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ABSTRACT
Motivation: Many exploratory microarray data analysis tools
such as gene clustering and relevance networks rely on
detecting pairwise gene co-expressions. Traditional screening
of pairwise co-expression either controls biological signifi-
cance or statistical significance, but not both. The former
approach does not provide stochastic error control, and the
later approach screens many experimentally undetectable
co-expressions.
Methods: We have designed and implemented a stati-
stically sound two-stage co-expression detection algorithm
that controls both statistical significance (False Discovery
Rate, FDR) and biological significance (Minimium Acceptable
Strength,MAS) of the discovered co-expressions. Based on
the estimation of pairwise gene profile correlation, the algo-
rithm provides an initial co-expression discovery that controls
only FDR, which is then followed by a second co-expression
discovery which controls both FDR and MAS. It also computes
and thresholds the set of FDR p-values for each correlation
that satisfied the MAS criterion.
Results: We validated asymptotic null distributions of Pear-
son and Kendall correlation coefficients and the two-stage
error-control procedure using simulated data. We then used
yeast galactose metabolism data (Ideker et al. 2001) to illu-
strate the advantage of our method for clustering genes and
constructing a relevance network. In gene clustering, the
algorithm screens a seeded cluster of co-expressed genes
with controlled FDR and MAS. In constructing the relevance
network, the algorithm discovers a set of edges with controlled
FDR and MAS.
Availability: The method has been implemented in an R
package ”GeneNT” that is freely available from: http://www-
personal.umich.edu/vzhud .
Contact: zhud@umich.edu
Supplementary Information: Supplemental material can be
found at: http://www-personal.umich.edu/vzhud
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1 INTRODUCTION
The emergence and development of DNA miroarray tech-
nology (Affymetrix oligonucleotide expression arrays and
cDNA arrays) enable researchers to interrogate gene expres-
sion levels simultaneously on the genome scale (Lockhart
et al., 1996, Schena et al., 1995, DeRisi et al., 1997). The
development of statistically sound and biologically meaning-
ful techniques to analyze gene expression data is essential
for transforming raw experimental data into scientific know-
ledge. Gene expression data have been subjected to a variety
of statistical analyses, such as detecting differentially expres-
sed genes (e.g. Tusher et al., 2001, Zareparsi et al., 2004),clu-
stering genes/samples (e.g. Eisen et al., 1998, McLachlan
et al., 2002), and cancer classification (e.g. Golub et al.,
1999, Alizadeh et al., 2000).

Detection of co-expressed genes from microarray data has
attracted much attention since many co-expressed genes are
found to have functional relationships, e.g. lying in the same
signal transduction pathway (Eisen et al., 1998, DeRisi et al.,
1997). Hierarchical clustering (Eisen et al., 1998) and rele-
vance network construction (Butte et al., 2000,Farkas et al.,
2003) are two important explorative techniques. Both of these
techniques are based on discovering pairs of co-expressed
genes, which is one of the fundamental objectives in functio-
nal genomics and system biology. Furthermore, discovering
co-expressed gene pairs in lower eukaryote addresses gene
functional prediction directly because co-expressed genes are
known to be often co-expressed in pairs (Boutanaev et al.,
2002).

Clearly, there is a demand for statistical methodology for
high throughput screening of co-expressed gene pairs with
stochastic error and strength of association controls. Two
issues have to be pondered in developing such a methodo-
logy, namely, which statistic(s) to use and what screening
procedure to choose.

Several methods have been adopted to measure the strength
of association between the expression profiles of gene pairs,
such as: Euclidean distance (Tamayo et al., 1999), Pearson
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correlation coefficient (Zhou et al., 2002), coherence(Butte
et al., 2001), mutual information (Butte et al., 2000), edge
detection(Filkov et al., 2002), and dominant spectral com-
ponent analysis (Yeung et al., 2004). Each of these methods
have advantages and disadvantages. To select co-expressed
gene pairs, the common practice is to calculate a sample cor-
relation for each pair of gene and then to select the top pairs
by correlation thresholding (Butte et al., 2000,Zhou et al.,
2002, and Farkas et al., 2003). This approach controls biolo-
gical significance by screening only strongly correlated pairs.
However, it does not account for statistical sampling uncer-
tainty and thus does not control error rate. Another approach
(Lee et al., 2004) is to control only statistical significance:
screen co-expressed gene pairs whose strength of associa-
tion is different from zero using p-value thresholding. This
approach does not control biological significance and can
lead to screening-in some weakly correlated gene pairs that
are difficult to verify by follow-up experiments such as real
time RT-PCR.

