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ABSTRACT

ADVANCES IN SURFACE PENETRATING TECHNOLOGIES FOR IMAGING,
DETECTION, AND CLASSIFICATION

by
Jay A. Marble

Co-Chairs: Alfred O. Hero Il and Andrew E. Yagle

Surface penetration for the purpose of detecting objecisterfest is a field of importance
in both military and civilian applications. This work toueshion the entire scope of the
problem, including the detection and classification of otgeand the process of forming
an image. Military applications such as See-Through-Véalhr and landmine detection
dominate the specific applications explored. Initiallye firoblem of decreasing signal-
to-noise ratio is addressed by applying non-statisticahogs to signal enhancement.
Metal detectors and ground penetrating radar, the starsgasbrs for landmine detection,
are given the focus. Next, statistical methods are expltoedoth object detection and
classification. A Gaussian mixture is used to model the respof multiple objects of
interest to the standard sensors. Two sensor schedulihgite®s are then studied within
the context of confirmation. The first applies an informatian metric called the &yi
Divergence to schedule a single sensor out of a toolset alosen(Three appendices
discuss the physics of potential sensors that could makieaufpolset.) The second uses a
learning approach to determine a policy for applying moentbne confirmation sensor.
The policy dictates when to declare an object class and wheeploy another sensor.
The resulting policy produces the maximum probability ofreot classification with

the minimum number of sensor dwells. Imaging begins witrkpempagation synthetic

aperture radar imaging and progresses to an efficient ingi&ation of wavenumber

Xiv



migration. The use of a sparse prior for image reconstrugiantroduced in an iterative
method that transforms the data back and forth between imad®bservation domains
using Landweber iteration. Soft-thresholding is used aswlechanism for applying the
sparse prior. Examples are shown in 2D and 3D. The final dartton is an adaptive
imaging technique called the Iterative Redeployment ofilation and Sensing. This
algorithm utilizes the scene itself to determine the besations to acquire further
observations. An E&M simulator dubbedva-tual transmitter is used in conjunction
with information gain to direct the imaging device to the niexation. The final result is
an image that approximates a large synthetic aperture frattiple observations with a

much smaller aperture device.

XV



CHAPTER |

INTRODUCTION

Surface penetrating technologies cover a vast range adingsareas and applications.
Areas of research include medicine, subterrestrial oljetetction, and package inspection.
In medicine, the detection of cancerous tumors has beendidegh interest throughout
modern times. In recent years, package inspection, whktbgage or shipping crates or
a building, has become of high interest. Subterrestri@an can include objects near
the surface like landmines or deep objects like undergroumalels. In this work the focus
is primarily on military applications of subsurface meteod he fundamental process
is to form an image from an appropriate sensor, detect theepoe of objects, and then
discriminate between objects of interest and objects noittefest.

Depending on the problem at hand, a suite of sensors may bé@edg One
sensor may be useful in scanning large regions, while an@heseful in removing
ambiguity at a single point. Two types of objects may respeeny differently to
different sensor technologies. Some sensors may be easyt(faleploy and perform
a measurement, while others may require a lot of power anchgivey time (slow).

This richness of technologies and signatures of interegeman ideal problem for
sensor scheduling, detection/classi fication, andimaging. The two applications that
receive attention in exploring subsurface technologies beelandmine detection and

see-through-wall imaging.
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Figure 1.1: The Surface Penetrating Problem Generalized

1.1 Contributions Made

Low signal strength is an ever-present aspect of surfacetimg technologies. Objects
close to the surface or with large cross section will givehhsgnal returns. Achievable
depth and detection of smaller targets will always be thbrietogical frontier of surface
penetration. In the first contribution chapter, methodsrfamcing signal strength are
explored. First, radar is used to image landmines to deterthie depth, length, and height
of objects. Knowledge of depth and size is a powerful discramt between landmines
and non-threatening clutter objects. We also look at a niogakform that sums all the
energy in a hyperbolic radar signature. This transform iektes clutter because real
objects in radar data have a hyperbolic shape while clutben fround strata do not. We
then look at determining object size and shape using a metattbr. By identifying a set
of basis functions and using subspace projection methbegleépth and basic object size
and shape can be estimated.

In the second contribution chapter we look at probabiligpiproaches of the landmine
detection and classification problem. Multiple sensor tebbgies have been developed
over the past ten years. Each target and clutter type haseaedhif response to each
sensor technology. In addition, object depth significanbgnges signature statistics.
Characterizing the signatures leads to a Gaussian mixtudelmdultimodal sensing

implies the use of multiple sensors to detect objects. Byatipd) the joint probability

2



density function (PDF) of objects over all the sensors, thiea class can be estimated.
Two approaches are used. The first looks at Maximum a Postesiimation. The second
simplifies the joint PDF using a Bayesian Network. The Bayesdhgplifies training and

generalizes performance across multiple soil types.

The third contribution focuses on sensor scheduling. Thertane problem provides
a rich tapestry of sensor technologies and object respoivsstsl detection is employed
to find mine casings. X-rays and other nuclear methods ar tosgetect explosives.
Radar is used to detect changes in dielectric permittivityo $tages of sensor scheduling
is explored. The first considers the deployment of a singls@e It uses an information
based technique. For a given situation a measure of inateastainty called the
Rényi Divergence is computed. The sensor that displays the highest infoomagain
(the highest probable increase in object certainty) isalagal. The problem is expanded
to include time considerations. Next the problem of how mseysors to deploy before
moving on is considered. Reinforcement learning is used maptibe an optimal policy
for deploying additional sensors based on the current seeaisurements available. The
solution is optimal in that it maximizes the probability adreect classification while
making the fewest number of sensor deployments.

As mentioned above, the first stage of many surface perwirgtoblems is
imaging. An image must be made of the region under test thmbeaexploited by
detection algorithms. In the next contribution chapter,leak at synthetic aperture
radar imaging with a focus on the subsurface application.fis¥econsider the basic
backpropagation imaging algorithm. Acceleration of tHgoathm is achieved using
wavenumber migration, which is a technique borrowed frorsnselogy. We go beyond
this by introducing an iterative technique that makes ush®fBame approximations as
wavenumber migration. In our approach the radar data is@chaging wavenumber
migration and themn-imaged using wavenumber migration ireverse. A control loop is

formed by making use ofparsity. Sparsity is the concept that the majority of pixels (or



voxels) in an image should be zero. A sparse prior constigpiaced on the reconstructed
image. This constraint is applied in the image domain. Tkaltés thenun-imaged and
an error is formed with the data in the observation domairangxes of this are shown for
see-through-wall imaging in 2D and landmine imaging in 3D.

The final contribution chapter looks in depth at see-threwgh radar imaging.
First we look at determining the unknown phase correctioaded to properly
focus radar waves that pass through an inhomogeneous medienalso look
at how to detect and map inner walls. A novel form of sensoedaling called
Iterative Redeployment of Illumination and Sensing(IRIS) is explored. Here we
look at the use of a small aperture (handheld) radar for imgldn image comparable
to a long baseline apeture. The algorithm utilizes the sdse# to determine the best
locations to acquire further observations for the givemsecédvanced E&M simulation
tools dubbedvirtual transmitters are an integral part of this adaptive process. They
predict the fields outside the structure being imaged andfannmation gain criteria is

used to determine the best place to redeploy the small apeedar.

1.2 Outline of Dissertation

In Chapter Il an overview of the field is presented. We begim\itistorical look at the
military applications of surface penetrating technolsgi€his field began in earnest with
foliage penetration during the Viet Nam era. The motivati@s to detect vehicles under
jungle foliage. In the early 1990s, military base closures/d environmental cleanup
efforts to eliminate unexploded ordnance (UXO). By the 1880s, the focus has shifted
from UXO to landmines. In recent years, tunnel detectiondwese to the forefront. Also
in recent years many new applications have surfaced. Thekele luggage and package
inspection and other applications. The two primary are@oead in this dissertation are
landmine detection and see-through-the- wall radar. Tladlerlges and goals of each

research area are discussed in some detail.



Chapters lll, 1V, and V address issues in landmine detectolctassification. Chapter
lIl focuses on non-statistical methods for enhancing digmaoise ratio. Radar and metal
detectors are considered. Chapter IV turns to statisticiods. Much information can be
gleaned from pixel amplitudes. By comparing measured aut#s to a joint probability
function, depth and object type can be classified. Clasgjfginjects is addressed in
Chapter V using sensor scheduling. This chapter represéntly annovative contribution
to landmine detection and classification.

Chapters VI and VII turn to the application of see-througé-ttall imaging.

In Chapter VI we discuss many aspects of radar imaging anditdgoacceler-

ation. Sparsity is explored as a method of improving imagalityu In Chapter

VIl we model the propagation of electromagnetic waves ag ffess through the
inhomogeneous walls using geometrical optics. These matel used in the novel
Iterative Redeployment of Illumination and Sensing algorithm to predict locations
of information gain outside the building being imaged. Timfrmation is used to
schedule a small aperture imaging radar to produce a fingertieat approximates a much
larger aperture system.

In the appendices we look at three sensor phenomenologiespoftance to
landmine detection. These technologies are electromiagnduction (EMI) sensors,
magnetometers, and x-ray backscatter. Chapter V discussegpplication of multiple
sensors in sensor scheduling. In that chapter the sensoveeared as black boxes. These
appendices illuminate the details of how these technatogi®k to provide information
on buried objects.

In Chapter VIII we conclude this work. Discussion is made déife directions and

ideas for technology transfer to real world systems.

1.3 List of Publications
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CHAPTER I

OVERVIEW OF THE FIELD

2.1 Historical Background

2.1.1 Foliage Penetrating Radar

During the Viet Nam War, foliage penetrating radar becamuagti interest. Enemy assets
hid beneath two canopies of jungle. The beginning of surferetrating radar is found in
this problem. The challenges that are faced are an attemuzftelectromagnetic energy as
it passes forward and back through the conducting jungieekeand a random backscatter
created by tiny branches. The result is a weak target sipaalis obscured by random
additive noise and a peppering of tree trunks [1].

In the mid-1990s, foliage penetrating radar returned as@a @f research interest.
Some approaches used VHF and UHF frequencies. A challepgoidem is that objects
such as trucks and cars can look like tree trunks at the résolproduced in VHF/UHF
imagery. Some novel discriminating features were idewtifiging directional features and

by taking ratios of the UHF to VHF band energy in the backseatt signals [2] [3].

2.1.2 Unexploded Ordnance Detection

Base closures in the 1990s created an interest in detectiimguoce that had not detonated
during military tests on bases scheduled to close. Thisplodrd ordnance (UXO) posed

a health hazard to land being turned over to the public. Ameemtdustry was spawned for

environmental clean up of military bases [4] [5].

In addition to domestic cases of UXO contamination, bombs tlad not exploded
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during conflict were present in countries like Laos and Carnshdéarmers plowing fields
would have no problems one year, then the next would hit bdoebsy pushed to the
surface like field stones. To this day, regions of Europe ent UXO left over from the
Second World War.

Initially, this problem generated interest in metal deteciand magnetometer
technology. These sensors could achieve penetrationslepteveral meters. However,
the trade off between resolution and depth (i.e., deepahgemetration coming only with
lower resolution) led to more and more innovation. Everyuehdar began to be explored
for its ground penetration capabilities. This led to Grotmhetrating Radar (GPR). Early
radars in the mid-1990s were crude geophysical instrumdmday such sensors are
greatly improved as they are in their third generation ane Haund a home as a tool for

landmine detection [6].

2.1.3 Landmines

In the late 1990s much attention turned to the developmesegor technologies for
landmine detection. Landmines pose a threat to soldieiaglgonflicts and to civilians
and livestock in its wake. Over the past ten years a wealtleimdars and technologies
have been proposed, developed, prototyped, and fieldegitBedl of this effort, the
nature of landmines as having a wide disparity of signajwesch are affected by the
state of the soil environment, has made a universal solati@tienging. The signatures
observed from landmines have encompassed such a richywiratit has spawned much
innovation. Among the innovations are two technology ti€fke first tier being the
Standoff application and the second is the Close-in apphicatlThe reader is referred

to [7] for a comprehensive overview of the landmine detectield.
Standoff Sensors

Stand-off sensor technologies for landmine detectionuohelsynthetic aperture

radar [8] [9] [10] [11], microwave radiometers, and the emfamily of IR (multispectral
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and hyperspectral) and visible light cameras [12]. Thesbkbrelogies are useful as
standoff sensors because they rely on the propagation df@beagnetic energy over
distance. Useful IR signals have been obtained from buaedrhines. These signals are
caused by the warming of the mine and the surrounding groyrideébsun. At night, the
ground is cooler than the mine, while in the day the mine iswearthan the ground. This
temperature difference creates an observable signatucauBe the sun is the primary
illumination source, careful study of the cycle of warmimglacooling has been made. If
nothing else, the goal is to predict the times of the therm@dsover when both mine and
ground will have the same temperature. Other environmefffitts like cloud cover and
rain complicate the issue. After a rain, no signal will besgret because everything has the
same temperature [13].

Airborne radar systems have also been developed. Thesglénglound penetrating
radars with frequencies in the VHF, UHF, and L-bands. As was]IX-band (8-12GHz)
systems that look for surface effects to detect the preseihdesturbed earth. Plans for

spaceborne assets for landmine detection have also besidecd [14].
Close-in Sensors

There is indeed a vast set of sensor technologies for ciodetection of landmines.
These include: metal detectors, magnetometers, nucleairgpole resonance [15], x-ray
backscatter, downward looking radar [16], and chemicda(bbry) detectors. Some of
these technologies are explored in the modeling presentibe iappendices.

Metal detectors are the original technology for close-idiaine detection. Landmines
were introduced by Germany in World War |. Since these werdewdth a metal casing,
the metal detector became the first landmine countermeaglings eventually led to
the development of plastic cased mines.) The technologyetéindetection remains
virtually unchanged. A coil of wire is energized by electtiarent. When the current is

cut off, eddy currents continue to flow in metal objects irsel@roximity to the coil. This



induction effect is understood in multiple ways. Metal attes are often referred to as

electromagnetic induction (EMI) sensors [17] [18].

2.1.4 Emerging Applications

“Necessity is the mother of invention.” Recent events havderiar many new necessities.
The public threat to air travel has brought luggage inspadib new scrutiny. A related
area of interest is that of inspecting shipping containepods. It is desirable to inspect
every container brought into port. This comes from the retaeat of global terrorism
and the more traditional problem of illegal drug smugglifidne need for this type of
technology does not end here. Railroad cars and transpoksstare also of interest.

Somewhat of a hybrid between container inspection and larelgetection is the
search for underground facilities. This area has two tiénse for deep structures to be
detected from the air or from space. The second is that ofoshatructures to be detected
from the surface just above. Both are challenging problengsezxt interest.

Non-military applications also abound. In the biomediceldj cancerous tumor
detection has been the source of much research. Bridge aadtmicture inspection for
catastrophic failure is of great interest in light of receagedies. And, rounding out our
list is the detection of buried pipes and cables. To be s@eetis no shortage of problems

to be solved with surface penetrating technologies.

2.2 Landmine Detection and Classification Research

In this work, two applications are given significant attentiLandmines and See-Through-
Wall Imaging. New techniques and technology are often ap the landmine problem
as a first attempt at marketing. Headlines often read, “Landmroblem Solved.” The
truth is, however, that landmines have been a very dauntingahitarian problem since

they were first introduced as weapons.
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The Uses and the Problems of Landmines

The primary goal of a landmine is to deny the enemy entry tovargiegion (area control).
They are cheap to mass produce and effective. They are maevieg, always villains. The
existence of a huge minefield planted by the United Stategdset North and South Korea
has assisted in keeping over fifty years of truce. The huraaait problems arise when the
conflict ends (completely) and mines remain in the grounceifflocation may not have

been recorded during the war. Or, perhaps flooding has calisedocation to move.

A Tale of Two Applications

Landmine research falls clearly into two categories: mmjitand humanitarian. The
challenges and goals of each are quite different. On theamjlside, the interest is in
breaching the minefield. An army wants to go where the eneryiigg to deny. Here
the application calls for a fast detection of the mines alamgrridor to be traversed. The
mines can be destroyed in place, or neutralized, or simpydad. A gruesome fact is
that 100% detection is not necessary for a system to be @resic success. Casualty
rates must, however, be “reasonable.” This can only be gimlsit in the context of other
immediate threats facing the soldiers during their mindfiedversal.

The humanitarian aspect of the problem is very differen@%@letection is essential.
In addition, the entire minefield must be cleared with highfmtence. Also in direct
contrast to the military application, humanitarian de-imgnhas no time constraint. The

field will be declared clear when the desired confidence issaed.

General Landmine Types

A wide range of landmines have been developed by multipletr@s in the last 50 years.
The most general classifications areipersonnel andantitank. Antipersonnel mines
are small and found at shallow depth. They contain just en@xglosive to kill or maim
a single human. There are also antipersonnel mines thabamall as to just eliminate

part of a foot. Antitank mines, on the other hand, are largedeeply buried (six inches
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from surface to top of mine). They contain enough explosigegender a tank immobile.
They can generally be detonated by only something as heasytask. Antitank and
antipersonnel mines are often found intermingled. The ag that the antipersonnel
mines will detonate, if someone tries to defuse the antitaimes.

Material composition makes up the next characterizingufeadf landmines. The
original versions had metallic cases. Many mines today tdrenmde with metal casings.
The original landmine countermeasure was the metal dete€tee counter to this
countermeasure was to build the mines with plastic casiBgse mines today contain
only a slight amount of metal in the firing pin. Some plastisezAmines can still have
significant metal content in the pressure plate. Thereforee content is described as
“high metal” or “low metal”.

For years the “Holy Grail” of landmine detection has beenaaethat could detect
the explosive material itself. Quadrupole resonance yxsackscatter, neutron x-ray
excitation, and olfactory (sniffer) sensors have all beesighed with this in mind. To date,
however, these systems have not made it past the experirstaga. Fielded systems still
target some aspect of the surroundings of the landminerrtithe the explosive material

itself.

2.2.1 Low Signal-to-Noise Ratio

The cutting edge of landmine detection is defined by the daptthich a landmine can
be detected. In recent conflicts objects buried at signifidapths have become of high
priority. Achieving depth with high resolution is necesstr extract image information
about the object. The classic GPR trade off is that lowerdeagies achieve greater depth

of penetration but at the cost of resolution.

2.2.2 False Alarm Rejection

Since the primary detection characteristic is the landmaseng, false alarms are often

generated by non-threatening objects that exhibit the sdraeacteristic. An important
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area of research is the ability to properly identify threatg objects while rejecting

harmless ones. Thus, false alarm rejection is an objedifitzgion problem.
Sensor Fusion

Because landmines have such a wide variety of signals, a aréd \@andmine detection
system must employ multiple sensor technologies. Thisakamany forms. A standoff
system may queue a close-in detector to investigate a plariocation. A system of two
or three sensors may measure simultaneously in a scanmseg.s®r a system with a
lever arm may deploy a sensor that has been selected baseeMooup observations. The
phrasenultimodal system has come to refer to one that can modify its mode of sensing
to remove detection ambiguity [19].

Because landmine signatures are affected by changing envematal conditions, a
successful landmine detection system will have to be abdelépt. An adaptive system is
one that allows algorithms to vary based on the surroundimg@nment. Wetness of the
ground is a randomly varying quantity. It has been shownttiiatparameter needs to be

observed constantly for proper GPR operation.
Confirmation Sensors

Some of the technology developed for landmine detectionntasired and can be
implemented in sensor arrays that scan for landmines. @¢lcbnologies show great
promise for distinguishing landmines from clutter, but arere practical to implement on
a point-by-point basis as confirmation sensors. Confirma@nsor scheduling has arisen
as a research topic to determine the optimal allocation@ihthany sensor resources at

hand.
Sensor Scheduling

Artificial Intelligence has spawned the concept of algonghthat learn over the course

of their lifetimes. Sensor Scheduling is a sub-field of alipons that attempts to learn a
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policy for applying the right sensor at the right time. Chaptediscusses this in more

detail in regard to the landmine detection application.

2.3 See-Through-Wall Radar Imaging

The latest twist in the story of surface penetrating radéinesSee-Through-Wall (STW)
application . STW radar imaging refers to the imaging of otgdoehind walls or inside
buildings. The application has become of increased inténegcent years for both
military and law enforcement applications. Ultimatelystdesired to provide the most
useful information possible to authorities. The naturehes tnformation includes the
internal layout of a building (location of doors, obstrocts, or inner rooms), the existence
and location of objects of interest (weapons, explosivaghamphetamine labs), and the

tracking of suspicious individuals inside [20].
Imaging Challenges and Issues

The most useful tool for this application is radar. Radar olzge®ns of a building

can be used to form 3D volumetric images of the building interThis application

is challenging, however, because it requires the proogssma interpretation of
electromagnetic waves in an inhomogeneous media with wmkmoaterial parameters
and structures. Standard imaging techniques suffer froftibnunce effects. That is,
energy bounces back and forth between walls or inside wallsnmg the image difficult to

interpret [21] [22] [23] [24].
Suspicious Individual Tracking

Tracking individuals inside a room faces a signal-to-no&® challenge. Nevertheless,
recent work has shown that this can be accomplished using B@&f. Law enforcement
desires to know the location of individuals in a room at thenmeat they force entry. In
a hostage sitaution, if they can determine the location efctptive and the captor, the

chances of a safe hostage extraction increases greatly.
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Inner Wall Mapping

Along the same line of thought, it is desired to know the layafuthe structure being
entered. Mapping doorways to other rooms identifies thectime of possible gun fire.
Wall mapping has been shown to be difficult. Again low sigtmahoise ratio plays a large
part. Walls that are not directly illuminated by the radaafmecause the RF energy to
bounce away from the radar (in the monostatic case). Thédt isguscene revealing walls
perpendicular to the beam, but without ones that are pamaliengled to it. A practical
system may have to collect data from two directions and migrgy@formation to properly

map all inner walls [25] [26].
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CHAPTER 1l

NON-STATISTICAL APPROACHES

Surface penetrating technology often suffers from low akga-noise ratio and/or
low resolution. In this first contribution chapter we lookrain-statistical methods for
extracting information about landmines from ground peatetg radar (GPR) and metal
detectors. The first section deals with low resolution. Bsusomputer vision tools to
segment a radar scene into object and background regionsuding box is then drawn
around the object to identify it as being of the right size degth. Section 3.2 addresses
the issue of low SNR in GPR data by introducing a novel tramsfoThis transform
dubbed theHHyperbola Flattening Transform collapses all the energy of a GPR point
spread function into a point allowing for the best achiegg®NR. Section 3.3 turns to
electromagnetic induction (EMI) metal detectors. Thishtemogy, despite its simple
nature, has stood the test of time. In this section we lookaektraction of depth and
rudimentary shape information from the metal detectoraigihis technique is a basis
pursuit, which can be used to eliminate noise. Since plaased landmines can have very

metal only in their firing pins, this technique is of high irdet.

3.1 Imaging Using Ground Penetrating Radar

The Wavenumber Migration imaging algorithm decribed in Gaap| will be applied
to real world data collected with a GPR. All signatures showthis section are from a
Russian made TM-62M landmine buried6dt The TM-62M is an anti-tank mine that is

typically buried at a depth betwedii and8”. This particular variant has a metal casing,
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Figure 3.1: A TM-62M, Metal Cased Landmine (Dimensions:. h@”, dia. - 13”)

which gives a very strong signature.

Ground penetrating radar images are inherently low resolutHigh resolution
imagery requires high frequency E&M waves. These highaejueacies are strongly
attenuated by the conductivity of the ground. Lower freques can penetrate the soil
further, but the landmines have lower reflectivity at thesedr frequencies. Thus, the
problem of designing a radar to detect landmines is sanehaitly lack of returned
energy at lower frequencies and lack of penetrating endrthyeahigher frequencies. The
frequency range we are left with tends to be in the upper UHFlabands. That is,
around500M H z to 2G H z. With these wavelengths it is possible to obtain resoltion
around2” in depth. The TM-62M i$” high. This means that when looking downward in
depth we are likely to get around three pixels between thetdpe mine and the bottom.

Figure 3.1 shows a typical TM-62M landmine. A hyperbolicreigure observed from
a similar TM-62M at6” depth is shown in Figure 3.2. The soil here is Virginia claljei
is known for being quite lossy. The exact relative permitigiand conductivity values are
unknown. The signatue here appears at a false depth due ablrated delays in the
GPR. (The wavenumber migration algorithm will correct thisidg imaging .)

