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1 INTRODUCTION

1.1 STATISTICAL SIGNAL PROCESSING

Many engineering applications require extraction of a signal or parameter of interest from de-
graded measurements. To accomplish this it is often useful to deploy fine-grained statistical
models; diverse sensors which acquire extra spatial, temporal, or polarization information; or
multi-dimensional signal representations, e.g. time-frequency or time-scale. When applied in com-
bination these approaches can be used to develop highly sensitive signal estimation, detection, or
tracking algorithms which can exploit small but persistent differences between signals, interfer-
ences, and noise. Conversely, these approaches can be used to develop algorithms to identify a
channel or system producing a signal in additive noise and interference, even when the channel
input is unknown but has known statistical properties.

Broadly stated, statistical signal processing is concerned with the reliable estimation, detection
and classification of signals which are subject to random fluctuations. Statistical signal processing
has its roots in probability theory, mathematical statistics and, more recently, systems theory
and statistical communications theory. The practice of statistical signal processing involves: (1)
description of a mathematical and statistical model for measured data, including models for sen-
sor, signal, and noise; (2) careful statistical analysis of the fundamental limitations of the data
including deriving benchmarks on performance, e.g. the Cramèr-Rao, Ziv-Zakai, Barankin, Rate
Distortion, Chernov, or other lower bounds on average estimator/detector error; (3) development
of mathematically optimal or suboptimal estimation/detection algorithms; (4) asymptotic analysis
of error performance establishing that the proposed algorithm comes close to reaching a benchmark
derived in (2); (5) simulations or experiments which compare algorithm performance to the lower
bound and to other competing algorithms. Depending on the specific application, the algorithm
may also have to be adaptive to changing signal and noise environments. This requires incorpo-
rating flexible statistical models, implementing low-complexity real-time estimation and filtering
algorithms, and on-line performance monitoring.

1.2 PERSPECTIVE ADOPTED IN THIS BOOK

This book is at the interface between mathematical statistics and signal processing. The idea
for the book arose in 1986 when I was preparing notes for the engineering course on detection,
estimation and filtering at the University of Michigan. There were then no textbooks available
which provided a firm background on relevant aspects of mathematical statistics and multivariate
analysis. These fields of statistics formed the backbone of this engineering field in the 1940’s
50’s and 60’s when statistical communication theory was first being developed. However, more
recent textbooks have downplayed the important role of statistics in signal processing in order to
accommodate coverage of technological issues of implementation and data acquisition for specific
engineering applications such as radar, sonar, and communications. The result is that students
finishing the course would have a good notion of how to solve focussed problems in these appli-
cations but would find it difficult either to extend the theory to a moderately different problem
or to apply the considerable power and generality of mathematical statistics to other applications
areas.

The technological viewpoint currently in vogue is certainly a useful one; it provides an essential
engineering backdrop to the subject which helps motivate the engineering students. However, the
disadvantage is that such a viewpoint can produce a disjointed presentation of the component
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parts of statistical signal processing making it difficult to appreciate the commonalities between
detection, classification, estimation, filtering, pattern recognition, confidence intervals and other
useful tools. These commonalities are difficult to appreciate without adopting a proper statistical
perspective. This book strives to provide this perspective by more thoroughly covering elements of
mathematical statistics than other statistical signal processing textbooks. In particular we cover
point estimation, interval estimation, hypothesis testing, time series, and multivariate analysis.
In adopting a strong statistical perspective the book provides a unique viewpoint on the subject
which permits unification of many areas of statistical signal processing which are otherwise difficult
to treat in a single textbook.

The book is organized into chapters listed in the attached table of contents. After a quick review
of matrix algebra, systems theory, and probability, the book opens with chapters on fundamentals
of mathematical statistics, point estimation, hypothesis testing, and interval estimation in the
standard context of independent identically distributed observations. Specific topics in these
chapters include: least squares techniques; likelihood ratio tests of hypotheses; e.g. testing for
whiteness, independence, in single and multi-channel populations of measurements. These chapters
provide the conceptual backbone for the rest of the book. Each subtopic is introduced with a set
of one or two examples for illustration. Many of the topics here can be found in other graduate
textbooks on the subject, e.g. those by Van Trees, Kay, and Srinath etal. However, the coverage
here is broader with more depth and mathematical detail which is necessary for the sequel of the
textbook. For example in the section on hypothesis testing and interval estimation the full theory
of sampling distributions is used to derive the form and null distribution of the standard statistical
tests of shift in mean, variance and correlation in a Normal sample.

