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Figure 1:http://www.accessexcellence.org
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I. Bioinformatics background
� Every human cell contains 6 feet of double stranded (ds) DNA

� This DNA has 3,000,000,000 basepairs representing 50,000-100,000

genes

� This DNA contains our complete genetic code orgenome

� DNA regulates all cell functions including response to disease, aging

and development

� Gene expression pattern: snapshot of DNA in a cell

� Gene expression profile: DNA mutation or polymorphism over time

� Genetic pathways: changes in genetic code accompanying metabolic

and functional changes, e.g. disease or aging.

Genomics:study of gene expression patterns in a cell or organism
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Possible Impact
� Understanding role of genetics in cell function and metabolism

� Discovering genetic markers and pathways for different diseases

� Understanding pathogen mechanisms and toxicology studies

� Development of genotype-specific drugs

� Development of genetic computing machines

� In situ genetic monitoring and drug delivery
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Kellog Sensory Gene Microarray Node: Objectives

Establish genetic basis for development, aging, and disease in

the retina

time
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Figure 2:Sample gene trajectories over time.
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II. Gene Microarrays

Two kinds of “Shotgun sequencing:”

1. GeneChip Oligonucleotide Microarrays (Affymetrix)

2. cDNA Microarrays (Stanford)

cell cultures microarray 
transcription

image 
processing

gene
filtering

validation

Figure 3:Microarray experiment cycle.
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Microarray Image Formation
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Figure 4:Image formation process.
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Figure 5:Oligonucleotide PM/MM layout (pathbox.wustl.edu ).
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Figure 6:Affymetrix GeneChip microarray.
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Figure 7:cDNA spotted array.
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Control Factors Influencing Variability
� Sample preparation: reagent quality, temperature variations

� Slide manufacture: slide surface quality, dust deposition

� Hybridization : sample concentration, wash conditions

� Cross hybridization: similar but different genes bind to same probe

� Image formation: scanner saturation, lens aberations, gain settings

� Imaging and Extraction: spot misalignment, discretization, clutter

! account for data variability

� Scaling factors: universal intensity amplification factor for a chip

� Raw Q: noise and other random variations of a chip

� Background: avg of lowest 2% cell intensity values

� % P: percentage of transcripts present
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Microarray Signal Extraction
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Figure 8:Blowup of cDNA spotted array.
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Figure 9:Weak Spot.

13



10 20 30 40 50 60

10

20

30

40

50

60

20

40

60

20

40

60

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Normal spot (4,4)

Figure 10:Normal spot.
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Figure 11:Saturated spot.
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Morphological Spot Segmentation (Siddiqui&Hero:ICIP02)

Figure 12:(L) Original cDNA microarray image. (R) after alternating sequential

filtering.
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Figure 13:(L) Final segmentation. (R) Spot watershed domains for noise averag-

ing.
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Model-based Signal Extraction (Hero:Springer02)
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Figure 14:Filtered Poisson model for microarray image.

18



Gabor Superposition - Width MSE
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Figure 15:Distortion-rate MSE lower bounds on Gabor widths ofΦ j (x;y).
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Gene Clustering and Filtering (Fleury&etal:ICASSP02)

Figure 16:Clustering on the Data Cube.

Objective: Classify time trajectory of genei into one ofK classes
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Gene Trajectory Classification

gene i

gene j
gene i

gene j

Pn2 M21M16
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Figure 17:Gene i is old dominant while gene j is young dominant

Objective: classify gene trajectories from sequence of microarray

experiments over time (t) and population (m)

θi(m; t); m= 1; : : : ;M; t = 1; : : : ;T
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Clustering and filtering Methods

Principal approaches:

� Hierarchical clustering (kdb trees, CART, gene shaving)

� K-means clustering

� Self organizing (Kohonen) maps

� Vector support machines

Validation approaches:

� Significance analysis of microarrays (SAM)

� Bootstrapping cluster analysis

� Leave-one-out cross-validation

� Replication (additional gene chip experiments, quantitative PCR)
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Gene Filtering via Multiobjective Optimization

Gene selection criteria fori-th geneξ1(θi); ; : : : ; ξP(θi)

Possibleξp(θi)’s for finding uncommon genes

� Squared mean change fromt = 1 to t = T:

ξ1(θi) = jθi(�;1)�θi(�;T)j2

� Standard deviation att = 1:

ξ2(θi) =
�

θi(�;1)�θi(�;1)
�2

� Standard deviation att = T:

ξ3(θi) =
�

θi(�;T)�θi(�;T)
�2
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Some possible scalar functions:
� t-test statistic (Goss etal 2000):Ti =

ξ1(θi )

1
2ξ2(θi)+

1
2ξ3(θi)

� R2 statistic (Hastie etal 2000):R2
i =

Ti
1+Ti

� H statistic (Sinha etal 1998):Hi =

ξ1(θi)p

ξ2(θi)ξ3(θi)

Objective: find genes which maximize or minimize the selection criteria
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Aggregated Criteria

Let fWpgP
p=1 be experimenter’s cost “preference pattern”

P

∑
p=1

Wp = 1; Wi � 0

Find optimal gene via:

max
i

P

∑
p=1

Wpξp(θi); or max
i

P

∏
p=1

(ξp(θi))

Wp

Q. What are the set of optimal genes for all preference patterns?

A. These arenon-dominatedgenes (Pareto optimal)

Defn: Genei is dominated if there is aj 6= i s.t.