Regarding which statistic(s) to use, the Pearson correlation
coefficient has been one of the most popular choices because
it is easy to calculate and its performance is comparable to
more complex and computational intense methods (Yeung
et al., 2004, Kwon et al., 2003). However, the Pearson
correlation coefficient can only capture linear relationships
between gene expression profiles. To circumvent this limi-
tation, we propose to use the non-parametric Kendall rank
correlation coefficient that is able to capture both linear and
nonlinear associations between gene expression profiles. We
decided to explore the Pearson and Kendall correlation coef-
ficient measures because their asymptotic distributions are
known, as required by our two-stage screening procedure.

Regarding what screen procedure to choose, a two-stage
statistical hypothesis testing scheme is applied in order to
decide on whether the strength of association is statistically
significant at the pre-specified MAS level. The test is non-
standard because: 1) MAS is ordinarily greater than 0; 2)
many comparisons have to be tested simultaneously. Our
method is directly inspired by the two-stage screen metho-
dology (Hero et al., 2004) that controls both False Discovery
Rate (FDR) and Minimum Acceptable Difference (MAD) in
detecting differentially expressed genes.

We demonstrate the application of our two-stage screening
algorithm by constructing relevance networks and clustering
co-expressed genes from yeast galactose metabolism data
(Ideker et al., 2000). This data represents approximately
6200 gene expression levels on two-color cDNA microar-
rays collected over 20 physiological/genetic conditions (nine
mutants and one wild type strains incubated in either GAL-
inducing or non-inducing media) with four replicates in each
condition.

The outline of the paper is as follows. In section 2, we
describe the proposed two-stage multicriteria approach. In
section 3, we first show the approach indeed controls FDR

at the pre-specified MAS level using synthetic data, and then
illustrate it for yeast galactose metabolism data. In section
4, we discuss advantages of our method, model assumptions
and restrictions.

2 METHODS
2.1 Measures of the strength of association
There are many possible discriminates for strength of asso-
ciation between two variables (generally denoted as Γ).
Under a Gaussian linear hypothesis, the Pearson correlation
coefficient ρ is an appropriate metric. A robust distribution-
free alternative is the Kendall rank correlation coefficient
(Kendall’s τ ). The Pearson and Kendall correlation coeffi-
cients are special cases of the generalized correlation coef-
ficient (Daniel, 1944), and are discussed below. We define
{gp}

G
p=1 as the indices of G gene probes on the microarray;

{Xgp}
G
p=1 as normalized probe responses (random varia-

bles); and {{xgp(n)
}G

p=1}
N
n=1 as realizations of {Xgp}

G
p=1

under N i.i.d. microarray experiments.

2.1.1 Pearson correlation coefficient. The population
Pearson correlation coefficient between random variables
Xgi and Xgj (defined as long as var(Xgi), var(Xgj ) are
positive) is:

ρ(Xgi , Xgj ) =
cov(Xgi , Xgj )

√

var(Xgi)var(Xgj )
.

The sample Pearson correlation coefficient ρ̂ is an asympto-
tically consistent unbiased estimator of ρ:

ρ̂i,j =
SXgi

,Xgj
√

SXgi
,Xgj

SXgi
,Xgj

,

where SXgi
,Xgi

, SXgj
,Xgj

and SXgi
,Xgj

are sample varian-
ces and covariances given by

SXgi
,Xgi

= (N − 1)−1
N
∑

n=1

(Xgi(n) − Xgi)
2,

SXgj
,Xgj

= (N − 1)−1
N
∑

n=1

(Xgj (n) − Xgj )
2,

SXgi
,Xgj

= (N − 1)−1
N
∑

n=1

(Xgi(n) − Xgi)(Xgj(n) − Xgj ),

and Xgi = N−1
∑

Xgi(n), Xgj = N−1
∑

Xgj(n) are the
sample means.

