
Manifold Learning Visualization of Network Traffic Data ∗

Neal Patwari
npatwari@eecs.umich.edu

Alfred O. Hero III
hero@eecs.umich.edu

Adam Pacholski
apachols@umich.edu

University of Michigan
Dept. of Electrical Engineering and Computer Science

1301 Beal Avenue, Ann Arbor, MI, USA

ABSTRACT
When traffic anomalies or intrusion attempts occur on the
network, we expect that the distribution of network traffic
will change. Monitoring the network for changes over time,
across space (at various routers in the network), over source
and destination ports, IP addresses, or AS numbers, is an
important part of anomaly detection. We present a manifold
learning (ML)-based tool for the visualization of large sets
of data which emphasizes the unusually small or large corre-
lations that exist within the data set. We apply the tool to
display anomalous traffic recorded by NetFlow on the Abi-
lene backbone network. Furthermore, we present an online
Java-based GUI which allows interactive demonstration of
the use of the visualization method.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Monitoring. General Terms: Algorithms, Measurement.
Keywords: Internet traffic anomaly detection& forensics,
data mining.

1. INTRODUCTION
Statistical intrusion and anomaly detection methods allow

networks to be monitored for attacks for which attack signa-
tures have not yet been developed. However, the huge quan-
tity and high-dimensionality of internet traffic data are sig-
nificant challenges which research must overcome in order to
achieve high reliability and low false-alarm rates. Recently,
subspace-based analysis of traffic data by Lakhina, Crovella,
and Diot [1, 2] has shown that high-dimensional Abilene
traffic measurements can be well-represented within a very
low-dimensional subspace. The ‘curse-of-dimensionality’ can
be avoided when high-dimensional data can be represented
well in a low-dimensional subspace.

In this paper, we use a manifold learning method to take
very high-dimensional NetFlow traffic measurements from
the Abilene backbone network and reduce their dimension-

∗This research was supported in part by National Science
Foundation ITR Grant No. CCR-0325571.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

ality to two dimensions. The resulting 2-D ‘map’ of the mea-
surements provides a means for visualization of the relation-
ships which exist in a set of traffic data. These relationships
may be spatial, eg., between measurements taken across a
backbone network or between IP addresses, autonomous sys-
tems (AS), or origin-destination (OD)-flows; temporal, eg.,
measurements taken at different times; or between different
applications, as indicated by port numbers.

Such visualization is complementary to detection methods
which rely on dimensionality reduction. Subspace-based de-
tection [2] has been successfully used infer the presence of
spatial traffic distribution anomalies in network-wide traf-
fic measurements. This inference is done by quantifying
the amount of traffic which cannot be represented within
a low-dimensional subspace. The method we present in this
paper allows the visualization of the traffic which can be rep-
resented within a low-dimensional subspace. Furthermore,
this work uses a non-linear dimensionality reduction method
rather than a linear subspace method.

1.1 Related Work
Much research in dimensionality reduction and internet

traffic visualization are foundational to this paper.

1.1.1 Dimensionality Reduction
Classical multi-dimensional scaling (MDS) and principal

components analysis (PCA) are perhaps the most commonly
recognized dimensionality reduction methods, but they as-
sume that the high-dimensional data points lie on a lin-
ear subspace (for example, on a 2-D plane) of the high-
dimensional space. Manifold learning algorithms [3, 4, 5]
are more general - data may lie on a curved subspace. For
example, a 2-D manifold could be a portion of a sphere, or
a ‘swiss roll’. When high dimensional data points are ran-
dom but highly correlated with their close neighbors, data
points don’t tend to fall into linear subspaces. As a result,
manifold learning methods can be more effective than linear
methods like MDS.

Sketching is a dimensionality reduction method which pro-
jects data onto random linear lower dimensional subspaces,
in a way that preserves, inter-data distances, approximately,
with high probability [6]. Sketching has been used to dra-
matically reduce the number of dimensions necessary to
store multi-dimensional histograms [7]. Since the visual-
ization presented in this paper calculates distances between
multi-dimensional histograms, sketching could be used to
reduce the storage and communication complexity of a dis-
tributed implementation of the proposed method. Sketching
is not tested in this preliminary, centralized implementation.

