding to feature extraction vienplies the need for higher-order entropy estimation from
a different hexameH;. An encoder is the mapping rute : a moderate sample size. A Voronoi tessellation [24] based
Y — H,;. The ideal encoding scheme is one which induces thdaptive partitioning of the observation space can handle
most discriminative partitioning of the code (feature)apdor N = 5/6 without much complexity.
successful reconstruction &f by the decoder. The ranking The relationship between MI and DI is given by [23],
of each encoder’s performance over all possible mappings I(XY —Y/) = ZLI(X%MW*).
yields the most discriminative mapping. This measure of pevil: ~ I(XN;YN) = SN (XN y;|vi-1)
formance is the amount of information flow from the mapping: I(X» — Y¥) + [(0Y V-1 — X)),

(hexamer) to the class label. Using mutual information as on To clarify, I(XY — Y?¥) is the directed information
such measure indeed identifies the best features [31], tiwit fdrom X to Y, whereas/(0Y¥~! — X7¥) is the directed
to resolve the direction of dependence due to its symmetiidormation from a (one-sample) delayed versionot to
naturel(H;;Y) = I(Y; H;). The direction of dependence isX". From [40], it is clear that DI resolves the direction of
important since it pinpoints those features that inducecthgs information transfer (feedback or feedforward). If theseno
label (not vice-versa). This is necessary since these ldlhets  feedback/feedforward,( X~ — YV) = [(XN; YV).



From the above chain-rule formulations for DI and M, it isf,(Z) = LS 3 — (B %] < 1) with h ~
clear that the expression for DI is permutation-variagt (the 2.675, andn = 1000. I (XN — YN) is obtained by finding
value of the DI is different for a different ordering of rarmdo the DI for each random permutation of th€, Y series,
variables). Thus, we instead find tig(X" — Y¥), a DI and performing this permutatiof® times. As is the clear
measure for a particular ordering of thé random variables from the above expression, the Epanechnikov kernel is used
(rvs). The DI value for our purposd(X”~ — Y¥) is an for density estimation from the bootstrapped samples. The
average over all possible sample permutations given by, choice of the kernel is based on its excellent charactesisti
IXN - YNy = & Z;V:!l I,(XY — Y¥). For MI, how- - a compact region of support, the lowest AMISE (asymptotic
ever,I,(XY; YY) = [(XY; V") because, Ml is permutation- mean squared error) and favorable bias-variance trad@sf |
invariant (i.e., independent of r.v ordering). As can baliiga  We denote the cumulative distribution function
observed, this problem is combinatorially complex, anddeen (over the bootstrap samples) of(XN — YN) by
a monte-carlo sampling strategy000 trials) is used for FI;B(XNHYN)(I};(XN — YN)). Let the mean of the
computingZ (X" — Y). This is because we find that aboubootstrapped null distribution b, (X~ — Y~). We denote

1000 trials yields a DI confidence interval (CI) that is onlypy t1_a, the (1 — )™ quantile of this distribution i.e{t;_, :

20% more than the corresponding ClI obtained frb®000 P([IB(XNéYN)gIE(XNﬁYN)] < ti_a) =1 al}. Since we

trials of the data, a far more e_xh_austl\]/Ve ”“m?vef- need the trud (X — YV) to be significant and close to 1,
To.select-fei'gures, we maximize X - YY) over the we need/ (XY — YN > I5 (XY = YN)+1,_0 x 8], with

ggssm-lel pairs X,Y). This feature .sele(_:tu-)n pmb,'em for the& being the standard error of the bootstrapped distribution,

i** training instance reduces to identifying which hexamer [BF I, (XN oY N) I5(XN Y N2, o,

(k € (1,2,...,4096)) has the highesf(X; — Y). G = B ; B is the number of
The higher dimensional entropy can be estimated usiRgotstrap samples. _

order statistics of the observed samples [24] by iteratargip 1S hypothesis test is done for each of th#0 motifs,

tioning of the observation space until nearly uniform pantis N order to select the topd’ motifs based on DI value,

are obtained. This method lends itself to a partitioningeseh which is then used for cl_assmer training su_bsequentlysTh|

that can be used for entropy estimation even for a moder#f@ds to @ need for multiple-testing correction. Because th

number of samples in the observation space of the underlyf@gnferroni correction is extremely stringent in such sefsi,

probability distribution. Several such algorithms for ptiee ~ th€ Benjamini-Hochberg procedure [3], which has a higher

density estimation have been proposed ([42],[27],[29%) ean fa!se positive rate, but a lower false negative rate is used i

find potential application in this procedure. In this metbled this work.

