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Abstract— This paper presents an overview of some of the recent the-
ory and application of stochastic minimal graphs in the context of entropy
estimation for imaging applications. Stochastic graphs which span a set
of extracted image features can be constructed to yield consistent estima-
tors of Jensen’s entropy difference for between pairs of images. Unlike
traditional plug-in entropy estimates based on density estimation, stochas-
tic graph methods provide direct estimates of these quantities. We review
the stochastic graph approach to entropy estimation, compare convergence
rates to that of plug-in estimators, and discuss a geo-registration applica-
tion. An extended version of this paper is the technical report [4].

I. I NTRODUCTION

Let I be a stochastic image and let feature vectors
Z(1); : : : ; Z(n) be extracted from this image. We focus on the
case that the feature vectors are i.i.d. realizations of a random
variableZ generated by a feature densityf(Z). This is appro-
priate for piecewise homogeneous images from which repeated
feature vectors can be sampled from a homogeneous region of
the image. Examples of such a feature vector are: the position
and orientation of an edge; a vector of samples in a textured re-
gion; the output vector of a spatial innovations filter; etc. This
paper is concerned with estimating the joint�-entropy (see (1))
of the feature vector density based on feature samples extracted
from the images.

Entropy estimation is of interest for pattern analysis, image
complexity assessment, model identification, tests of indepen-
dence, and other applications where invariance to scale, trans-
lation and other invertible transformations is desired in the dis-
criminant. It was shown earlier [7] that minimal graphs such as
the minimal spanning tree (MST) could be used to come up with
direct estimates of�-entropy without requiring the difficult step
of density estimation. This paper expands on this approach with
special emphasis on imaging applications.

The results presented here can also be applied to index-
ing and content-based retrieval of images using entropic mea-
sures of distance between a query image having feature den-
sity f0 and a database of images having feature densities
ffig. For example the�-divergenceD�(f1kf0) = (� �
1)�1 ln

R
f�1 (z)f

1��
0 (z)dz converges to the Kullback-Liebler

(KL) divergence as� ! 1, which has been proposed for reg-
istration and indexing of images [10]. Whenf0 is known the
�-divergence can be directly estimated by minimal graph meth-
ods similar to those presented below using the measure trans-
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formation method outlined in [6]. However, for unknownf0
and unknownf1 the existence of consistent minimal-graph es-
timators ofD�(f1kf0) is an open problem. This paper will be
concerned with an alternative dissimilarity function, called the
�-Jensen difference, which is a function of the joint entropy of
Z0 andZ1. As will be shown below, this function can be esti-
mated using minimal graph entropy estimation techniques and
behaves similarly to the�-divergence.

II. ENTROPY ESTIMATION

LetZ be a feature vector in IRd with j.p.d.ff(Z). Assume that
f has bounded support. The�-entropy, also known as R´enyi
entropy is defined as

H�(f) =
1

1� �
ln

Z
Z

f�(z)dz: (1)

This entropy function converges to the Shannon entropy
�
R
f(z) ln f(z)dz as�! 1.

Most non-parametric entropy estimation techniques are based
on estimation of the density function followed by substitution
of these estimates into the entropy functional (1). For example,
when this plug-in technique is applied to�-entropy it yields

H�(cf�) = 1

�� 1
ln

Z cf�(z)dz (2)

wherecf� is an empirical estimate off�. For the special case
of estimation of Shannon entropy recent non-parametric esti-
mation proposals have included: histogram estimation plug-in
kernel density estimation plug-in and sample-spacing density
estimator plug-in. The reader is referred to [3] for a compre-
hensive overview of previous work in non-parametric estimation
of Shannon entropy. The main difficulties with non-parametric
methods are due to the infinite dimension of the spaces in which
the unconstrained densities lie. Specifically: density estimator
performance is poor without stringent smoothness conditions;
no unbiased density estimators generally exist; density estima-
tors have high variance and are sensitive to outliers; the high
dimensional integration required to evaluate the entropy might
be difficult.