Clustering of packet traffic data [8] is a data reduction
method in which unusually large concentrations of traffic
in feature space are automatically identified and reported.
Dimension reduction might help improve clustering perfor-
mance by reducing the ‘curse of dimensionality’.

In this paper, we use the manifold learning method, dis-
tributed weighted MDS (dwMDS) method [5]. Its key fea-
tures are: (1) An algorithm which allows for a distributed
implementation across the network with minimal commu-
nication requirements, (2) Consideration of prior informa-
tion, which allows use of a ‘typical’ map to be used as a
baseline, thus allowing for easy comparison of data maps
over time, (3) A weighted cost function that allows neigh-
bor relationships that are believed to be more accurate to
be weighted more heavily, and (4) A majorization-based op-
timization such that each iteration is guaranteed to improve
the value of the cost function.

1.1.2 Visualization
We believe that data visualization will complement sta-

tistical detection methods, and help provide information to
help a human moderator make a decision regarding whether
or not an anomaly has occurred, and if so, to determine its
temporal and spatial characteristics.

Visualization methods have found much use in network
monitoring. For example, visualization of flows by applica-
tion over time is commonly done using FlowScan [9]. Mon-
itoring the number of flows over time is an excellent tool
to identify DoS attacks. However, as attacks (such as the
Slammer worm) exploit smaller user populations, even ob-
scure services’ traffic must be monitored. Dimensionality
reduction is a means to monitor, separately, hundreds or
thousands of traffic statistics but to minimize the complex-
ity of the information display. Notably, the ‘Spinning Cube
of Potential Doom’ [10] graphically shows port scans and
worm activity in 3D by plotting recent packets’ IP source
and destination address and destination port. Such visual-
ization is also presented by NVisionIP [11], a multi-faceted
visualization tool which can filter traffic and ‘zoom in’ to
various network scales.

Graph visualization techniques have been used to show
the physical connections that exist in a network. Visualiza-
tions of the global internet, such as CAIDA’s Skitter plot
[12], are important statements about the interconnectivity
of the global network. Other tools developed at CAIDA,
such as Otter and Walrus, provide 2-D and 3-D visualization
of network graphs. The visualization method presented in
this paper provides information not just about the connec-
tions that exist, but also the traffic correlations that exist.
Connection distances match correlation - when correlation
between two nodes is high, they are plotted close together.

1.2 Framework
We frame the dimensionality reduction problem as a sen-

sor data localization problem. In this framework, ‘sensors’
are the hardware or software which record data, for exam-
ple, on each router in a backbone network. The traffic data
which they record can be of arbitrarily high dimension. For
example, rather than counting the grand total number of
flows (just one dimension), they would count the total num-
ber of flows from each source IP address (up to 232 dimen-
sions). The key to understanding a particular sensor data
map is to answer three questions:

Sensor Data Vectors

{yi} for i=1…N

NetFlow

Measurement Files

Scripts using

Flow-tools

Sensor Data Distances

{δi,j} for (i,j) ∈ C ⊆ {1…N}2

Calculate pair-

wise distances

Embed distances

in 2-D coords

Sensor Coordinates {xi},

Error Values {ei} for i = 1…N

Visualization

Sensor Map Graphic

Prior coordinate
information {xi}

& ri for i = 1…N

Section 1.3

Section 2

Section 3

Section 4

Figure 1: Flow chart of data visualization from Net-
Flow data input to data map output.

1. Where are the sensors?: Sensors can be ‘located’ at
physical computers, i.e., at backbone routers, or at
IP addresses; or they can be ‘located’ at less phys-
ical concepts such as source or destination ports, or
particular time periods. A sensor attached to a partic-
ular source port monitors only traffic which matches
its source port, and a sensor attached to a time moni-
tors only traffic which arrives during that time period.

2. What traffic statistic is recorded?: Sensors might mea-
sure flows, packets, or octets, or some combination.

3. What are the dimensions?: Sensors can divide traffic
by source or destination IP address, port, or AS; time
period; link or router; or some combination. Traffic
statistics are then recorded for each dimension sepa-
rately.

For example, in Section 4.1, sensors are located at back-
bone routers, recording the number of flows from each source
IP address. As another example, in Section 4.2, sensors are
located on destination port numbers, recording the number
of flows from each source IP address. As a final example, in
Section 4.3, sensors are located on backbone routers, record-
ing the total number of packets received in each of the past
T 5-minute time intervals.