2.1.2 Kendall rank correlation coefficient. Kendall’s τ
statistic is a measure of correlation that captures both linear
and non-linear associations. The parameter τ is defined as
τ = P+ − P−, where, for any two independent pairs of
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observations (xgi(n)
, xgj(n)

), (xgi(m)
, xgj(m)

) from the popu-
lation, P+ = P [(xgi(n)

− xgi(m)
)(xgj(n)

− xgj(m)
) ≥ 0] and

P− = P [(xgi(n)
− xgi(m)

)(xgj(n)
− xgj(m)

) < 0]. An unbia-
sed estimator of τ is given by the Kendall τ statistic: τ̂i,j =
2
∑∑

1≤n≤m≤N
Knm

N(N−1) . Here Knm is a indicator variable
defined as Knm = sgn(xgi(n)

− xgi(m)
)sgn(xgj(n)

− xgj(m)
)

for each set of pairs drawn from {Xgi}
G
i=1 and {Xgj}

G
j=1.

To make the estimated correlation robust against spu-
rious outliers yet sensitive to strong similarities in expression
patterns, we adopted a leave-one-out cross-validation techni-
que, using the median estimate as a robust estimator of the
correlation.

2.2 Hypothesis testing scheme
To screen the strongly co-expressed pairs of G genes on each
microarray, we need to simultaneously test G =

(

G
2

)

pairs of
composite hypotheses: {Hλ, Kλ : λ = (gi, gj)}.

Hλ : Γgi,gj ≤ cormin versus Kλ : Γgi,gj > cormin,

for gi 6= gj , and gi, gj ∈ (1, 2, ...G) (1)

where cormin is a the specified minimium acceptable
strength of correlation. The sample correlation coefficient
Γ̂i,j (ρ̂i,j or τ̂i,j) could be used as a decision statistic to
decide on pairwise dependency of two genes in the sam-
ple. When we must decide between the null hypothesis Hλ

and the alternative hypothesis Kλ based on a random sam-
ple, there will generally be decision errors in the form of
false positives (Type I errors: decide Kλ when Hλ is true)
and false negatives (Type II errors: decide Hλ when Kλ is
true). The Per Comparison Error Rate (PCER) is defined as
the number of type I errors over the number of independent
trials, i.e. the probability of Type I error. The p-value is the
probability that the sample could have been drawn from the
population(s) being tested (or that a more improbable sample
could be drawn) given the assumption that the null hypothesis
is true.

For N realizations of any pair of gene probe responses,
{xgi(n)

, xgj(n)
}N

n=1, we first calculate τ̂i,j or ρ̂i,j respectively.
For large N , the PCER p-values for ρi,j or τi,j are:

pρi,j = 2

(

1 − Φ

(

tanh−1(ρ̂i,j)

(N − 3)−1/2

))

pτi,j = 2

(

1 − Φ

(

K

N(N − 1)(2N + 5)/18
1/2

))

whrere Φ is the standard Gaussian cumulative density func-
tion, and K =

∑∑

1≤n≤m≤N Knm. The above expres-
sions are based on asymptotic Gaussian approximations
(Hollander and Wolfe, 1999).

The PCER p-value refers to the probability of Type I error
incurred in testing a single pair of hypothesis for a single
pair of genes gi, gj . It is the probability that purely random

effects would have caused gi, gj to be erroneously selected
based on observing correlation between this pair of genes
only. When considering the G multiple hypotheses for all
possible pairs, two adjusted error rates have frequently been
considered in microarray studies. These are family-wise error
rate (FWER) and false discovery rate (FDR)(Benjamini and
Hochberg, 1995). The FWER is the probability that the test
of all G pairs of hypotheses yields at least one false posi-
tive in the set of declared positive responses. In contrast, the
FDR is the average proportion of false positives in the set of
declared positive responses. The FDR is dominated by the
FWER and is therefore a less stringent measure of signifi-
cance. As in previous studies, we adopt the FDR to control
statistical significance of the selected gene pair correlations
in our screening procedure (Hero et al., 2004).

Stage I (step-down): control of FDR at MAS = 0.

1. Specify FDR level α and MAS level cormin.

2. For each of G gene pairs, compute a list of PCER
p-values: p1, p2, ..., pG from {ρ̂i,j} or {τ̂i,j}.

3. Sort the list of PCER p-values in increasing order,
i.e. p(1), p(2), ..., p(G).

4. Find the index k where k = max{k : pk ≤ kα
Gν }.

5. Set initial screening G1 as those k gene pairs
having p-values: p(1), p(2), ..., p(k).

In step 4, ν = 1 if the test statistics can be assumed
statistically independent or positively dependent,
where ν = 1

P

G

k=1
k−1

under the general dependency

assumption.

Stage II: control of FDR and MAS = cormin.