In Figure 3.3 we see the results of imaging this signaturé e wavenumber
migration algorithm. Note that the low resolution image @rdnated by two horizontal
lines. These lines a®’ or 77 apart and roughly2” or 13” in length. The upper line is

caused by the energy reflecting from the top of the mine whadibttom line is the energy
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Figure 3.2: Observed Signature of a TM-62M (Depth: 6” to top)
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Figure 3.3: Image After Wavenumber Migration - Size of reftats reveals the depth, height, and diameter
of the landmine.

reflecting from the bottom. Note the low return area (shadavibetween. Since this is a
metal-cased mine, little energy gets into the mine itsetidpcing a shadow region.

The final image in Figure 3.4 shows a thresholded versionisfsignature. The top
and bottom edge returns clearly dominate the signature eXaet threshold values were
chosen arbitrarily but consistently for all the signatwaiealyzed in this study. From this
binarized image the height of the mine can be seen to be ardun@he length of the
upper reflection is aboutr” while the length of the lower reflection is abol#”. The
depth to the top i$”. This is very close to the actuab” diameter6” height, ands”

burial depth of the mine.

3.1.1 Size and Depth Estimation Algorithm

In Section 3.1 we estimated the size of the landmine by visisglection of the focused

signature. For the purpose of automatically determiniegandmine’s size and making a
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Figure 3.4: Binarized Image of Fig. 3.3 - Reflections fromtibyg and bottom of the landmine are visible.

decision based on that information, an automatic estimaigorithm has been created.
Identifying the Top and Bottom Scatterers

Using a standard vision system approach it is possible wnaatically identify the top
and bottom scatterers. The algorithm requires settingeshimid on the real part of the
complex focused image. Next, all pixels breaking the thoéshre lumped into objects.
In vision system literature these are called Binary LargeeCtigj (BLOBSs). Any BLOB
found at a depth that is above the ground is eliminated. Toegets are associated with
multiple reflections from the landmine that are aliased fatse locations by the radar
sampling process. Next, the two objects that have the gtesite-brightness product are
identified. (The size-brightness product feature that mmated is the number of pixels
in the BLOB times the value of the brightest pixel on the bldb.all ten signatures of
the repeatability study of Section 3.1.2, the two BLOBs with lrgets size-brightness
product corresponded to the top and bottom edge reflections.

Figures 3.5 and 3.6 illustrate the process. Figure 3.5 shiogvsriginal focused
image. The thresholding reveals several bright scattelrethis case several BLOBs were
reported at impossible depths. That is, they were repoaée above the ground. These
objects are eliminated from the object list. In other casgisshown here, BLOBs that
were not associated with the top and bottom of the mine wenendir and smaller than the

correct ones. So there was little difficulty in automatiga@hoosing the correct BLOBs.
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Figure 3.5: Focused Image of TM-62M Landmine
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Figure 3.6: Fig.3.5 After Thresholding

It should be noted that this landmine is a large metal landmidespite the fact that it is
buried relatively deeply, it still gives a very high sigrtaknoise ratio. This is common to
all metal objects.

The depth of the landmine is determined from the locatiorheftbp reflection.
Similarly, the height is estimated from the distance betwtbe top and bottom reflections.
The length is computed by averaging the lengths of the togoimg and shadow region
BLOBs. The shadow region is described in the next section. Fdniscular example is
entry Number 5 in Table 3.1 of Section 3.1.2. The sizes auticaily determined were:
height - 6.8”, depth - 6.7”, length - 13.3". The actual valoéshese dimensions are listed
in Figures 3.1 and 3.2. Actual values: height 6”;depth 6figiga 13”.
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Figure 3.7: The negative of the focused image converts thémt region into a bright one.
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Figure 3.8: Shadow region is automatically identified afwtlad 1 by the algorithm.

Utilizing the Shadow Region

For metal landmines the real part of the focused image canvseted to detect the
shadow region. In the preprocessing step the data is highfitased. This has the effect
of removing the average value. The average value of the bagid is created by energy
that is reflected from the soil filling the medium. When thisrage is removed by the
high pass filter, the shadow region ends up being negative. Bptying the real part of
the image by -1 and then going through the algorithm desgiib&ection 3.1.1, a BLOB
associated with the shadow region can be identified.

The existence of the shadow region also provides a confidgreek. If the algorithm
returns a shadow region that is not located spatially betvibe upper and lower
reflections, then an error has occurred. The signature ibeing produced by a large,

metal landmine.
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3.1.2 Algorithm Validation - Repeatability Study

Validation of the imaging and size & depth estimation altforis involves focusing an
image for multiple targets of known size and depth, perfagrthe estimates, and then
comparing to the ground truth of these objects. As an iniisd, ten targets were selected
from multiple measurements of the same buried landmine. TMe&2M landmine
chosen was buried at 6”. All 10 signatures studied are fratependent measurements
of the same TM-62M. All 10 were measured within 3 days of eatiero There were

no significant changes in weather during these 3 days, s@xgscted that the ground
permittivity will be relatively constant for all 3 days.

By trial and error the relative permittivity of the ground waetermined to b8. (This
is the real part of the relative permittivity.) This valueswased to image each hyperbolic
signature. After performing the size and depth estimatiothe real part of the focused
images, Table 3.1 was produced. The results are encoura@m@verage the method
determined the height and depth of the landmine to withimaddrd deviatio.55”. On
average the estimates were too highody’ and0.4” inches for height and depth. Because
the soil was determined to have a dielectric constar®, dfie depth resolution of the
system making these estimates was}”. The estimates are, therefore, accurate to within
one resolution cell.

The performance of the length estimator was not quite asratcuOn average the
algorithm determined the length of th8” diameter landmine to b&l.6”. This is too
small by1.4”. The standard deviation of these estimates «va$’. If we assume that the
radar beamwidth was roughtyy45°, the azimuth resolution will be roughly.3”. So the
length estimate bias is on the order of one resolution cell.

These results are encouragingly consistent. It is clean tiee data that the length
estimate is the more difficult quantity to measure accuyatébwever, our estimates are
still within 1.5” on average and within 2.5” in standard dsvon for a 13” object. The

burial depth and height measurements, on the other handudesaccurate. On average
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Table 3.1: Summary of Estimates - All units in inches.

Estimates Error

Number |[ Length [ Height [ Depth [ Length | Height [ Depth
1 9.3 6.8 6.7 -3.7 0.8 0.7
2 11.3 6.8 5.6 -1.7 0.8 -0.4
3 12.0 6.8 5.6 -1.0 0.8 -0.4
4 18.0 6.8 5.6 5.0 0.8 -0.4
5 13.3 6.8 6.7 0.3 0.8 0.7
6 10.7 5.7 6.7 -2.3 -0.3 0.7
7 10.7 5.7 6.7 -2.3 -0.3 0.7
8 9.3 6.8 6.7 -3.7 0.8 0.7
9 10.7 5.7 6.7 -2.3 -0.3 0.7
10 10.7 6.8 6.7 -2.3 0.8 0.7

Average 11.6 6.5 6.4 -1.4 0.5 0.4

St. Dev. 2.54 0.55 0.55

our estimates of depth and height are within a half inch forstesn that measures depth
and height with a resolution of around 1”.

This section has shown how ground penetrating radar caeat@hd process
information into low resolution images of objects buriedhe ground. By the term "low
resolution” it is implied that only a few pixels are availalwn the targets of interest. In
this application, a 6” tall landmine is resolved with 1.550éution, so only about 4 pixels
will exist from the top of the landmine to the bottom. Howewdspite the low resolution
characteristic of the data, information regarding the sizé depth of the landmine can
still be extracted with reasonable accuracy.

The wavenumber migration imaging technique was appliedi®&62M landmine
buried at 6”. In the resulting focused image, reflectionsfithe top and bottom edges
of the landmine could be clearly seen. These reflectionsaapgdeas parallel, horizontal
lines in the final imagery. Computer vision techniques wergiag to extract these two
reflections and the low return (shadow) region in betweeresé&lthree objects were then
used to compute the depth, length, and height estimates.

An initial study of accuracy was then performed on 10 sigregollected over the
same landmine. In all cases the automatic estimation #fgorcorrectly identified the
edges of the landmine and computed estimates. The resaitedithat depth and height

were easier to estimate than length. The depth and heightaées were accurate to
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within 0.5” in bias and standard deviation. This standardaten implies depth and
height measurements to withinl 0% of the actual values. The length measurement was
accurate to a bias of 1.4” and a standard deviation of 2.5fs iBhan accuracy of about
+20%. Greater sophistication in the estimation algorithms likély reduce these errors.

A spent rifle cartridge shaped like a cylinder that is 1” lomgl 8.25” in diameter lying
on the surface will generate a large response in a metaltdetdihe GPR working in
combination with the metal detector will be able to detemrtimat this object’s size is not
in the proper regime. Using size and depth information, @bjthat are too big/small and
too shallow/deep to be consistent with landmines can bevedfsom detection lists as

non-threatening objects [27] [28] [29].

3.2 Pseudo Imaging

Vehicle mounted ground penetrating radars transmit RF grietg the ground from a
short distance above. In the area of landmine detectiondheig to detect landmines
located just inches below the surface. The frequencies tesetito be relatively low to
allow for necessary penetration. This combination of gaoyrend low wavelength leads
to the generation of a unique signature that can be exploit&PR data. The signature
has a characteristic hyperbolic shape as shown in Figure 3.9

Soil has a tendency to be horizontally layered. In GPR dasahtbrizontal layering
manifests itself as straight, horizontal lines in the d&t@se detections are often caused
in GPR systems by a change in the horizontal layering of tbergt. These changes,
however, do not appear as a hyperbolic signature in the @ata means that the hyperbola
generated by discrete objects like landmines can be wtibmea powerful discriminant
against ground layer induced false-alarms. For this reasamy GPR users perform
detection processing on un-imaged data. Imaging of langsnetiminates the hyperbolic
shape by resolving the energy of the signature into a lowludea image.

Here we present an algorithm that takes advantage of thelhglpeby utilizing all the
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energy contained in the hyperbolic shape. The algorithralled the Hyperbola Flattening
Transform because it "flattens” the hyperbola into a lin@ptd summing the line into an
energy value. This energy value can then be compared to olfersts as a measure of the

"hyperbola likeness” of the signature.

3.2.1 Algorithm Discription

Many approaches have been used to exploit the hyperbohatsige produced by discrete
scatterers in GPR data. Typically these approaches hadxtriextract the energy from the
left and right "tails”, and then combine them in some way ttineate the total energy [27].
An elegant approach has been developed for capturing thlecto¢rgy of the hyperbola
in one step. This approach is called the "Hyperbola Flatigiiransform”. It is a virtual
warping of space that converts the curved hyperbola intcaggéit line. Total energy can
then be estimated by summing this line.

Equation 3.1 is a general second order polynomial equatianappears in the study
of conic sections [30]. Based on the values of A,B,C,D,E, anceFetjuation can describe

a hyperbola, a parabola, a circle, or an ellipse. The resugieometric shape results from
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the choice of these coefficients. For example, choosing B=0, C=1, D=0, E=0, F=-1

causes the resulting equation to describe the unit circle.

AX? + BXY +OY*+ DX +EY +F =0 (3.1)

The hyperbola shown in Figure 3.9 can be modeled mathertatiga

—f—; + };—; =1 (3.2)

Y in this equation is the depth directiork” {s positive down for increasing depth as
shown in the figure)X is the horizontal direction, and the paramete@ndd control
location and convexity. Note that this expression modeth halves of the hypberbola
- the upward and downward convex curves. In the case of tlterlanre signatures, we
only have the curve that is below the ground. This is the (eratitically) upward convex
curve, becaus¥ (depth) is increasing in the downward direction. So, theptialf of the
hyperbola does not exist in our application.

The idea of the Hyperbola Flattening Transform is to modifg geometry of the

hyperbola of Equation 3.2 so it is described as the following

XY =1 (3.3)

Equation 3.2 is an expression of a hyperbola. It is a conit@ewith: A = ;—21
B=00C= dlz D =0,F =0, F = —1. However, Equation 3.3 is also a hyperbola.
It is a conic section withA =0, B=1,C =0,D =0, F =0,andF = —1. Once
the signature is transformed inf0Y” = 1, we can do a change in variablesof— % to
produceX = Z. This is a straight line at5°. With the signature "flattened” into a line, it

is easier to construct algorithms to sum up the energy itaaost
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The transformation of the data from the form of Equation 8.the form of Equation

3.3 is accomplished by the following steps:

1) Scale the dimensions:

X' = V2X Y = _\/§Y
a d
Equation 3.2 now becomes:
X/2 Y/2
_ =1
2 + 2

2) Equation 3.5 can be factored into the following exprassio

5[5
vz ovell o v2oovRlo
3) Rotate by—45°:

X/ Y/

X" = X'cos(—45°) — Y'sin(—45°) = (= + —
V2 V2

X’ Y/
Y" = X'sin(—45°) + Y'sin(—45°) = —— + —
(—45°) (—457) NG

4) SubstituteX” andY” into Equation 3.6:

X”Y// — 1

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

We now have the hyperbola in the same form as Equation 3.ig\point theY” axis

is inverted to produce a line.
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5) Invert theY” axis:

=— 3.10
Y// ( )

l

X
XY'=1o " =1=X'=7 (3.11)

Note that the expression shown in Equation 3.12 is a line sldpe 1 andZ-intercept

0. Thatis, itis a straight line ait>°.

X"=7 (3.12)

By transforming the geometry into this form, the hyperbola baen "flattened” into
a line. Now the radon transform can be used to sum along alkéang obtain the energy

contained in the entire signature.

3.2.2 Results on Simulated Data

The concept put forward in Section 3.2.1 is relatively sima@ut the implementation can
be tricky. Below is a simulation that illustrates the procgiseng a proof-of-concept. The
starting point for creating a simulation is to define an X,Ybnate system and "turn on”
pixels according to the expression of the hyperbola of Eqna.2. That is, for every X

location the pixel given by Equation 3.13 are setto "1".

Y = [ <X—2 + 1) (3.13)

The result is a hyperbolic shape in the same "observatioceS@es that obtained by

the GPR. The first step in implementing the HFT is to normalizeaxes to remove the
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Figure 3.10: Steps of the HFT Applied to a Simulated Hypad#®ignature

parameters andd. This means that andd must be known (or estimated) before the
algorithm will successful produce the flattened signatéigure 3.10a shows the scaled
version of the hypberbola.

After scaling the axes, the -45 rotation is achieved by mogathe image. The axes are
then redefined aX’ andY’. The result is Figure 3.10b. TH¢ axis is now inverted to
fraclY’ to generate th& dimension. This is a non-linear mapping, which means tret th
samples that were uniformly spaced in Helimension are now non-uniformly spaced
in the Z dimension. To get back to uniform sampling, the data is pukated in theZ
dimension onto a rectangular grid. The result is shown inufeéd.10c. Note that the
signature is now a line at a 45 angle. If thhandd parameters are properly removed, the
hyperbola will always be converted to this orientation. is@that the line begins at the
location (0,0) in X,7) space and proceeds to the most positive values ahd” (i.e. the
lower right corner of Figure 3.10c). The line does not camtilon the other side of (0,0) to
the most negative values (upper left corner). This is bexanly the half of the hyperbola
that corresponds to the below ground landmine signaturesiwadated. The half that we
ignored would fill in a straight line in the upper left cornditioe image.

Now that the hyperbola has been flattened to a line, it can be easily exploited

to obtain the total energy in the signature. Figure 3.10dvshbe result of performing
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a Radon Transform on the image of Figure 3.10c. Recall that arR&admsform will
sum the values of an image along lines oriented at specifigdsbetween® and180°.
Looking at Figure 3.10d th&5° line sums to a point at th#5° angle index of the Radon
Transform. Since the HFT requires the hyperbola to be nazedhproperly to always
generate theé5° line, this location in the Radon Transform will always contthe energy

of the hyperbola.

3.2.3 Results on Real Data

Section 3.2.2 provided a proof of concept for this algorithihshowed that, when applied
to perfect data, the HFT will produce a flattened hyperbaka¢hn be summed into a point
using the Radon Transform. In this section the HFT is appbetti¢ real world hyperbolic
signature of Figure 3.9. The result shows that the energynsrsed up in the same way as
predicted in Section 3.2.2.

First, the values of a and d were determined for the hypertiokgure 3.9. The
parametet! is related to the depth of the landmine. The parameter a is gmmnplicated
as it is related to both the depth of the landmine and theivelgermittivity of the
soil. Figure 3.11a shows the signature with the a and d pdaemsaezmoved by the
normalization step (Step 1 in Section 3.2.1). Figure 3.1ws the—45° rotation of Step
3. Figure 3.10c shows the remapping to the inverted verticaidinate. A line at5° is
visible.

Because the beamwidth of the GPR used in this applicationad siime extent of the
hyperbola is small. The result after flattening is a rathealstime at45°. Regardless,
Figure 3.11d shows the radon transform with the summed grievgn the hyperbola

landing at45° in the Radon Transform image.

3.2.4 Applications

Two potential applications exist for the Hyperbola FlattgnTransform. The firstis as a

false alarm discrimination feature. Detections that haentdocated by some other means
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Figure 3.11: Steps of the HFT Applied to an Actual Hyperb&lignature

or other sensor can be analyzed one by one to determine taaateristics. The HFT isa
measure of hyperbolic-likeness. This measure is usefutiarchining if a detected object
is a discrete object or a change in the background. The ofipdication is in enhancing
the contrast of low signal-to-noise ratio landmines duthngdetection process.

Plastic landmines that are buried deeply are particulafficdlt to detect due to low
signal-to-noise ratio. Figure 3.12 is an example of andtaWS1.6 landmine buried at 6”
(to the top of the mine).

The hyperbolic signature is visible, but is weak. The magtetof its reflection is less
than the reflection from a stratification layer of the earoalisible in Figure 3.12. The
goal of the HFT is to change the contrast of the image so thg&fgtation signal is less than
the VS1.6. Figure 3.13 shows the results of applying the HFavery point in the image
with ana parameter ol 7. (This value of a corresponds to the relative permittivityios
soil and an object at 6” depth.) The results show some proniise earth stratification
signal is almost removed from the data, while the VS1.6 isaseokd. Figure 3.14 shows
the 20% brightest pixels in the transformed data. The looadf the VS1.6 is among the
strongest pixels. A detection scheme used in some GPR apipfis is to find the standard
deviation in the returned echoes. This is equivalent to admg a standard deviation over

all the pixels in a vertical column. Figure 3.15 shows tha technique applied to the
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Figure 3.12: Italian VS1.6 Landmine at 6” Depth

Figure 3.13: The HFT Applied to Every Point of the Image
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Figure 3.14: The 20% Brightest Pixels of the TransformedDat

HFT image shows a strong indication of an object at the looatf the VS1.6.

3.2.5 Pseudo Imaging Conclusions

A novel way of processing GPR signatures has been introdcaketl the Hyperbola
Flattening Transform. The algorithm utilizes the matheasabf conic sections to
transform the hyperbola into a line. The line can then beatgd using the Radon
Transform to produce a feature value for use in discrimomatf false-alarms and
detection of low signal-to-noise ratio objects. This featualue can be thought of as a
summation of all the energy contained in the hyperbolicaigre. After applying the HFT
to a VS1.6 buried at 67, encouraging results were obtaindus iE a plastic mine and is
buried deeply. The transformed data showed an enhancertm® landmine’s signal

while diminishing other signals caused by the stratifiedhe@1].
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3.3 Subspace Methods

In the previous two sections the focus was on ground pemegresidar. Now we switch to
the other mature sensor technology for landmine detectroatal detectors. The metal
detector has been called a “monkey wrench” sensor. Thisdause of its inherent low
resolution. Its resolution is so low that is is almost a bynsensor providing a when
metal is present and(@otherwise. Close inspection of the physics, however, doew sh

that some information about the depth and shape of the otj@dbe extracted.

3.3.1 Depth and Shape Information

For years, treasure hunters have used ElectromagnetictiodEMI) metal detectors

to search for buried objects. An investigation of the physitthese devices reveals an
understanding of the principal components contributinth&received signal. The spatial
signal from any buried metal object can be decomposed indbdotgis functions. These

bases are produced by orthogonally oriented magneticalgmirces induced in the buried
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object. Because of their characteristic appearance, thdases have been called the
andWV basis functions. Since the induced sources behave like poimces, thés andV/
basis functions are the same for all objects at the same dép#ghobject’s shape and metal
content determines the weighting &fand ¥, which sum to produce the spatial signal
received by the metal detector.

The fact that all objects at the same depth can be represastdw® summation of
two basis functions implies that the signal exists in a twoetisional vector subspace.
Identification of the subspace reveals the depth of the abi@ace depth is known, the
basic shape of the object can be determined by the signal@uenps. The metal content
(i.e., conductivity) and object size can be estimated byctmponents’ magnitude.

Two applications of this signal representation are exploFarst, a projection method
is used to estimate object depth. This method utilizes aeptign matrix that projects
a normalized signal into the subspace of a "shallow”, "mépth”, and "deep” object.
After the projection is made, tHe norm of the sampled signal is computed. This norm is
a measure of the energy of the signal that "survived” thegmtogn. In a world without
noise, the subspace corresponding to true depth will natoethe signal energy at all.
100% of the input signal energy will be found in the projecseghal. When noise is
present, the true depth will still be revealed by the praettat rejects the least amount
of energy. (That is, only the energy contained in the adeltiwise will be rejected.)

The second application involves determining the objedtape through estimation
of the object’s directional polarizability. Accurate @sétion of polarizability requires
knowledge of the object’s depth. In other words, it is neags$o know the correct
signal subspace within which to make the estimates. (Theéhd=uld be provided by the
proposed projection algorithm just mentioned or throughubke of an alternative sensor
like a ground penetrating radar.) Once depth is known, thecbBhape is identified by
estimating the polarizability of the object in the horizalrdnd vertical directions.

Computer simulations are used to test the two applicatiolgmas corresponding to
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spheres, cylinders, and flat plates buried at 0.0, 0.25, & a&re produced. In Section
3.3.3 results are shown for predicting the depth of eachcbbjea world with and without
noise. In Section 3.3.4 polarizability estimates are maile and without noise. It is
shown that accurate estimates of the polarizability aréesel as long as the object depth

has been properly determined.

3.3.2 TheA and W Basis Functions

When a metal detector passes over a buried metal object d Bignéne one shown in
Figure 3.16 is produced. The signal shown is a simulation okl detector held 0.3
m (i.e. 1ft) above the ground. The object is a sphere of ra@lilSm buried at 0.25m to
its center. This signal and all other received signals (faijects at 0.25m depth) can be
represented as a weighted sum of the two bases shown in BdufeThe shape of these
functions has led them to be named thandW basis functions.

These functions arise due to the phenomenology of the miadiedtls generated by
the metal detector. A metal detector is fundamentally a@oilire that is driven by an
electrical current. The current is generally sinusoidahvai frequency on the order of
100 Hz [32]. This field interacts with the buried object. Toisfg the electromagnetic
boundary conditions, electrical currents are set up withion the surface of the object.
The details of these currents are quite complicated andndegeeatly on the shape of

the object. However, an approximation to the object’s raspads an induced magnetic

36



=
=
£

=1
-

=1
o)
o
i

T

Voltage Response
=)

Woltage Response
o

W

-05 0.5 1 1.6 -1 -0.8 o 05 1 1.5
Sarmple Location [ Sample Location [m]

(@) The A Basis Function {(b) The YW Basis Function

=)
)

=

[

=1
-
ol
-

o

&1

w
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dipole [33]. Because higher order effects in magnetics haxaryafast spatial decay rate,
the contribution of the more complicated physics is not oles# by the metal detector. As
far as the metal detector is concerned, the buried objeasisajmagnetic dipole source.
This source will have components in both the vertical andziootal directions. The
magnitudes of these dipoles change as the sensor passkeanemhe\ andIV basis
functions take into account these changes. The weightihtpedwo bases come from the
polarizability of the object.

That is, the tendency of the object to allow a magnetic dipolexist in the vertical
and horizontal directions. The polarizability values dweags constant no matter where
the sensor is located with respect to the buried object. intpdies that the polarizability

can be estimated and used as a rough measure of object shape.

s(x) = alg(x) + bWy(x) (3.14)

The shape of the buried object affects its polarizabilityr iastance, a sphere has no
inherent directionality. So, the polarizability is equalall directions. A flat plate, on
the other hand, will allow the swirling currents induced hg sensor to exist on its flat
surface. If that surface is parallel to the earth’s surftoen there will be a large vertical
dipole response. The area of the flat plate perpendiculdwetbarizontal is very small. It
does not allow much current to flow so the horizontal polduiitg of the plate is quite

small. (See Section 3.3.4 for more discussion.)
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Figure 3.18: Signals from Spheres at Canonical Depths

The depth of the buried object affects the width of the basi€tions. The magnetic
fields emitted by the metal detector are highly non-lineghwlistance. That is, they
fall-off quickly as the distance from the detector increas@~or this reason, metal
detectors are inherently "close-in” detectors. They cameoform from a large standoff

distance.) The result is a broadened spatial signal. (Set@88.3.3 for more discussion.)