The second part of the text extends the theory in the previous chapters to non i.i.d. sampled
Gaussian waveforms. This group contains applications of detection and estimation theory to sin-
gle and multiple channels. As before, special emphasis is placed on the sampling distributions of
the decision statistics. This group starts with offline methods; least squares and Wiener filtering;
and culminates in a compact introduction of on-line Kalman filtering methods. A feature not found
in other treatments is the separation principle of detection and estimation which is made explicit
via Kalman and Wiener filter implementations of the generalized likelihood ratio test for model
selection, reducing to a whiteness test of each the innovations produced by a bank of Kalman
filters. The book then turns to a set of concrete applications areas arising in radar, communica-
tions, acoustic and radar signal processing, imaging, and other areas of signal processing. Topics
include: testing for independence; parametric and non-parametric testing of a sample distribution;
extensions to complex valued and continuous time observations; optimal coherent and incoherent
receivers for digital and analog communications;

A future revision will contain chapters on performance analysis, including asymptotic analysis
and upper/lower bounds on estimators and detector performance; non-parametric and semipara-
metric methods of estimation; iterative implementation of estimators and detectors (Monte Carlo
Markov Chain simulation and the EM algorithm); classification, clustering, and sequential de-
sign of experiments. It may also have chapters on applications areas including: testing of binary
Markov sequences and applications to internet traffic monitoring; spatio-temporal signal process-
ing with multi-sensor sensor arrays; CFAR (constant false alarm rate) detection strategies for
Electro-optical (EO) and Synthetic Aperture Radar (SAR) imaging; and channel equalization.
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1.2.1 PREREQUISITES

Readers are expected to possess a background in basic probability and random processes at the
level of Stark&Woods [68], Ross [59] or Papoulis [54], exposure to undergraduate vector and matrix
algebra at the level of Noble and Daniel [52] or Shilov [64] , and basic undergraduate course on
signals and systems at the level of Oppenheim and Willsky [53]. These notes have evolved as
they have been used to teach a first year graduate level course (42 hours) in the Department of
Electrical Engineering and Computer Science at the University of Michigan from 1997 to 2008 and
a one week short course (40 hours) given at EG&G in Las Vegas in 1998.

The author would like to thank Hyung Soo Kim, Robby Gupta, and Mustafa Demirci for their help
with drafting the figures for these notes. He would also like to thank the numerous students at UM
whose comments led to an improvement of the presentation. Special thanks goes to Clayton Scott
of the University of Michigan, Raviv Raich of Oregon State University and Aaron Lanterman of
Georgia Tech who provided detailed comments and suggestions for improvement of earlier versions
of these notes. End of chapter
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2 NOTATION, MATRIX ALGEBRA, SIGNALS AND SYS-

TEMS

Keywords: vector and matrix operations, matrix inverse identities, linear systems, transforms,
convolution, correlation.

Before launching into statistical signal processing we need to set the stage by defining our notation.
We then briefly review some elementary concepts in linear algebra and signals and systems. At
the end of the chapter you will find some useful references for this review material.

2.1 NOTATION

We attempt to stick with widespread notational conventions in this text. However inevitably
exceptions must sometimes be made for clarity.

In general upper case letters, e.g. X,Y,Z, from the end of the alphabet denote random variables,
i.e. functions on a sample space, and their lower case versions, e.g. x, denote realizations, i.e.
evaluations of these functions at a sample point, of these random variables. We reserve lower case
letters from the beginning of the alphabet, e.g. a, b, c, for constants and lower case letters in the
middle of the alphabet, e.g. i, j, k, l,m, n, for integer variables. Script and caligraphic characters,
e.g. S, I, Θ, and X , are used to denote sets of values. Exceptions are caligraphic upper case
letters which denote standard probability distributions, e.g. Gaussian, Cauchy, and Student-t
distributions N (x), C(v),T (t), respectively, and script notation for power spectral density Px.
Vector valued quantities, e.g. x,X , are denoted with an underscore and matrices, e.g. A, are
bold upper case letters from the beginning of the alphabet. An exception is the matrix R which
we use for the covariance matrix of a random vector. The elements of an m × n matrix A are
denoted generically {aij}m,ni,j=1 and we also write A = (aij)

m,n
i,j=1 when we need to spell out the

entries explicitly.