1. Construct k diferent (1 − α) × 100% PCER-CI’s
for ρ or τ of each gene pairs in G1(Appendix 5.1).

2. Convert these PCER-CI’s into k different (1 −
α) × 100% FDR-CI’s using formula (Benjamini
and Yekutieli, 2004): Ig(α) → Ig(G1α/G).

3. Select the subset of G2 of G1 gene pairs whose
FDR-CI’s do not intersect [−cormin, cormin].

Fig. 1. Two-stage direct screening algorithm.

2.3 Two-stage screening procedure
Select a level α of FDR and a level cormin of MAS signi-
ficance levels. We use a modified version of the two-stage
screening procedure proposed for gene screening by (Hero
et al., 2004). This procedure consists of:
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Stage I. Test the simple null hypothesis:

Hλ : Γgi,gj = 0 versus Kλ : Γgi,gj 6= 0,

for gi 6= gj , and gi, gj ∈ (1, 2, ...G) (2)

at FDR level α. The step-down procedure of Benjamini and
Hochberg (Benjamini and Hochberg, 1995) is used. There are
three ways of adjusting error rate: the single-step, step-down
and step-up procedures. In single-step procedures, equiva-
lent multiplicity adjustments are performed for all hypothe-
ses, regardless of the distribution of PCER p-values giving
strong control of FWER. Improvement in power, while pre-
serving Type I error control, may be achieved by step-up
and step-down procedures, in which rejection of a particular
hypothesis is based not only on the total number of hypothe-
ses, but also on the distribution of PCER p-values. Step-down
procedures order the PCER p-values starting with the most
significant, i.e. the smallest, while step-up procedures start
with the least significant (Speed, T. ed).

Stage II. Suppose G1 pairs of genes pass the stage I pro-
cedure. In stage II, we first construct asymptotic PCER Con-
fidence Intervals (PCER-CI’s) :Ig(α) for each Γ (ρ or τ ) in
subset G1, and convert into FDR Confidence Intervals(FDR-
CI’s) :Ig(G1α/G) (Benjamini and Yekutieli, 2004). A gene
pair in subset G1 is declared to be both statistically significant
and biologically significant if its FDR-CI does not intersect
the MAS interval [−cormin, cormin] (see Fig 5).

1. For each of G gene pairs, compute a list of PCER
p-values: p1, p2, ..., pG using {ρ̂i,j} or {τ̂i,j}.

2. Sort the list of PCER p-values in the increasing
order, i.e. p(1), p(2), ..., p(G).

for each gene pairs denoted as G0: G0 ∈
{xgi(n)

, xgj(n)
}N

n=1,

• Find the minimal α such that the PCER-CI does
not intersect [−cormin, cormin].

• Compute the integer index N(α(G0)) =
∑G

k=1 I(p(g(k))k ≤ α(G0)), where I(A) is
an indicator function.

I(A) =

{

1 if p(g(k))k ≤ α(G0) is TRUE,

0 if Otherwise.
(3)

The FDR p-value of the gene pair G0 is then
simply p(gi), where i = N(α(G0)).

endfor

In many practical situations, the experimenter may not
be comfortable in specifying a MAS or FDR criterion in

Fig. 2. Inverse screening algorithm.

advance. In this situation, it is useful to solve the inverse pro-
blem: what’s the most stringent pair of criteria (α , cormin)
would cause a particular subset of gene pairs to be declared
as dependent. The inverse screening procedure is displayed
in Fig 2.
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Fig. 3. Verification of Gaussian null sampling distribution (a) and
variance approximation (b). (a) QQ plot of transformed sampling
distribution of Pearson correlation coefficient ρ̂ versus Gaussian
distribution. (b) Variance approximation of transformed sampling
distribution of Pearson correlation coefficient ρ̂.
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3 RESULTS
3.1 Validating the two-stage algorithm
3.1.1 Validating asymptotic null distribution. Here we
verify that the proposed two-stage algorithm controls FDR
at a specified MAS level using simulated data. Since the
p-values are based on asymptotic distribution approxima-
tions, we display in Fig 3a the goodness of fit of the ρ̂
sampling distribution to the Gaussian distribution using QQ
plots. Note that there is good agreement to the Gaussian
distribution for N ≥ 10. Moreover, since the construc-
tion of confidence intervals requires estimation of sampling
distribution variance, the accuracy of variance approxima-
tion is vital, which can be accessed by calculating squared
error:(s.e. denotes standard error, and FX denotes sampling
distribution)

σ̂2
ρ = (s.e.(tanh−1(Fρ̂)) − (N − 3)−1/2)2

σ̂τ = (s.e.(Fτ̂ )−(
2

N(N − 1)

2(N − 2)

N(N − 1)2

N
∑

i=1

(Ci−C)+1−τ̂))2

where the definition of Ci and C̄ can be found in Appendix
5.1. The ρ̂ variance approximations are seen to be in good
agreement even for small sample sizes (N > 6) from Fig 3b.