3.3.3 Subspace Identification

In this section thé\ andW functions for buried objects at 3 depths are considereds& he
functions are referred to ad;,W;,A,, W5, andAs, W35, where the subscripts 1,2,3 refer to
shallow, mid-depth, and deep objects respectively. Noanathat the shape or metal type
of the object, all objects at the same depth will have the sapsndV; basis functions.
The A; andWW; span a 2D signal subspace (i.e. a plane) that contains afllsigoming
from objects at the same depth. (The shape and metal contpatt the coefficients
that weight the two basis functions. This will be discussethe Shape Identification
section below.) Figure 3.18 illustrates the signal from adalisphere at three canonical
depths. The depths are: shallow (0.0m), mid-depth (0.2&ng,deep (1.0m).

Given a measurement of an unknown signal, it is desired teraéte the proper
subspace that contains the signal. This is synonymous wiriehining the object’s depth.

It is further desired that this process be robust to objeapshlt is shown in the following
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paragraphs that the subspace from a sphere, a cylinder,fatgpkate buried at 0.0, 0.25,
and 1.0m depths can be identified by projecting each sigtattie shallow, mid, and deep
subspaces and choosing the subspace that rejects thernteasttaof signal energy. This
approach works even in the presence of noise.

The subspace projection method is used here to identificobgpth. Equations 3.16,
3.17, and 3.18 defines a set of matrices called projectionceat[34]. When a projection
matrix operates on an observed signal, it has the effectvefitmg the signal components
found in that subspace. This fact is often used to reducem®®sgnals. In this application
a mismatched subspace will have the effect of reducing tkeggrof the signal. The
projection matrices for the subspaces are formed accotdiggjuations 3.16, 3.17, and
3.18. HereA,; and W, in Equation 3.15 represent column vectors formed by digital

sampling the basis functions.

Hy=[Ag Wyl (3.15)
Pipaiiow = Hi(H{ Hy) " H{ (3.16)
Ppia = Hy(HI Hy) ' HY (3.17)
Pieey = H(Hy Hz) ™ Hy. (3.18)

Unfortunately, the subspaces occupied by objects at diftatepths are not orthogonal.
They can be geometrically be interpreted as slanted pl&wsae energy from signals at,

say, 0.0m will be present in the subspace occupied by a sagriadDm. Table 3.2 shows
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Table 3.2: Norm After Projection into Subspaces (No Noise)

[ I Spheres [ Flat Plates [ Cylinders |

[ [[Shallow ] Mid [ Deep [| Shallow ]| Mid [ Deep [| Shallow ]| Mid [ Deep |
Shallow 1.00 0.79 ] 0.72 H 1.00 0.99 ] 0.93 H 1.00 0.94 ] 0.92 ]
Mid 070 | 1.00 072 || 092 | 100 099 || 08T | 100 094 |
Deep 019 | 051 [ 100 063 | 085 [ 100 037 | 068 [ 100

Table 3.3: Norm After Projection into Subspaces (Noise &ath Deviation: 0.01)

[ Spheres [ Flat Plates 1 Cylinders |

[ [[Shallow ] Mid [ Deep [| Shallow ]| Mid [ Deep [| Shallow ]| Mid [ Deep |
Shallow 1.00 0.79 ] 0.72 H 1.00 0.99 ] 0.93 H 1.00 0.94 ] 0.92 ]
Mid 070 [ 1.0 072 || 092 | 100 0.99 || 08l | 100 0.94 |
Deep 019 | 05L | 100 063 | 08 | 100 037 | 068 | 100

the norm of signals after being projected into the three gadxss. The results in this table
are for the case of no external noise.

Since the signal before projection is normalized, the vah@vn corresponds to a ratio
of "energy out divided by energy in”. The first 3 columns shbwe tesults of projecting
sphere signals at each canonical depth into each subspatetidt 100% of the energy
of the shallow sphere survives the shallow projection. Thiglies that the signal actually
occupies the shallow subspace. The highlighted entriesloleT3.2 show the result of
projecting the signals into the proper subspace. In allembricases, 100% of the energy
survives.

Two additional observations can be made from Table 3.2t,Fitsen considering the
flat plate at 0.0m being projected into the 0.25m subspagetfie next deeper subspace),
very little energy is rejected. This is a performance lingtfact. When no noise is present,
the small difference between the two subspaces is detecthbthe presence of noise,
however, the flat plates become very difficult signals foedeining the proper depth
subspace. This means that the angle between the two subspaegy small.

Table 3.3 shows the results after applying a small amoundditige noise. This
represents a situation with good signal-to-noise ratiathWiis level of noise, the result
for all cases (even the flat plates) remain robust.

Table 3.4 shows the result after increasing the noise bytarfatfive. The signal-to-

noise ratio can still be considered reasonable for this.ddewever, the first mistake is
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Table 3.4: Norm After Projection into Subspaces (Noise &tath Deviation: 0.05)

[ 1 Spheres I Flat Plates I Cylinders |

[ [[Shallow ] Mid [ Deep [[  Shallow [ Mid ] Deep || Shallow ]| Mid [ Deep |
Shallow 0.96 0756 | 065 || 09 0.94 091 || 092 089 | 085 |
Mid 068 | 097 064 || 090 | 094 0.95 077 | 094 086 |
Deep 016 | 051 [ 093 063 | 084 095 030 | 061 | 094

Table 3.5: Norm After Projection into Subspaces (Noise &ash Deviation: 0.3)

Spheres Flat Plates Cylinders
Shallow | Mid | Deep Shallow | Mid | Deep || Shallow [ Mid | Deep
Shallow 0.52 0.32 [ 0.42 0.31 0.38 0.19 0.42 0.44 0.48
Mid 0.37 0.62 0.48 0.31 0.37 0.26 0.31 0.43 0.52
Deep 0.18 0.37 ] 0.62 0.36 0.33 [ 0.30 0.20 0.33 0.52

made here by the algorithm for the flat plate case. This IngiGondition can be explained
by considering thél” basis function for the flat plate. Due to the thin nature offtae
plate, there is very little polarizability in the horizohthrection. Thell basis function is,
therefore, almost non-existent. Loss of thebasis function makes determining depth for
this class of object virtually impossible when significantse is present.

Objects other than flat plates show much better robustnesside. Table 3.5 shows a
30dB increase in noise. The resulting projections showtttetepth of flat plates and the
cylinders can no longer be determined with any confidence. sSpheres, however, still

give correct depth estimates.

3.3.4 Shape Identification

Once object depth is determined the object polarizabibty be estimated. Figure 3.19
shows the signal components for 3 canonical shapes: a sgheyknder, and a flat plate.
The polarizability of each shape type is known.
For the sphere the polarizability i$2, = 1.0, P, = 1.0. For cylinders:P, = 1.0,
P, = 0.5. And for flat plates:P, = 1.0, P, = 0.2. This is summarized in Table 3.6.
These values were chosen for the simulation intuitivelye $phere should not have a
bias in any direction because it is spherical. (This is a massumption that may not be

true in reality due to the "infinite conducting half-spaceg, the ground, within which the
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Figure 3.19: Canonical Objects at Same Depth

Table 3.6: Shape Polarizabilities
l | P | P ]

Sphere | 1.0 | 1.0

Cylinder | 1.0 | 0.5

Flat Plate | 1.0 | 0.2

object is buried.) The flat plate, on the other hand, has & larga perpendicular to the
vertical magnetic field. The swirling eddy currents indubgdhe sensor result in a large
vertical polarizability. Because the flat plate is thin, istanly a little area perpendicular
to the horizontal magnetic field. The resulting polariz#pis small. Similarly, in the case
of the cylinder, if it is "short”, then it will have less "helig” than it has "diameter”. By the
same line of thinking it is expected that the horizontal clien will be less polarizable
than the vertical.

The minimum squared error inversion algorithm for estimgpolarizability is shown

in Equation 4 [35].

= (HT H)  H!s (3.19)

DPx

In this equationi is an estimate of the object depth, afd is defined by Equation

3.15. The vectos represents a column vector containing the sampled spagrals Table
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Table 3.7: Polarizability Estimates (No Noise)

[ [ Shallow ] Mid [ Deep [[ Shallow ]| Mid [ Deep [[  Shallow ] Mid [ Deep |
Shallow P, 1.00 0.93 0.45 1.00 0.76 0.38 1.00 0.82 0.41
ﬁ’m 1.00 0.41 ‘ -0.42 0.20 -0.27 ‘ -0.62 0.50 -0.01 ‘ -0.54
Mid P, 0.53 1.00 0.78 0.96 1.00 0.63 0.80 1.00 0.69
P, 0.82 1.00 0.09 0.41 0.20 -0.44 0.56 0.50 -0.24
Deep P, -0.10 0.30 1.00 0.67 0.89 1.00 0.38 0.67 1.00
P, 013 059 ‘ 1.00 033 043 ‘ 0.20 0.26 0.49 ‘ 0.50

Table 3.8: Polarizability Estimates (Noise Var: 0.01)

[ [ Shallow ] Mid [ Deep [ Shallow ]| Mid [ Deep [[  Shallow ] Mid [ Deep |
Shallow P, 1.00 0.92 0.46 0.98 0.75 0.38 1.01 0.84 0.38
15m 1.00 0.40 ‘ -0.40 0.18 -0.26 ‘ -0.61 0.52 0.00 ‘ -0.55
Mid P, 0.53 0.99 0.79 0.96 0.98 0.62 0.80 1.02 0.67
P, 0.82 1.00 0.10 0.40 0.18 -0.44 0.58 0.52 -0.25
Deep P, -0.11 0.29 0.99 0.68 0.89 1.00 0.36 0.67 0.99
P, 0.12 0.58 ‘ 1.00 0.34 0.41 ‘ 0.20 0.25 0.50 ‘ 0.48

3.7 illustrates the results of using proper and mismatdigdatrices. In the case where
the properH (i.e. the proper basis set) is used, the computed polalizabiexact. For
example, the sphere at any depth is shown to be properlyastimvith unit polarizability
in the vertical and horizontal directions. The same is tetlie flat plates and the
cylinders. Use of a mismatched bases, however, resultdriemegly misleading estimates.

In the case of additive noise contaminating the signal, al@imesult is observed.
Table 3.8 contains a small amount of additive noise. All cacal objects, however, are
estimated with little error. Increasing the noise in theesbations, increases the error in
the final estimates.

Table 3.9 shows the effect of higher noise. Looking at thesgabe identification
results of Section 3.3.3, it is clear that the depth estiomagilgorithm will fail before the
polarizability estimator of Section 3.3.4. If the depth ete&rmined using another sensor,
the polarizability estimator will be able to classify objgdby their shape even in the

presence of significant noise.

3.3.5 Subspace Method Conclusions

Two basis functions have been presented that form a basmdtal detector signals.

These functions are the andWW basis functions. It has been shown that objects from the
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Table 3.9: Polarizability Estimates (Noise Var: 0.05)

[ [ Shallow ] Mid [ Deep [[ Shallow ]| Mid [ Deep [[  Shallow ] Mid [ Deep |
Shallow P, 1.06 0.95 0.42 0.97 0.71 0.38 0.99 0.84 0.40
ﬁ’m 1.12 0.37 ‘ -0.40 0.23 -0.33 ‘ -0.66 0.49 0.02 ‘ -0.53
Mid P, 0.52 1.05 0.75 0.89 0.96 0.61 0.84 1.00 0.67
P, 0.87 1.00 0.09 0.37 0.12 -0.53 0.64 0.53 -0.23
Deep P, -0.17 0.33 0.97 0.63 0.89 1.07 0.36 0.65 0.96
B, 0.08 0.58 ‘ 1.00 0.28 0.36 ‘ 0.22 0.31 0.50 ‘ 0.47

same depth have the same basis functions regardless of ahdpeetal content. Object
size and metal content affect the weightings of the two Hfasistions. Object depth, on
the other hand, affects the width of the functions.

A subspace projection method was introduced that identifedoroper basis of a
measured signal from an object at unknown depth. The mettasdsivown to work
perfectly in a low noise environment. When noise is added,dvew the similarity
between subspaces made depth determination difficult.Wémsespecially true of the flat
plate object.

Once object depth was determined (or if it was provided frowotlaer sensor), the
object shape was determined by estimating the polaripabiithe of the object in the
vertical and horizontal directions. Objects that are sigantly different, like the sphere,
cylinder, and flat plate, are easy to identify even in the gmes of significant noise.

A mismatch in depth estimation, however, was shown to caigsdfisant error in the
estimated polarizability values.

This work has shown how the physics of the magnetic field predlby a metal
detector can be used to identify a signal basis set. This msomposed of two principal
functions with which all metal detector signals can be repnted. A careful use of
the these bases can be made to reveal both the depth of tlut abgeits basic shape.
Future research will expand the analysis to scanning twbatghmensions, as well as,

considering buried object response to multiple frequencie
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CHAPTER IV

STATISTICAL APPROACHES

4.1 Multimodal Detection

Landmine detection often employs multiple sensors due éoditrersity of sensor
signatures encountered. Two commonly used sensors aredgpametrating radar (GPR)
and electromagnetic induction (EMI) metal detectors. Betissr technologies have been
proven to be very effective in detecting metal landminese G#PR has been shown to
detect non-metal mines because radar signals are reflectbe dielectric discontinuity
between the soil and the plastic mine casings. Also, in sasesthe EMI has been
used to detect non-metal cased mines by detecting the smallret of metal contained
in the mine’s firing pin. Theoretically, therefore, both sers are capable of detecting all
landmine types. In practice, however, performance of eaos® is challenged by low
signal-to-noise ratios on some landmines depending ondfpgne, burial depth, and
environmental conditions.

In this work two environments are considered. The first isagy tlackground and
the second is gravel. These two backgrounds offer a lookwatEdl and GPR sensor

statistics change based on the environment surroundirigridenine.

4.1.1 Multimodal Landmine Detection

Multi-modal sensor systems describe a single sensor thiaestseparate sensor modes
or a collection of sensors that employ different physicamdmenology. By utilizing

multiple modes, a greater diversity of information is ob&l. In this work we look at
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Figure 4.1: Estimated Joint Probability Density Functions

a vehicle mounted landmine detection system using an afreband GPR sensors.
The two sensor arrays each raster scan an image of the gresponse as the vehicle
moves forward. The two images are registered at the pixplxel level for detection of

landmines.
Joint Probability Densities

A set of training data is used to establish a 2D joint proligbilensity between the
pixels of the EMI image and the pixels of the GPR image. Siss#s of landmines are
considered. The classes are arranged according to depibtfometal cased and plastic
cased mines. The landmine classes are: 1) deeply buried castd 2) mid-depth metal
cased 3) shallow depth metal cased 4) deeply buried plastedc5) mid-depth plastic
cased and 6) shallow plastic cased. All classes are fottamitimines. A seventh class is
designated background.

Figure 4.1 shows the estimated joint probability densifiiedackground pixels and
metal cased landmines. These PDFs were generated by egrpdtels of each class
from EMI and GPR training images. The sample mean, varieaoe correlation were
then computed, and the PDFs generated using a bivariatesi@ausodel. These PDFs

will be used to generate the posterior probabilities descrin Section 4.1.1.
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Figure 4.2: Marginalized Probability Density Functiondvifl-depth, Metal Cased Landmines

Single Mode (Marginalized) Densities

Single-mode approaches for the MAP detector exist for doeghGPR and EMI sensors.
The 2D PDFs are marginalized to only include the statisticse sensor. This is done by
"integrating out” one of the sensors. The MAP approach dlesdrin Section 4.1.1 can
be used in the multi-modal approach or in single mode withegisensor. Section 4.1.3

shows the performance advantage of utilizing the multi-ah@gproach.
Maximum A Posteriori Detection

In this application we have seven classes of objects. Theosemnespond to each object
class in a different way. This difference manifests itsédtistically in the resulting
observations as a change in the probability distributiodnthe observed pixels. For
example, the amplitudes of the received signals for bots@srare greatly affected by
the distance from the sensor to the object. This resultsmndifferent pixel probabilities
between landmines buried shallow and landmines buried. ddgp can be seen in Figure
4.1 where the mean and variance of the deep, mid-depth, alldwHandmines have
significantly different values. The idea behind the MAP dtieis to make a measurement
and use that observation to determine which probabilitiridigion is the likeliest to have
produced that observed value. For this application, afisda have signatures that occupy
more than 1 pixel. This fact can be used in the MAP processqeiprming multiple
measurements on the same object as it passes beneath ttle.vehi

The Maximum A Posteriori (MAP) detection approach propoketke takesV
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Figure 4.3: Signatures from a Mid-depth, Metal Cased Lanémi

looks at an object sequentially as the object passes by tis®iseBefore beginning the
measurements, an a priori probability is assigned to thesela Since there are seven
classes, the a priori probability is set#dor each class. After each measurement Bayes
Rule is used to update the probability assignments. Equdtibis called the Update
Equation. For the first measurement it translates the primogbility assignment to a
posterior probability. Likewise, for all subsequent olvs#ions it continues to update the
probabilities as new measurements are mdelg/=) in Equation 4.1 is the observation
model for a given class. The probabilityp,,(x) is the probability that an observed object

is classr for then'” observationy,,.

o p(yn|x)pn—1(x)
Pnl) = = )

(4.1)

4.1.2 Adapting to the Environment

The probability distributions shown in Figures 4.1 and 4R far landmines in a clay
background environment. If this environment were changesiould be reflected in a
new set of distributions. Figure 4.4 illustrates the tredwars variability that can be seen
between observations made in a clay background and obeswat a gravel background.
The gravel lane shows a significantly higher amount of atiéon than the clay lane. This
is likely due to the amount of moisture that is held within thaterial. Clearly there is a

need for the sensor to adapt to this change in class statistic
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Figure 4.4: PDFs of EMI and GPR pixels from mid-depth burieztahlandmines. (left) Lane material is
clay. (right) Lane material is gravel.

One way to assist in adapting the sensor statistics is thefudectromagnetic models
coupled with measurements of the environmental paramefe@GPR measurement of
the ground dielectric permittivity can be made by lookingheg ground bounce return.
Mapping the reflection coefficient into dielectric pernvitty for a homogeneous ground

follows Equation 4.3 [36].

1 o 1
Riy = - Ve (4.2)

Figure 4.5 shows the inverse mapping. Wet ground repreaaelative permittivity in
the range of 40 to 60. Dry ground represents a relative pavityitfrom 3 to 10. It can
be shown that an estimate for dry ground is somewhat robusiis® in the observation.
In other words, a few observations of the ground bouncemetan be averaged to very
effectively estimate the permittivity value. Once thisuahas been obtained, the statistics
of the seven classes can be estimated based on a simplerlagtretic scattering model.
When the ground is wet, however, the estimation process is cmmplicated. A small
amount of noise in the reflection coefficient could doubledsgmated permittivity value.
This means that many observations will need to be averaggtiuce a robust estimate.
However, once a robust estimate is obtained, simple stajterodels can be use to

generate the class probabilities.
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Figure 4.5: Inverse Mapping from Reflection Coefficient telBctric Permittivity
4.1.3 Detection Performance

In this section the results of applying the sequential MARd®r to multi-modal and
single mode landmine data are shown. For each case 5 ohsasvate made on each
object as it passes the sensor arrays. The results show tizinmodal processing
outperforms single mode.

Here it is also shown that adapting to the environment is gontant part of optimal
performance. The multimodal MAP detector is re-trainedaioplication to a wider set of
environmental conditions. In this case the conditionsudela clay soil background and
a gravel background. Training for both environments siemdbusly means widening the
class statistics to handle measurements that are mordhariehe consequences of this

generalization are a significant reduction in detectorqrerénce.
Multimodal Versus Single Mode

Here the MAP detector described above is applied in bothismdtal and single sensor
modes. In single sensor mode the EMI and GPR sensors apgdhathed 1D PDF 5 times
as the objects are encountered. The EMI initially has thieebperformance because it is
very good at detecting metal cased landmines. Eventuailyetier, the GPR reaches the

maximum detectible number of objects before the EMI bec#useable to better handle
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Figure 4.6: Multi-modal Versus Single Mode MAP Detectiorgétithms - Multi-modal processing has a
clear advantage.

the plastic cased mines.

The multi-modal detector has the advantage of utilizingEMi’s ability to detect
metal and the GPR’s ability to detect plastic. Also, it hastheosignificant advantage.
The background clutter shown in the Left Frame of Figure $dears to have a bifurcated
nature. That is there appear to be some clutter objects inableground that a observed
by the EMI and not the GPR while others are observed by the GERat the EMI. The
EMI may be seeing metal or metal residue from very small rheteltter objects. These
objects have too small of a radar cross section to appeaeiGHR data. The GPR, on
the other hand, is observing rocks or other dielectric ditoaities that are not observable
by the EMI. This nature of the background noise allows for wexdul discrimination in
the 2D PDFs. This is due to the correlation that exists batwee EMI and GPR sensors

when observing landmine signatures.
Performance With and Without Adapting

The importance of adapting to environmental changes cdmnstressed enough. Soil that
is wet will produce very different sensor statistics thaih that is dry. In this section we
illustrate the need for adaptation when the soil environtmmkanges. The two lanes consist

of the clay and gravel lanes described in Section 4.1.2. tti&e4.1.2 it was observed
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Figure 4.7: Multi-modal MAP Detector Trained and Applieddtay Background Compared to a
Generalized Detector Trained and Applied to Clay and GrBeekgrounds

that the mid-depth landmine statistics show much greatenaation in the gravel lane
than in the clay. This could be an indication of moisture geginesent in the gravel lane.
Moisture causes the dielectric permittivity and the conigitg of the soil to increase as
much as an order of magnitude. Since attenuation of eleeiyoetic energy is directly
determined by the permittivity and conductivity of the sthle statistics of the signatures
found in the collected imagery change.

For the combined training of the MAP detector, a set of lanas sequestered from
both the clay and gravel backgrounds. The 2D PDFs were digtednand applied to the
remaining lanes of both backgrounds. The result is a detéwbis generalized to handle

both backgrounds. Unfortunately, the performance of thedler is reduced significantly.

4.1.4 Multimodal Summary

In this work a maximum a posteriori (MAP) detection algomiths developed that
utilizes sensor statistics to classify metal and plastseddandmines. The MAP sensor
can be applied multi-modally using a 2D PDF trained from atgres produced by an
electromagnetic induction (EMI) metal detector and a gcopenetrating radar (GPR). It
can also be applied to either sensor in a single sensor maa#icAtion to experimental

data shows that the multi-modal approach significantly editgms either sensor run in
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single sensor mode. The data was obtained from a clay baokdmine lane.

A second experiment shows that the statistics of the semsocltange significantly
between the clay background lane and a gravel backgroued Tdre second experiment
trains the MAP detector for both environments. This makegdétector more general but
the end results is a for less powerful detection performaAdapting the trained statistics
when background changes occur is an essential part of @etithsystem performance.

Future work in the area of adaptive algorithms will include Employment of physical
models for assisting the prediction of sensor statistidsoAthe MAP detector will be
expanded to take advantage of the spatial signatures @oséom the landmines in
two and three dimensions. This work considered only landmalasses. In a real world
environment, clutter classes from metal and/or non-mddggats lying on the surface will
also be taken into account. An approach for scheduling iaddit sensor measurements
to discriminate target and clutter types is proposed in.[3nd, finally, future work will
include non-myopic approach that will account for the tirmguired to make certain
sensor measurements. This approach will choose sensopapjely to minimize the

amount of time required to traverse a specified distancé [833 [40] [41]

4.2 Bayes Networks

A Bayesian Network is a way of thinking about joint probaielst It allows for an
associated PDF to be broken down into a system of conditae@éndencies [42]. Using
Bayes rule a joint PDF can be rewritten as a product of conditiprobabilities. The
attraction of this is that the conditional probabilitiesynize easier to train than the full
joint PDF.

In [42] a burglar alarm problem is considered. The event efdlarm going off is a
binary random variableZ. The alarm can be set off by a burglar or by an earthquake
(the problem takes place in southern California). Two netgblhave been asked to call

the owner at work when the alarm goes off. Probabilities difrgaare given for each

53



Alarm: Z

Neighbor 2
Y2

Neighbor 1
Y,

Figure 4.8: A Bayesian Network Structure for the BurglarrAdeProblem

neighbor. The events of the neighbors calling afe,Y>. The root eventX, is a random
variable taking on the valuéfor an earthquake, for a break in, an@ for no alarm (the
neighbors are calling for some other reason). The jointabdity of all these events can

be modelled as:

P(Yi, Y, Z, X) = P(Yi|Z)P(Ys| Z) P(Z| X)P(X) (4.3)

The conditional probabilities and their relationship cangoaphically displayed in an
acyclic directed graph. For the burglar alarm problem, this looks like Figure 4.8eT
variable X here is called the parent &f. Z, meanwhile, is the parent &f andY;. The

layer of the network inhabited by; andY; is called the observation layex., on the other

hand, is in thewvidden node layer. The term hidden nodes implies that we (here the owner)

does not directly observe the alarm going off. The goal isseprobabilistic reasoning to
decide whether the alarm is due to a burlary or due to an esaleg This decision is to be
made based on the observations.