ogy, a Voronoi tessellation approach for entropy estinmatio

because of the higher performance guarantees as well as the IX. SUPPORTVECTORMACHINES

relative ease of implementation of such a procedure. From the top’d’ features identified from the ranked list
The above method is used to estimate the true DI betweginfeatures having high DI with the class label, a support
a given hexamer and the class label for the entire training Sgactor machine classifier in the&& dimensions is designed.
Feature selection comprises of finding all those hexan®ss ( o SVM is a hyperplane classifier which operates by finding
for which I(X " — Y) is the highest. From the definition of3 maximum margin linear hyperplane to separate two dif-
DI, we know that) < (XY — YN) < I(X]V;Y™) < 0. To ferent classes of data in high dimension&l & d) space.

make a meaningful comparison of the strengths of assoniatiphe training data hasV(= Niyain. 41 + Nirain.—1) pairs
between different hexamers and the class label, we Us§,a y.\), (zs,12), ..., (zn,yn), with’ € R and yi €

normalized score to rank the DI values. This normalize{i_17+1}.

measurepp; should be able to map this large range, ¢o]) An SVM is a maximum margin hyperplane classifier in a

to [0, 1]. Following [13], an expression for the normalized Dhon-linearly extended high dimensional space. For extendi

is given by: _ v the dimensions fromd to D > d, a radial basis kernel is used.

ppr = V1 — e 2IN=YY) = /1 _ 2N IXIVIY D), The objective is to minimize|3|| in the hyperplandz :
Another point of consideration is to estimate the signifa@n f(;) = +73 + 3,1, subject to

of the DI value compared to a null distribution on the DI valugi(xfg + B0) > 1—&Vi, & > 0,5.& < constant [11].

(i.e. what is the chance of finding the DI value by chance from

the N-length seriesX; andY’). This is done using confidence

intervals after permutation testing (Saci11).

X. SUMMARY OF OVERALL APPROACH

Our proposed approach is as follows. Here, the term ’se-
VIIl. BOOTSTRAPPEDCONFIDENCEINTERVALS guence’ can pertain to either tissue-specific promotersRit L
In the absence of knowledge of the true distribution dfequences, obtained from the GNF SymAtlas and Ensembl
the DI estimate, an approximate confidence interval for tififtabases or the Enhancer Browser.
DI estimate {(XV¥ — Y)), is found using bootstrapping 1) The sequence is parsed to obtain the relative
[8]. Density estimation is based on kernel smoothing over th counts/frequencies of occurrence of the hexamer in that
bootstrapped samples [35]. sequence and to build the hexamer-sequence frequency
The kernel density estimate for the bootstrapped DI (with  matrix. The ‘seqinr’ package in R is used for this
n = 1000 samples)Z £ I (XN — Y™) becomes, purpose. This is done for all the sequences in the specific