3.1.2 Validating error control procedure. In order to vali-
date our FDR and MAS error control procedure, we simu-
lated pairwise gene expression data based on pre-specified
population covariances (Appendix 5.2). The actual FDR at
a MAS level is calculated as a ratio of the number of scree-
ned gene pairs whose corresponding population correlation
parameters Γi,j are less than the MAS level specified, divi-
ded by the total number of screened gene pairs. The actual
MAS is the minimium true discovery of population correla-
tion Γi,j among the screened pairs. We pre-specified 16 pairs
of (FDR,MAS) criteria (Four FDR levels: 0.2, 0.4, 0.6, 0.8;
Four MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as
a different capital English alphabet (Red) in Fig 4. The 16
corresponding pairs of actual (FDR,MAS) criteria are also
shown in Fig 4 using the same set of small English alpha-
bet (Blue). It can be observed that the actual FDR’s (small
alphabets) fall below the pre-specified constraint (capital
alphabets) and the actual MAS’s (small alphabets) fall above
the pre-specified constraint (capital alphabets). The devia-
tions of actual FDR’s and MAS’s from their pre-specified
levels are due to the conservative asymptotic approximation.
This will translate into a reduction of power in discovering
co-expressed pairs at the specified levels.

3.2 Constructing a relevance network with
controlled FDR and MAS

For the yeast galactose metabolism dataset, a subset of
997 genes were identified by Ideker et al using generali-
zed likelihood ratio test (Ideker et al., 2000). Genes having
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Fig. 4. Verification of two-stage error control procedure based on
Pearson correlation coefficient (a) and Kendall correlation coeffi-
cient (b).

a likelihood statistic λ ≤ 45 were selected as differenti-
ally expressed, whose mRNA levels differed significantly
from reference under one or more perturbations. We used
the average expression profiles over four replicates for sub-
sequent analysis, which implicitly assumes that the between-
replicates variances for a gene over different experimental
conditions are equal.

Fig 5a and Fig5b illustrate the direct implementation of the
two-stage procedure to screen positively or negatively corre-
lated gene pairs based on the Pearson correlation coefficient.
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Fig. 5. Segments of lower bounds (a) and upper bounds (b) specify-
ing the 5% FDR-CI’s on the positive Pearson correlation coefficients
(a) and negative Pearson correlation coefficients (b) for the galac-
tose metabolism study. Only those gene pairs whose FDR-CI’s do
not intersect [−cormin, cormin] are selected by the second stage
of screening. When the MAS strength of association criterion is
cormin = 0.5, these gene pairs are obtained by thresholding the
curves as indicated.

The direct screening procedure is constrained by FDR crite-
rion α = 0.05 and MAS criterion cormin = 0.5. There were
159,287 out of 496,506 gene pairs having FDR ≤ 0.05, lea-
ving 159,287 correlation coefficients for which FDR-CIs are
constructed. A gene pair passes the the second stage scree-
ning if the FDR-CI does not intersect the interval [−0.5, 0.5].
18,594 gene pairs are declared to be both ”biologically” and

”statistically” significant. Similarly, using Kendall correla-
tion coefficient, there were 95,205 gene pairs that passed the
stage I screen, and only 3,552 gene pairs passed the stage
II screen constrained by the same MAS and FDR criteria
(STable 1).
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Fig. 6. A pair of non-linearly correlated genes.

Although for Gaussian distributed pairs the Kendall rank
correlation coefficient has lower discovery power compared
to Pearson correlation coefficient, it nevertheless is able to
pull out many non-linearly correlated gene pairs that are
missed by the Pearson correlation. For example, the link
between gene ”RPC40” and gene ”YDR516C” passed both
stage I and II screening (α = 0.01, cormin = 0.5)
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when using Kendall correlation coefficient (τ̂ =-0.7513333,
FDR p-value = 0.0006150649, FDR-CI = [-0.9663466, -
0.5363199]), but they failed to pass even the first screening
using Pearson correlation coefficient ρ̂ =-0.6263346 (FDR p-
value = 0.01221224). From the scatter plot, we can observe
the obvious non-linear correlation (Fig 6). The poor linear fit
can be verified by fitting a simple linear regression model and
observing R2 = 0.36 (R2 is the goodness of fit).

