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ABSTRACT
This paper is concerned with joint Bayesian endmember ex-
traction and linear unmixing of hyperspectral images using a
spatial prior on the abundance vectors. We hypothesize that
hyperspectral images are composed of two types of regions.
For the first type, the material proportions of adjacent pixels
are similar and can be jointly characterized by a single vec-
tor, and in the second, neighboring pixels have very different
abundances and are characterized by unique mixing propor-
tions. Using this hypothesis we propose a new unmixing algo-
rithm which simultaneously segments the image into such re-
gions and performs unmixing. The experimental results show
that the new algorithm can lead to improved MSE of both the
extracted endmembers and the estimated abundances in low
SNR cases.

Index Terms— Hyperspectral Imaging, Multiscale Seg-
mentation, Sticky Hierarchical Dirichlet Process.

1. INTRODUCTION

The hyperspectral unmixing problem is concerned with the
decomposition of the hyperspectral image into a product
form, where the spectrum in each pixel is represented as a
collection of material spectra that are referred to as endmem-
bers, and the mixing proportions of these materials in each
pixel that are known as the abundances [1]. One popular
approach to this problem is to first estimate the endmembers
using endmember extraction algorithms such as N-FINDER
[2] or vertex component analysis (VCA) [3], and subse-
quently estimate the abundances using Bayesian or least
squares methods. Another method proposed recently in [5]
uses a fully Bayesian approach to estimate the endmembers
and abundances simultaneously.

Most existing unmixing algorithms assume that the mix-
ing proportions of each pixel are independent of its neighbors.
This may not be justified when the spatial resolution of hyper-
spectral images is high and the abundances in adjacent pixels
are correlated. One may consider cases where an image patch
represents a large body of water or a vegetation field, where
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adjacent pixels are expected to have similar abundances, thus
there may be a benefit to exploit dependencies between such
neighboring pixels. The advantage of addressing spatial de-
pendencies in the context of hyperspectral imaging has also
been demonstrated to be effective in [6]. In this work we
assume that a hyperspectral image can be segmented into re-
gions where the abundance vector can either be shared by all
the pixels in the region, or each pixel can have an indepen-
dent abundance vector. We assume that each of these seg-
ments is spatially smooth and propose a hidden Markov tree
sticky hierarchical Dirichlet process (HMT-SHDP) to enforce
this property while estimating the number of homogeneous
abundance regions. The main advantage of using quadtree
structured spatial priors, as opposed to other methods such
as Markov random fields (MRF) [4], is that hyper-parameter
estimation is much simplified compared to MRF [7]. Further-
more, the use of a SHDP enables the number of classes to
be learned in an unsupervised fashion. A HMT that is based
on hierarchical Dirichlet process was proposed in [9] where it
was applied to image de-noising using wavelets. The HMT-
SHDP that we present differs from [9] in that: (a) ours is
sticky and therefore can capture the persistence-across-scale
property; (b) our observations are only available at the leaves
rather than in each node. Our experimental results verify that
the new approach leads to improved estimation of the end-
members and abundances.

This paper is organized as follows. Section 2 presents
background on the linear mixing model and the SHDP,
whereas Section 3 presents the new unmixing algorithm.
Section 4 presents the experimental results, and Section 5
concludes this paper.

2. BACKGROUND

2.1. The linear mixing model

Let P denote the number of pixels in the image, where each of
the pixels is composed of D spectral bands [yp,1, . . . , yp,D]T ,
then the linear mixing model (LMM) takes the form [5]

yp =
R∑
r=1

mrap,r + np, p = 1, . . . , P (1)



where mr = [mr,1, . . . ,mr,D]T denotes the rth endmember,
ap,r is the fraction of endmember r in pixel p, R denotes
the number of endmembers, and np is a zero mean Gaus-
sian noise with covariance matrix Σ = σ2I. We also denote
ap = [ap,1, . . . , ap,R]T .

2.2. The sticky HDP

The Dirichlet process (DP) [8] has been often used to perform
model order selection in mixture models. Let H denote a
distribution on a parameter space Θ. Denote the Dirichlet
process by DP(γ,H) where G0 =

∑∞
k=1 βkδθk

, θk ∼ H ,
and where the weights βk are obtained using a stick breaking
construction with parameter γ,

βk = β′k

k−1∏
`=1

(1− β′`), β′k ∼ Beta(1, γ). (2)

The HDP Gj is then obtained as a DP with the base distribu-
tion G0, i.e. Gj ∼ DP(α,G0). Equivalently we have that

Gj =
∞∑
k=1

πjkδθk
, πj ∼ DP(α,β). (3)

The HDP can be used as a prior for the transition probabili-
ties in a hidden Markov model, where the transition probabil-
ities from each state are sampled from the base measure G0.
However since the HDP satisfies the property E[Gj |G0] =
G0, it is very unlikely that the self transition probabilities
for all the states will be sufficiently large. To ensure state
persistence in applications such as segmentation where per-
sistence is required, the SHDP was proposed in [8]. The
SHDP modifies equation (3) such that πj is sampled from
πj ∼ DP(α + κ,

αβ+κδj

α+κ ) instead of πj ∼ DP(α,β) where
κ is a nonnegative constant. This has the effect of increasing
the self transition probability for every state and hence the
“sticky” HDP nomenclature.