The letter f is reserved for a probability density function and p is reserved for a probability mass
function. Finally in many cases we deal with functions of two or more variables, e.g. the density
function f(x; θ) of a random variable X parameterized by a parameter θ. We use subscripts to
emphasize that we are fixing one of the variables, e.g. fθ(x) denotes the density function over
x in a sample space X ⊂ IR for a fixed θ in a parameter space Θ. However, when dealing with
multivariate densities for clarity we will prefer to explicitly subscript with the appropriate ordering
of the random variables, e.g. fX,Y (x, y; θ) or fX|Y (x|y; θ).

2.2 VECTOR AND MATRIX BACKGROUND

2.2.1 ROW AND COLUMN VECTORS

A vector is an ordered list of n values:

x =

⎡⎢⎣ x1
...
xn

⎤⎥⎦
which resides in R

n.

Convention: in this course x is (almost) always a column vector. Its transpose is the row vector
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xT =
[
x1 · · · xn

]
When the elements xi = u+ jv are complex (u, v real valued, j =

√
−1) the Hermitian transpose

is defined as

xH =
[
x∗1 · · · x∗n

]
where x∗i = u− jv is the complex conjugate of xi.

Some common vectors we will see are the vector of all ones and the j-th elementary vector, which
is the j-th column of the identity matrix:

1 = [1, . . . , 1]T , ej = [0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . 0]T

2.2.2 VECTOR/VECTOR MULTIPLICATION

For 2 vectors x and y with the same number n of entries, their “inner product” is the scalar

xT y =
n∑
i=1

xiyi

The 2-norm ‖x‖2 of a vector x is its length and it is defined as (we drop the norm subscript when
there is no risk of confusion)

‖x‖ =
√
xTx =

√√√√ n∑
i=1

x2
i .

For 2 vectors x and y of possibly different lengths n, m their “outer product” is the n×m matrix

xyT = (xiyj)
n,m
i,j=1

= [xy1, . . . , xym]

=

⎡⎢⎣ x1y1 · · · x1ym
...

. . .
...

xny1 · · · xnym

⎤⎥⎦
2.3 ORTHOGONAL VECTORS

If xT y = 0 then x and y are said to be orthogonal. If in addition the lengths of x and y are equal
to one, ‖x‖ = 1 and ‖y‖ = 1, then x and y are said to be orthonormal vectors.
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2.3.1 VECTOR/MATRIX MULTIPLICATION

Let A be an m× n matrix with columns a∗1, . . . , a∗n and x be any n-element vector.

The (compatible) product Ax is a (column) vector composed of linear combinations of the columns
of A

Ax =
n∑
j=1

xj a∗j

For y an m-element vector the product yTA is a (row) vector composed of linear combinations of
the rows of A

yTA =
m∑
i=1

yi ai∗.

2.3.2 THE LINEAR SPAN OF A SET OF VECTORS

Let x1, . . . , xn be a set of p dimensional (column) vectors and construct the p× n matrix

X = [x1, . . . , xn].

Let a = [a1, . . . , an]T be a vector of coefficients. Then y =
∑n

i=1 aixi = Xa is another p dimensional
vector that is a linear combination of the columns of X. The linear span of the vectors x1, . . . , xn,
equivalently, the column space or range of X, is defined as the subspace of IRp that contains all
such linear combinations:

span{x1, . . . , xn} = {y : y = Xa, a ∈ IRn}.

In other words, when we allow a to sweep over its entire domain IRn, y sweeps over the linear span
of x1, . . . , xn.

2.3.3 RANK OF A MATRIX

The (column) rank of a matrix A is equal to the number its columns which are linearly independent.
The dimension of the column space of a rank p matrix A is equal to p.

If A has full rank then
0 = Ax =

∑
i

xia∗i ⇔ x = 0.