The problems with the above methods can be summarized by
the basic observation: on the one hand parameterizing the scalar
entropy functional with an infinite dimensional density function
is a costly over-parameterization, while on the other hand artifi-
cially enforcing lower dimensional density parametrizations can



produce significant bias in the estimates. This observation has
motivated us to develop direct methods which accurately esti-
mate the entropy without the need for performing artificial low
dimensional parameterizations or non-parametric density esti-
mation [5], [7], [6]. These methods are based on constructing
minimal graphs spanning the feature vectors in the feature space.
The overlall length of these minimal graphs can be used to con-
struct a strongly consistent estimator of entropy for Lebesgue
continuous densities. In particular, letZ(n) = fZ(1); : : : ; Z(n)g
and define

Ln = L(Z(n)) = min
e2T

X
e

jej ; (3)

the overall length of a graph spanningn i.i.d. vectorsZ(i) in
IRd each with densityf . Here 2 (0; d) is real,e are edges
in a graph connecting pairs ofZ(i)’s, jej denotes Euclidean (l2)
norm of the edge, and the minimization is over some suitable
subsetsT , e.g. spanning trees, of the

�
n
2

�
edges of the complete

graph. Examples include the minimal spanning tree (MST),
Steiner tree (ST), minimal matching bipartite graph, traveling
salesman problem (TSP). The asymptotic behavior ofLn over
random pointsZ(n) has been studied for over half a decade [2],
[11]. When the graphT is “quasi-additive” we showed in [7]
that

Ĥ�(Z
(n)) = lnLn=n

� � ln�L; (4)

is an asymptotically unbiased and almost surely consistent esti-
mator of the un-normalized�-entropy off where� = (d�)=d
and�L; is a constant bias correction depending on the graph
minimization criterion, e.g. MST, ST or TSP, but independent of
f . Consistency (4) also holds when the power exponent function
jej in (3) is replaced by a positive functiong(jej) which locally
behaves asjej asjej ! 0 [11]. The fact that (4) holds for any
quasi-additive graph construction opens the possibility of many
different types of consistent graph-based entropy estimation al-
gorithms. However, among the currently known quasi-additive
algorithms the MST is the fastest (with polynomial run time)
and as such it has been adopted for all of our entropy estimation
applications.

Optimal pruning of these minimal graphs can robustify the
entropy estimator against outliers from contaminating distribu-
tions. DivergenceD�(f1kf0) between the observed feature den-
sity f and a reference feature densityf0 can be estimated sim-
ilarly via performing a preprocessing step before implementing
the minimal-graph entropy estimator. This preprocessing step
applies a measure transformation on the feature space which
converts the reference density to a uniform density over the unit
cube as explained in [6].

As contrasted with density estimation techniques of entropy
estimation minimal graph entropy estimators enjoy the follow-
ing properties: they have faster asymptotic convergence rates,
especially for non-smooth densities and for low dimensional
feature spaces; they completely bypass the complication of
chosing and fine tuning parameters such as histogram bin size,
density kernel width, complexity, and adaptation speed; the�
parameter in the�-entropy function is varied by varying the

interpoint distance measure used to compute the weight of the
minimal graph. On the other hand, the need for combinatorial
optimization is a bottleneck for large number of feature sam-
ples. This has motivated the development of greedy minimal
graph approximations that preserve advantages such as robust-
ness against outliers [7].

III. E NTROPY ESTIMATOR CONVERGENCECOMPARISONS

Here we compare asymptotic convergence rates of the direct
minimal-graph entropy estimator (4) and the indirect density
plug-in entropy estimator (2) as a function of the numbern of
i.i.d. samples ofZ. LetZ 2 IRd have joint Lebesgue densityf .
Define the class of H¨older continuous functions�d(�; c) over
IRd

�d(�; c) =
n
f(x) : kf(x)� pb�cx (z)k � c kx� zk�

o
wherepkx(z) is the Taylor polynomial off of orderk expanded
about the pointx. As � becomes large the class�d(�; c) con-
tains functions which are increasingly non-smooth.