Relevance networks are implemented as a graph where
n nodes (genes) are connected by p sets of edges (co-
expressions). Each of the p sets of edges are discovered using
a different similarity measure(Butte et al., 2000). Therefore,
our constructed networks are mixed networks in which edges
are discovered using either Pearson correlation coefficient or
Kendall correlation coefficient constrained by the same set
of (FDR,MAS) criteria. In relevance networks, genes that
are of considerable interest to the biologist are ”hub genes”
such as RPL33A and RPS4A in Fig 7. The hub gene is the
highly connected gene that dominates the network topology
and is minimally sensitive to the network discovery crite-
ria. We constructed five networks constraint by five pairs of
constraints (FDR ≤ 0.05, cormin = 0.5, 0.6, 0.7, 0.8, 0.9)
using both Pearson correlation coefficient and Kendall corre-
lation coefficient. Most of the ”hub genes” in each discovered
network fall into two categories: ”RPL” and ”RPS”. The for-
mer encodes ”Ribosome Protein Large (60S) subunit,” and
the latter encodes ”Ribosome Protein Small (40S) subunit”.
Both of which are structural components of the ribosome
that is responsible for protein biosynthesis. Protein biosyn-
thesis plays the central role in galactose metabolism because
galactose is not a primary carbon source for yeast, and dif-
ferent types of proteins including transporters, enzymes, and
regulators have to be synthesized upon induction (Wieczorke
et al., 1999). We ranked the ”hub genes” over five net-
works by calculating and sorting average rank of each ”hub
gene” (Table 1, STable 2). Interestingly, the list of ”hub
genes” contains many hypothetical Open Reading Frames
(ORFs)(STable 2), which are presumably indispensable for
galactose metabolism (Jeong et al., 2001).

Fig 7 presents the discovered network topology with a FDR
level of 0.05 (5% discovered edges are expected to be false
positive) at the MAS level of cormin = 0.9. The network
is composed of 91 connected vertices and 138 edges. Simi-
liar to some other biological networks, the network marginal
degrees appear power-law distributed, which is tested by
verifying goodness of fit to the log-transformed power-law
model (R2 = 0.95) i.e., log P (Ki) = −γ log Ki+log η+εi,
(i = 1, 2, , n). Here γ and η are shape and intercept parame-
ters, εi is a residual fitting error. Ki is the degree and P (Ki)
is the corresponding probability.
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Fig. 7. Network topology visualization. The network is discovered
by constraining FDR ≤ 5% at a MAS level of 0.9. No significant
negative correlation is discovered at this level. The graph is drawn
using Pajek (Batagelj and Mrvar, 1998).

Table 1. Top ten “hub genes”. The rank of each gene is the average
rank over five different networks. Each of five networks is constrai-
ned by a different pair of (FDR,MAS) criteria. The highest ranked
gene is the most connected and most stable gene under varying
constraints of (FDR,MAS).

Gene Name Average Rank

RPL42B 4.2
RPS3 5.8
RPL14A 7.0
RPS16B 7.6
GTT2 8.4
RPS4A 9.8
RPL33A 11.8
RPL23B 15.8
RPS7A 16
RPL27A 17.4

3.3 Clustering co-expressed genes
Inspired by the Basic Local Alignment Search Tool (BLAST)
(Altschul et al., 1990), and based on the ”guilt-by-
association” assumption, we applied the two-stage algorithm
to cluster co-expressed genes with controlled FDR and MAS,
and vice versa. We sought to demo its application in meta-
bolic pathway discovery by ”rediscovering” the extensively
studied galactose metabolic pathway, which consists of at
least three types of genes including transporter genes (GAL2,
HXTs etc), enzyme genes (GAL1, GAL7, GAL10 etc) and
transcription factor genes (GAL4, GAL80, GAL3 etc). Some
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other genes are also involved in galactose metabolism but
their roles are not entirely clear (Rohde et al., 2000, Ideker
et al., 2001).Therefore, our aims are not only to ”rediscover”
the known genes but also to discover some unknown genes in
the pathway.