We wish to apply this technique to the landmine detectias&ification problem.
In this case, the event is the existence of a landmine. Thenadaent could be an

anti-personnel, anti-tank, a false alarm, or any numberagiilection of non-mine objects.
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Figure 4.9: A Bayesian Network Structure for the LandminetiRem

The hidden nodes could be associated with solil types, obdguths, and object metal
content. (Plastic mines have low metal content while medabd mines have high.) A

possible network structure for this problem is shown in Fegd.9.
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CHAPTER YV

SENSOR SCHEDULING

5.1 Single Confirmation Sensor - Active Sensing

Active Sensing is a popular form of sensor scheduling thhzes$ a measure of increased
certainty called information gain to dynamically choosesasor to apply to a given
decision problem [43]. In this section a basic applicatibthe concepts of Active Sensing
are applied in the area of landmine detection. Active sgnsira way of scheduling
multiple sensors, which have diverse capabilities and.usash sensor is considered a
resource and a statistical model of how objects of inteessttrto each sensor is known.
As a sensor system begins interrogating an area for obje¢gides dynamically which
sensor to use to provide the maximum amount of information.

The architecture proposed in this work uses traditionalolelmounted scanning
sensors (EMI and GPR arrays) to assign prior probabilibealltlocations in the mine
lane. This information is given to the "Sensor Managemertifden Engine”, which
applies Active Sensing to decide the most powerful confilonadensor to deploy. In the
myopic case, a sensor is always deployed to interrogaty éfieoy 1ft square of the mine
lane. The time sensitive case, however, sometimes choos&s teploy a sensor.

Myopic sensor management algorithms consider only the itetes situation when
determining what action to schedule [44]. (Webster's Dictiry defines myopic as,
"Lacking long-range perspective in thinking or planningNon-myopic approaches

consider other information concerning the situation orgheironment that can impact
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Figure 5.1: Proposed Architecture for Applying Sensor Mgamaent to a Vehicle Mounted Landmine
Detection System

the performance of the system [45]. All sensors do not perfibreir measurements in the
same amount of time. By taking time into account, the platfoem traverse the given
territory in the minimum amount of elapsed time. In the exbngituation presented
here, the myopic only approach traversed the mine lane im#idQtes. By accounting
for processing time the approach traversed the lane in 2&tesn Some degradation in
classification performance was incurred in the faster case.

Information gain is a quantity that describes the amountrsaereduces the
uncertainty in information about an object. In a trackinglagation this implies knowing
the object’s location and velocity with greater accuraaythle landmine area this implies
better knowledge of an object’s depth and/or type. In lam#ngietection some sensors are
capable of providing information about some objects andtiwrs. For example, a metal
detector can be used to provide information about metalecribr metal cased mines.
This information can be used to eliminate false-alarms eadlry metallic clutter on the
surface. Itis less useful, however, to use the metal detedten interrogating a low-metal
object. In the case of the plastic cased landmine a metattetaay pick up a small
amount of metal in the firing-pin. However, this measurem&sbmetimes not available
due to small signal-to-noise ratio. The sensor system wikedly do better in this

situation by deploying a chemical detector (olfactory senthat could detect the presence
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of TNT. Or it might be more useful to utilize the ground penétrg radar to determine if
the object is laying on the surface or buried. If the objearighe surface it may be most
useful to aim a visible light camera to investigate the obj@de goal, therefore, is to
schedule sensors appropriately based on observationsbyidde sensor platform. Active
Sensing is a method of realizing effective sensor scheglynpredicting the information
gain potential of available system resources. In this wdBeasor Management Decision
Engine has been implemented in software that decides whéitrmation sensor to deploy

(if at all) based on information provided by the scanningsses.

5.1.1 Sensor Management using Active Sensing

Over the years many sensor technologies have been proposeldeeloped for detecting
landmines. A few of these include: ground penetrating raglactromagnetic induction
metal detectors, magnetic quadrupole resonance, infraadiometers, visible light
cameras, passive magnetometers, olfactory sensors, andmuae. Some sensors have
been useful as long-range scanning devices. These areotegles that can be used at
a large standoff distance. Examples of standoff sensorssgrghetic aperture radar,
infra-red radiometers, and passive millimeter wave raéiams. Other sensors can be
used for scanning, but are only effective at close distanEgamples of these close-in
sensors are: passive magnetometers and electromagmetation metal detectors. Other
technologies have been shown to be useful for scanning omiyl segions. These latter
sensors have become known as confirmation sensors.

The focus here is on the use of active sensing on a vehiclel loketection system. The
starting point is an assumption that all classes of objeetequally likely. By employing
a scanning sensor an initial observation is made. Bayessulen used to update the
uniform priors. Equation 4.1 is known as the update equation

Wherep,,_, () represents the class probabilities for the state vector th#previous

observation. The statistical mode€ly|z) is the knowledge of how the sensor measurement,
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y, will respond statistically to the object state, The summation in the denominator is a
normalizing constant.

Once the scanning observation has been made, the sensagenamast decide what
confirmation sensor to deploy (or to not deploy one at all)reHbe Fenyi divergence is

used to predict the expected information gain for the albkglaensors [46].

Do) = 7= ([ sttt ) (5.)

The probabilitiesP, are the expected probability distribution of the classésrdhe
next observation.P,_; is the probability distribution of the classes after thevpyes
observation. The divergence computation responds to thigapilities with a larger
divergence value if the variance in the second probabilgtridution has a lower variance
than the first. This means thatH, is describing the class with more certainty, then the
sensor is more likely to be chosen and deployed. The sensof all the resources that
provides the greatest divergence (i.e. the greatest irdftiomgain) is deployed. Note that
thea parameter is a shape parameter that can be adjusted tozgperiformance.

The classes that will be considered in this paper are: 1)lgdepied, metal cased
anti-tank mine, 2) mid-depth buried, metal cased anti-taime, 3) shallow buried, metal
cased anti-tank mine, 4) deeply buried, plastic casedtanki-mine, 5) mid-depth buried,
plastic cased anti-tank mine, 6) shallow buried, plastgedaanti-tank mine, 7) aluminum
clutter on surface, 8) non-metal clutter on surface, 9) clotter on surface. The prior
distribution that will be applied to these classes is 0.at(ik, a uniform prior.)

Active sensing can be employed at all levels of the landmateation problem. If
standoff (i.e. airborne) sensors were used to identify afietd, the information collected
by these sensors could be held on-line for assigning the prabability distributions of
given regions. This implies a co-operative network of aingoand ground based vehicles

involved in the landmine detection process. Such a netwodkdchave the airborne
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vehicles queuing ground based vehicles to specific locatborground based vehicles

queuing stored airborne assets for confirmation [47].

5.1.2 Scanning Sensor Simulations

For the purpose of studying a realistic vehicle based landrdetection system, a system
with traditional scanning sensors and a suite of confirmasiensors is proposed. The
simulated scanning sensors will be used to acquire podaitdienines and the confirmation
sensors will be used to show how the additional sensors dd@bliminate uncertainty
using Active Sensing. In this section the scanning sensaulations are introduced.
These sensors are an array of electromagnetic inductioal ohetiectors and an array of
ground penetrating radar.

Figure 5.2 shows a sample simulation of an EMI signature s Shmulation was
generated using a point model of a magnetic dipole souree dicurrent loop) over a
conducting half space [47]. The sample rate in the alongtdaection is 2” (5¢cm).

The sample rate in the cross track direction is 16” (40cm) @itoss track sample rate
represents the distance between adjacent sensors mountes $/stem.

The target in Figure 5.2 is an anti-tank landmine buried at(3hat is, 3” from the
earth surface to the top of the landmine.) The brightestgfattie signature corresponds
to the sensor passing directly over the top of the mine. Thie @gions surrounding the
center are negative voltage readings. This sign reversalised by the incident magnetic
field of the metal detector coil. As the coil passes over theaihe dipole nature of the
magnetic field reverses in direction. Some real world senlsandle this phenomenon in
different ways. Typically, an absolute value is taken byrdeiver. In this simulation we
have chosen to take the real part, which retains the sigmsavd he operating frequency
of this simulation was 75Hz.

The GPR produces a similar scanning signal. Figure 5.3 sa® representation of

the GPR signature. This simulation was produced by sirmgatistepped frequency radar
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Figure 5.4: A Virtual Test Lane - Locations of simulated larides and clutter objects

system [45]. The starting frequency is 500MHz and the endirgfsHz. 128 frequency
steps were generated. The target is modeled as a point seitincthe expected RCS of
an anti-tank landmine. At each of the 128 frequencies tharrkwk equation was used
to generate an expected return. The returns were FFT ednteeddrom frequency into
depth and the vertical sum of the energy is computed. Thidnaditional approach to
creating an image with an array of ground penetrating raglas@s. The sampling rate
of the simulation in along track and cross track directianthe same as that of the EMI
(5cm x 40cm). Both arrays are assumed to be mounted 1 foot dbeirface. In the
end, pixel level registered images are generated for thesémeors.

The two sensor technologies described above are often mseehicle mounted mine
detection systems. They have been proven effective oveetiues for detecting both metal
and non-metal cased mines. Using the models described adboirtual test lane was

simulated. Figure 5.4 shows the locations and types of lamesrand clutter objects.

5.1.3 Confirmation Sensor Models

In addition to the scanning mode described in Section 5HN, and GPR sensor
technologies have multiple other ways to be utilized. Thd Hdt example, can be pulsed

and the decay rate of eddy currents induced in the object eandasured. These decay
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[T 2[3 4 5|6 789810

1001 45| 55| 65|15|16| 17| 45| 90| 15
2| O 8 8 8 2 2 2 6 6 0.5
3 0.25|0.25|0.25]| 0.25| 0.25| 0.25| 0.25| 0.25| 0.25| 0.25
41 0 9 9 9 45| 45| 45| 15| 15| 0.75
5075 9 6 3 9 6 3 3 3 3

6 O 9 9 9 9 9 9 3 3 4.5

Table 5.2: Variances
| 1 [2[3]4]5 6 ][ 7][8]9]10]
2 05| 05| 05 2 2 2 05| 05 2
3 1 1 1 2 2 2 1 1 3
0.25| 0.25] 0.25| 0.25| 0.25| 0.25| 0.25| 0.25| 0.25| 0.25
1.25| 1.25| 1.25| 2.25| 2.25| 2.25| 3.25| 3.25| 4.25
0.75| 2.25|1.25| 0.75| 2.25| 1.25| 0.75| 0.75| 0.75| 0.75
1.25| 3.25] 2.25| 1.25| 3.25| 2.25| 1.25| 1.25| 1.25]| 1.25
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=
N
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rates reflect the metal content of the object. With addifipnacessing, the induced dipole
moments of the buried object can be estimated [48] [49]. Tdaced moments in the X, v,
and z-directions are a measure of the object’s size andtatien. The amplitudes of these
induced moments are another measure of the object’s metadto The size and depth of
the object can be estimated by forming an image with the GR& déany other sensors

have been developed and are currently under development.

In this work we consider six confirmation sensors. Each gseissa deployable

resource on-board the mine detection platform. When degloyach sensor takes a
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EMI GPR

Figure 5.5: Simulated Signatures of the Iron Clutter Object

measurement, which is modeled as a random number with melaraaance that depends
on the object type being measured. Table 5.1 and 5.2 sumesdhiz mean and variance
of the measurement for each sensor and each object type.tailstics were designed
with a particular confirmation sensor in mind, but are bdkiggeneric. These statistics
simply represent 6 possible sensors available to the Séfewsigement Decision Engine.
Note that Sensor 3 models a sensor that provides no useduivation. It can be viewed

as a broken sensor, or, as seen later, it can be viewed as@eoation (NO OP).

5.1.4 Clutter Rejection Example - Myopic

One of the challenges faced by close-in landmine detectistesis is surface clutter. A
piece of metal clutter laying on the surface could look steally like a buried anti-tank
landmine. A primary goal of the sensor management systempsaperly identify an
object as landmine or clutter. Here we will look at an exangdleon debris, and show
how the Sensor Management Decision Engine corrects foriga imisclassification of
this object. We also show a confusion matrix for all objects.

Figure 5.5 shows a simulated signature observed by the EMIGIPR scanning
sensors. When the system first encounters this object, thaisgasensors assign a 60%
probability that the object is a deeply buried, metallicezhandmine. In truth, this object
is iron debris laying on the surface. The scanning sensaigraa 40% probability to the
iron clutter class.

Active Sensing is shown to be effective at determining thatdbject is in fact
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Figure 5.6: Type Probabilities: a) Prior Distribution b)t&f Scanning Sensors c¢) After Confirmation
Sensor. The correct type for this case is Type 9 (Iron Clutter

iron clutter rather than a deeply buried, anti-tank mineguFé 5.6 shows the process
of assigning probabilities to the object. Initially, no @nfmation exists concerning the
object so the probabilities are all set to 10%. This is a umfdistribution. The 10%
value reflects the assumption that there are 10 object slélsaecan be detected. The
scanning sensors are fused using an adaptive, multimotiadta® algorithm discussed in
Section 4.1. At each step along track, Equation 4.1 is apppiethe scanned EMI/GPR
pair. The divergence described by Equation 5.1 is then ctadpfor all six confirmation
sensors. The divergence output will be highest for the sethsd reduces the entropy
of the measurements the most. This sensor is chosen and/dédplafter making the
measurement, the platform moves on to the next pixel.

Figure 5.6 shows the class probabilities of a pixel over tha debris. After the
scanning measurement 60% mine and 40% iron clutter protebiare reported. After
deploying a dynamically determined confirmation sensar,ambiguity is resolved and
the correct class is assigned.

The exact confirmation sensor used to resolve the objed ©asot completely
intuitive. Figure 5.7 shows a map of the sensors deployeddoh 1ft x 1ft square in the
region surrounding the iron debris. Sensor 6 is used dyrabibve the object. In the region
surrounding the object Sensor 5 was used. For the myopicprapesed here, a single
confirmation sensor is deployed for every 1ft x 1ft squareaallthe background locations

surrounding the object Sensor 2 was chosen. There is claaljitch in sensor choice
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Figure 5.7: Myopic Sensor Actions Taken for Iron Clutter €xtj

Table 5.3: Confusion Matrix for Scanning Sensors
L 213 [4]5]6 7|8 9]10]

2 || 0.9 0 0 0 |01] O 0
3 0.7 0 0 0 0 |02] O
4 08 O 0 0 |01] O 0
5 0 0 0 | 08 0 0 0
6 0 0 0 0.5 0 0 | 01
7 0 0 0 05 0 O 0
8 (0102 O 0 0 0 | 0.7

9 [04] 0 0 0 0 0 0.6

10| O 0 0 0 | 03]01 0.6

when an object is encountered. This is due to the scannirgpeedetecting the object
and reported a different prior. Note that Sensor 3, whichseresor that contains no useful
discriminating information is never chosen. In this cases®e 3 could be interpreted as
a broken sensor. It is encouraging that this sensor is néasen by the decision engine.
Sensor 3 cannot give useful information so it never providesnaximum information

gain.

Consider now the performance of the scanning/confirmatiatesy under the
management of the Active Sensing decision engine. Tablis &.8onfusion matrix for the

scanning sensors. This table shows the ability of the sogrsensors to correctly classify
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the objects encountered in the virtual mine lane. Objece$yh 3,4 are all metal cased
landmines. They types are designated based on the objeptk.dType 2 is deep (i.e. 6”
to top), Type 3 mid-depth (3” to top), and Type 4 shallow (flwath surface).

The scanning sensors correctly identify Type 2 objects 90&etime. Type 3 objects
are correct 70%, and Type 4 80%. Note that Type 4 objects assified as Type 3 20%
of the time. This error is not catastrophic. The landminelentified as a landmine, but
at the wrong depth. Unfortunately, this is not always theecdgpe 2 and Type 3 objects
are sometimes classified as Type 8 and 9. This is a miss, sypee8land 9 are metallic
clutter objects. (Type 8 is aluminum surface clutter. Typs @on surface clutter.) These
misses justify the need for an expensive (in time) confiramesensor.

A similar analysis as the previous paragraph can be givetht®onon-metal cased
mines - Types 5,6,7. The scanning sensor struggles to pegerfectly here due to fact
that the EMI scanning sensor actually provides little ormioimation [50]. The GPR is
doing all the work itself. A 10% misclassification rate is simofor Type 6 - mid-depth
low-metal mines.

Types 8,9,10 are all clutter types. Note that several tilesystem misclassifies the
surface clutter. However, these misclassifications areaaistrophic. It simply represents
a false-alarm. The scanning sensors are correct 60% or 796 time.

The goal of the confirmation sensors is to reduce the norsirataic false-alarms and
remove (hopefully) the catastrophic misses. Table 5.4tilates this for the simulated
confirmation sensors described in Tables 5.1 and 5.2. Aéploging the dynamically

determined virtual sensor and reclassifying, an improvatogpmance is observed.

Note that each class shows increase correct classificatien, all misses have been

removed, and the number of false-alarms reduced. It is itapbto note that this good

67



Table 5.4: Confusion Matrix after Confirmation Sensors
| 2[3]4]5[6]7]8]039

OO N[O OB W N

[EY
o

performance is in part due to good confirmation sensors. Ekesidn engine makes
good choices of confirmation sensors based on the increaf@chation provided by the
sensors. If the confirmation sensor statistics are not &bler(i.e. the sensors aren’t very
good), then this will be reflected in the system’s perfornganihe decision engine based

on Active Sensing provides the best performance with the@eaesources it is provided.

5.1.5 Accounting for Processing Time

Now we consider an extension to the information gain apgroActive Sensing insures
that sensors will be chosen to maximize information gainweleer, it is also important
that the decision engine monitor time. The amount of time tia system is allowed to
run may be limited based on economic reasons or based oafleddticonditions. If the
platform is in a potentially dangerous environment on aléiid, then significantly less
time can be given to the interrogating of a given area.

Times have been assigned to each sensor. Table 5.6 sumsrthese times. With the
exception of Sensor 3, these times have been chosen ahpitGensor 3 was assigned the
smallest processing time. In this case, Sensor 3 can bgiated as a non-operation. That
is, the choice of Sensor 3 is equivalent to the sensor nobyeg a confirmation sensor.
It just moves on.

Figure 5.8 shows a modified decision statistic. The statatows for a balance
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Table 5.5: Processing Times Associated with Each Sensor
| Sensor| Time (secs)

1 1
10

0.5
1
20
5

OO A~ WN

(A-a)D(f, | fo>+T3

[}

Figure 5.8: Modified Decision Statistic Based on Balancimfgimation Gain and Required Processing
Time

between information gain and required processing time.Réwgyi divergence is specified
by D(f1]|fo) and the required processing time (Table 5.5) is represdiéd. The
statistic used here is a first generation approach. It simglgnces the two factors using

an optimizable parameter, denoteddy

Sensor 6

No Op

Figure 5.9: Sensor Actions Taken for Iron Clutter Objectwiitme Monitoring
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Table 5.6: Confusion Matrix after Confirmation Sensors Witime Constraint
_ J2[3][4]5[6]7]8]9]10]

OO N[O OB W N

[EY
o

The performance of the time sensitive approach is sumnehnizéhe confusion matrix
of Table 5.6. Note that some degradation in performancessmied. More false-alarms
are reported as well as catastrophic misses. (Future wdrkwestigate further into
extensions to the information gain approach including nympic approaches.) Despite
its slightly degraded performance, it is still better thamg the scanning sensors only.
Also, using the assigned times of Table 5.5, the informagjaim only processing case
required 270 minutes (11 hours) to complete the entire aimoine lane. The time
sensitive extension case, however, required only 25 nsnute

The tremendous decrease in lane traversal time is due teettisiah engine’s ability
to choose not to deploy a sensor. This can be seen in the mteroéxample previously
introduced. Figure 5.9 shows the action map for the timeigemsase.

When the system is observing background clutter, the systeroses to take no
action. That is, it does not deploy a confirmation sensorhikgimulation this choice is
equivalent to choosing Sensor 3, which provides no infoilonaibout objects, but requires
the least amount of time. Sensor 3 is, therefore, a No Op. WHe=gRytstem encounters an

object, as illustrated by the iron clutter, the decisionieagwitches to choosing Sensor 6.
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5.1.6 Single Confirmation Sensor Summary

This work is an initial example of incorporating sensor stiling into a vehicle based
landmine detection system. Simulations of two scanning@snare used to generate

a virtual mine lane containing ten object classes. Thrededd classes are metal
cased mines (at varying depths), three are plastic casesbrian varying depths), and
four are types of surface clutter and background noise. Tarrsng sensors used are
electromagnetic induction (EMI) metal detectors and gtbpenetrating radar (GPR). Six
unspecified confirmation sensors are proposed. Each sespamnds differently to the ten
object classes. An example is shown where the sensor ptadocounters the iron surface
debris object. Itinitially labels the object as a deeplyibdy metal cased mine. However,
it reports a 40% chance that the object is iron debris. Afegglalying a confirmation
sensor, the label assigned to the object is changed to thectatass.

Two approaches were taken in implementing decision caiferichoosing confirmation
sensors. The first approach considered information gay amdl showed tremendous
improvement in the system’s classification performance §étond approach considered
a simple extension that included processing time. This saresitive approach shows how
the system can decrease its required lane traversal timedii® minutes to 25 minutes

with some degradation in classification performance [1@] [52].

5.2 Multiple Confirmation Sensors - Reinforcement
Learning

Sensor scheduling is a research area that deals with theagteployment of sensing
assets to accomplish a particular purpose. This could contieei form of a vehicle
mounted system that utilizes scanning and confirmationasensn this case a single
platform traverses a potential minefield. If a location isedained to have a reasonable
probability of containing a landmine, the system can dej®ygonfirmation sensors.

The sensor scheduling problem here is to choose the seratas tjping to provide the
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most powerful information regarding the object that hashbeecountered. It may also
be necessary for the system to deploy more than one sensos, part of the sensor
scheduling problem is to determine when to declare the bhj@ee/non-mine and move
on to the next object. Because landmines come in various eoafigns, depths, and
types, the sensor scheduler may choose from a variety obsassets according to a
predetermined decision metric. The ultimate goal is togastie correct label to the object
while minimizes the number of sensors that must be deplayedatke measurements at
that location.

Without loss of generality, the concept of operation désxtiabove can be applied
to multiple autonomous sensors. A scanning sensor, aiebpenhaps, can point to
potential landmine locations while a ground station basedsr scheduler determines the
appropriate sensor to vector towards that location. Inwluisk, regardless of whether the
sensors are on one single platform or several autonomotfsrpie, it is assumed that
the sensors are centrally controlled by a central locatdmch is the sensor scheduling
software engine [37]. Some other approaches being resshicblude the swarm of
sensors architecture [53], which assumes a number of indepd#ly operating and
interacting sensors.

The approach used in this work utilizes a reinforcemeniegrapproach to train a
neural network [54]. Laboratory data acquired by GeorgiehT®5]. is used to assign
a HIGH, MEDIUM, and LOW sensor response value to three seteszimologies.
Responses from multiple landmine types and background diextam. From this data,

a Sensor Response Table is determined. This table is usedutate the performance

of the reinforcement learning algorithm. In the end, anraptipolicy for what sensor to
apply given a particular sensor response is determined gdlicy can then be adapted
dynamically as more information comes available. The fieautt shows which policy to
use to give the minimum number of sensor deployments (dyaglls particular probability

of correct classification.
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Figure 5.10: Sensors of the Georgia Tech Three Sensor Ddectian: EMI, GPR, and Seismic Vibrometer

5.2.1 Landmine Detection Technologies

It is an unchallenged doctrine that one technology will rave the landmine problem.
As technology advances, new and increasingly novel semserbecoming available
for application in the landmine detection problem. Somehefkt sensors are easily
imaginable as scanning sensors. That is, as sensor thatazset to cover a relatively
large area quickly. Other sensors, do to processing timeweprequirements, are most
useful as confirmation sensors. This is a sensor that is giegplm settle a question of
ambiguity. The confirmation approach helps prevent the weoge of false-alarms in the
overall system. In this work, three sensors are considdreese are: 1) electromagnetic
induction (EMI) sensor (a.k.a. metal detector), 2) grouadeirating radar (downward
looking), and 3) seismic vibrometer. Each of these sensers wnder development at the
Georgia Institute of Technology under the direction of Bssbr Waymond Scott [55]..