We note that this framework can be used to describe the
measurements in [1], in which sensors were located at all 10-
minute time intervals over the course of a week, and sensors
measured total octets on each link across the (Sprint-Europe
or Abilene) backbone network.

We denote the data measured at sensor i as yi, where
i ∈ {1, . . . , N}, where N is the total number of sensors. The
high-dimensional vector yi is defined by,

yi = [yi(l1), yi(l2), . . . , yi(l|L|)], (1)

where L is the set of possible dimensions (see #3 above) with
|L| elements, and lk ∈ L∀k. In many cases, yi(lk) = 0 for
most of its elements lk, thus we store yi as a sparse vector.
For example, the set of possible IP addresses is much larger
than the set of IP addresses observed in a particular traffic
stream.

We use the flow-tools package created by Mark Fullmer
[13] to process NetFlow files in order to generate the data
for the vectors {yi}.

ATLA CHIN DNVR
130.14.24.0, 1545 129.25.0.0, 13913 129.25.0.0 14331

131.247.224.0, 1487 141.89.48.0, 8738 207.46.104.0 12142

128.61.64.0, 1197 207.46.104.0, 3708 207.46.248.0 7198

198.32.152.0, 1147 204.179.120.0, 3520 207.68.176.0 4968

164.111.192.0, 1139 203.250.224.0, 3441 64.4.16.0 4156

131.247.232.0, 1098 207.46.248.0, 3300 207.68.168.0 3707

...
...

...

Table 1: Example data: Top few lines of {yi} for 3

Abilene routers, flows by source IP (last 11 bits ze-

roed) for 5 minutes ending 20 Jan 2005 01:00 UTD.

2. MEASUREMENT DISTANCES
Next, distances between {yi}i are calculated. In this pa-

per, we normalize each data vector such that its sum is one:

ỹi =
yi

‖yi‖1 (2)

where ‖yi‖1 is the L1 norm, i.e., the total traffic measured
at sensor i. The value ỹi(l) thus is the fraction of traffic
measured in dimension l. We use this normalization to pre-
vent two sensors from being measured to be far apart solely
because they experience different absolute traffic levels. For
example, on Abilene, the Atlanta router generally records
about 1/3 of the Indianapolis router’s traffic. Without nor-
malization, these two routers would always be far apart.
With normalization, the distance between routers depends
on the distribution, rather than the total quantity of traffic.

Let δi,j be the distance between the measurement vectors
from sensors i and j. In this paper, we use the Euclidean
distance between ỹi and ỹj ,

δi,j =
h X

l∈|L|
(ỹi(l)− ỹj(l))

2
i 1

2
(3)

Other distance metrics, such as histogram intersection [14],
may be desirable in some cases, and this is a topic for future
research. Euclidean distance is a simple, symmetric and
finite distance metric used here as a proof of concept.

2.1 Neighbor Selection
Using the set {δi,j}, the sensor neighbor relation is deter-

mined. Intuitively, pairs of sensors which are ‘close’ to each
other will consider each other to be neighbors. We use the
K-nearest neighbors method to determine the neighbor set,
which we denote C ⊂ {1, . . . , N}2, In K-nearest-neighbors,
a pair i and j are neighbors if either j is one of the K near-
est neighbors of i, or j is one of the K nearest neighbors of
i. Specifically, i and j are neighbors if δ̃i,j is one of the K
smallest of either set {δi,k}k 6=i or set {δk,j}k 6=j .

2.2 Constant Map Size
We note that the shape of the map is important, but the

size of the map is not very informative. In fact, if the size
of the map changes, it will make it more difficult to view

it over time. To prevent this, we normalize distances by a
constant,

δ̃i,j = δi,j
Dx

Dy
(4)

where Dy =
P

(i,j)∈C δi,j is the sum of all of the distances

between neighbors, and Dx is a given, desired distance sum,
for some Dx ∈ R.