3. THE BAYESIAN MODEL

The graphical model representation of the Bayesian unmixing
algorithm is shown in Figure 1. The likelihood of the obser-
vation matrix Y = [y1, . . . , yP ] is explicitly obtained from
the LMM. The HDP base stick breaking process β, and the
derived transition probabilities π

(`)
k ∀k = 1, . . . , L − 1, are

obtained similarly to those described in the Section 2.2. Next
we describe the priors used for each of the remaining random
variables, and the inference using the Gibbs sampler.

3.1. Endmember Spectral Prior

We propose a prior for the endmembers similar to [5] where
dimensionality reduction and the positivity constraint on
spectra are used to define a set over which the endmembers
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Fig. 1. Graphical model representation for the image seg-
mentation algorithm. The wide arrow notation denotes con-
nections between levels of the quadtree.

are constrained. The prior then takes the form of a multi-
variate Gaussian distribution truncated over this set. Let ȳ
denote the mean spectral bands averaged over all pixels and
let Υ denote the empirical covariance matrix of the spectral
bands computed using all the hyperspectral data. Then by
projecting the endmembers onto the subspace spanned by the
principal components of Υ, the dimensionality of the admis-
sible endmembers and abundances is reduced. Specifically,
let D denote a diagonal matrix with the K largest eigenval-
ues of Υ arranged along the diagonal, and similarly let V
denote a matrix with the columns that are the eigenvectors
corresponding to the K largest eigenvectors, then the end-
member mr is projected into the lower dimensional space
using tr = P(mr − ȳ), where P = D−1/2V. Equivalently
we have that mr = P†tr + ȳ, where † denotes the pseudo
inverse. Using the positivity of the endmembers spectra it
can be shown that the admissible set for tr takes the form
Tr =

{
tr
∣∣ȳd +

∑K
k=1 ud,ktk,r ≥ 0, d = 1, . . .D

}
. The

endmember prior then takes the form of a truncated Gaus-
sian on the set Tr, φTr

(tr|er, s2rI) ∝ φ(tr|er, s2rI)1Tr
(tr),

where 1Tr
(x) is a function that returns one if x is inside the

set Tr and zero otherwise, and φ(tr|er, s2rI) is a multivariate
Gaussian with mean er and covariance matrix s2rI. The mean
vectors er are chosen using the VCA algorithm [3], and the
variances s2r are fixed to some large values, r = 1, . . . , R. We
also use the notation T = [t1, . . . , tR].

3.2. Noise variance prior

The noise variance parameter σ2 is an inverse-gamma dis-
tribution with parameters 1 and γ0/2, where γ0 is also dis-
tributed as f(γ0) ∝ 1

γ0
1R+(γ0).



3.3. Label Prior

Consider the quadtree lattice, where the nodes are discrete
random variables that take their values from the set {1, . . .K}.
We denote the labels by z

(`)
p , ∀p = 1, . . . , P/4`−1, ∀` =

1, . . . ,L, where L denotes the number of levels in the
quadtree. We also denote the vector containing all the la-
bels at the `th level by z(`). The labels {z(1)

p }Pp=1 at the
bottom most level of the quadtree, are associated with the
appropriate pixels of the hyperspectral image. We assume a
Markovian relationship between the labels on the quadtree
lattice. Specifically, let us define the likelihoods

π
(`)
ji = p(z(`)

p = i|z(`+1)
Pa(p) = j), (4)

where Pa(p) denotes the parent node of p, then the joint prob-
ability mass function of all the labels takes the form:

p({z(`)}L`=1|{π(`)}L−1
`=1 ) = p(z(L))

L−1∏
`=1

P

4`−1∏
p=1

π
(`)

z
(`+1)
P a(p)z

(`)
p

.

(5)
It can readily be observed that by forcing larger self transi-
tion probabilities, i.e. πii > πji ∀i 6= j, one can effectively
encourage the formation of spatially smooth label regions at
lower levels of the quadtree.

3.4. Abundance prior

Our algorithm employs two types of abundance parameters:
(1) ap, p = 1, . . . , P , which are associated with each pixel
independently; (2) āk, k = 2, . . . ,K, which are associated
with a group of pixels that have very similar abundances. The
abundance vector assigned to each pixel is determined using
the labels z(1). Let z(1)

p = k, then if k = 1 the abundance
vector of the pth indexed pixel is equal to ap, otherwise it is
equal to āk. Similarly to [5], we use abundance priors that are
uniform on the validity set which satisfies the positivity and
sum to one constraints.