Figure 5.10 shows the three sensors used in this work. Fritriolerite the sensors
are: the EMI, the GPR, and the vibrometer. The EMI sensor, ¢aldetector, is naturally
very useful in finding buried metal objects. It is a pointgioint measurement device
meaning that it is physically moved to a location where a messent is taken. The
particular EMI sensor used in this work is broadband. It mess51 frequencies between
600 Hz and 60kHz [55].

The ground penetrating radar in this work is a downward logkiersion [56] [57].
The system in a frequency range from 60MHz to 8GHz. It emalatéme domain system

transmitting a differentiated Gaussian pulse with a ceinéguency at 2.5GHz. This pulse
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propagates into the ground, reflects off the objects, anatho esponse is measured by
the receiver in time. The radar antennas are then scannesisatie region of interest
making measurements at each location [55].

The seismic vibrometer generates a surface wave that paitgsagver the region of
interest. (This is the Rayleigh wave.) The presence of a tuiigect can affect the height
of the ground surface. The effect is observable when thecolgdollow. In this version
of the system, a radar is used to measure the surface disgatéeight. A viborometer
array is placed at the edge of the area of interest while & r@ntenna is scanned across

the entire region [55].

5.2.2 Landmine Types and Responses

It is well known that landmines come in both anti-tank and-petsonnel varieties.
They can be composed of various materials including metahga (typically aluminum)
or non-metal casings (plastic or even wood). Anti-tank reiaee sometimes found at
deeper depths (6” to 10” to the landmine top) and are alwage las they contain enough
explosive material to damage a tank. Anti-personnel mineskallow and small. Their
aim is typically to maim rather than kill their victims.

The vast variety of mines results in a very diverse set of@eresponses. The three
sensors of Section 4.1.1 respond in varying ways to the tsbfkey encounter. Table 5.7
describes qualitatively the response of each sensor. HMEDIUM, and LOW describe
whether a signal from a particular object type is strong,kyeain between. The object
types are: metal anti-tank (M-AT), metal anti-personnetf), plastic anti-tank (P-AT),
plastic anti-personnel (P-AP), Hallow Metallic Clutter (0R11), Hallow Non-metallic
Clutter (CLTR-2), Non-hallow Non-metal Clutter (CLTR-3), and dsnpackground
(BKG). The values shown in Table 5.7 were chosen based onatigers found in the
Georgia Tech Three Sensor Data Collection [55]. This tablebgiused to simulate the

training of a neural network using a reinforcement learrapgroach [54]. In the end, a
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Table 5.7: Qualitative Description of Sensor Response t®mWa Landmine/Clutter Types

1 2 3 4 5 6 7 8 Feature
M-AT M-AP P-AT P-AP Cltr-1 Cltr-2 Cltr-3 Bkg
EMI High High High High High Low Low Low Conductivity
High High Medium | Medium | Medium Low Low Low || Size
GPR High Low High Low Low Low Low Low Depth
High Medium High Medium | Medium | Medium | Medium | Low RCS
Seismic || Medium High Medium High Medium | Medium Low Low Resonance

sensor scheduling policy will be determined.

Table 5.7 shows a qualitative response of the three senBoegesponse is reported as
features of the measured signal. The chosen features comeypical measured values
of signals gathered from the scanned images. The EMI sensasumes an analog to the
conductivity of the object. In addition, objects that arepléend to have wide signatures,
while shallow objects have narrow signatures. This infoaigtared in the "Size” feature
of the EMI sensor. Features measured by the GPR are the deptladar cross section
(RCS) of the object. Finally, in this work, just one feature amsider for the seismic
sensor. That is a resonance feature, which comes from théh&tcthe seismic sensor
is ultimately measuring a value related to the hollownegh®fobject. This hollowness

produces a resonant effect.

5.2.3 Sensor Scheduling Policy

A sensor scheduling policy is a rule for determine when tdyapgparticular sensor or
series of sensors. Figure 5.11 illustrates a policy in tmefof a decision tree. This
illustration states that for a given location, a decisiorstrhe made concerning what
sensor to deploy to make a measurement. In the example eoedioh this work, there are
three sensors: EMI, GPR, and Seismic. Given the insight geavin the Sensor Response
Table (Table 5.7), there is some optimal choice. The quesidWhat sensor provides the

best information for the first measurement?” Then, "What sesBould be applied next?”
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Figure 5.11: Decision Tree for Sensor Management

Final detection

Table 5.8: The Optimal Policy
‘ H M-AT ‘ M-AP ‘ P-AT ‘ P-AP‘ Cltr-1 ‘ Cltr-2 ‘ Cltr-3 ‘ Bkg ‘

EMI 1 1 1 1 1 1 1 1
GPR D D 2 2 2 D D D
Seismic D 3 3

D D

Or perhaps, "Is now the best time to decide what type of obgebeing encountered?”
This last question is relevant when the other available@srdo not provide information
that will be useful.

Figure 5.11 is the full decision tree. The optimal policyMaé the subset of these
possible actions that produces an optimal performancde Ta® summarizes the optimal

policy determined by the learning algorithm of Referencd.[54

This table states the order in which each sensor should Hedmp a decision (D)
should be made based on the type of object that is encountBmdexample, if the
object is a metal AP mine, then the optimal policy suggesis titie EMI sensor be

deployed followed by a decision. If the object is a plastic ®ke, then the optimal
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policy is to deploy the EMI, followed by the GPR, followed byetBeismic, then make a
decision. Researchers applying other scheduling algosithexe also reached this same

conclusion [53].

5.2.4 Multiple Confirmation Sensor Summary

Close inspection of the information contained in Table 5v@ads a consistent explanation
of why the learning algorithm chose the specified policystaf all, the EMI sensor was
chosen to always be the first sensor deployed. This is thebsasrise the experiment
did not utilize any information that might have been avdéaibom a scanning sensor. It
only took a queue from the scanning sensors that an objesieelxiand moved to make
a measurement of that object. The EMI sensor provides thé¢ powger on average in
separating the MINE/NOT-MINE classes. Looking at the tabie observed that the EMI
sensor responds (high,high) for the two EMI features, ifdbgect is a metal landmine.

If the object is non-metal clutter, the EMI responds withw(low). If all objects occur
with an equal probability, as was assumed in this experiptean using the EMI allows
for easy classification of 5 out of the 8 classes (or 62.5%grd&lore, it is always chosen
to go first. If the object, however, is a P-AT, P-AP, or Cltr-pay then the EMI does not
give a conclusive result. This means that another sensaoitdgbe deployed. The optimal
policy thus states to deploy the GPR. If the object is a P-AEfypen the GPR responds
with a (high,high), while the other two objects (P-AP and Qltrespond identically with
a (low, medium). The P-AT, which gave a (high,high) readiag now be declared. Since
another ambiguity exists in the measurements, the optioladypcalls for the third and
final sensor to be deployed. Thus, a measurement with then8esensor is made to

completely resolve the ambiguity.
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CHAPTER VI

SURFACE PENETRATING RADAR IMAGING

Surface pentrating problems often require an imaging sidéys step removes the
effect of the sensor from the data. A real world system wikkofblur the data. The system
point spread function characterizes this effect. Imaging in the radar sense ipribeess
of removing the system’s point spread function.

In this chapter we explore several aspects of radar imagifegbegin with the generic
radar imaging algorithm - backgpropagation. This is castd the paradigm of an inverse
problem by identifying a forward and adjoint operator in matorm. Speed and memory
considerations motivate the reformulation of backpropiaganto a second type of radar
imaging algorithm - wavenumber migration. We show how waweher migration can
also be cast into the inverse problem paradigm. The finalémphtation of this algorithm
makes use of both FFTs and matrix multiplications makinguitegefficient. Next we
explore sparse reconstruction of radar signals. This isesative approach that makes use
of the intrinsic nature of radar signals. Radar signals araral “edge detector” meaning
that it is the dielectric changes between materials thaggnse to the echo. Since by
nature the radar echos generate edges, many pixels (osyex#iin the scene of interest
are zero. Several tools can be used to enhance radar imag¢gsiiny advantage of this
fact. The next step involves the incorporation of “multipanaging” into the sparse
reconstruction. This method requires the use of a methodoofients tool for predicting
scattered fields. And finally, adaptive imaging is exporekisTinal subject explores the

idea of scheduling observations of a small array of sensopsdduce an approximate
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image that would have been produced by a large array. The stssff is used in the

scheduling process to vector the small array to the mostibgb$ervation locations.

6.1 Backpropagation Radar Imaging

Back propagation image formation takes its name from apglgipropagator that reverses
the propagation direction of an observed wave field. In prad¢he form of the back
propagator ir — 1’|e*/*I"='l  Herer is the observation location andis the location of
the pixel (or voxel) to be imaged. For a set of observationderat M/ locations withL
frequencies in each observation, Equation 6.1 producdsatigropagation image of the

scene of interest.

L M

Bn=) ) lr— et IRy, (6.1)

=1 m=1
If the total number of independent observations (from fesguy or location) is greater
than the number of unknowns, an image of the scene will beesstally produced.
Before showing how back propagation can be put into the foranahverse problem,
some justification for this practice is in order. Consider\betor potentiald in three
dimensional E&M wave theory. Lef. be a single vector current element. We will
measure only the vertical electric field produced by thisseuln general, the fields

produced by any vector potential are given by:

H=VxA (6.2)
E=—jwA+VV- A (6.3)

A scalar Green'’s function exists that propagates the vexitential from a source

79



point7’ to an observation point The form of this Green'’s function is well known:

—iklr—'|

z

(6.4)

BRCETIRS
Wheref is the wavenumber given t?)?’ci The electric field can be specified from (7.2).
Actually computating this term, however, can be difficuleda the multidimensional term

(ﬁﬁ . ff) . By making a far field approximation and because we are ontg@med with

sources and observations oriented in the z-direction, pleimexpression can be produced:

E, = (—jw + cos*(0)) A, (6.5)

Note again that this is a far field expression and assumetihaburce current density
has only a vertical component,, while the other componentg,( and.J,) are zero.

Evaluating 7.4 according to the vector potential Greengfion gives:

e_jklr_r/l
E, = (—jw+ cos*(0))————J. (6.6)
=]
Applying the back propagator removes the phase and rangerésulting in a value

that is the quantity of interest() times a complex scale value,

lr — et B, = (—jw + cos?(0))J. = a, (6.7)

The double summation in 6.1 is necessary to complete thepbag#gation imaging
algorithm. When the propagator for an adjacent (empty) psx@pplied to the observation,
the result does not add constructively. The final result isreage containing the “peaks”
where scatterers truly exist and “zeros” elsewhere. Rengawie scale factor and dividing

by the number of elements included in the summations wildpoe the average current
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density over all observation frequencies.

6.1.1 Inverse Problems

Inverse problems and radar imaging are closely relatedsfighdbetter statement is that
radar imaging is a subset of the more general field of inversbl@ms. An imaging
problem involves the collecting of observations of an unkin@cene. Fourier methods
(among others) are often used to construct the final imagerde problem methods are
generally thought of as matrix operations that map a vecton fan observation domain
into a state domain. These often include the minimizing adst éunction and constraints
(i.e. Lagrange multipliers) imposed on the solution. Theeavlsations are modeled as
being produced by an operator applied to a state vector.off@sator is called the forward
operator. An adjoint operator is one that maps the data frenobservation domain back
into the state domain. Determination of the forward and iatlmatrix operators is a
crucial part of the inverse problem.

Inverse Problems is a well studied field [58]. It involves the use of cost funcis to
reconstruct a state vector from observations. The obsengay have been corrupted in
a random or deterministic way. The standard approach is minmize the cost function
to produce the best reconstruction. Lagrange multiplie4$ &re used to add constraints
on the final result based on known details of the problem. &lecesstraints could be a
“smoothness” or an “energy” or other knowns.

In this work the starting point is to assume a deterministievolution with additive

noise model [59],

y=Hzr+n (6.8)

Herex is a 2D or 3D image of scene reflectivity/ is the deterministic (but not

necessarily fully known) forward process that transforhes¢cene of interest into the
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observation domain. This is called the forward operatas the random contamination to
the data in the form of additive noise.

A typical cost function to use is the sum of squared erfgtr) = ||y — Hz|*> where
“|l - ||” denotes the Euclidean norm [60]. Note tHat implies hermitian (i.e. conjugate)

transpose for complex valued.

i — [HTH]ilHTg

If the noisen, is distributed as an i.i.d circularly Gaussian complexdan variable (
(real(n),imaginary(n)) ~ (N(0,0%I), N(0,0%I)) ), then this solution is the Maximum
Likelihood estimator of the scene

This solution does not always produce the best reconsbructi the scene. Among
the possible problems are numerical errors caused by mawexsion. The use of prior
information to constrain the solution is necessary. Forr#aar application, a highly

useful tool issparsity. This concept will be explored in Section 6.3.

6.1.2 Backpropagation as an Inverse Problem

The backprojection operation described above fits into #ragigm of an inverse problem
as a linear estimator [Book -detection of signals in noisenakes no claims on the
statistical distribution of the observation noise. Eanie described the observation noise
as circular Gaussian. This means that the real and imagpaatyof the noise have the
same variance and are independent. In this case the Mininauianée Unbiased estimate
of the scene will be given by the linear estimator [61dceee here implies the average
reflectivity over all observed frequencies.)

Let us now look at populating the forward operator with thegssary values to model
a given scene. We start with just one frequenfgywith angular frequencgz fo = wy.
To populate the forward operator consider & scene cell being observed at thé”

location. The approximate propagator as described abmredn by:
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(_ij + 0082 (9))€_jk0R(’m,n)
R(m,n)

B = (6.9)

WhereR(m, n) is the distance from the’" image pixel location to the:'" observation
location and is the angle formed from the z-coordinate direction and #aaor from
image location to observation location. In the applicagipnmarily considered here (i.e.
see-through-wall and ground penetrating radary taken to be&?°, so the cosine term
vanishes. Also, in practice they, term is left out because it is just a complex scalar. This
is done because the data is often uncalibrated.

With the definition ofh,,,, the forward process becomes:

M

m=1

Since we are looking at a 2D or 3D scene, we say that the praidsbeenectorized
by “unwrapping” the columns of the scene into an Nx1 vector.

Backpropagation is generally performed in a brute force wiyat is, the back
propagator is determined @&m, n)e’*f(mm) for a given cell with respect to a given
observation. This occurs for each observation and thetsestd accumulated for the scene
cell of interest. The algorithm then steps to the next cdlisTan be done more efficiently

by populating the forward operator and then multiplying dhservations by its transpose:

iozHoTy

The above forward operator was denoféglito imply that only one frequency was
included. Now let us expand the discussion to muliple fregies. A forward operator
can be populated for each frequency being observed. InWeesion process, the quantity

of interest is the average reflectivity over all the frequesc

83



i:HlT%—i_HQTQQ_’_'”—i_Hngl

This can be reduced to a single operator by horizontally concatenating the matrices as:

HT = [HTHT ... HI]. This is applied to the vertically concatenated observatictor:

Y,

Yy

I
Il

Y,

To complete the average, each cell should be divided the number of frequencies.

6.2 Wavenumber Migration

Algorithms exist that can speed up the backrpopagatiorgsodNavenumber Migration is
one of these. This term is synonymous with Seismic Migrai@}j, Range Migration [63],
and Wavefront Reconstruction [64]. It requires that obderxma be made along a regular
sampling grid. The forward process that generates the witgans discussed in Section
6.1 is nearly a Fourier Transform of the scene reflectivitycd@ese it is not quite a Fourier
Transform, applying an inverse Fourier Transform to theeoletions will not achieve the
optimum resolution. Wavenumber Migration seeks to regansthe 2D or 3D Fourier
spectrum of the scene. In the end, the image is produced byarse FFT. The use of

FFTs allows for much faster production of the desired image.

1 ‘
d(z, 2) = e / / D(ky, k,)e?keotk=2) qp df (6.11)

This is a 2D Fourier Transform of the received data after eragnditioning.
D(k,, k) is an altered form of the 2D Fourier Transformiafz, ¢), the time domain

Fourier Transform of the waveform received by the radar &edspatial domain Fourier
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Transform of the data in the x-direction.

A change of variables is performed to go fraik,,w) to R(k,, k.) space in
this expression. This conversion involves solving the elisipn relation for and then
interpolating the samples onto an equally spaced samptidgrgthe £, domain. The

dispersion relation is given by:

b=y (22— k2 (6.13)

v

This implies that proper imaging requires knowledge pthe speed of light in the
medium. In practice the change of variables and interpmiagtep is conducted in the Stolt
Interpolation stage. Thé&'(k,, k.) function is a phase compensation term that is often

calledthe matched filter. It has the following form:

Fky k) = L eI (W ki HkZ=k:)z0 (6.14)

V2 + k2
Figure 6.8 illustrates wavenumber migration in block daagrform [63]. Since the

algorithm is linear an entire image with multiple scattersrapplied in the same manner.

6.2.1 Landmine Imaging with Wavenumber Migration

Vehicle based landmine detection systems employ a suitensioss. These sensors often
include metal detectors and ground penetrating radar. IMetactors naturally perform
well in detecting metal landmines. They also will detect attyer metal in the vicinity

of the sensor. One approach to eliminating unwanted detectf non-threatening metal

objects is to utilize a ground penetrating radar (GPR). SGIe& can determine range and
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Figure 6.1: Block Diagram of the Wavenumber Migration Pesce

can be imaged using synthetic aperture radar techniques, ibe used to determine the
burial depth and size of an object detected by a metal detecto

In this paper an imaging technique called wavenumber mayras employed, and an
automated algorithm is presented for finding the depth amidlsize of objects. Since
landmines are typically buried at depths between 3” and t®the top of the mine) and
have a diameter on the order of 1’, knowledge of size and degtlprovide great insight
in identifying the object or at least in determining that dojeat cannot be a landmine.

In a battlefield environment many metallic and non-metalligects will be strewn
across the field. One example of a non-threatening metatbisj@ spent rifle cartridge.
There could be thousands of these objects lying on the sudha battle field. Even
though these objects are small, each one will be very dbtedt a metal detector. The
ability to determine that these objects are too small to l@drhine will allow them to be

eliminated from a detection report.
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In this study ground penetrating radar data is utilized torede the size and shape
of a Russian TM-62M landmine. It will be shown that using thev@raumber migration
algorithm to image the radar data consistently providegm@asure from which estimates
of size and depth can be made. A repeatability study has bmafucted using ten
independently measured signatures from the same landifireeessence of the algorithm
is that the imaging process resolves reflections from thetapbottom of the landmine.
This allows an automated algorithm to extract the depth aelaf the resolved edges.
Preliminary results show that depth and mine height can besaored to about 0.5”
accuracy. This is the size of one resolution cell in depthndraine diameter can be

measured to an accuracy of about 2.5”.
Stepped Frequency Ground Penetrating Radar

One method for building a cost effective GPR system is knosv@antinuous Wave,
Stepped Frequency Radar. In this approach, each antennigeési puth N frequencies in
a stepped fashion. That is, one single antenna transmitgke $one for a specific time
duration - the dwell time. After this dwell time, the resperef the earth is sampled.
Then the tone is stepped up (or down) in frequency by a speéa@feount. For example
256 samples can be collected for the frequency span from 5200 2000GHz with
frequency steps of 5.86MHz. Below is a detailed descriptiothne depth and azimuth
processing of this signal to produce an image of the landniBeeause of the frequencies
used and the size of the targets of interest, only reflecframs the top and bottom edges
of the landmine can be seen. Despite the low resolution @atiithe data, the image

obtained is enough to extract depth and size estimates.
Depth Processing

The ground response to a continuous wave, stepped frequaday can be thought of
like a black box. The radar inputs sinusoidal signals at kmbwquencies and amplitudes

into the inputs of the black box. At the output, the radar dasthe amplitude and phase
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response to that frequency.

This is like making a direct measurement of the system’sueegy response (i.e.
Transfer Function). A Discrete Fourier Transform using &7 Rlgorithm converts
frequency information to depth. This works because theaesp of the ground has the

form:

r(f) = /20 p(z)ej@kdz (6.15)

Wherev is the speed of propagation in the medium and z is the depttheAinoment
the receiver samples the return echo, energy from the eani;iwave will be returning
to the receive antenna from the surface to a depthrg®. Wherer is the length of time
a tone is transmitted - the dwell time. If the dwell tim&)id5us, then in free space this
depth would be&2.5m. However, the effect of propagating in a medium other thae fr
space is that the speed of propagation decreases. A tygicaake for a non-lossy earth
is a factor of3. So this depth window would be reduced by the medium to argund

The dwell time determines the depth that will potentiallgeiwe energy from the radar
during the transmission of a single pulse. However, thisggneill undergo attenuation
as it propagates into the ground. So the ertireof depth may not actually receive any

illumination due to the energy attenuating away. It is imt@ot to consider both the dwell
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time and the penetration depth when choosing the frequeapys&ze. The frequency step
determines a deptl¥,, ..., below which all energy must be attenuated to prevent alipsi
the return signals. Objects that are illuminated by thenadal echo back a signal, but are
beneath thisZ,,,. depth will "fold into” (i.e. alias into) the depths less thah,,. . They
will appear in the final output as an object with the wrong tepih radar terminology,
Zmaz 1S Called the unambiguous range.

To prevent aliasing from occurring, the frequency step khba chosen properly. The

expression fotZ,,,,, as a function of step size is given by:

14 &
ATAf T Am\ e Af

T = (6.16)

The final form of this expression is approximate. The vejooitthe wave is equal
to the speed of light divided by the square root of the redagigrmittivity .., only if the
medium is weakly lossy [16].

If we assume that, is 9, then a dwell time of.15..s will illuminate 7m of the ground.

A proper choice ofA f to prevent the aliasing is then:

B c _ 3% 10%
B 47T\/aZma:c B 47T\/§7

It should be noted that the dwell time can be longer than,.s for the situation above,

Af = 1.14MHz (6.17)

if it is known that the lossy material will prevent the enefgym propagating pastm.
(For soil, this is a pretty good bet.) In this case the deegrgrets cannot alias into the
shallow region since they do not return enough energy toatarrto be measured. The
examples shown in Section 3.1 were sampled with a frequerpya$5.86 M Hz. This

corresponds to an unambiguous range.dfn.
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Azimuth Processing

In the azimuth (along track) direction, the collection oé ttadar returns gives rise to
a special signature that can be exploited to remove falsealproduced by non-real
objects. Real objects have a hyperbolic shape charaatd(isii

Figure 6.3 shows the geometry of an antenna passing oveophef & buried object.

In free space the distance from the antenna to the objecséiquor; (andz = 0) is given

by:

d= \/(:cz —x0)% + 22 (6.18)
Where the object is located @ty, zo). This distance affects the radar responge t)
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as a time delay from transmission of the sinusoidal tonesteeiteption.

r(z,t) = e—92mf(to—22) (6.19)

Heret, is the time when the radar launched the tone, Anslthe frequency of the
tone. (This expression contains only the phase informafidgie amplitude effects due
to attenuation, propagation loss, input power, and othgsiph is not shown. Itis a
normalized expression.) To produce the signature of Figu¥¢he time domain is Fourier
Transformed (i.e., 'range compressed”) to prodige, w).

After performing the depth processing described in Sedi@ril, the signature shown
in Figure 6.4 is the result. The hyperbolic characteristia result of the changing distance
from the radar antenna to the objedtz). As the antenna approaches its closest point of
approach (directly above the object) the return reacheapbg of the hyperbola. Then as
the antenna moves on the response moves further away yrdgses out of the antenna
beam. The signature of Figure 6.4 was produced using a [@gettsimulator operating
from 500M Hz to 2GH z. This bandwidth provides a depth resolution of 4” in free
space. Because the soil slows down the propagation of thgyehgra factor of\/%, the
resolution is improved. I, is 9 (i.e. 9 times denser than free space), then the resolutio

in depth improves to 1.3”.

6.2.2 Matrix Implementation

A powerful and novel way to implement Wavenumber Migratisas a matrix operation.
All the steps shown in Figure 6.8 can be placed into a coorctiatrix. This would give
the imaging operation the fortt = vect~![Tvect[Y]]. Wherevect andvect™ denote
the operation of vectorizing. The correction matfixs composed of the following matrix

operators:

91



v =Q,'Q, (6.20)

Here the®; operator is a 1D FFT. This corresponds to the first step ofrEi§L8
and places the observations into the- k£ space. This operator is straight forward as it
conducts a 1D FFT operation. Tiig operator, however, is quite complicated. It is the
matrix implementation of a 2D FFT, which performs the finajsbf Figure 6.8. Note that
the notation®, ' denotes a 2D inverse FFT. The remaining two steps can beexitgu
folded into thel matrix.