3. COORDINATE EMBEDDING
Using the distances {δ̃i,j}, for neighbor pairs (i, j) ∈ C, we

next calculate 2-D coordinate embedding. In the dwMDS
method, this means that we find the 2-D coordinates {xi}i=1...N

which best represent the pair-wise distances, and the prior
coordinate information, in a weighted-least-squares sense.
Specifically, we find the 2-D vectors {xi}i=1...N which min-
imize the following cost S,

S = 2

NX
i=2

i−1X
j=1

wi,j

h
δ̃ij − ‖xi − xj‖

i2
+

NX
i=1

ri‖xi−xi‖2 (5)

where wi,j is the weight assigned to the link (i, j), ri is
the weight assigned to the prior coordinate information for
sensor i, and xi is the prior coordinate given for sensor i.
First, we discuss the assignment of wi,j , and then, we discuss
the assignment of prior coordinate information.

3.1 Assignment of Weights
Weights wi,j allow pairs which are perceived to have a less

accurate measured distance to be down-weighted. Inspired
by the weighting frequently used in locally weighted regres-
sion methods (LOESS) [15], we use a weighting wi,j that is

a decreasing function of measured distance δ̃i,j :

wi,j =

(
exp

n
−δ̃2

i,j/h2
i,j

o
, if (i, j) ∈ C,

0, otherwise,
(6)

where hi,j = maxk{δ̃i,k, δ̃k,j}. This choice of wi,j is sym-
metric and equalizes the (nonzero) weight distribution in all
sensors. In the examples shown in [5], LOESS weighting re-
sults in higher precision than an alternative equal-weighting
scheme, i.e., wi,j = 1 for all neighbor pairs (i, j).

3.2 Prior Coordinate Information
Prior coordinate information is an option in the dwMDS

method. If there is no prior information for sensor i, we
set ri = 0. If all sensors have ri = 0, the calculated out-
put map can arbitrarily be translated, rotated, and flipped
without affecting its cost S. The purpose of the map is to
show the relationships between sensors’ data, and as such,
translation, rotation, and flipping do not change the mean-
ing of the map. However, if the user will view many maps in
sequence over time, it would be confusing if each subsequent
map was nearly identical but with arbitrary rotation. Prior
coordinate information (ri > 0) is a means to provide a sta-
ble orientation for a sensor map. For example, for the sensor
maps presented in Section 4.1, we use the mean coordinates
plotted in Fig. 2(a) as the prior coordinates {xi}.

For 0 < ri < ∞, the choice of ri determines how sensi-
tive the sensor’s location is to changes in sensor data. A
high ri, that is, ri À

P
j wi,j will mean that node i will be

estimated to be very close to xi except in extreme circum-
stances. In Section 4.1, we use a low ri, i.e.ri = 10−3, which

is ¿P
j wi,j , so that the prior coordinates are used only to

remove translational and rotational degrees of freedom. The
shape of the sensor map is not affected when such a low ri

is used. The web applet presented in Section 4.3 allows ri

to be set by the user; so testing at different ri is possible.

3.3 Algorithm Overview
The dwMDS algorithm is a distributable, iterative algo-

rithm to minimize S and thus find the desired 2-D coor-
dinate embedding. In this paper, we only present a broad
overview of the dwMDS algorithm, and refer to [5] for more
details.

The dwMDS is distributable because the global cost S in
(5) is separable by sensor, i.e., S =

PN
i=1 Si, where Si is

sensor i’s contribution to the cost. Sensor i can minimize Si

using only distances δ̃i,j between itself and its neighbors j,
and its neighbors’ most recent 2-D coordinate estimate. This
minimization is done using a simple majorization method,
which guarantees non-increasing cost in each round of the
optimization. After sensor i minimizes Si, it updates its
neighbors with its new coordinate estimate. Then, it passes
to the sensor i + 1, which performs its own minimization.
The algorithm visits each sensor in turn, and may perform
several rounds until convergence.

We use a centralized implementation of the dwMDS al-
gorithm, in which the data is collected and optimized at
a single processor [16]. This is used to demonstrate the
visualization method’s capabilities, but the distributed im-
plementation discussed here and in [5] is future work. We
limit ourselves to 2-D sensor maps in this paper, but the
dwMDS method could produce higher dimensional coordi-
nates, if desired.