If in addition A is square then it is said to be non-singular.

2.3.4 MATRIX INVERSION

If A is non-singular square matrix then it has an inverse A−1 which satisfies the relation AA−1 = I.
In the special case of a 2× 2 matrix the matrix inverse is given by (Cramèr’s formula)[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
if ad �= bc
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Sometimes when a matrix has special structure its inverse has a simple form. The books by Graybill
[21] and Golub and VanLoan [19] give many interesting and useful examples. Some results which
we will need in this text are: the Sherman-Morrison-Woodbury identity

[A + UVT ]−1 = A−1 −A−1U[I + VTA−1U]−1VTA−1, (1)

where A,U,V are compatible matrices, [A + UVT ]−1 and A−1 exist; and the partitioned matrix
inverse identity[

A11 A12

A21 A22

]−1

=
[

[A11 −A12A−1
22 A21]−1 −A−1

11 A12[A22 −A21A−1
11 A12]−1

−A−1
22 A21[A11 −A12A−1

22 A21]−1 [A22 −A21A−1
11 A12]−1

]
, (2)

assuming that all the indicated inverses exist.

2.3.5 ORTHOGONAL AND UNITARY MATRICES

A real square matrix A is said to be orthogonal if all of its columns are orthonormal, i.e.,

ATA = I. (3)

The generalization of orthogonality to complex matrices A is the property of being unitary,

AHA = I.

The relation (3) implies that if A is an orthogonal matrix it is invertible and has a very simple
inverse

A−1 = AT .

2.3.6 GRAMM-SCHMIDT ORTHOGONALIZATION AND ORTHONORMAL-
IZATION

Let x1, . . . , xn be a set of n linearly independent p dimensional column vectors (n ≤ p) whose
linear span is the subspace H. Gramm-Schmidt orthogonalization is an algorithm that can be
applied to this set of vectors to obtain a set of n orthogonal vectors y

1
, . . . , y

n
that spans the same

subspace. This algorithm proceeds as follows.

Step 1: select y
1

as an arbitrary starting point in H. For example, choose any coefficient vector
a1 = [a11, . . . , a1n]T and define y

1
= Xa1 where X = [x1, . . . , xn].

Step 2: construct the other n− 1 vectors y
2
, . . . , y

n
by the following recursive procedure:

For j = 2, . . . , n: y
j

= xj −
∑j

i=1Kiyi−1
where Kj = xTj yj−1

/yT
j−1

y
j−1

.

The above Gramm-Schmidt procedure can be expressed in compact matrix form [60]

Y = HX,

where Y = [y
1
, . . . , y

n
] and H is called the Gramm-Schmidt matrix.

If after each step j = 1, . . . , n of the procedure one maps normalizes the length of y
j
, i.e., y

j
←

ỹ
j

= y
j
/‖y

j
‖, the algorithm produces an orthonormal set of vectors. This is called Gram-Schmidt
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orthonormalization and produces an matrix Ỹ with orthonormal columns and identical column
span as that of X. The Gramm-Schmidt orthonormalization procedure is often used to generate
an orthonormal basis y

1
, . . . , y

p
] for IRp starting from an arbitrarily selected initial vector y

1
. The

matrix formed from such a basis will have the structure

Y =

⎡⎢⎢⎢⎣
y

1
v2
...
vn

⎤⎥⎥⎥⎦
and

YTY = I.

In the above v2, . . . , vn are orthonormal vectors that are said to accomplish completion of the basis
with respect to the initial vector y

1
.

2.3.7 EIGENVALUES OF A SYMMETRIC MATRIX

If R is arbitrary n×n symmetric matrix, that is, RT = R, then there exist a set of n orthonormal
eigenvectors νi,

νTi νj = Δij =
{

1, i = j
0, i �= j

and a set of associated eigenvectors λi such that:

Rνi = λiνi, i = 1, . . . , n.

These eigenvalues and eigenvectors satisfy:

νTi Rνi = λi

νTi Rνj = 0, i �= j.