For practical reasons it is best to implement ¢heand @, operations with standard
FFTs. We will, therefore, only present the contents oféhmatrix and use the following

operation to implement wavenumber migration:

X = vect FFTy, Y (dvect[FFT,(Y)])] (6.21)

FFT, here implies the 1D FFT anBF T, ' denotes the 2D inverse FFT.

The interpolation step was originally reported by Stolt][6Ehis is a 1D interpolation
between sampled frequencies in the wavenumber domain. Jlemnent this operation as
a matrix we can start with the simple two point (linear) ipt@ator. Equation 6.22 shows
this. If we denote the set of observations;dy, m| wheren corresponds to the' spatial
location along the synthetic aperture ancorresponds to the:!” transmitted frequency,

then the Stolt interpolation can be written:

y'[n,m| = apyln, m] + bpyln, m+ 1] (6.22)

This operation can be placed into a sparse matrix, which Wedca(the Stolt

Interpolation Operator).
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a b 0 0 0 0
0 a9 bQ 0 0 0

cbs = 0 0 ag bg U 0 0 (623)
| 00 0 0 ay by

The values ofi,,, andb,, must be populated as required for the two-point linear.
Here,k,, denotes the wavenumber at thé" frequency and:, is the wavenumber of the

interpolated observation.

k,, = 2TIm (6.24)
&
"= s — o) ©29
o (km—i-l - kv/n)
"= s — ) 620

The value oft and%’ are known a priori, so the matrix operator of Equation 6.28 ca
be populated.

Any number of other interpolation approaches can be usedvelder, if the
observations have been sampled densely enough, the lipparagh described above
is sufficient. Since this matrix is quite sparse, the linggraach allows for a fast and
efficient implementation.

To complete the development of thematrix, the phase correction step must be added
to ®,. This is done by placing the phase corrections intodthendb,, coefficients [63].

Equation 3.5 contains the necessary changes:
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Figure 6.5: STW Radar Example: Wavenumber Migration

K= km) o a
CL/ — ('fn—me_](km_km)RS (627)
m (km+l - km)
bl o Me_j(k’m+l_k;n)]{5 (628)

m (km—i—l . km)
R, here is the slant range distance from the aperture to the ssatier line. With this

change the, matrix becomes thé matrix used to correct the observations in preparation

for the 2D inverse FFT.

6.3 Exploiting Sparsity as Prior Knowledge

Radar detects waves that are scattered by a change in thereneint. For example a
change in the dielectric parameter of the medium. This cbald wall, or the ground, or

a cloud, etc. As a result imaging the scattered fields rexzeailapping of the edges of
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structures in the environment. As a result radar is an efeetdge detector.

Sparsity is a concept that refers to the number of voxels in an imageatieanon-zero.
Since radar detects edges, the images produced are oftersguise. Fewer than 25%
of the pixels may actually contain non-zero information. ¥éek to make use of this
information in our image reconstruction algorithms.

A novel approach to incorporatingsaarse prior is reported in [66]. The approach

models radar image intensities with a probability densityction.

f(z) = (1 —w)d(z) + wae™ ! (6.29)

The delta function in this expression states that a numbentensity values are exactly
zero. The other part of the expression models the contindmtisbution of non-zero
voxel intensities as an exponential PDF. This is slightffedent from the approach taken
by Ting in [66] where a two sided exponential was used. In #tar intensity application,
however, intensity values are positive numbers. This PDIR 8 w anda parameters
represent theparse prior.

Incorporating thesparse prior into an inverse problem as described before is not
straight forward. It cannot be applied easily as a Lagrangéiplier. Instead a novel
approach is used that utilizes an expectation maximizapproach on a voxel by voxel

basis [59]. This takes the following and M step form [67] :

(B) 2™ =X™ 4 al"(Y — HX™) (6.30)

Zm — X |2
u%—logf()()).

v (n+1) :
(M) X = arg m}gn( 52

The F Step is a Landweber iteration. It functions as a control lthat projects the
data back and forth between the image and observation demée starting point for

this process is),, which could be either a backpropagated or wavenumber teigjimage.
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Here the adjoint and the forward operators could be impléetkas in Section 6.1. As
mentioned earlier, however, memory issues begin to maksttaght forward application
of H andH? intractable. Instead, the function &f” is implemented as an imaging step
using Wavenumber Migration. The functidih is implemented in an extremely novel
way aslnverse Wavenumber Migration. Introduction of the Reverse Wavenumber
Migration (un)-Imaging is found in [60].

Inverse Wavenumber Migration is motivated by the\lethod of Moments. Itis a
way of propagating the estimated reflectivity of the scerekba the observation domain.
The process is shown in the block diagrams of Figure 6.6 and 6.

By implementing the forward propagator H as inverse waveraermigration, all the
power of this imaging technique is brought to bear. The itens are quite fast. A 256 x
256 scene can be processed without sparsity in under 7 sewatida laptop computer.

The M step can be implemented as a soft threshold [67]. The spangirmation
is contained in the details of the soft thresholding. Namtlg threshold setting is
determined by the sparsity parameters.

The following steps impose a sparse prior on radar imagimggusavenumber
migration. As described previously a Landweber iteratiwthod is used.

(1) 2o = Wavenumber Migrated Image

(2) Zy = softthreshold(q) Soft Thresholding

(3) )1 = HZ, Propagate the fields back to the observation domain.
(d)en=y—10n

(5) #ps1 = X, + H'e,

(6) iterate
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Figure 6.8: STW Radar Example: Sparse Reconstruction
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CHAPTER VI

ITERATIVE REDEPLOYMENT OF IMAGING AND
SENSING

7.1 Phenomenology of See-Through-Wall Radar

Geometrical Optics (GO) is a method of approximating etenagnetic wave propagation.
Due to the simplicity of its form, it is powerful for solvingrpblems and accurate
at higher frequencies. This method is synonimous with “ragihg”. For the STW
application, some special assumptions have to be madenviithiapproach. Because
the hand-held radars being considered here are often nednuthling, the electric
fields emitted and reflected are considered to be spherispiyading waves. At the
interface with the wall, however, the waves are treated aseplvaves. This allows for the
prediction of field transmission and reflection by Fresnattecing parameters at material
interfaces [68] [69]. Thus, it allows for the modeling offdsfction within the wall and
also accounts for ray attenuation and slowed propagatieedsyithin the wall. Refraction
of the plane waves is addressed by Snell’'s Law [12]. In agltlitscattering objects are
viewed as point scatterers with a radar cross section, wdetérmines the amount of
energy reflected [70] [71]. These assumptions hold as freyuecreases. This technique
is being called Enhanced Geometrical Optics (EGO).

Two versions of Enhanced Geometrical Optics are used invthik to provide
simulated data and to allow for information gain computatiorhe first of the
two simulators is the monostatic case, which provides olasiens that emulate a

backscattering radar. The second is the bistatic simyhlatuich provides electric field
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predictions for the virtual transmitters.
Monostatic RADAR Model

Radar can be operated in a number of configurations. The nasltidnal is a single
antenna that operates as a transmitter and receiver. Thiggmtion measures the
backscatter response of objects, and is referred to as tabicodn lieu of observations
made by a real radar system this work utilizes the EGO motiostalar for simulating
the data. In this section, the operation of the EGO monastatiar will be described
mathematically.

Radar is often described as operating in the time domain dreélqeency domain. A
time domain system transmits some predetermined time wawvefvaits for the signal to
propagate to the scene of interest, then "listens” to theaese. Subsequent processing of
the signal is required to form an image of the scene. A frequélomain system, on the
other hand, will transmit a set of tones. This can sometineeddme simultaneously or in
a stepped fashion. A robust way to implement a radar systéheisingle tone stepped
frequency approach. The radar begins transmission of &alifiequency, then samples
the return of that tone from the scene. It then steps to thefreguency, transmits, and
samples. This process is performed for all frequenciestefast [72]. Ultimately, the two
approaches are mathematically identical. They only diffeheir implementation. By a
careful weighting of the stepped frequencies, the stepggepgiéncy radar can emulate any
time domain waveform.

The mathematical model for a monostatic radar under the E€3Onaptions is shown
in Equation 7.1 and 7.2. Equation 7.1 models the return fioerobject behind the wall.

The modeled quantity is the observed electric field at locatifor frequency f.

ER( ,LE) = EO

GrG )2 oo —i i
(\/(47T(h —l—TT i d)2)? (47)r URCS) T T5e e ij] e~ i2k(htd) (7.1)
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Figure 7.1: Geometrical Optics Wall Model

This expression comes from the radar equation - a well kngamoximation used
widely in the design of wireless communication systemshé&expression’s original form,
the starting point is input powef,. This is reflected in Equation 7.1 as the system constant
Ey. The power put into an antenna is transduced into the sudingrenvironment with a
gain of G7. This power spreads spherically from the antenna produaingnergy density
over the sphere oﬁ%. WhereR is the radius of the enclosing sphere. This energy
density at the location of the object induces electric cus @ the object, which re-radiate
to form the scattered field. The radar cross sectighs captures the strength of the
reflected power. This power then spreads spherically imyianotherir ?? loss when it
reaches the antenna. In the act of sensing the reflected pbwemtenna collects Rg.
Thei—; term is a conversion factor that changes the antenna gaie t@the effective area
of the antenna [73]. A simple way of approximating the reedielectric field amplitude is
to take the square root of this received quantity. The prddion of this field is generally
considered “out of the page”.

The phase approximation follows from the time harmonic spheGreen’s Function.
That is the phase is given by!“*~*%)  Herew is the radial frequency ands time. The
time contribution is often suppressed during calculatiofise phase of the spherically
spreading electric field is thereforez7%%, wherek is the wavenumber, which is given by:
k= 47r£. The4r arises from this being round trip phase. Alsas the speed of lightin a

vacuum.
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Up to now only the standard radar equation has been intradwith a square root to
approximate electric field and a phase term that comes bifeain the 3D time harmonic
Green’s Function. Now, the wall is introduced. To handlevié, assume that the incident
wave is a time harmonic plane wave. This means that the watinsidered to be an
infinite slab of homogenous material with a constant peititt ¢, and thickness-.
Penetration of the electric field is governed by the Fresaakmission coefficients; and
T5,. The electric field amplitude is attenuated inside the netby a frequency dependent
dampening factore=2°7. And, finally, the phase term inside the wall is governed by
e 2P,

This completes the pieces of the EGO model as described bgtiegw/.1. Note that
Ty, andT5, correspond to the transmission coefficient from free spatethe material
and from the material into free space respectively. Thesfficents are squared because
the wall is traverse twice in the round trip.

The model can be expanded to include the response of theBeplation 7.1 shows the
direct return from the front of the wall as implied by Figurd .7A more complete model
would include the return from the back of the wall and alsotipléd bounces between the

front and back.

EL(f,r) = Ey e Ih (7.2)

GrGr (V)2
( (4wh2)2E) Rz

This expression is derived using similar arguments to Bgoat.1. In this case the

Fresnel reflection coefficier®;, is used to capture the field reflected from the front of the
wall interface. The final observation made by the monostatiar is the sum of the return

from the object and the return(s) from the wall.
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Figure 7.2: Geometrical Optics Bistatic Model

Bistatic RADAR Model

The virtual transmitter concept places (virtually) an odar@ctional transmitter inside the
building being imaged. It does this by generating a buildmgdel composed of discrete
scattering elements. A numerical electromagnetic priediaif the fields produced by
the virtual transmitter is computed for locations outsidge building. This field is used to
predict locations where the best measurement conditiassfeam which to re-illuminate
the location of the transmitter.

To support this stage of the algorithm, an extended geoca¢iptics model for
forward scattering has been developed. This model is chlsdtic because the receiver

and the transmitter are not co-located. Figure 7.2 illtssréhe concept.

ER(f’ .ZU) - EO 477)3R2R?

2 , ;
<\/ﬁi0305> T12T216_O‘X6_JBX] e IM(BstFu=x) (7.3)

The bistatic model is mathematically developed with simédeguments as the
monostatic model. Equation 7.3 is the result.

Here the parameteR; is the distance from the transmitter source to the scagierin
object, R, is the distance from the object to the receiver, ang, the straight line distance
of the path within the wall medium. In this bistatic versi¢ime radar cross sectionis the
non-backscatter RCS. For simplicity, this parameter is ct@med constant regardless of
the illumination and observation directions. This doesingeneral have to be true. The

scattering objects could have directional qualities, Whiould be represented by an RCS
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functiono (6, ¢). Note that this expression no longer contains round trifadies.
The direct path from the transmitter to the receiver passesigh the wall.
Equation 7.4 describes the link including the wall’s cdmition. TheR, parameter is the

transmitter to receiver distance.

2 st - ’
EL(f,x) = Ey ( %) TI’QTZ’le—ax/e—Jﬂx o~ IR(Re=xX") (7.4)

The observed field measured by the receiver is the sum of BguAaB and 7.4.

7.2 The Outer Wall Problem

Approximations and simulations are used in this work to gdigsical insight into the
spatial signatures produced by objects observed by supkwetrating radar. The radar
system is a receiver/transmitter pair that scans alongutsde of a building. The returns
can be used to produce an image (slice) of the interior ofdbenr

The imaging approach used in this work is wavenumber migmatit was first
introduced in synthetic aperture radar imaging by [62]. Tethod was first developed
for seismology [63], [74]. The principal contribution ofistpaper is the application of this
approach to See-Through-The-Wall radar imaging.

The wavenumber migration algorithm works as follows. The@inplex spectrum
of the image is constructed by properly reformatting thenplavaves received by the
radar system. The reformatting requires exact knowledgkeophase of the propagating
waves. When a wall of unknown thickness and permittivity tsaduced, the algorithm
can no longer focus the image because the wall imposes amwnkitelay on each plane
wave due to the decreased and unknown propagation speed thiéhwall. To properly
reformat the waves, the wavenumber migrator must know tlieddftect of these two
parameters (unknown permittivity and unknown thickness) @move that phase delay

from the recorded data.
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Adding to the complication of this problem is the fact that tieflection coefficients
of the wall are unknown. In this work we will assume that thearareturn from the wall
is composed of a reflection from the front surface and a raéfieétom the back surface.
These two returns sum together to form a signal in noise withunknown reflection
coefficients and one unknown phase. Due to the non-lineareat which these three
parameters manifest themselves in the returned signak sssumptions will have to be
made in order to estimate them. Two approaches can be coegide

The first approach assumes that the reflection from the wdlseihas been removed
by some other means. This greatly simplifies the problem dodafor the back of the
wall reflection coefficient and the phase at all requireddsswies to be removed using
a sine and cosine or dual phase technique. This approadteisfare, a non-parametric
approach that estimates the phase at all frequencies. ¢tigarait may be a significant
technical challenge to eliminate the surface reflectiortrdaution as required by this
method. Therefore, a second technique is proposed.

The second technique is a dual frequency approach. Herad#sismed that the
frequencies are close enough together so that the reflexbieificients of the wall
are nearly constant in frequency. The phase unknown is egbtacits fundamental
unknown part, which is the product of the wall thicknesand the square root of the wall
permittivity |/e,. By relying on a cross-demodulated signal (that is a trariethtosine
mixed with a sine on receive) the wall return is naturallyot¢d. Two separate soundings
are made at the two frequencies. After the cross-demodul#te reflection coefficient of
the back of the wall and the phase parameter are non-lineadgled within the signal.
A non-linear iterative maximum likelihood estimation apach is used to separate these
two parameters via the Newton-Raphson algorithm. When thwri#hm converges, it
provides a parametric estimate of the thickness-perntjttsquareroot product. With this
estimated parameter, the phase delay for any frequencyavést can be predicted.

We adopt a physical optics model for electromagnetic wawpggation for a simple
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Figure 7.3: Three Point Scatterer Simulations

environment consisting of three point scatterers placééhblehe wall. These simulations
are used to show the result of correcting the imaging signdlsthe estimated phase.
Images produced without phase correction are also provaddmonstrate the need for

correcting unknown phase distortion.

7.2.1 Point Target Simulations

The simulation consists of a stepped frequency radar gemgfeequencies from 500MHz
to 2.5GHz with equal steps, a homogeneous wall, and thre# poatterers. Figure 7.3
shows the point scatterer arrangement. The radar is poditectly at the wall. The
imaging algorithm operates on a measurement of radar bait&sat 256 frequencies
observed at 201 locations parallel to the wall. We define allooordinate system (also
shown in Figure 7.3) at a specified center of the generategama

We employ a physical optics model of radar wave propagahoough the medium.
Specifically, the radar rf field is mathematically modelegkme waves. The reflections
from the wall and back of the wall are governed by Fresnel RisfleCoefficients, which
are valid for time harmonic plane waves. For this work, retfitn effects predicted by
Snell's Law have been ignored for simplicity. Snell’s Lavegicts that the waves will be
bent as they enter and leave the non-free space media Ireghes pre neglect this effect

and assume that the waves travel straight through the vgaltdéess of angle of incidence.
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The imaging algorithm used to reconstruct the image of theetipoint scatterers is
wavenumber migration. This method transforms the recesigauhls into the 2D frequency
space and manipulates the phase of each wavenumber. lateyps (i.e. resampling) is
also applied to format the data properly in preparation f@Danverse FFT. With correct
interpolation and phasing, the energy of point scattereceime focused [63]. This can
be seen in the free space (no wall) simulation shown in Fgyidré & 7.5. The 3 point
scatterers are clearly well focused into point targets i shmulation. Their amplitudes
can be seen to fade for targets that are further away from #tle Whis is due to thg%
spherical spreading of the energy in the transmitted wavéhdse simulations the radar
is just 6 meters from the farthest point scatterer. At thestadces beam divergence loss
of the transmit energy can't really be ignored. The poirge#s have the same radar cross
section (10dB).

Figure 7.5 shows the motivation of this work. When the walhisarted between the
radar and the point scatterers, the imaging algorithm daimcas the points. This is due
to an unknown phase factor that is now present in the datarstré simplified model of

the observations is given by Equation 7.5.

y(fx) = ap(f)e 7D a, (fe I0w U p, e I0n (7.5)

The amplitude and phase labelegdandé, are due to the free space propagation
between the radar and thé" point scatterer. The complex reflectivity of the scatteser i
given in amplitude by, and¢,,. The effect of the wall is to produce an attenuation and
phase (both of which are unknown) given &y andg,,.

Under this model the wall acts as a filter that attenuates st incident energy. If
this is a function of frequency, it would have to be estimatethe goal is to reconstruct
the true reflectivity of all the pixels in the image. On theasthand, if the goal is to

reconstruct the location of the scatterers in the imageathglitude attenuation can be
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ignored [63]. Of course, in the presence of noise or interfee the power transmitted
by the radar must be enough to provide a usable signal-semnatio of the received
amplitudes. The effect of the phase w is to distort the retcooed image. Hence
the phase must be estimated explicitly prior to image recocson Note that the wall
parameters are the same for all simulations in this worlatiked permittivity of the wall is

10 and it is 0.2 m thick.

7.2.2 Wall Phase Determination and Correction

Two methods are proposed here for determining the phaseddysa wall of unknown
permittivity and unknown thickness. Both methods utilizeudspd radar. The pulses
contain a cosine waveform with just 1 frequency that las®/4€£c. The return signal is
assumed to be a superposition of two cosine functions. T$tadifrom the surface of the
wall and the second is from the back of the wall. Equationsaid7.7 shows the expected

return.

r(t) = apcos(wt — ¢,) + arcos(wt — 6 — @) + n(t) (7.6)
0= ﬂh (7.7)

c
o= #7‘ €2 (7.8)

The# parameter is the expected phase delay due to the wavefopagabng to the
wall surface and back to the radar. It is reasonable to expecvalue to be known. The
¢ parameter, on the other hand, containsth& value that is unknown. The, anda;

values are related to the reflection coefficients of the feamt back wall surface. The
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noisen(t) is an unknown, performance limiting factor.
Dual Phase Approach

The first approach demodulates the returned pulse with aeasid a sine waveform. This
would be the same as transmitting a cosine and a sine sigdaleanodulating them both

with a cosine. The result is an in-phase and quadrature mezasat.

N
g Jeos(wt; — O)R(w) = — + %COS((b) (7.9)
1 & a

=~ Z Jsin(wt; — 0)Q(w) = Elszn(@ (7.10)

Equations 7.9 & 7.10 show the processing steps and the fiakdrsealues. It is
assumed that the sampling rate is sufficiently high to preskasing. Note that all the
unknown parameters appear in these scalar measuremergparate measurement must
be made at each frequency used in the imaging system.

A significant issue exists in the in-phase value. théerm is the reflection coefficient
of the wall surface. This value must be determined prior eahpplication of this dual
phase method. This is the so-called "layer peeling”. Thd staface must be determined,
then the inner wall structure, then the imaging of the ardwrigethe wall. Here we focus
only on the solving of the middle problem - the inner wall sture. With the removal of

thea, value, the in-phase measurement becomes what is shown ati&uogi 7.11

R(w) — % — R(w) = %cos(qﬁ) (7.11)

Now the form of the in-phase and quadrature values can bdetiio remove al

(unknown). The result is a tangent of the unknown phase. Bydedn arctangent, the
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Figure 7.6: Estimated and True Phase

desired value is reached. Equation 7.12 shows the final fiiote that theRk and( values
must be measured at each frequency and Equation 7.12 apphexdgives an estimated

wall phase value at every required frequency.

d(w) = arctan( ) (7.12)

R(w)

Figure 7.6 shows the estimated phase for the three pointessasimulation. The red
line is the actual phase value at each frequency. The phéiseas because the wall in
this simulation is homogeneous and non-dispersive. Thegitamp is due to the linearly
increasing frequency. The advantage of this approach iswheae the wall dispersive
(meaning that the phase changed non-linearly in frequetiog)required phase at each
frequency would be sufficiently determined.

The blue wrapping phase is the estimated value. The wrapmogrs because the
range of the arctangent function cannot determine the phatséde of the—n to =
interval. However, mathematically, it is not necessarydtednine the true phase. Only
the value within this range is required to affect the neagsghase corrections in the
image processor. Figure 7.9 & 7.10 shows the resulting inadige the correction. Note

that the three points have been successfully focused.
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Dual Frequency Approach

The dual phase approach makes an assumption that may natdieglty achievable.
This is the assumption that the return from the front of thé tvas been removed (i.e.
canceled). Because of this a second approach is introduced®@me assumptions must
also be made for this method. Two frequencies will be use@t®ate a set of non-linear
equations that will be solved iteratively using a non-linesauccessive approximation
method. The assumptions here are that the reflection ceeffscremain constant for the
two frequencies. Since these values are slowly varyingaquency, this assumption is
very nearly true. As long as the frequencies do not get toagart, this assumption will
hold.

Our starting point is with the quadrature measureméh&nd( at two frequencies
f1 and f,. The reason for using quadrature is that theinknown is naturally removed
during the demodulation process. If we also consider thghisse measurements, we have
to solve for the added, unknown. Sincei, anda; are nuisance parameters, we utilize
only ¢; andgs. The expressions for these measurements are given by Bsigtil3-7.16.
These are rewritten in the form of functioh’, F, for use in the Jacobian matrix described

next.
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interest. Knowledge of this value allows for the phase digto to be corrected.
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(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

The parameter; is the reflection coefficient from the back of the wall. Thegraeter

x5 IS the thickness-permittivity-squareroot product. Theparameter is of primary

Define the two element vectorgsand F' by contacting the two respective terms
in Equations 7.13-7.16. The problem of estimating the patarsz,; andz, can be
formulated as a non-linear least squares problenim,. (¢ — F(x)|*), equivalent to
maximum likelihood under an additive Gaussian noise mgdelF’(x) + noise. Starting
with an initial value ofz,z,, we can find the least squares solution using the iterative
Newton-Raphson approach. This algorithm uses succesgivexamations to iterate to a

solution. The Jacobian matrix shown in Equation 7.17 isrdeiteed using the non-linear

The Jacobian matrix defines a hyper-plane that is tangehetmanifold of theF}, F;



functions at the point of the current estimatescofr,. A solution to the equations is
found within this plane and this solution will be closer te tihue answer than the previous
estimates. The same is true for the next solution until thieneses no longer change.
This is the successive approximation strategy. Mathemtjchis can be written as in

Equations 7.18 - 7.21.