3.4 Error Metric
We also define an error value e2

i for sensors i ∈ {1, . . . N}:

e2
i =

X

(i,j)∈C
wi,j

�
δ̃ij − ‖xi − xj‖

�2

(7)

The value of ei quantifies the information lost in the 2-D
representation of sensor i’s coordinates. It represents the
quantity of measurement distances {δ̃i,j}j which are not rep-
resented by the 2-D coordinates of itself, xi, and its neigh-
bors, {xj}. The value e2

i is analogous to the residual value
in PCA and can be used to help decide whether or not the
sensor’s data is anomalous [1]. In this paper, we ‘shade’
each sensor as a function of ei: low ei is white, and high ei

is black. Examples are presented in the following section.

4. CASE STUDIES
In this section we show several examples of the visualiza-

tion method on Abilene traffic data. We use NetFlow data
recorded during January 2005, available from the Abilene
Observatory [17]. Note that, for privacy reasons, only the
most significant 21 bits of IP addresses are available - the
last 11 bits are zeroed out. Furthermore, NetFlow data is
sampled at 1/100, so for each packet reported here, there
were 99 more unrecorded.

4.1 Router Maps
When sensors are routers in a backbone network, the

‘router map’ shows the spatial characteristics and correla-
tions of the routers’ traffic, rather than just the connectiv-
ity of the routers. In the following examples, sensors are

routers, and we measure flows in a 5-minute period, sepa-
rated by source IP address. (Example vectors are shown in
Table 1.) The size of each sparse data vector is limited to
1000 – flows not from the top 1000 source IP addresses (/21)
for a particular router are ignored. For this reason, source
IP addresses are typically lost if they have less than 10-50
flows. We set the number of neighbors to K = 5.

4.1.1 Typical Activity
First, we characterize ‘typical’ router map behavior by

calculating router maps for the four-week period 02-Jan to
29-Jan. Since a router map is calculated for each 5 minute
period, we calculate a total of 4 ∗ 7 ∗ 24 ∗ 60/5 = 8064 maps.
The sample mean and covariance of xi over the 8064 maps
is shown in Fig. 2(a). Although there are certainly attacks
active during this 4-week period, averaging maps over a long
period of time provides intuition about the typical behavior
for the router map.

The typical router map in Fig. 2(a) both makes sense
geographically and describes typical traffic patterns seen on
Abilene. Much of Abilene traffic is East-West or West-East,
and Northern routers (especially DNVR, KSCY, IPLS, and
CHIN) bear much of this traffic. These routers have very
correlated sensor data because a significant proportion of
Abilene OD-flows pass through all of them.

4.1.2 06-Jan-2005
First, we show that the router map changes very dra-

matically with very large traffic changes. On Thursday, 6-
Jan-2005, during the 5-minute period ending at 17:55 UTD,
NetFlow recorded on the CHIN router a total of 9 × 104

single-packet flows (of 40-byte packets) from two source IP
addresses in Taiwan to a small range of destination IP ad-
dresses in Hungary. This volume is about 25% of the typical
flow volume on CHIN. The anomalous traffic was observed
on CHIN and no other router, thus distances between sen-
sor data recorded at CHIN and other routers are unusually
high, and the 2-D coordinates for CHIN must be distant
from all the others. Also, because of the normalization done
to calculate δ̃ from δ, the rest of the map distances have
shrunk to compensate. This is shown in Fig. 2(b).

4.1.3 20-Jan-2005
On Thursday, 20-Jan at 01:00 UTD, there are a large

number (14,000) of 29-byte UDP packets from a 129.25.0.0
(Drexel U.) source IP address sent to a 131.252.120.0 (Port-
land State U.) destination (see Table 1). The packets are
from source port 3095 or 3096 to a wide range of destina-
tion ports > 1024. These packets travel through the WASH,
NYCM, CHIN, IPLS, KSCY, DNVR, and STTL (Northern)
routers, but not through any other routers. Distances be-
tween the listed Northern routers and the other Southern
routers are unusually high. In the router map shown in
Fig. 2(c), there is a clear split in the map between the two
sets of routers.