(class“+ 1”) and non-specific (class— 1”) categories. (step7 above). Since the feature selection step is decoupled
The matrix thus hasV = Nyrgin,+1 + Nerain,—1 TOWs from the classification step, it is preferred that the tdp
and4% = 4096 columns. motifs are consistently ranked high among multiple draws of
2) The obtained hexamer-sequence frequency matrix is ptee data, so as to warrant their inclusion in the classifier.
processed by assigning quantile labels for each hexanmwever, this does not yield expected results on this data
within the i** sequence. A hexamer-sequence matrix &et. Briefly, a kendall rank correlation coefficient [15] was
thus obtained where th@, j)!* entry has the quantile computed between the rankings of the motifs between maeiltipl
label of thej* hexamer in thé'" sequence. This is donedata draws (by sampling a subset of the entire dataset), for
for all the N training sequences consisting of exampldsoth Ml and DI based feature-selection. It is observed that
from the —1 and+1 class labels. this coefficient is very low in both MI and DI, indicating
3) Thus, two submatrices corresponding to the two class &-highly variable ranking. This is likely due to the high
bels are built. One matrix contains the hexamer-sequenaiability in data distribution across these multiplewlsgdue
guantile labels for the positive training examples and the limited number of data points), as well as the sensitioity
other matrix is for the negative training examples.  the data-dependent entropy estimation procedure to thgeran
4) To select hexamers that are most different betweehthe samples in the draw. To circumvent this problem of
the positive and negative training examples, a t-test iisconsistency in rank of motifs, anedian DI/MI value is
performed for each hexamer, between fis&€ and‘nts’ computed across these various draws and thédofeatures
groups. Ranking the corresponding t-test p-values yieldased on the median DI/MI value across these draws are
those hexamers that are most different distributionalfyicked for SVM training [10].
between the positive and negative training samples. The
top 1000 of these hexamers are chosen for further X|. RESULTS
analysis. This step is only necessary to reduce the _ .
computational complexity of the overall procedure A. Tissue specific promoters
computing the DI between each of the 4096 hexamersWe use DI to find hexamers that discriminate brain-specific
and the class label is relatively expensive. and heart-specific expression from neutral sequences. The
5) For the top K = 1000 hexamers which are mostnegative training sets are sequences that are not brairaar he
significantly different between the positive and negativepecific, respectively. Results using the Ml and DI methods
training examples/(X}¥ — Y¥) and I(X;Y") are given below (Figs. 5 and 7). The plots indicate the
reveals the degree of association for each of the SVM cross-validated misclassification accuracy (ide@)ljor
(1,2,...,K) hexamers. The entropy terms in the dithe data as the number of features using the metric (DI or
rected information and mutual information expressioridl) is gradually increased. We can see that for any given
are found using a higher-order entropy estimator. Usirgjassification accuracy, the number of features using DI is
the procedure of SecVII, the raw DI values are less than the corresponding number of features using MI.
converted into their normalized versions. Since the goahis translates into a lower misclassification rate for Rbéd
is to maximizel (X, — Y’), we can rank the DI values feature selection. We also observe that as the number of
in descending order. features'd’ is increased the performance of Ml is the same
6) The significance of the DI estimate is obtained bases DI. This is expected since, as we gather more features
on the bootstrapping methodology. For every hexameusing Ml or DI, the differences in Ml vs. DI ranking are
ap = 0.05 significance with respect to its bootstrappedompensated.
null distribution yields potentially discriminative haxa An important point needs to be clarified here. There is a
ers between the two classes. The Benjamini-Hochbegrgssibility of sequence composition bias in the tissuesi§ige
procedure is used for multiple-testing correction. Ranknd neutral sequences used during training. This has been
ing the significant hexamers by decreasing DI valueported in recent work [38]. To avoid detecting GC rich
yields features that can be used for classifier (SVMyequences as hexamer features, it is necessary to confirm
training. that there is no significant GC-composition bias between the
7) Train the Support Vector Machine classifier (SVM) orspecific and neutral sets in each of the case studies. This is
the top’d’ features from the ranked DI list(s). Fordemonstrated in Figs. 4, 6 and 8. In each case, it is observed
comparison with the MI based technique, we use thbat the mean GC-composition is almost same for the specific
hexamers which have the toff (normalized) Ml values. vs. neutral set. However, in such studies, it is necessary to
The accuracy of the trained classifier is plotted as select for sequences that do not exhibit such bias. In Figs.
function of the number of featuregl)( after ten-fold 6 and 8, even the distribution of GC-composition is similar
cross-validation. As we gradually consider highét, among the samples. For Fig. 4, even though the distributions
we move down the ranked list. In the plots below, thare slightly different, the box plots indicate similarity inean
misclassification fraction is reported instead. A fractio®C-content.
of 0.1 corresponds t@0% misclassification. Next, some of the motifs that discriminate between tissue-
specific and non-specific categories for the brain promoter,
Note An important point concerns the training of the SVMheart promoter and brain enhancer cases respectively are
classifier with the togd’ features selected using DI or Mllisted in Table II. Additionally, if the genes encoding for
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Fig. 5. Misclassification accuracy for the MI vs. DI case {braromoter Fig. 7. Misclassification accuracy for the Ml vs. DI case (hgaomoter
set). Accuracy of classification is 0.9 i.e. 93%. set)

these TFs are expressed in the corresponding tissue [Zgnstraints.