5, = dp1 + (S Je) N (A - E(% ) (7.18)
a= | " (7.19)
L qQ -
x— | " (7.20)
_ Fi(x)
E(x) — (7.21)
FQ(X_)

A logical starting point is to choose the initial valuesagfz, to determined by the
values we expect (i.e., the mean values) for the wall beitegriogated. This incorporates
the a priori information we have about the wall. For this detion only a few iterations
are required for the estimates to converge. Figure 7.8 skimsvsonvergence in the;
parameter while Figure 7.9 shows the samezfor The starting values were 0.8 fof
and 0.6 forz,. The actual values were 1.0 and 0.6325 respectively. Thaasd values
reached by the algorithm were 1.3 and 0.6270.

Thex, parameter corresponds to the product, which is the key eleiméhe unknown

phase experienced by the waves traveling through the walkte@his parameter is
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estimated, the image can be phase corrected at any frequSocyrovided that the
wall structure does not change, only one sounding has to e imahe dual frequency
approach. The resulting image is shown in Figure 7.10.

Note that the three point scatterers are well focused inrEiguL0. The dual frequency
method shows much promise. Unfortunately, it does havderiggs to be addressed in

future work, namely local minima of the objective functifpp— F(z)||* [75].

7.2.3 Outer Wall Conclusion

Two approaches have been proposed for determining the wmkpbase produced by
plane waves propagating through a wall. It has been showrthtsaunknown phase
prevents proper imaging of the scene behind the wall usirggal®rough-The-Wall radar.
Both approaches were effective in determining and remowvieguihknown phase when
their underlying assumptions were satisfied.

The two approaches were also quite robust when contamimdgtedhoise. Both
functioned well at a signal-to-noise (SNR) of -10dB. (SNR hisrdefined as the mean
squared amplitude of transmitted sinusoid to the variafitiesonoise.) This robustness is

due to the correlating of the return signal with the transigihal. Each pulse was sampled

115



in such a way that 1000 points were collected. When all thesgples are correlated with

the signal and averaged together, a reduction in noisenagiaf a 1000 is affected.

7.3 The Inner Wall Problem

One of the goals of STW radar is to generate a layout map ofntiegior of buildings.
When the radar frequency is sufficiently high methods like hddtof Moments and
Finite Element become intractable. Here we propose the fuseattering center models
of objects like dihedrals, tophats, cylinders, and sphasean approximate method for
simulating radar response. These scattering primitive®eassociated with the objects in
the scene. By identifying the primitives, a layout of the Bunf interior can be generated.
The contribution of this section is in the area of inner wa#lpping. Others have
looked at the problem of determining the characteristichefouter wall [76] [77] . A
great body of research exists on the identification of objémind in synthetic aperture
radar imagery [78] [79] [80] . The issue of dealing with andppiag inner walls is a
problem unique to STW radar imaging. The approach takenibecelook at the inner
walls as dihedral scattering primitives. Dihedrals havéna”bounce” characteristic that
can be identified using polarimetric radar. This approachdeen explored in the area of

Foliage Penetrating Radar [3] [81] [2] for discriminatingdks from trees.

7.3.1 Inner Wall Simulation

Simulations of radar imagery are employed throughout thidys A building scene
contains several basic components: 1) an outer wall, 2) afseher walls, and 3) a
collection of objects. Of particular interest is the existe of any weapons stored inside
inner rooms.

Note that the scene of Figure 7.16 is sparse. This meansithaiet of empty space.
A Method of Moments (MoM) approach to modeling this scenehmappear to be a good

starting point. The MoM approach only deals with the scattgobjects within the scene.
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Other approaches like Finite Difference Time Domain (FD&DJ Finite Element Method
(FEM) will "grid up” all pixels including the empty space. €lrule of thumb in all E&M
modeling applications is for the discretization to have $amples across the shortest
wavelength. The building here is 10m x 10m in dimension. AH&Ghis translates to
1.3 million elements in the outer wall (considering only thiegrals over the surfaces)
and 300 thousand elements in the inner walls, which are 3 Imverting a matrix of
this size to solve for surface currents would require powadmputing. As an alternative
to large numerical simulations, we make several simpldyassumptions. The primary
assumption is that a enhanced geometrical optics appreatlificient.

EGO is discussed in Section VII. It assumes that propagatangs can be modeled as
plane waves. In this STTW application the outer walls are@heaiusing Fresnel reflection
and transmission coefficients. This implies that the walhige and homogenous. The
physics of the corners are not truly captured. For casesenthercorners are not within
the footprint of the antenna beam, this assumption shoultleguate. In addition, the
walls are considered to have no windows, doors, or otheringenThe outer walls are
assumed to be reasonably thick - on the order of 0.2m.

The inner walls are simulated using the scattering centeroggh. A dihedral is
formed by the connection between the wall and the floor. Tivagry goal of this work
is to determine the inner structure of the building. This nse@entifying inner walls and
separating them from other objects to formalding model from the gathered data.
Modeling the inner walls as dihedral scattering object$ mot provide a high fidelity
prediction of scattered fields. It will, however, capture golarimetric characteristic of the
wall's response. This will allow for testing of polarimetoased algorithms for identifying
the inner walls. The assumption that the inner walls can beetea as dihedral scattering
centers should be adequate for thin inner walls. This mdatghe radar wave passing
through the wall will experience little phase delay andditittenuation due to the inner

wall.
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Figure 7.11: Dihedral Scattering Center

Objects within the scene are considered to be point scedtefith varying scattering
cross sections. For simplicity, the objects are simulatedaastellations of points. All
objects within the scene represent potential objects ef@st. The goal here is to classify
the outer walls, inner walls, and scene objects. In futurekwioe scene objects can be
further processed to identify the object class.

Using the scattering center approach, Figures 7.12 andwel® generated. These
are produced by illuminating the scene of Figure 7.16 fromldbttom (Figure 7.12)
and from the left (Figure 7.13). The simulated radar has aWwatth of 1GHz about a
center frequency of 4.5GHz. This frequency is relativelyhhcompared to most existing
surface penetrating radar systems. The frequency rangehmeasn to lend validity to the
EGO assumptions underlying these simulations. The beatiwidhe antenna i80° in
both cross range directions, this beamwidth is intendedatcima man portable (hand
held) antenna. Likewise, the stand-off distance is 10mesponding to a system taking
measurements from a nearby road.

Several noteworthy items can be seen in these simulationst df all, the inner
walls parallel to the radar line-of-sight tend to vanish.isTéiccurs in spite of the large
beamwidth of the antenna. At the wavelengths used in thesdaions, there is not much
direct backscatter from the inner walls when they are nopgeadicular to the radar’s

line-of-sight. The perpendicular walls do have a small oese. These are the edge
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diffraction effects (slightly visible) at the edges of théeldral. Looking at the simulated
sink, the reflectance of objects appears to change betwedwdhimages. This is due to
the spherical spreading of the power emitted by the raddfigare 7.12, the illumination
is from the bottom. In Figure 7.13, it is from the left. The aads physically closer to the
sink in the bottom illumination. Since the imaging algonitldoes not attempt to correct
for spherical spreading, the reflectance appears to becaakewin the left iluminated

scene.

7.3.2 Layout Mapping

The goal of this work is to determinefwilding Model from observed imagery. This
is similar to a Computer Aided Design (CAD) drawing of the buntgl This drawing
captures the internal layout. To create this product, ielsassary to identify the outer
walls, inner walls, and scene objects. These are then storbe Building Model file

as objects. To ensure that all inner walls are capturedneegssary to scan the building
from two directions - bottom and left. This insures that afiér walls will be illuminated
by the radar beam.

A simple approach to detecting inner walls is to take adwgetz the dihedral-like
response that is formed by the intersection of the walls wiighground. Polarimetrically,
we expect the phase angle of the VV to HH ratio to be 180 fordti#ls. This occurs
because the VV polarized wave sees a 180 phase shift whileHhgolarization does not
have a corresponding phase shift. This fact can be expltotadlp map the inner walls of
the structure.

Figures 7.14 and 7.15 show the result of applying a simpledtdd scattering center
detector. This detector takes a ratio of the VV and HH compteages and finds the pixels
with a phase close to 180. The resulting pixel maps correspmthe inner walls. These

regions can then be modeled as inner walls infaglding Model.
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7.3.3 Inner Wall Conclusion

This section explored the issue of simulating building peateng radar with a focus on
inner wall detection. The simulations were conducted iregdency range where EGO
was expected to dominate. The resulting simulated images wsed to propose an inner
wall detection and mapping algorithm. The algorithm uéizpolarimetric scattering
characteristics to classify pixels as part of the inner svdlincouraging preliminary results

are presented.

7.4 1.R.l.S. Adaptive Imaging

See-through-the-Wall Radar Imaging is an emerging teclgyalseful to both Homeland
Security and Law Enforcement. The goal is to provide an imggool that gives
authorities information. The nature of this informatiorcludes the internal layout of

a building (location of doors, obstructions, or inner ropntise existence and location
of objects of interest(weapons, methamphetamine labd)ttantracking of suspicious
individuals inside. This application is challenging besaut requires the processing
and interpretation of electromagnetic waves in an inhomogs media with unknown
material parameters and structures. To provide the optinegisurement, it is desired

to adapt the observations to a location and/or frequenayeréimat will provide the most
powerful information. The proposed approach makes use wiraal transmitter”. The
fields observable from the virtual transmitter are predi¢tem a "building model” that is
determined from previous observations. By reciprocity,fibkels observed on the outside
of the building reflect the fields that can penetrate the mgldrom that outside location to
illuminate the location of interest. Because the buildingdelanust be built up (learned)
over the course of several measurements, the algoritheratiite. An interesting location
within the building is determined after the first measuremam initial building model is
produced form this observation, the virtual transmittgslaced, and the fields outside the

building are predicted using numerical electromagnetidem After each observation,
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Figure 7.16: 2D scenario used to illustrate the IRIS apgroRoom isl0 x 10 meters and a SAR sensor
with 1 meter baseline can be placed at any position paralkelg or bottom walls at exterior of building.

more information is obtained about the building and theding model is updated. This
may lead to a new placement of the sensor for the next obganvdt may also lead to
new locations of interest that should be interrogated byrttaging sensor.

Assume an initial sensor/illuminator configuration hasrbdeployed and that an
image has been reconstructed along with its confidence mag the iterative Bayesian
algorithm described in Sec. Il. The objective of IRIS is to fandew sensor configuration
that will allow us to improve upon the initial reconstructiiage. For concreteness,
we focus on imaging the interior of a building and assume ttmatspace of possible
configurations are locations where the baseline of a smaR Sé&nsor could be placed at
the building exterior (see Fig. 7.16). The proposed IRIS apgin uses the confidence
map to identify regions of the image that were poorly resblves., pixels that have
poor confidence values(xz; = 0]Y") near 0.5). It then simulates the RF field at the
building exterior that would be created by placing a (viffaensmitter in one of the poor
confidence regions of interest. From this simulated field areextract information about
the best location to redeploy the illumination/sensindfplan.

For this purpose we define the predicted information gainragasure of how much
a given sensor position might enhance the ability to detexptesence or absence of a

scatterer in the vicinity of the virtual transmitter. Thduaof redeploying the sensor
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Figure 7.17: Iterative reconstruction of building interitustrated in Fig. 7.16 after 10 iterations and a full
10 meter baseline (left) and 1 meter baseline (right) matiesBAR illuminator/sensor.

at a particular location can be measured by the variatioh®RF field at that location
produced by perturbing the location of the virtual transenitDefine the energy frequency
spectrum£, ,(w) of the RF field measured at locatigndue to an omnidirectional
transmitter placed at locatiory and for a location:;, defineE, = £, ,. The spectral
variation produced by perturbing the locatierfrom a reference location; to a new

locationz, can be measured by the Kullback-Liebler (KL) divergence

D(E\|| ) = /El(w) log (28) dw.

The KL divergence and its generalizations have been useddoy lmuthors in sensor
management problems and are often referred to as the infiomgain [43] [82] [83]. We
define the information gain at sensor positipas the sum of the KL divergences of the
RF fields produced by cross-range perturbatipr— x5 and range perturbation, — x5

of the virtual transmitter location:

1G(z,y) = D(E:||Ez) + D(E1| Es). (7.22)

When viewed as a function gfthis quantity sweeps out the information gain field.
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7.4.1 Numerical Simulation

We consider a scenario illustrated in Fig. 7.16. A weaporéieas hidden in a room
surrounded by four exterior walls and obscured by otherimtevalls and objects in the
room. A mono-static radar can be placed anywhere above ph&ath or below the bottom
wall. The room is enclosed byl#® x 10 meter wall that is 1/3 meter thick. We evaluate the
performance of a short baseline (1 meter) SAR sensor thabeghaced at any position
along the 10 meters of the top or bottom wall at 1 meter stdmtistance. The operating
frequency of the simulated radar was 4.0GHz to 5.0GHz an&#&fe radar baseline was
sampled at 10 points (every 10cm) along its 1 meter exterg.slhulator modeled each
object on the room with a simple superposition of scattewsisg physical optics. We
assume that the external wall attenuation and phase parenage accurately estimated,
e.g using the method of [76].

For an initial sensor position centered at the middle of dweer wall the two panels of
Fig. 7.17 show the results of applying ten iterations of thgd3&an iterative reconstruction
algorithm (6.30) with sparseness prior (6.29). The valdes @ ando were fixed during
the entire experiment. The right panel of the figure is sigaiftly lower resolution
than the left panel due to its relatively smaller baseliné aieter. The left panel is the
reconstruction obtained after the first iteration of the IRiScedure.

The probability mapP(z; = 0]Y) and the associated entropy magog P(x; =
0) —log P(z; = 1) are shown in Fig. 7.18. The entropy map is maximum for recangtd
pixels whosea posterioriprobability of being empty space is close to 1/2. The entropy
map therefore measures ta@osteriori(lack of) confidence in the value of that pixel and
is called the “confidence map” of the image. From the confidenap a region of low
confidence is identified, e.g., the region near the top ofrege, and a virtual emitter
is simulated in this region to generate an information galuffor determining the best
redeployment configuration for the next iteration of IRIS.

The construction of the information gain field is illustraie Fig. 7.19 for the scenario
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Figure 7.18: Confidence Map (left) and Entropy Map (righgasated with the 1 meter baseline image
reconstruction shown in Fig. 7.17.

illustrated in Fig. 7.16 and a low confidence region regianitfied from Fig. 7.18. On
the right of the figure is the frequency spectrum of the induR€ field at a candidate
redeployment position at the exterior of the building foe three sensor positions
illustrated in the left panel of the figure. The differencévizeen the reference spectrum
and the horizontally (cross-range) and vertically (ranmgegjurbed spectra is measured via
the information gain formula (7.22). On the left of Fig. 7 4i%he exterior of the building
is the color coded field corresponding to the informatiomgdihe distances of the range
and cross-range perturbations of the virtual transmiteetbeen exaggerated for clarity
of presentation; actual perturbations would produce lessas visual differences in the
RF spectra.

In Fig. 7.20 the virtual transmitter positions and inducefibimation gain fields
are illustrated for iteration 2 and 3 of the IRIS algorithm. t@@l information gain
maximizing SAR positions are indicated by the 1 meter baselhite arrows at exterior
of the building. After the third iteration of IRIS 4 differesensor positions will have been
deployed (including the initial deployment).

On the right panel of Fig. 7.21 a composite of the four reaoieséd images (including
the final image) obtained from the three iterations of theptida IRIS algorithm described

above. The recovered resolution using IRIS’s total baselfrfemeters is comparable to
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Figure 7.19: The information gain field is computed by sirtin@athe variability of the RF spectrum that a
virtual transmitter in the vicinity of a pixel of interestifcle 1 in left panel) would generate at different

locations at the exterior of the building. At right are thdilced RF fields generated by a virtual transmitter
at the reference position (circle 1), cross-range (cirl@@d range (circle 3) perturbations.
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Figure 7.20: Virtual transmitter locations and the inducgdrmation gain fields for iteration 2 and 3 of
IRIS for the scenario illustrated in Fig. 7.16.

127



Down Range [m]
Down Range [m]
(=]

5 4 3 2 4 0 1 2 3 4 5 '?5 0 5

1T — 4 —>

10m Aperture m 1m Aperture

Figure 7.21: Comparison between final IRIS reconstructfter 4 iterations with 1 meter baseline SAR
deployments (shown by black arrows) versus one shot IRI@stuction using 10 meter baseline. In both
cases the reverse wavenumber migration model with EM im@heation of MAP algorithm has been used.

the resolution of the non-adaptive one-shot 10 meter besshown on the left panel of

the figure.

7.4.2 Convergence

The nature of STW radar reveals that objects within the s¢teve directional
characteristics. While many objects are omni-directiotiad, scattering objects that
compose the layout (that is the walls) are directional. trwalls have narrow beam
scattering patterns. This means that a radar must be neampeipdicular to the wall to
illuminate it. The illumination could come from either th&dnt” or the “back” side.
Corners have a wider beam. In contrast to inner walls, howéwey will only backscatter
in one direction. Therefore, the radar must illuminate aneofrom the proper side.

To insure complete detection of all scattering objects iM#Scene, a radar would
need to illuminate the entirg&0° aperture. Figure 7.22 shows the simulated test scene
imaged from full1l0m apertures on all four sides. The IRIS algorithm seeks to tatec
objects in the scene, while observing (much) less than taé360°.

Convergence in the context of the IRIS algorithm is the notiat the image being
built adaptively will converge to the correct image. Sinke algorithm is building the
larger scene from observations of small regions of the sdecan be argued that the final

product will never truely to exactly the same as that obskbsea larger aperture array.
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Figure 7.22: Image frorB60° Aperture

However, the fundamental information contained in the ienegn be the same. For this
reason the quantity of interest in convergence is the “dibaof detection” of the scene
objects.

Figure 7.23 shows the image and the apertures used in thevéireabn of the IRIS
algorithm. All objects in the scene have been detected. thatethe inner walls are tricky.
They have been detected by the aperture deployments, but are only partially revealed.
A way to overcome this is to use some other method to detertheevall layout. This
could be through the deployment of an airborne asset thaldvemliect the totaB60° (or
40m) aperture or by making use of floor plans (if available).

For a useful concept of operation, the IRIS process must coradihal product with
less expense of resources (i.e. deployments, time, apargad) than the full image.
Figure 7.24 shows the convergence process. To comparesap@eples the probability

of detection is plotted versustalaperture used. Here we use meters because Figure 7.22
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Figure 7.23: Image from IRIS

was produced from0m of total synthetic aperture by observing then per side scene
from all four directions.

Notice that two stall points are observed3at and8m. These stalls are overcome
by an approach inspired by Yuan & Lin [84]. The alogorithmsenthat it has reached
a stall and takes action to widen its search within the spati®ecscene. All objects are
detected after ten deployments. Necessary confidence stéme is satisfied after twelve
deployments. Thus the IRIS converged in detection proltgliilil2m to produce Figure

7.23 rather than requiring the totdlm used in Figure 7.22.
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CHAPTER VIII

CONCLUSION

8.1 Discussion of Results

This dissertation has addressed the problem of surfacdrpgoe with the goal of
detecting objects of interest. The general problem is orferafing an image with an
appropriate sensor, detecting points of interest with@ithage, and reporting objects of
intetest while rejecting clutter objects. The two main &ailons explored in this work
are landmine detection and surface penetrating radar ngagi

The first contribution chapter looks at non-statistical rapghes to image under-
standing, signal-to-noise ratio enhancement, and objassification. First, computer
vision techniques are used to segment a ground penetraiiiag image into target and
background regions. A bounding box around the signaturees to determine the object
depth and size. Next, a novel approach to signal-to-notse isaintroduced called the
hyperbola flattening transform. This transform applies to ground penetrating radar
signals, which have a hyperbolic point spread function. ffaesform helps to increase
the depth of penetration of the landmine by collapsing aleéhergy in the signature into
a point. The third approach applies basis projection ofmrato determine object depth
and size using electromagnetic induction (EMI) metal detsc By identifying bases
derived from a magnetic dipole model of the scattered figldsjique projection matrix is
formed for objects of varying depths and three canonicgbeba

The second contribution looks at statistical approachesaiise of a strong correlation
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between object depth, type, and sensor response, pixslfcdaton can be performed. By
modeling the response of two sensors (EMI and GPR) as a jaigtyibuted Gaussian
mixture, the object type and depth can be determined by edsarthe pixel with a
specific Gaussian component. Using a Bayesian Network thtéeitraining of the joint
probability density function is proposed and discussedtiSical approaches are also
used in sensor scheduling. An approach calletive Sensing is used to determine the
best single sensor to deploy from a set of six hypothesizesiss. It is shown by way
of a confusion matrix that the deployment of a single conftramasensor can increase
the probability of correct classification of subsurfaceeals after detection of the objects
using the Gaussian mixture approach. Last in this contdbudrea a reinforcement
learning approach is explored for learning a policy thati@gpnore than one sensor when
needed to produce the highest probability of correct diaasion with the least number of
sensor dwells.

The third contribution turns to imaging techniques. Fivgdvenumber migration is
explored for its ability to produce 2D and 3D imaging at anederated rate compared
to backpropagation techniques. The concept of image $p@sntroduced as a way
of reducing image artifacts. The key to implementing spyisithe ability to perform
wavenumber migratiom reverse. With this technique, introduced in this dissertation,
Landweber iterations can quickly and efficiently transfataia between observation
and image domain. The final innovation of this work is applie&ee-Through- Wall
radar imaging. It is called the Iterative Redeployment afrfiination and Sensing (IRIS)
algorithm. This technique is a novel way of approximatingr@gé synthetic aperture radar
system with multiple deployments of a much smaller arraye @lgorithm utilizes the
scene itself to determine the best locations to acquirbdéurbbservations for the given
scene. E&M simulation tools dubbedrtual transmitters are used to predict fields
outside the scene of interest. The tools are limited to Gé&eae Optics, but use an

enchancement that corrects for phase distortions caustlmuter wall. An information
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gain metric is computed on the predicted external fieldsrectisensor placement.

8.2 Suggestions for Further Research

Two decades of surface penetrating technology have bedie@pp the problem of
landmine detection and classification. Robotic arms aresatlyr being implemented
on tactical vehicles to assist in the probing of suspiciaesitions. An arm that could
select a sensor of choice as directed by a sensor schedigoritfam could result in high
rewards of accelerated performance. Such a device coudttiedly reduce the impact of
interrogating non-threatening (false-alarm) objects.

The IRIS algorithm is composed of multiple subcomponentairitertainty map, 2)
sensor information map, 3) virtual transmitter, 4) sendmseovations, and 5) imaging.
Each of these subcomponents is a potential field of rese&ahexample, the imaging
approach used in this work drew upon the principle of imagesfy to control Landweber
iterations. Other mechanisms may exist that optimize varmther prior information.
Also, the virtual transmitter here used compact models @8nad Geometrical Optics)
to simulate electromagnetic propagation through walls. @&eraccurate (and more
time/memory consuming) approach would be to use advancewmcal simulations
(MoM, FEM, FDTD) to give a high fidelity prediction to the exteal electric fields.

The utlimate goal in STW imaging is to create 3D volumetri@agas of entire
buildings. To accomplish this, high performance paral@hputing will be required.
Parallel programming in conjunction with the fast and edfintiimaging techniques used
in wavenumber migration could achieve a 3D result in a realsiegramount of time. These
techniques could also be utilized in 3D imaging of landmings date the Landweber
iterations using wavenumber migration approximationsehaeen applied in “2.5"D. That
is, the algorithms have been implemented in 2D and appli@&Dtdata in slices. A full
3D implementation of the algorithm is easily generalized an excellent goal for future

research.
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APPENDIX A

ELECTROMAGNETIC INDUCTION (EMI) SENSORS

Metal detectors remain a useful tool for detecting burietbi@bjects. Fundamentally
they consist of a coil of wire that is driven by electric curtte This current forms a
magnetic field that couples to the buried object. In resptimse®bject creates a secondary
magnetic field that can be sensed at the surface. This prgaessthis family of sensors
the name Electromagnetic Induction (EMI) sensors.

The primary challenge of these systems is separating tliethiey generate - called
the primary field - from the object’s response - called theadary field. In this section
we study a typical EMI sensor called the EM61. This sensoraips in the time domain.
It generates pulses to create the primary field and meashweestondary field while the
primary field is off. Section A.1 describes the time respoofshe system. It shows how
the time decaying signal can be used to identify the objecgtal content. Section A.5
describes the expected spatial signal formed by scanniagtbe object. Section 3.3.1

describes how to extract shape information from the spsitialal.

A.1 EMI System Overview

The EM61 is the property of Geonics LTD of Toronto, Ontaritdsla man portable metal
detector capable of measuring mV changes in sensor res@rse shown in Figure A.1.
The device consists of a wire loop transmitter and two reszeroils mounted on wheels
to form a rolling platform. The main receiver is co-locatehathe transmitter while the

secondary receiver is 40 cm above it.
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Figure A.1: The EM61 Metal Detector

The transmitter is continuously pulsed with current, whielises a primary magnetic
field to be emitted. This field induces swirling currents i@aleddy currents) in the ground
below the device. If a target is present, the eddy currentsametal will continue to flow
for a short time after the primary field pulse is shut off. Tluiens a secondary magnetic
field that can be detected at the surface. The receivers sanglstore the secondary field
during a small time window in between transmitter pulseds Titsures that the secondary
field is not drowned out by the primary.