4.2 Port Maps
Next, we present ‘port maps’, which can be used to visu-

ally detect ports which exhibit anomalous traffic. For a port
map, each sensor is attached to a destination port (only sees
flows which match the port) and record the number of flows
per source IP address. We would expect that attacks or
scanning activity would exhibit very different distributions

(a)
−2 −1 0 1 2

−2

−1

0

1

2

ATLA

CHIN
DNVR

HSTN

IPLSKSCY

LOSA

NYCM

SNVA

STTL

WASH

X Coordinate

Y
 C

oo
rd

in
at

e

(b)
−2 −1 0 1 2

−1

0

1

2

3

4

ATLA

CHIN

DNVR

HSTN

IPLSKSCY

LOSA

NYCM

SNVA

STTL

WASH

X−Coordinate

Y
−

C
oo

rd
in

at
e

(c)
−2 −1 0 1 2

−2

−1

0

1

2

ATLA

CHIN

DNVR

HSTN

IPLS

KSCY

LOSA

NYCM

SNVA

STTL

WASH

X−Coordinate

Y
−

C
oo

rd
in

at
e

Figure 2: (a) Mean (•) and 1-σ uncertainty ellipse (- - -) of router maps from 2-Jan to 29-Jan. Maps during
(b) port scan on 6-Jan 17:55 and (c) attack on 20-Jan 01:00, show router coordinates (•) connected (- - -) to
the mean (·) from (a), and shaded by error value ei. All figures show Abilene backbone links (—).

of source IP addresses as compared to ports that aren’t the
subject of attacks or scans. The port map can be calculated
using only the data at one particular router (Fig. 3 uses data
from IPLS).

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

dpo80

dpo1433

dpo119
dpo53dpo1863

dpo4899

dpo4970
dpo443dpo25

dpo22

dpo388

dpo12323

dpo5850

dpo1434

dpo123
dpo6660dpo3124

dpo4000

dpo8089
dpo3386

dpo7614

dpo4121

dpo4662

dpo445

dpo23127

dpo9000

dpo20

dpo21
dpo8765

dpo6881

X−Coordinate

Y
−

C
oo

rd
in

at
e

Figure 3: Destination port map for 01-Jan-2005 at
3:35 UTD (•dpo#) along with past 1 hour map his-
tory (dotted line circles). Sensors are attached to
the top 30 destination ports (by total flows) and
measure number of flows per source IP address.

Here, we attach sensors to the top 30 ports (by number
of flows). We measure flows per source IP address within
the current 5 minute time period. Then, the port map is
calculated with K = 15 and no prior (ri = 0 for all i). For
comparison, we include port maps calculated over the past
hour, which have been rotated and translated to line up with
the most recent map, for ease of comparison. Fig. 3 shows
an example for 1-Jan-2005. While most ports fall very close
to each other near the origin, a few ports have very different
source IP address distributions, thus are placed far from
the center and have a higher ei (as indicated by the darker
shade of their circle). Notably, destination ports with known

vulnerabilities, 9000, 1433, 7614, 3386, 4000, 445, 22, 4899,
and 1434 are mapped far from the center.

Many of these ports are mapped to be ‘abnormal’ over
a wide range of time (days), but destination port 7614 ap-
peared on the port map rarely. Its appearance at 03:55 cor-
responds to a scan originating from source IP 211.82.216/21
to destination port 7614 using single, 48-byte packet flows.
The port map emphasizes such a small (480 flows out of
1.2 × 105 total) scan because 100% of port 7614 traffic has
an otherwise unrecorded source IP address.

4.3 Map Web Applet
We have available a Java-based applet which displays tem-

poral and spatial traffic on the Abilene backbone [16], as
shown in Fig. 4. The applet has a graph of the traffic for
each router, and can plot traffic levels from 21 different sets
of ports grouped by application.

In addition to displaying the traffic by port and time, the
applet calculates a router map for each time. In this router
map, the sensors are routers, and they measure total pack-
ets, by port and 5-minute time interval. The user can select
which groups of ports, and the number of time intervals to
use as dimensions. Rather than normalizing to calculate
ỹi(l) as described by (2), we use ỹi(l) = yi(l)−yi(l), where
yi(l) is the median of the past Tm time samples, where Tm is
also user-adjustable. Using a filtered traffic stream empha-
sizes the changes that occur over time. When traffic changes
over time, the router map shows where (which routers) the
change is most dramatic. Details are available online [16].