a (*) sign is appended. In some cases, the hexamer motif§n  the context of the heart-specific genes,
match the consensus sequences of known transcriptiorsactge  consider the cardiac troponin  genecTKT,
(TF). This suggests a potential role for that particular iF IENSEMBL:ENSG00000118194), which is present in the
regulating expression of tissue-specific genes. This rr&chheart promoter set. An examination of the high DI motifs for
of hexamer motifs with TFBS consensus sites is done usifige heart-specific set yields motifs with the GATA consensus
the MAPPER engine hitp://bio.chip.org/mappej! It is to site, as well as matches with the MEF2 transcription fadtor.
be noted that a hexamer-TFBS match does not necessafit been established earlier that GATA-4, MEF2 are indeed

imply the functional role of the TF in the correspondingtiss involved in transcriptional activation of this gene [25]dzime
(brain or heart). However, such information would be us&dul results have been confirmed by ChIP [2].

guide focused experiments to confirm their role in-vivo (gsi
techniques such as chromatin immunoprecipitation).

As is clear from the above results, there are several ottfer Enhancer DB
motifs which are novel or correspond to non-consensus motif Additionally, all the brain-specific regulatory elements
of known transcription factors. Hence, each of the idemtifigorofiled in the mouse Enhancer Browser database
hexamers merit experimental investigation. Also, though whttp://enhancer.lbl.goy/ are examined for discriminating
identify as many a00 hexamers in this work (please seenotifs. Fig. 8 shows that the two classes have similar
Supplementary data), we have reported only a few due to sp&@-composition. Again, the plot of misclassification acayr
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selected for regulatory function across evolutionaryatises.
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A very interesting question emerges from the above pre-
sented results. What if one is interested in a motif that is
not present in the above ranked hexamer list for a particular
— T T 1 T T T tissue-specific set? As an example, consider the case for
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MyoD, a transcription factor which is expressed in muscle
and has a putative activity in heart-specific genes [28]. In

i . . o fact, a variant of its consensus motif - CATTTG is indeed
Fig. 8. GC sequence composition for brain-specific enhanaad neutral

non-coding regions.
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As in the previous case, some of the top ranking motif: *°[
from this dataset are also shown in Tallle The (*) signed |
TFs indicate that some of these discovered motifs indee __|
have documented high expression in the brain. The occlerenz..
of such tissue-specific transcription factor motifs in thes o«
regulatory elements gives credence to the discovered snotif °=
For example,ELK-1 is involved in neuronal differentiation °°[
[39]. Also, some motifs matching consensus sites of TEF1 ar
ETS1 are common to the brain-enhancer and brain-promote.
set. Though this is interesting, an experiment to confirm tip_fg. 11, Cumulative Distribuion Function for bootstragpe
enrichment of such transcription factors in the populatdén 7(Pax2 moti:GTTCC — Y); Y is the class label (UB/non-UB). True
brain-specific regulatory sequences is necessary. I(GTTCC—Y) = 0.9792.

0.7




in the top ranking hexamer list. The DI based framework
further permits investigation of the directional assaoiatof

the canonicaMyoD motif (CACCTG) for the discrimination

of heart-specific genes vs. housekeeping genes. This isnshow
in Fig. 10. As is observedylyoD has a significant directional
influence on the heart-specific vs. neutral sequence clask la
This, in conjunction with the expression level characterss

of MyoD, indicates that the motif CACCTG is potentially
relevant to make the distinction between heart-specific and
neutral sequences.

Another theme picks up on something quite traditionally
done in bioinformatics research - finding key TF regulators
underlying tissue-specific expression. Two major question
emerge from this theme.

1) Which putative regulatory TFs underlie the tissue-
specific expression of a group of genes?

2) For the TFs found using tools like TOUCAN [1], can
we examine the degree of influence that the particular
TF motif has in directing tissue-specific expression?