For the indirect estimator (2) it makes sense to consider a min-
imax optimal density estimation strategy which minimizes the
worst case estimator mean integrated square error (MISE) over
the densities lying in�d(�; c) [8]. The minimax estimator can
be implemented as a piecewise polynomial with bin size that
decreases inn at a specified optimal rate. The resultant MISE
has the fastest possible rate of convergence over all�d(�; c) and
the rates of convergence of the squared bias and the variance are
identical.

Proposition 1: Assume that the Lebesgue densityf is sup-
ported on the unitd-dimensional cube[0; 1]d and f� 2

�d(�; c). Then, ifcf� is a minimax MISE density estimator

sup
f�2�d(�;c)

E1=2

����H�(cf�)�H�(f)
���2� = O(n��=(2�+d))

For the direct minimal-graph estimator (4) convergence rates
are more difficult to establish. The convergence of quasi-
additive minimal graphs has been studied for a large number of
problems including minimal spanning trees, Steiner trees, and
the traveling salesman problem [11] The following specifoes the
convergence rate of such estimators

Proposition 2: Assume that the Lebesgue densityf is sup-
ported on the unitd-dimensional cube[0; 1]d andf� 2 �d(�; c)
for some� � 1. Then for� 2 [1=2; (d� 1)=d] andd � 2

sup
f�2�d(�;c)

E1=2

����Ĥ�(Z
(n))�H�(f)

���2� � O(n�1=(d+1))

Observe that for any� � 1 if f� 2 �d(�; c) then f� is
of bounded variation. A comparison between the convergence
rates in Propositions 2 and 1 of the direct and indirect entropy
estimators, respectively, indicates that the direct estimator con-
verges with faster asymptotic rate inn when:

� <
d

d� 1



In particular when� = 1, i.e. f� is in the class of Lip-
schitz functions, the convergence rate of the direct estimator
is O(n�1=(d+1)) while that of the indirect estimator is only
O(n�1=(d+2)). This performance advantage can be even greater
whenf� is in the less smooth class of bounded variation func-
tions since this class contains�d(1; c). In this case the resul-
tant rateO(n�1=(d+2)) in Proposition 1 becomes a lower bound
which is not achievable by any linear plug-in estimation proce-
dure such as a kernel density estimator.

A. Estimation of�-Jensen Difference

Let f0 andf1 be two densities and� 2 [0; 1] be a mixture
parameter. The�-Jensen difference is the difference between
the�-entropies of the mixturef = �f0 + (1 � �)f1 and the
mixture of the�-entropies off0 andf1 [1]:

4H�(�; f0; f1)
4
= (5)

H�(�f0 + (1� �)f1)� [�H�(f0) + (1� �)H�(f1)] ;

For� 2 [0; 1] the�-Jensen difference is a measure of dissimi-
larity betweenf0 andf1: as the�-entropyH�(f) is concave in
f it is clear from Jensen’s inequality that4H�(�; f0; f1) � 0
with equality iff f0 = f1 a.e.

The�-Jensen difference can be motivated as an index func-
tion for content-based retrieval and image registration as fol-
lows. Assume that two sets of labeled feature vectorsZ0 =
fZ

(i)
0 gi=1;:::;n0 andZ1 = fZ

(i)
1 gi=1;:::;n1 are extracted from

imagesI0 and I1, respectively. Assume that each of these
sets consist of independent realizations from densitiesf0 and
f1, respectively. Define the unionZ = Z0 [ Z1 containing
n = n0 + n1 unlabeled feature vectors. Any consistent entropy
estimator constructed on the unlabeledZ(i)’s will converge to
H�(�f0 + (1 � �)f1) asn ! 1 where� = limn!1 n0=n.
This motivates the following consistent minimal-graph estima-
tor of Jensen difference (5) for� = n0=n:

d4H�(�; f0; f1)
4
= (6)

Ĥ�(Z0 [ Z1)�
h
�Ĥ�(Z0) + (1� �)Ĥ�(Z1)

i
;

whereĤ�(Z0 [Z1) is the minimal-graph entropy estimator (4)
constructed on then point union of both sets of feature vectors
andĤ�(Z0), Ĥ�(Z1) are constructed on the individual sets of
n0 andn1 feature vectors, respectively. We can similarly define
the density-based estimator of Jensen difference based on en-
tropy estimates of the form (2) constructed onZ0 [ Z1, Z0 and
Z1.