5. FUTURE WORK AND CONCLUSION
We have introduced a visualization tool which can aid in

the discovery of traffic anomalies in high-dimensional Net-
Flow data. We urge the reader to visit the online repository
to view other sensor maps and to utilize the web-based vi-
sualization applet [16]. Clearly, manifold learning methods
can be used to provide information about relationships that
exist in sets of network traffic data.

Figure 4: Total traffic and
port 80 traffic on 05-Jan-
2005, displayed using the
visualization applet [16].
The router map is calcu-
lated for 08:25 UTD, dur-
ing scheduled maintenance
of the CHIN-IPLS link,
during which traffic drops
at CHIN and IPLS and in-
creases dramatically at the
HSTN and ATLA routers.

Future work will attempt to automate the detection and
classification process, similar to the application of subspace-
based detection methods in [1, 2]. Further, other distance
metrics may better emphasize similarities in traffic distribu-
tions; and other manifold-learning methods such as Isomap
[3] should also be tested. It is hoped that router maps, port
maps, and other types of sensor maps may together serve
as a step-by-step investigation aid, iteratively helping to lo-
cate a traffic anomaly in a very high-dimensional spatial and
temporal data space.

Acknowledgements
The authors thank Panna Felsen, who initiated the visual-
ization applet as part of the NASA SHARP program.

6. REFERENCES
[1] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing

network-wide traffic anomalies,” in ACM SIGCOMM
’04, Aug. 2004.

[2] ——, “Characterization of network-wide anomalies in
traffic flows,” in ACM/SIGCOMM Internet
Measurement Conference, Oct. 2004.

[3] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A
global geometric framework for nonlinear
dimensionality reduction,” Science, vol. 290, pp.
2319–2323, Dec 2000.

[4] S. T. Roweis and L. K. Saul, “Nonlinear
dimensionality reduction by local linear embedding,”
Science, vol. 290, pp. 2323–2326, Dec 2000.

[5] J. A. Costa, N. Patwari, and A. O. Hero III,
“Distributed multidimensional scaling with adaptive
weighting for node localization in sensor networks,”
IEEE/ACM Trans. Sensor Networks, submitted May
2004, (revised Jan. and May 2005). [Online]. Available:
http://www.eecs.umich.edu/∼hero/comm.html

[6] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss, “QuickSAND: Quick summary and

analysis of network data,” DIMACS, Tech. Rep.
2001-43, Nov. 2001. [Online]. Available: http://www.
math.lsa.umich.edu/∼annacg/ps.files/quickdimacstr.ps

[7] N. Thaper, S. Guha, P. Indyk, and N. Koudas,
“Dynamic multidimensional histograms,” in ACM
SIGMOD 2002, June 2002, pp. 428–439.

[8] C. Estan, S. Savage, and G. Varghese, “Automatically
inferring patterns of resource consumption in network
traffic,” in ACM SIGCOMM’03, Aug. 2003, pp.
137–148.

[9] D. Plonka, “FlowScan: A network traffic flow
reporting and visualization tool,” in Large Installation
System Administration (LISA) Conference 2000, Dec.
2000, pp. 305–317.

[10] S. Lau, “The spinning cube of potential doom,”
Communications of the ACM, vol. 47, no. 6, pp.
25–26, June 2004.

[11] K. Lakkaraju, W. Yurcik, and A. J. Lee, “NVisionIP:
Netflow visualizations of system state for security
situational awareness,” in ACM VizSEC/DMSEC04,
Oct. 2004, pp. 65–72.

[12] Cooperative Association for Internet Data Analysis
(CAIDA). http://www.caida.org/.

[13] M. Fullmer and S. Romig, “The OSU Flow-tools
package and Cisco NetFlow logs,” in Large
Installation System Administration (LISA) Conference
2000, Dec. 2000, pp. 291–303.

[14] M. J. Swain and D. H. Ballard, “Color indexing,”
Int. J. Comp. Vision, vol. 7, no. 1, pp. 11–32, 1991.

[15] W. Cleveland, “Robust locally weighted regression
and smoothing scatterplots,” J. American Statistical
Assoc., vol. 74, no. 368, pp. 829–836, 1979.

[16] Map-tools online supplement.
http://www.engin.umich.edu/∼npatwari/mnd05.

[17] Internet2: Abilene Observatory.
http://abilene.internet2.edu/observatory/.