« To address théirst question, we examine the TFs revealed
by DI/MI motif selection and compare these to the TFs
discovered from TOUCAN [1], underlying the expression
of genes expressed on day4.5 in the degenerating
mesonephros and nephric duct (TS22). This set has about

10

obtained from the Mouse Genome Informatics database
at http://www.informatics.jax.org/Several programs are
used for such analysis, like Genomatix [41] or Toucan
[1]. Using Toucan, the promoters of the various UB
specific genes are aligned to discover related modules.
The top-ranking module in Toucan contaidslR-ARNT
Hox13 Pax2 Tallalpha-E47 Octl Again, the power of
these motifs to discriminate UB-specific and non-specific
genes, based on DI, can be investigated.

For this purpose, we check if theax2 binding motif
(GTTCC [7]) indeed induces kidney specific expression
by looking for the strength of DI between the GTTCC
motif and the class label{1) indicating UB expression
(Fig. 11). This once again adds to computational evidence
for the true role ofPax2in directing ureteric bud specific
expression [7]. The main implication here is that, from
sequence data, there is strong evidence foPthe& motif
being a useful feature for UB-specific genes. This is
especially relevant given the documented rolePai2
([9]) directing ureteric-bud expression of tEata3gene,
one of the key modulators of kidney morphogenesis. Both
the MyoD and Pax2 studies indicate the relevance of
principled data integration using expression ([36],[26])
and sequence modalities.

43 genes (includingsata?. These genes are available iy, Observations

the Supplementary data.
Using TOUCAN, the set of module TFs are combinations
of the following TFs: E47, HNF3B, HNF1, RREB1
HFH3, CREBP1 VMYB GFI1. These were obtained
by aligning the promoters of thesi8 genes {2000bp
upstream toet-200bp from the TSS), and looking for over-

With regard to the feature selection and classificationltgsu

N both studies (enhancers and promoters), we observe that
about 100 hexamers are enough to discriminate the tissue-
specific from the neutral sequences. Furthermore, some se-
guence features of these motifs at the promoter/enhancer

represented TF motifs based on the TRANSFAC/JASPAﬁnerge'

databases.

Using the DI based motif selection, a set2l) hexam-
ers are found that discriminate the$& gene promoter
sequences from the background housekeeping promotet
set. They map to the consensus sites of several known
TFs, such as (identified fronbio.chip.org/mappely
Nkx, Maxl, c-ETS FREAC4 Ahr-ARNT CREBP2 E2F,
HNF3A/B NFATG Pax2 LEF1, Max1, SP1 Tefl, Tcfll-

There is higher sequence variability at the promoter since
it has to act in concert with LREs of different tissue types
during gene regulation.

Since the enhancer/LRE acts with the promoter to confer
expression in only one tissue type, these sequences are
more specific and hence their mining identifies motifs that
are probably more indicative of tissue-specific expression

We however, reiterate that the enhancer dataset that we stud

MafG, many of which are expressed in the developingses thensp68-laczas the promoter driven by the ultracon-

kidney (http://www.expasy.ord/ Moreover, we observe S€rved elements. Hence there is no promoter specificityisn th
that the TFs that are common between the TOUCARPNtext. Though this is a disadvantage and might not reveal
results and the DI based approadiREAC4 Max1, all key motifs, it is the best that can be done in the absence
HNF3a/h HNF1, SP1 CREBP RREB1 HFH3 are O©f any other comprehensive repository.

mostly kidney-specific. Thus, we believe that this obser- The second aspect of the presented results highlight two
vation makes a case for finding all (possibly degeneratjPortant points. Firstly, the identified motifs have a sgo

TF motif searches from TRANSFAC, and filtering thenPredictive value as suggested by the cross-validatioriteeas
based on tissue-specific expression subsequently. Suciedl as Table/1. Moreover, DI provides a principled method-
strategy yields several more TF candidates for testing afP9y t0 investigate any given motif for tissue-specificity
validation of biological function. well as for identifying expression-level relationshipsvaeen

For thesecondquestion, we examine the following scefhe TFs and their target genes, (S&¢ : C).

nario. TheGata3gene is observed to be expressed in the

developing ureteric bud (UB) during kidney development. XIl. CONCLUSIONS

To find UB specific TF regulators, conserved TF modules In this work, a framework for the identification of hexamer
can be examined in the promoters of UB-specific genasotifs to discriminate between two kinds of sequencesugiss
These experimentally annotated UB-specific genes apecific promoters or regulatory elements vs non-specific
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