For some indexing problems the marginal entropies
fH�(fi)g

K
i=1 over the database are all identical so that the in-

dexing functionfH�(�f0 + (1 � �)fi)g
K
i=1 is equivalent to

4H�(�; f0; fi)g
K
i=1. The problem of registering a query image

to a database of images which are generated by rigid transfor-
mations of a reference image is an important example of this
simplifying situation.

IV. GEO-REGISTRATION APPLICATION

The objective is to register two types of images — a set of
electro-optical (EO) images and a terrain height map. For this
multisensor image registration problem, there usually exist dis-
tortions between the two types of images. The distortions are
due to difference acquisition conditions of the images such as
shadowing, diffraction, terrain changes over time, clouds block-
ing the illumination sources, seasonal variations, etc. Existence
of such differences between the images to be registered requires
that the registration algorithms to be robust to noise and other
small perturbations in intensity values.

For this image registration problem the set of EO images are
generated from thea priori digital elevation model (DEM) of
a terrain patch (the terrain height map) at different look angles
(determined by the sensor’s location) and with different lighting
positions.

Geo-registration of a EO reference image to DEM’s in an im-
age database is accomplished by selecting a candidate DEM
image from the database and projecting it into the EO image
plane of the reference image. The objective is to find the correct
viewing angle such that the corresponding EO image is the best
match to the EO reference image. Figure 1 shows an DEM pro-
jected into the EO image plane with viewing angles (290, -20,
130) and the reference EO image. Clearly they are not aligned.
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Fig. 1. Misaligned EO and reference images

For matching criterion we implemented the�-Jensen differ-
ence applied to grey level features extracted from the refer-
ence images and candidate EO images derived from the DEM
database. The parameter� was chosen arbitrarily as0:5, cor-
responding to a MST construction minimizing the Euclidean
norm in (3) without any power weighting ( = 1). For illus-
tration purposes we selected a very simple set of features via
stratified sampling of the grey levels with centroid refinements.
This sampling method produces a set ofn three dimensional
feature vectorsZi = (xi; yi; F (xi; yi)) whereF (x; y) is a sam-
ple of the grey level at planar positionx; y and wheren is fixed
in advance. The pointsf(xi; yi)gni=1 approximate the centroids
of Voronoi cells andfF (xi; yi)g

n
i=1 correspond to the set ofn

samples of the image from which we could reconstruct the orig-
inal image with minimum mean square error. For more details
see [9]. When the union of features from reference and target



images are rendered as points in three dimensions we obtain a
point cloud of features over which the MST can be constructed
and the Jensen difference estimated. Sincen1 = n0 = n we
have used� = 1=2 in the Jensen difference (6).

Figure 2 illustrates the MST-based registration procedure over
the union of the reference and candidate image features for mis-
aligned images, while Figure 3 shows the same for aligned im-
ages. From Figures 2(a) and 3(a) we see that for misaligned
images, the representation points “x” and “o” are at larger dis-
tances, giving corresponding larger MST weight, than those for
aligned images.

We repeat this MST construction process over the union of
reference features and features derived from each of the images
in the DEM database. The MST length can then be plotted in
Figure 4. The x-axis stands for the image index, which corre-
sponds to the viewing angles from the aircraft. The minimum
MST length indicates the best matching of the EO image and
the reference image, which corresponds to the registered pair in
Figure 5.
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Fig. 2. MST demonstration for misaligned images
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Fig. 3. MST demonstration for aligned images. “x” denotes reference while
“o” denotes a candidate image in the DEM database.
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