To operate the device over a survey area, the operator niafugater scans” the area.
That is the device is pulled back and forth across the arghiunds been completely
covered. Samples are taken after each pulse of the traasniittwever, a counter on one
of the wheels triggers the receivers’ control electronicaverage all samples received
since the last count. This is done to reduce noise. Thus]dhesan area is scanned, the
more samples over a single position will be averaged. Pssstétware maps the samples
into an image by utilizing along track positions recordezhirthe wheel counter and from

operator knowledge of the separation between scan lines.

A.2 Transmitter Waveform

One of the complications of designing an active metal detéastthat the primary field

tends to overwhelm the secondary field produced by the tafip is due to the receivers
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Figure A.2: Transmitter Current Waveform

being closer to the transmitter than they are to the targetyedl as, the high power
necessary to produce a desired penetration depth. To prineeprimary field from
overwhelming the secondary field, the transmitter curremdiced to zero as quickly as
possible on the trailing edge of the pulse and a sample ofd¢benslary field is taken

at a time when the primary field has vanished. This techniguwalied time domain
electromagnetics (TDEM). (It is also referred to as eddyeantranalysis [85] in the
field of nondestructive evaluation.) Figure A.2 is a diagm@none period of the current
waveform that excites the transmitter. It is referred to &siolar square wave with 50%
duty cycle”.

For the purpose of modeling the system’s operation, it israssl that the transmitter
can be modeled as a vertical magnetic dipole. This is sontesitaloose assumption
since the transmitter is a 1m x 1m square coil. However, iig@son of experimental data
shows that this assumption is reasonable. Also, the rangstare considered negligible.
What is important is the frequency at which the waveform iruFégA.2 operates and the
transmitter’s magnetic moment. Most models of the EM61 afgeat a frequency of 75.0
Hz (period:T" = 13.3ms). The magnetic momenty., iS given bym,, = NI A, whereN
is the number of turns in the coil,is the magnitude of the current pulse, atds the area
of the transmitter coil. The value of the magnetic momenttiés instrument i€90Am?.

The transmitter waveform can be expanded in a fourier sérgss composed of a
component at5H =z and its odd harmonics (i.€25, 375,525 H z, etc.) [86]. In Section
A.4 it will be shown that the receiver filters out all frequeascbut ther5 H = fundamental.

So for the purpose of modeling, the transmitter is assuméee vertical magnetic dipole
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at75H z with a dipole strength of90.Am?.

A.3 Response of a Spherical Target

Many simplifying assumptions are used to approximate teparse of a buried target
to the primary magnetic field. The approach outlined heressramary of the research
conducted by Y.Guo, which is documented in a Johns Hopkingddsity/Applied Physics
Laboratory technical note [87].

It has already been assumed that the transmitter is a magtptle. Another
assumption is that the target is a solid, metallic sphereetdun a conducting half
space with a homogeneous conductivity. The problem of giaéimely determining the
secondary field produced by the sphere is found in an articldilband Wait [88]. Their
approach is to determine the magnetic field at the centereo$pherical target with the
target removed. This is called the unperturbed field. Thid fleedecomposed into vertical
and radial components that induce magnetic dipoles in thersp The expressions relating

the unperturbed magnetic field to the vertical and radial@ed dipoles are:

m, = —27Ta3P(w,us,as,a)HOZ(:cs,ys,zs) (A1)

m, = —21a> P(w, jis, 0s, a) Hop (s, Ys, Zs) (A.2)

2415 (sinh v — avcosh @) + pig (sinh o — v cosh a + o sinh «)

P(w, ps,05,a) = (A.3)

fs (sinh o« — v cosh ) — pip (sinh o — avcosh a + a2 sinh «)

D=

a = (iwpsos)? a (A.4)
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Figure A.3: Phenomenology of Induced Dipole Sources

The target parameters are:the radius,, ando, the magnetic permeability and
electric conductivity(x, ys, zs) the target’'s center of mass position with respect to the
transmitter.w is the transmitter frequency and is the permeability of free space. The
function P is called the polarizability. Note that this factor is thergafor both the vertical
and radial induced dipoles. This is because the target ibersii.e. all directions are
equally polarizable). Figure A.3 illustrates the induntif horizontal and radial dipoles
by a vertical magnetic dipole transmitter.

Once the response dipoles have been induced, the secoreldsydi the surface are
determined by the standard equations for the magnetic figddtal @ magnetic dipole
buried in an infinite conducting half-space. These expoessand the expression for the
unperturbed field can be found in [33]. Qualitatively, thédgeof the induced dipoles are
shown in A.3.

The magnetic field measured at the surface will be a supeigosif the fields of
the horizontal and vertical induced dipoles. Along with theee major assumptions
already pointed out, the expressions in Equations A.1 tiivdu4 carry with them several
additional assumptions. For the sake of clarity, all assionp concerning this simplified
target response model are now listed.

(1) The transmitter is a point magnetic dipole.
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(2) The target is a solid, metallic sphere.

(3) The target is buried in an infinite conducting half-spagdn homogeneous
conductivity.

(4) The sphere must be electrically small. This means tlatddius of the sphere
must be small compared to the wavelength of the transmittiéxep. This is always true
for the EM61 case since a transmitter7at0 H = has a wavelength af000km.

(5) The sphere must be located a sufficient distance fromdtecs/observer. This
insures that higher order multipoles can be ignored.

(6) The sphere must be buried a sufficient distance from tieefate. This insures that
the interaction between the induced dipoles and the irderéae unimportant. It has been
shown that the sphere-interface separation should besittiea sphere radii [88].

(7) The induced electric dipole moment is negligible. Initidd to the vertical and
radial magnetic fields, a vertical dipole on the surface ateates an electric field in
the azimuthal direction, which circles the vertical axisisTelectric field will induce an
electric dipole moment in the target that will contributethe vertical magnetic field on
the surface. The electric dipole contribution is negligifidr low frequencies (i.e. under

10 kHz), which is always valid for the EM61.

A.4 Receiver Characteristics

This section discusses how the secondary magnetic fielchieeded into a voltage at
the output of the receivers. There are two approaches tiidd be taken. The first is to
consider the primary magnetic field as being excited by aghamthe DC level of the
transmitter current. After the primary field has been zerdleel secondary field decays

exponentially with the following form [89]:

H,(t) = Ae ™~ (A.5)
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T =
™

Here A is the strength of the magnetic field at the instant beforertmesmitter current
is brought to zero is the time constant of the secondary field decay with,, and
s corresponding to the radius, conductivity, and magnetiopability of the metallic
sphere. This approach requires knowledge of the samptimgaifter the the primary pulse
is zeroed, as well as, a Laplace analysis of the receiversteordine the response of the
coils to a transient magnetic field. Because the transmigterates continuously, however,
a simpler way of modeling the excitation, induction, andeygmon problem is harmonically
(i.e. in the frequency domain). The transmitter can be thoof as the superposition
of sinusoidal magnetic dipoles with frequencies/6t{ - and odd harmonics. Since the
fundamental frequency b H = is demodulated and filtered, it is the only frequency that
need be considered. The problem reduces to multiplyingeberslary magnetic field by
a transfer functiorf'(w) that converts magnetic field into an output voltage.

Figure A.4 illustrates an EM61 receiver. Each coil convartexternal magnetic field
into a voltage that is sampled by the electronics. The sangplens a windowt seconds
wide and averages the coil’'s responsg), over that window. The width oft is 400us.
The output of the sampler is a digital train of samples thatustiplied by a75H > cosine
wave, which is synchronized to the transmitter. This haseffect of demodulating the
75H =z fundamental to base band. Then a low pass filter with a cufdffad = is applied
to the demodulated stream of samples to reject all freqesrather tham5H z. The final

result is a DC output level, which is stored in digital memory
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Figure A.4: Receiver Schematic Diagram

A.5 Spatial Response of a Point Sensor

To introduce the modeling of the EM61’s spatial response sénsor will be assumed to
be infinitesimally small. In other words a point sensor. Thatgl extent of the actual
physical sensor has the effect of smoothing the spatiabresgpand is presented in the
next section. For the point sensor the spatial responséevillenoteg(z, y).

It has been shown that at any location near a buried targefttieal magnetic dipole
of the EM61 transmitter induces magnetic dipole responsésd target. These induced
sources are the vertical and radial dipoles. Because the Ebt&lvers are oriented
vertically, the components of the spatial signdl;, y), will be the sum of the vertical
magnetic fields produced by each induced dipole. The magivieg coil response is
developed here. (The secondary coil differs only in the flaat it is located 0.4 m above
the main.)

First consider the response of the sensor to the fields oti@alamagnetic dipole below
the ground with a constant amplitudelofm?. The vertical magnetic field as a function of
position will be denoted{. . (z, y). The response of the sensor will be the magnetic field
times the transfer functiof'(w), which has units of-%-, soV..(z,y) = F(w)H..(z,y).
The induced vertical dipole momenty.(z,y) scales the received amplitude to give
the vertical dipole half of the spatial response,(z,y)V..(z,y). Similarly, the
sensor response from the radially induced dipole willhbgzx, y)V,..(x,y). Here
V,.(z,y) = F(w)H,.(z,y) is the response of the sensor to a radial dipolé4f.? and

m..(z,y) is the radially induced dipole moment. The resulting exgigsfor the point
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Sensor response IS:

p(x,y) = m.(z,y)Veul2,y) + me(2,y)Viz(z,9) (A7)

A subtle point is that the radial induced dipole will alwayes fointing away from the
sensors for any positiofx, y). This is because the transmitter is fixed to the receivers.

Therefore, the sensor response will be circularly symmetri

A.6 Accounting for Sensor Size

The physical dimensions of the EM61 coils are Xnim. This is large enough to suggest
that the measured response of buried UXO will differ from ploént sensor. The voltage
measured by a magnetic induction coil is proportional totiime rate of change of the
total magnetic flux passing thourgh the area of the coilss ThFaraday’s Law. Thus the
sensor response will be proportional to an integral oventhgnetic field passing through
the coil. This can be accounted for by revisiting the respaighe sensor to a vertical and

radial unit dipole. The spatial responséy, y), is then given by:

s(asy) = ma () / / V() + o, ) / / Vi(r.y) (A8)
x/:_% y/:_% $/:_% Y=

-4
The position(z, y) is the center of the receiver and the integrals qwvéry’) are over

the area of the sensor centered at the pginy). Note that the induced dipole terms,

m.(x,y) andm,(x,y) are not included in the integrals. This is because transmitt

is still assumed to be a point dipole, and & m, are scale factors related to the

transmitter’s positioriz, y). (No attempt has been made to account for the physical size

of the transmitter because this would involve a multipolpasion of the source fields.)

Equation A.8 may be rewritten as a convolution with rectarighctions.
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Figure A.5: EMI Spatial Response

s(z,y) = m.(z,y) (Vo.(z,y) ® @rect(z,y)) + m.(z,y) (V,.(x,y) @ @rect(z,y)) (A.9)

Hererect(z,y) := 1for {—5 < 2z < 3} and{—3 <y < i} andrect(z,y) := 0

otherwise and the operat@® denotes two dimensional convolution. Figure A.5

illustrates the spatial respons€z, y), for the case of a 0.25m radius, aluminum sphere

buried at a depth of 1 m.
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APPENDIX B

MAGNETOMETERS

The operation of the Cesium vapor magnetometer is outlinddsrwork. The primary
feature that gives this technology an advantage in landiameeUXO detection is the
"clean” nature of the measurement. That is, the instrunteatfidoes not significantly
affect the magnetic field that is being measured. This allbws interact with the
environment without changing it.

DC magnetic signatures measured are cause by the buriext dbjéecting the Earth’s
magnetic field. These changes are detected by the sensgrokjatts that contain iron
can be detected. Cesium vapor magnetometers are usefuldetietion of unexploded

ordnance (UXO).

B.1 Sensor Operation

Cesium vapor magnetometers work on the principle of the Zeesftact. They are a part
of the larger set of instruments known as "optically pumpedymetometers”. The Cesium
atom has a special property. When it is exposed to a DC madiedticthe electrons can
take on three unique energy levels. The first is a high enexgl,Ithe other two are lower
energy levels. Figure B.1 illustrates the three levels. Wight Is passed through the
vapor, electrons in the "Low 1” energy level will transitiom the high energy state. This
absorbs the energy in a single photon. The photon is reainithen the electron falls
back to one of the lower energy states. There is an even cliaacthe falling electron

will transition to "Low 2” energy level instead of "Low 1”. Tik level does not allow the
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Figure B.1: Electron Energy Levels in a Cesium atom in theg@nee of a DC Magnetic Field

electrons to be re-excited back to the high energy stateeldutron is then stuck [90] .
Initially, all the electrons are randomly populated in theee states. However,
eventually all the electrons will become trapped in the "L@istate. The cesium vapor

is then oblique to light. If an RF magnetic field, however, iplagd to the vapor, the
electrons in the lower energy states are "re-mixed”. Thathis electrons in the lower
energy states will again be randomly populated. The vapotioen absorb and re-emit
photons again, and the vapor becomes transparent to ligjet.eXternal magnetic field
determines the energy difference between the two lowetdeViédhe energy required to
randomize the electrons in the lower states is proportitmtéde frequency of the applied
RF magnetic field. The frequency of the applied RF field is, theee a measure of the

external DC magnetic field [1].

B.2 Measuring DC Magnetic Fields

The magnetic field that is measured by a pulsed magnetonsdtex Earth’s DC magnetic
field. The existence of an iron object causes the Earth’s ieelgk bent in the region local
to the object. This is because the field must satisfy the bamyncbnditions. (Tangential
magnetic field can be discontinuous at the boundary by tHamicurrent density. Since
no surface current will exist, the tangential magnetic fralast be 0.) This is illustrated in
Figure B.2. The advantage of using a pulsed magnetometeatishih optical nature of

the sensor causes very little change in the magnetic fieftgbreeasured. The instrument,
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Figure B.2: Effect of an Iron Object on the Earth’s Magnetiel

therefore, minimally affects the observation.

The deviations in the Earth’s DC magnetic field are measuyeitidd magnetometer.
Figure B.3 shows a simulated signature from an iron spheriedat 0.5m below the
surface. For this simulation, the object is magneticallypmlé oriented in the y-direction
(i.e. East). The orientation of the target’s source is ddpahupon the direction of the
Earth’s magnetic field, the iron content of the object, aredtéirgets shape. It is difficult to
predict exactly how the magnetic signature will behave uFed3.5 shows the signatures
produced on a magnetometer by the four buried targets of&igut. The orientations
of the four targets affect the signatures that they prodBt&J-1 is a sphere so it has no
distinguishing orientation, BLU-2 is vertical into the gral

BLU-3 is lying horizontally at a 90 degree angle to North, andB4 is lying
horizontally at O degrees with respect to North. BLU-2 and BR blave similar features as
the simulation shown in Figure B.3. They have a positive arghtiee peak on either side
of the known location of the buried object. The location ad ffeaks is in the y-direction
meaning that the magnetic source is like a dipole orientedguelicular to the Earth’s
field. This makes sense for BLU-3 since it is buried with its onaxis perpendicular to
the direction of North. The Earth’'s magnetic field lines vihd to be oriented in the

direction of the major access. It is less clear why BLU-2 wdwgte this characteristic.
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Figure B.3: Simulated Spatial Signal from a magnetometer

Figure B.4: Signatures of Buried UXO on a Magnetometer
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Figure B.5: Along Track UXO Signatures on a Magnetometeisgen
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The vertical lines of Figure B.5 show the target location st&t in the ground truth.
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APPENDIX C

X-RAY BACKSCATTER

Since the First World War a single technology for landmintedion has dominated.
This technology is the metal detector. A very effective deameasure to this sensor
was soon invented - plastic cased landmines. To this dajiplases are a challenge to
detect. This has led to much innovative research. The aiit of X-ray backscatter
technology to the landmine problem is one of these innomatid@he primary physical
mechanism used is Compton Scattering from the explosiveacwd in the mine. The
key to an observed signature is the difference in the atoomeher of soil and that of the
explosive material. Another key to this technology is inmagiSince other objects found in
the ground have atomic numbers similar to explosives, ingag required to distinguish
between landmines and various false-alarms. In this setti® use of X-ray backscatter

technology is explored as a solution to the problem of detggilastic cased landmines.

Figure C.1: Plastic Cased Anti-tank Landmine
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C.1 X-ray Backscatter Imaging

Many of the technologies developed for landmine detectmretutilized aspects of the
landmine packaging. For example metal detectors deteah#ial casing of the mine.
Ground penetrating radar (GPR) also seeks to detect thegcdsithis case the signature
is produced by the differing electrical properties of theiog and the soil. In recent
years researchers have attempted to utilize the fundahwvaeacteristic that separates
landmines from all other clutter objects - the explosiveemnat. The quest for a sensor

that detects the explosives in the mine has become the "Hay & landmine detection”.

C.1.1 Linear Attenuation

X-ray backscatter technology has been an attractive refselnection because it keys on
the differing atomic number of landmine explosive matefigbically about?) from the

surrounding soil (typically abouitl) [91]. This and the higher density of soil compared
to landmines makes the linear attenuation of x-rays gredten no landmine is present.
Observed backscattered x-rays, therefore, show higherdéuevels when a landmine is
present. This leads to an observable signal detectable imthigery produced. Equation
C.10 shows the attenuation of x-ray fluence due to attenuatiarmaterial.®(z) is the

fluence at locatiom along the path, is the initial x-ray fluence.

O(x) = Pge M (C.10)

The density of an average soil is reported to be 265 The density of TNT
explosives, on the other hand, is 1.65. The equations governing linear attenuation
are shown in Equations C.11 and C.12. Equation C.11 is theaesdtip for Compton
scattering absorption. Equation C.12 is the relationshigPfooto-electric absorption.
These are the two major mechanism of X-ray absorption indhdrhine backscatter

problem (for energies less than 1000keV).
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He = UcpNO_ (Cll)
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AN

Hpe = kﬁz (C.12)

Wherep is the density of the material] is the material’s equivalent atomic mass
number,” is the material’s equivalent atomic numbeéris the energy of the incident X-ray
beam,k is a shell constant(= 21.86), N, is Avogadro’s numberX, = 6.022 x 10?3,
ando. is the collision cross section. Note that the collision sresction depends afi
andZ and is shown in Equations C.14, C.15, and C.16.

Figures C.2 and C.3 show that soil is a more absorbing matéaal TNT for all
energies between 60 and 600 keV. In energies above arouké\30Dompton Scattering
is the main attenuation mechanism. Another attenuatiorham@sm, pair production,
begins to prevail at energies above 1000keV. Section C.2is88s optimal system design

including the choice of incident x-ray energy.
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Figure C.3: Photo-electric Attenuation

C.1.2 Compton Scattering

The primary mechanism that allows sensors at the surfacetézidx-rays launched from
the surface is Compton scattering. This mechanism is protdieparticle nature of
photons because the x-rays behave according to the rulestafle collisions. Equation
C.13 shows the conservation of momentum equation govern@anapton collision.F;,

is the energy of incident x-ray beam while

1 1

1
=—1 2 A
5 B mc( + cos 20) (C.13)

E,.: is the scattered beam energy. The speed of light in a vacuurandm is the
mass of an electron. Equation C.13 has been specially fotetlfar the anglé; equal to
the angle), (i.e. 0, = 0, = 0 ). For the case of = 45° the exiting x-ray energy is equal to
the incident x-ray energy. In Section C.2 an imaging systepnaposed that utilizes this

arrangement in a landmine detection system.
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C.2 Proposed 3D Imaging Scanner

As early as 1967 systems utilizing X-ray backscatter teldgybegan to appear as
research prototypes. One of the earliest pioneers was thivendity of Florida [91].
With support of the USArmy a directly downward looking systevith 130kVp x-ray
source was produced. This system is now the U. of Floridaray<Mine Imaging System
(XMIS) [92]. Another system has been produced by the Unityeas California San Diego
with support from Defence R&D Canada. This system is callecHigé Energy X-ray
Imaging Survey [93] [94] (HEXIS) sensor. It has an energygeaof 10-200keV [93]. The
most recent system to appear is a German effort called ComMS0ait his system, built
by YXLON International uses a 450kV x-ray tube and detec®i.[

The above systems all have similarities and differencesorAlination/extension of
them is illustrated in Figure C.5. This proposed systemzatdian x-ray source tilted
forward at a45° angle. An array of collimated detectors is shown. Each detés|ocated
a specifically designed distance from the source and hastatiens of—45° to match the
source.

The choice of distance between source and detector is doydhe depth to be
observed. Table C.1 shows the source-detector separasitamce for a detector located
3" above the ground surface. This corresponds to a constgatation distance of 7.35”
for each detector. By using collimated detectors and a ledeeaaning scheme, a 3D image
of the subsurface transmission may be obtained.

An optimal incident x-ray energy for the design describegthe between 300keV and
1000keV. This choice is driven by the fact that Compton Sdatjelominates for energies
above 300keV. This is seen in Figure C.6, which shows the chti@ompton absorption to
Photo-electric absorption for energies from 60 to 600kd\Ws Bimulation was computed
using the material properties of TNT. An excellent choicerfano-energetic x-ray
radiation would be 450keV. (The German system is the cldsdsis situation. It uses a

450kVp x-ray tube.)
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Figure C.6: Ratio of Compton to Photo-electric Absorption

Table C._l: Dete_ctor Distar)ces
| Depth [in] | Distance [in]|

-2 2.45
1 9.80
4 17.15
7 24.49
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C.3 Performance Limitations

Several issues limit the performance of the proposed sysiénst notably is the issue

of power required to generate a signal that can penetrate6\and be measured with
collimated detectors. Because a 3D image is desired, caibmé necessary. This
insures that multiply scattered x-rays will be rejected,ddso increases the system power

requirements. Two of the issues faced by this system argideddelow.

C.3.1 Soil Water Content

The primary effect of ground moisture is to increase the tigs$ soil. This makes the
linear attenuation of the soil higher. Ultimately, the powepply of the x-ray source must
be able to generate x-rays that can penetrate deeper thapti.d

A secondary effect of water moisture content is its randotunea Naturally occurring
variations in the hydrogen content of the soil due to watedpce many false alarms.
This is especially true if the ground moisture content isaggethan 10% [94]. Imaging

combined with fusion with other sensors is a way to mitigagaynof these false alarms.

C.3.2 Collision Cross Section

Another challenge for the system is the collision crossiseaif Compton Events for
TNT material. This is the probability of a Compton event octwg within the explosive
material. The differing atomic numbers of landmines antlaciually make it more likely
for scattering to occur from the soil than from the landmimbis poses a signal-to-noise
ratio problem that must be overcome by system power.

The dependence of collision cross section to atomic nungbghawn in Equations
C.14, C.15, and C.16. This expression is linear in atomic nuntkiaece a material with
higher atomic number has more electrons, the probabilignoévent is increased. (An
assumption is made here that all electrons of the materahailable as free electrons.

This isn’t necessarily always true.)
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WhereFE is the energy of the incident X-ray in keV, audis the atomic number of the
material [96]. The collision cross section, therefore,atefs on incident energy,, and
material atomic numbey;. Figure C.7 shows the energy dependence of the cross section

for the 60-600keV range.
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Note in Figure C.7 that the soil cross section is almost twichigh as the explosive
material of the landmine. This means that more backscdtterays will be generated by
the soil than by the explosive material. Images contairamglinines will, therefore, have

lower signal-to-noise ratio than images without landmines

C.4 X-ray Backscatter Conclusions

In this section the application of X-ray Backscatter Techgglto the detection of
low-metal landmines has been explored. This approach medeesf Compton Scattering
of x-rays and differing linear attenuation coefficients ppsive material and soil. The
difference arises from the atomic numbers (TNT: abboahd soil: aboui 1) and the fact
that soil is significantly denser (TNT: 1.6 and soil: 2.65%).

Investigation of the mathematical dependence of Comptonpaiato-electric
attenuation shows that the best choice of x-ray energiestisei 300 to 1000keV region.
This is the region where Compton scattering is the dominaenaation effect. A system
utilizing a set of collimated detectors is proposed. By emiplg a scanning scheme, the
system is able to acquire a 3D image set of the subsurfaceiatten.

Because X-ray Backscatter keys on the material charactsristithe explosive
material, rather than the landmine casing, it is considaredeal technology for

non-metal cased (plastic) landmine detection.
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