2.3.8 MATRIX DIAGONALIZATION AND EIGENDECOMPOSITION

Let U = [ν1, . . . , νn] be the n× n matrix formed from the eigenvectors of a symmetric matrix R.
If R is real symmetric U is a real orthogonal matrix while if R is complex Hermitian symmetric
U is a complex unitary matrix:

UTU = I, (U an orthogonal matrix)
UHU = I, (U a unitary matrix).

where as before H denotes Hermitian transpose. As the Hermitian transpose of a real matrix is
equal to its ordinary transpose, we will use the more general notation AH for any (real or complex)
matrix A.

The matrix U can be used to diagonalize R

UHRU = Λ, (4)
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In cases of both real and Hermitian symmetric R the matrix Λ is diagonal and real valued

Λ = diag(λi) =

⎡⎢⎣ λ1 . . . 0
...

. . .
...

0 . . . λn

⎤⎥⎦ ,
where λi’s are the eigenvalues of R.

The expression (4) implies that

R = UΛUH ,

which is called the eigendecomposition of R. As Λ is diagonal, an equivalent summation form for
this eigendecomposition is

R =
n∑
i=1

λiνiν
H
i . (5)

2.3.9 QUADRATIC FORMS AND NON-NEGATIVE DEFINITE MATRICES

For a square symmetric matrix R and a compatible vector x, a quadratic form is the scalar defined
by xTRx. The matrix R is non-negative definite (nnd) if for any x

xTRx ≥ 0. (6)

R is positive definite (pd) if it is nnd and ”=” in (6) implies that x = 0, or more explicitly R is
pd if

xTRx > 0, x �= 0. (7)

Examples of nnd (pd) matrices:

* R = BTB for arbitrary (pd) matrix B

* R symmetric with only non-negative (positive) eigenvalues

Rayleigh Theorem: If A is a nnd n× n matrix with eigenvalues {λi}ni=1 the quadratic form

min(λi) ≤
uTAu
uTu

≤ max(λi)

where the lower bound is attained when u is the eigenvector of A associated with the minimum
eigenvalue of A and the upper bound is attained by the eigenvector associated with the maximum
eigenvalue of A.

2.4 POSITIVE DEFINITENESS OF SYMMETRIC PARTITIONED MA-
TRICES

If A is a symmetric matrix with partition representation (2) then it is easily shown that

A =
[

A11 A12

A21 A22

]
=
[

I −A12A−1
22

O I

]−1 [
A11 −A12A−1

22 A21 OT

O A22

] [
I OT

−A−1
22 A21 I

]−1

, (8)

as long as A−1
22 exists. Here O denotes a block of zeros. This implies: if A is positive definite the

matrices A11−A12A−1
22 A21 and A22 are pd. By using an analogous identity we can conclude that

A22 −A21A−1
11 A12 and A11 are also pd.
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2.4.1 DETERMINANT OF A MATRIX

If A is any square matrix its determinant is

|A| =
∏
i

λi

Note: a square matrix is non-singular iff its determinint is non-zero.

If A is partitioned as in (2) and A−1
11 and A−1

22 exist then

|A| = |A11||A22 −A21A−1
11 A12| = |A22||A11 −A12A−1

22 A21| (9)

This follows from the decomposition (8).

2.4.2 TRACE OF A MATRIX

For any square matrix A = ((aij)) the trace of A is defined as

trace{A} =
∑
i

aii =
∑
i

λi

One has an important identity: for compatible matrices A and B

trace{AB} = trace{BA}.

This has the following implication for quadratic forms:

xTRx = trace{xxT R}.

2.4.3 VECTOR DIFFERENTIATION

Differentiation of functions of a vector variable often arise in signal processing and estimation
theory. If h = [h1, . . . , hn]T is an n × 1 vector and g(h) is a scalar function then the gradient of
g(h), denoted ∇g(h) or ∇hg(h) when necessary for conciseness, is defined as the (column) vector
of partials

∇g =
[
∂g

∂h1
, . . . ,

∂g

∂hn

]T
.

In particular, if c is a constant
∇hc = 0,

if x = [x1, . . . , xn]T

∇h(hTx) = ∇h(xTh) = x,

and if B is an n× n matrix

∇h(h− x)TB(h − x) = 2B(h − x).
For a vector valued function g(h) = [g1(h), . . . , gm(h)]T the gradient of g(h) is an m × n matrix.
In particular, for a scalar function g(h), the two applications of the gradient ∇(∇g)T gives the
n× n Hessian matrix of g, denoted as ∇2g. This yields useful and natural identities such as:

∇2
h(h− x)TB(h − x) = 2B.