3.5. Gibbs sampler

Estimation of the random parameters is performed using a
blocked Gibbs sampler that is outlined in Algorithm 1. The
infinite Dirichlet process is approximated using a finite mix-
ture with K mixtures.

4. EXPERIMENTAL RESULTS

We generated a 50×50 hyperspectral image with 200 spectral
bands by generating the abundance vectors randomly from
four truncated multivariate Gaussians with given means and
covariance matrix 0.001 × I. The simulated endmembers are
shown in Figure 3(a)-(c). The segmented image for the 5db
case is shown in Figure 3(d), where the darkest gray level

0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength(µm)

R
ef

le
ct

an
ce

Fig. 2. Experimental results for SNR of 5db. The solid lines
are the true endmembers, the dashed lines are the endmem-
bers estimated using the HMT-Bayesian algorithm, and the
dotted lines are the endmembers extracted using the Bayesian
method in [5].

corresponds to regions where each pixel has a different abun-
dance vector, and non-black gray levels correspond to a group
of pixels that share the same mixing proportions. The MSE
results in Table 1 show that the new approach can improve the
estimation performance of the abundances as compared with
[5] for low SNR. Similarly Figure 2 which corresponds to
SNR of 5db, shows that the endmembers extracted using the
joint segmentation and unmixing method are more accurate
compared to the Bayesian algorithm presented in [5].

SNR Bayesian HMT-Bayesian
5db 50 23.5
10db 40 22.2
15db 18.7 19.5

Table 1. The MSE of the estimated abundances for different
SNRs.

5. CONCLUSIONS

We presented a new hyperspectral unmixing algorithm which
uses spatial constraints in order to improve endmember and
abundance estimation performance. A HMT-SHDP was pre-
sented and used as a spatial prior which enables inference of
the number of regions in an unsupervised fashion. The exper-
imental results verify that the new method can improve the
performance of abundance and endmember estimation in low
SNR scenarios.



(a) endmember 1 (b) endmember 2

(c) endmember 3 (d) The segmented image

Fig. 3. The simulated abundances and the segmented image.
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Algorithm 1

1. For ` = 1, . . . ,L compute:

b(`)p`
(k) =

{
N (yp`

; Mãp, σ2I), ` = 1∏
j∈c(p`)

∑K
i=1 π

(`−1)
ki b

(`−1)
j (i), else

where c(p`) denotes the set composed of the children
of node p`. If z(1)

p = 1 then ãp = ap, else ãp = ā
z
(1)
p

.

2. For ` = L, . . . , 1 sample the state assignments z(`)
p` :

z(`)
p ∝

K∑
k=1

π
(`+1)

z
(`+1)
p k

b(`)p`
(k)1k(z(`)

p )

3. Compute n(`)
jk =

∑
p`

∑
i∈c(p`)

1(z(`)
p` = j, z

(`−1)
i =

k)

4. Sample the auxiliary variables m, w, m̄ as follows

p(m(`)
jk = m|n(`)

jk ,β, α, κ) ∝ s(n(`)
jk ,m)(αβk + κ1(k = j))m

p(w(`)
jt |β, α, κ) ∝

{
βjα
α+κ , w

(`)
jt = 0

κ
α+κ , w

(`)
jt = 1

, t = 1, . . . ,m(`)
j,k

m̄
(`)
jk =

{
m

(`)
jk , j 6= k

m
(`)
jj −

∑m
(`)
jk

t=1 w
(`)
jt , j = k

where s(n,m) are unsigned sterling numbers of the
first kind.

5. Sample the new base transition probabilities

β ∼ Dir(γ/K +
∑
j,`

m
(`)
j1 , . . . , γ/K +

∑
j`

m
(`)
jK).

6. Sample the new base DP

π
(`)
k ∼ Dir(αβ1+n(`)

k1 , . . . , αβk+κ+n(`)
kk , . . . , αβK+n(`)

kK)

7. Sample the new group partial abundance vectors c̄k,
k = 2, . . . ,K from φ(c̄k|νk,Σk)1Sc(c̄k), where,

Σ−1
k = |Zk|(M−R −mR1TR−1)TΣ−1

n (M−R −mR1TR−1)

Σ−1
k νk = (M−R −mR1TR−1)TΣ−1

n

(
1
|Ik|

∑
p∈Ik

yp −mR

)

where Ik = {p|z(1)
p = k}, and set āk =

[ c̄k 1− 1TR−1c̄k ]T .

8. Sample the endmembers, abundances ap, and noise
variance σ2, using the same formulas given in [5].