We select gene ”GAL7” as the ”seed gene” which
encodes the UDP-glucose-hexose-1-phosphate uridylyltrans-
ferase (EC 2.7.7.12). The enzyme catalyzes the transfor-
mation of Galactose-1-P into Glucose-1-P, and the latter
enters the glycolysis pathway through relocating the phos-
phate group. Many genes lying in the galactose metabolic
pathway are ”rediscovered” by our technique under the rela-
tive stringent criteria (α = 0.05, cormin = 0.2) (Fig
8). Transcription factor genes (GAL4 and GAL80) are not
”rediscovered” together with transporter genes and enzyme
genes because the experiment could not capture time-delayed
co-expressions simultaneously. The algorithm also discovers
some unknown genes that are hypothesized to be relevant to
galactose metabolism (STable 3). The pathway ”rediscovery”
based on other ”seed genes” in the pathway such as GAL1
and GAL10 gave similar results (STable 4).
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D-Galactose
(Intracellular)

D-Galactose-1-P
(Intracellular)

GAL1

D-Glucose-1-P
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Glycogen
 Synthase-P
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Fig. 8. Diagram of up-to-date galactose metabolic pathway. The
shaded squares denote the genes whose gene products lie in the
galactose metabolic pathway “rediscovered” by our algorithm.

3.4 Performance comparison
In Table 2 and Table 3, we compare the performance of the
proposed screening algorithm, labeled “Two-stage FDR-CI,”

Table 2. Performance comparison for three algorithms based on Pearson correlation
coefficient for selecting gene pairs with a MAS level of 0.5. (Thresholded) MAS and
(Thresholded) FDR are significantly worse in terms of statistical significance (p-value)
than the proposed (Two-stage) FDR-CI algorithm (columns 4 and 5). Furthermore, the
average length of the CIs on ρ or τ of the discovered gene pairs are shorter for the (Two
Stage) FDR-CI algorithm than for the other algorithms (column 6).

# Screened # Discovered Max(Pv) Meidan(Pv) AvgFDRCI

MAS 496,506 97,786 0.06659022 0.006930025 0.717358
FDR 159,287 89,554 0.04999962 0.005163348 0.6179784
FDR-CI 159,287 18,594 2.55205e-07 9.304143e-09 0.3282658

with two other commonly used algorithms, called “(Thres-
holded) FDR” and “(Thresholded) MAS”. All three algo-
rithms aim to control MAS at a level of cormin = 0.5.
The “Two-stage FDR-CI” and “ Thresholded FDR” algo-
rithms aim to control FDR at a level of α = 0.05 in addition
to MAS. Both of these latter algorithms were implemented
as two-stage algorithms with common stage I, which is to
select pairs of genes G1 that pass the test of association with
cormin = 0 at a FDR level of 5%. The second stage of
the “Two-stage FDR-CI” algorithm selects G 2 as a subset
of G1 at the pre-specified FDR-CI level of 5%. Stage 2 of
the “Thresholded FDR” algorithm simply selects a subset of
G1 having a strength of association greater than 0.5. The
single-stage “Thresholded MAS” algorithm selects a subset
of the original 496,506 gene pairs by setting the threshold
Γ̂i,j ≥ 0.5.

The number of screened and discovered gene pairs for
the three algorithms is indicated in the first two columns of
Table 2 and Table 3. The maximum and median of the FDR
p-values of the discovered gene pairs are indicated in the
third and fourth columns for each algorithm. The last column
indicates the average length of the FDR-CI’s on correlation
coefficients of the discovered gene pairs. We conclude from
Table 2 and Table 3 that the proposed “Two-stage FDR-
CI” algorithm outperforms the other algorithms in terms of
(1) maintaining the FDR requirement that false positives not
exceed 5%(column 4); (2) ensuring a substantially lower
median FDR p-value than the others (column 5); (3) disco-
vering genes that have tighter (on the average) confidence
intervals on biologically significant (e.g. > 0.5) correlation
coefficients (column 6).

4 DISCUSSION
In this paper, we presented a two-stage algorithm for scree-
ning co-expressed gene pairs that controls both biological and
statistical significance. For those discovered co-expressions,
our method also provides an “accuracy” assessment of the
strength of association by constructing FDR-CI’s for the
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FDR-CI error control

Table 3. Performance comparison for three algorithms based on Kendall’s τ for selecting
gene pairs with a MAS level of 0.5.