ξp(θi)� ξp(θ j); p= 1; : : : ;P
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Pareto Optimal Fronts
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Figure 18: a). Non-dominated property, and b). Pareto optimal fronts, in dual

criteria plane.
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Pareto Gene Filtering vs. Paired T-test
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Figure 19:ξ1 = mean change vsξ2 = pooled standard deviation for 8826 mouse

retina genes. Superimposed are T-test boundaries
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Figure 20: First (circle) second (square) and third (hexagon) Pareto optimal

fronts.
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Application: Development and Aging in Mouse Retina

Mouse Retina Experiment:

� Retinas of 24 mice sampled and hybridized

� 6 time points: Pn2, Pn10, M2, M6, M16, M21

� 4 mice per time sample

� Affymetrix GeneChip layout with 12422 poly-nucleotides

� Affymetrix attribute analyzed: “AvgDiff”

� Used Affymetrix filter to eliminate all genes labeled “A”

Objective: Find interesting gene trajectories within the set of remaining

8826 genes
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Figure 21:4 candidate gene profiles from Mus musculus5

0

end cDNA (Unigene

86632)
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Multi-objective Non-parametric Pareto Filtering

Definetrend vector: ψi = [b1; : : : ;b6], bi 2 f0;1g

� Old dominant filtering criteria:

� high mean slope fromt = Pn1 to t = M21

ξ1(ψi) = bi(�;�)

� high consistency over 64 = 4096 possible combinations of

trajectories

ξ2(ψi) =

# trajectories havingψi = [1; : : : ;1]

4096

31



Occurence Histogram

1 2 3 4 5 6 7 8 9 10

x 10
4

0

500

1000

1500

2000

2500

3000

gene name

nu
m

be
r 

of
 v

al
id

 tr
aj

ec
to

rie
s

Figure 22:Monotonicity occurrence histogram with threshold.
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Old Dominant Pareto Fronts
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Figure 23:Pareto fronts for old dominant genes.
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Resistant Old Dominant Genes in first Three Fronts
� Leave-one-out cross validation

Let ψ�m
i denote one possible set ofT� (M�1) = 6� 3 samples

Cross-validation Algorithm:

Do m= 1; : : : ;46:

Compute
�

ξ1(ψ�m
i ); ξ2(ψ�m

i )
�

Find Genes in First 3 Pareto fronts : G�m

End

Resistant Genes = \46

m=1G�m
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Unigene # Affymetrix description

1186 Mouse Carbonic Anhydrase II cDNA

1276 Retinal S-antigen

2965 Mouse opsin gene

3918 ATP-binding casette 10

16224 Guanylate cyclase activator 1a (retina)

16763 Mouse mRNA for aldolase A

16771 Mus musculus H-2K

39200 CGMP phosphodiesterase gamma

42102 Mus musculus tubby like protein 1 mRNA

69061 Guanine binding proteinα transducing 1

86632 Mus musculus 5’end cDNA

Table 1:Resistant genes remaining in first three Pareto fronts
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Three-objective Pareto Filtering

Objective Extract “aging genes”

� Strictly increasing filtering criteria:

� persistent positive trend

ξ1(ψi) = min
t

bi(�; t) = max

� high consistency over 64 = 4096 possible combinations of
trajectories

ξ2(ψi) ==

# trajectories havingψi = [1; : : : ;1]

4096

= max

� no plateau

ξ3(θi) = [θi(�; t +1)�2θi(�; t)+θi(�; t�1)]2 = min
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Pairwise Pareto Fronts

Figure 24:First Pareto fronts for each pair of criteria taken from the set (ξ1, ξ2

andξ3). Each one of this front is denoted by squares, circles and stars, respectively.
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Aging Genes Found by Pareto Filter

Unigene # Front Description

7800 1st Inositol triphosphate receptor type 2

86632 2nd Histocompatibility 2, L Region

12956 2nd Hyperpolarization-activated, cylcic nucleotide-gated K

29213 3rd RIKEN cDNA 1200015F23 gene

33263 3rd Histocompatibility 2, D region locus 1

29789 3rd Expressed sequence A1430822

2289 3rd RIKEN cDNA 1500015A01 gene

6671 3rd RIKEN cDNA 1110027O12 gene

16771 4th MHC class 1 antigen H-2K

34421 4th Q4 class 1 MHC

6252 4th Procollagen, type XIX, alpha 1

29357 4th RIKEN cDNA 1300017C10 gene

Table 2:Resistant aging genes remaining in first four Pareto fronts
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Conclusions

1. Signal processing has a role to play in many aspects of genomics

2. Careful physical modeling of image formation process can yield

performance gains

3. New methods of data mining are needed to perform robust and

flexible gene filtering

4. Cross-validation is needed to account for statistical sampling

uncertainty

5. Joint intensity extraction and gene filtering?

6. Optimization algorithms for large data sets?

7. Genetic priors: phylogenetic trees, BLAST database, etc?
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