# Screened # Discovered Max(Pv) Meidan(Pv) AvgFDRCI

MAS 496,506 31,151 0.01955337 0.006432614 0.6309374
FDR 95,205 31,151 0.01955337 0.006432614 0.6309374
FDR-CI 95,205 3,552 0.001410414 0000431815 0.4051204

strength of each edge. Indeed, for the typically small sam-
ple size microarray data, a simultaneous confidence interval
is necessary in addition to characterize reliability of the
reported strength of association. We illustrated two potential
applications of our algorithm to discovering relevance net-
work and to clustering genes, in which the algorithm provides
the error rate control at a biological detectable level.

The algorithm is sufficiently general to be applied to many
different correlation measures (e.g. Pearson and Kendall cor-
relation coefficients in accordance to the Gaussian microarray
data and non-Gaussian microarray data) and hence to be
extended to different frameworks such as Gaussian Gra-
phic Models (GGM) in which partial correlation coefficient
is used as the correlation measure (Whittaker, 1990). Dif-
ferent groups have developed different appraches to infer
GGM from small sample size microarray data (Wang et al.,
2003,Schfer and Strimmer, 2004, Adrian et al., 2004). Scha-
fer and Strimmer recently presented a procedure that is based
on the bootstrap estimator of the partial correlation coeffi-
cient (Schfer and Strimmer, 2004). Our two-stage algorithm
has been extended to the GGM framework to control biologi-
cal significance in addition to statistical significance, and the
implementations are included in the R package ”GeneNT”
(availible from http://www-personal.umich.edu/ zhud).

The scope for application of our statistical analysis here
is explicitly that of random sampled, complete observational
data. In this paper, we are not concerned with develo-
ping models of causal gene networks. This would require a
context of experimentaiton and interventation to understand
directional influences, rather than our observational, random
sampling paradigm (Adrian et al., 2004).

The two-stage procedures can be applied under the inde-
pendency/positive dependency or the general dependency
assumptions (Benjamini and Hochberg, 1995, Benjamini and
Yekutieli, 2001). The implementation of general dependency
procedure (ν = 1

P

G

k=1k−1
) causes loss of discovery power.

The assumption of independence may not be critical in the
discovery of relevance networks since biological networks
are typically very sparse (Yeung et al., 2002).
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5 APPENDIX
5.1 Construct PCER-CI for ρ and τ

1a. Based on the fact that z (z = tanh−1(ρ̂)) is the mono-
tonic function of ρ̂, the asymptotic PCER (1 − α) × 100%
Confidence Interval: Ig(α) on each true Pearson correlation
coefficient ρ of the set G1 is: tanh(z −

zα/2

(N−3)1/2 ) ≤ ρ ≤

(z +
zα/2

(N−3)1/2 ), where P (N(0, 1) > zα/2) = α/2.
1b. The asymptotic PCER (1−α)× 100% Confidence Inter-
val: Ig(α) on each true Kendall correlation coefficient τ of
the set G1 is constructed as follows:
i. Compute Ci =

∑N
t=1,t6=i Q((Xi, Yi), (Xt, Yt)), for i =

1, 2, ..., N., where Q((a, b), (c, d)) is given by:

Q((a, b), (c, d)) =











1 if (d − b)(c − a) > 0,

0 if (d − b)(c − a) = 0,

−1 if (d − b)(c − a) < 0.

(4)

ii. Let C̄ = 1
N

∑N
i=1 Ci and define σ̂τ = 2

N(N−1)
2(N−2)
N(N−1)

∑N
i=1(Ci−

C̄)2 + 1 − τ̂2]
iii. Ig(α) : τ̂ − zα/2σ̂τ ≤ τ ≤ τ̂ + zα/2σ̂τ .

5.2 Simulation of pairwise vectors based on
pre-specified population covariances

5.2.1 Pearson correlation coefficient ρ .
i. Specify a covariance matrix V and a mean vector µ.
ii. Form the Cholesky decomposition of V, i.e. find the lower
triangular matrix L such that V = LLT .
iii. Simulate a vector z with independent N(0, 1) elements.
A vector simulated from the required multivariate normal
distribution is then given by µ + Lz.

5.2.2 Kendall’s τ .
i. Specify a value for τ .
ii. Simulate an N×N indicator matrix M given τ as follows:

M [n, m]1≤n<m≤N =

{

1 if Bernulli( 1+τ
2 ) is TRUE,

−1 if Otherwise.
(5)

iii. Simulate i.i.d pairs (Xi, Yi) (i = 1, 2, ..., N) according to
M matrix and definition

Q((a, b), (c, d)) =

{

1 if (d − b)(c − a) > 0,

−1 if (d − b)(c − a) < 0.
(6)

No tied observations are generated.
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