For a more detailed discussion of vector differentiation the reader is referred to Kay [36].
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2.5 SIGNALS AND SYSTEMS BACKGROUND

Here we review some of the principal results that will be useful for dealing with signals and systems
encountered in this book.

2.5.1 GEOMETRIC SERIES

One of the most useful formulas in discrete time signal and systems engineering is:

n∑
i=0

an =
1− an+1

1− a , if a �= 1;
∞∑
i=0

an =
1

1− a, if |a| < 1.

2.5.2 LAPLACE AND FOURIER TRANSFORMS OF FUNCTIONS OF A CON-
TINUOUS VARIABLE

If h(t), −∞ < t <∞, a square integrable function of a continuous variable t (usually time) then
its Laplace and Fourier transforms are defined as follows.

The Laplace transform of h is

L{h} = H(s) =
∫ ∞

−∞
h(t)e−st dt

where s = σ + jω ∈ Cl is a complex variable.

The Fourier transform of h is

F{h} = H(ω) =
∫ ∞

−∞
h(t)e−jωt dt

Note: F{h} = L{h}|s=jω.

Example: if h(t) = e−atu(t), for a > 0, then the Laplace transform is

H(s) =
∫ ∞

0
e−ate−st dt =

∫ ∞

0
e−(a+s)t dt =

−1
a+ s

e−(a+st)

∣∣∣∣∞
0

=
1

a+ s

2.5.3 Z-TRANSFORM AND DISCRETE-TIME FOURIER TRANSFORM (DTFT)

If hk, k = . . . ,−1, 0, 1, . . ., is a square summable function of a discrete variable then its Z-transform
and discrete-time Fourier transform (DTFT) are defined as follows.

The Z-transform is

Z{h} = H(z) =
∞∑

k=−∞
hkz

−k

The DTFT is

F{h} = H(ω) =
∞∑

k=−∞
hke

−jωk

Note: H(ω) really means H(ejω) and is an abuse of notation
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• F{h} = Z{h}|z=ejω

• the DTFT is always periodic in ω with period 2π.

Example: if hk = a|k|, then for |az−1| < 1 and |az| < 1, the Z-transform is

H(z) =
∞∑

k=−∞
a|k|z−k =

−1∑
k=−∞

a−kz−k +
∞∑
k=0

akz−k

=
∞∑
k=1

(az)k +
∞∑
k=0

(az−1)k =
az

1− az +
1

1− az−1

Likewise the DTFT is (for |a| < 1):

H(ω) = H(z)|z=ejω =
1− a2

1− 2a cos ω + a2

2.5.4 CONVOLUTION: CONTINUOUS TIME

If h(t) and x(t) are square integrable functions of a continuous variable t then the convolution of
x and h is defined as

(h ∗ x)(t) =
∫ ∞

−∞
h(t− τ)x(τ) dτ

Note: The convolution of h and x is a waveform indexed by time t. (h ∗ x)(t) is this waveform
evaluated at time t and is frequently denoted h(t) ∗ x(t).
Example: h(t) = e−atu(t), for a > 0, (the filter) and x(t) = e−btu(t), for b > 0, (the filter input)
then

(h ∗ x)(t) =
∫ ∞

−∞
e−a(t−τ)e−bτu(t− τ)u(τ) dτ =

(∫ t

0
e−a(t−τ)e−bτ dτ

)
u(t)

= e−at
(∫ t

0
e−(b−a)τ dτ

)
u(t) = e−at

(
−1
b− ae

−(b−a)τ
∣∣∣∣t
0

)
u(t) =

e−at − e−bt
b− a u(t)

2.5.5 CONVOLUTION: DISCRETE TIME

If hk and xk are square integrable sequences then

hn ∗ xn =
∞∑

j=−∞
hjxn−j =

∞∑
j=−∞

hn−jxj

hk is a called a “causal” filter if it is zero for negative indices:

hk = 0, k < 0
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2.5.6 CORRELATION: DISCRETE TIME

For time sequences {xk}nk=1 and {yk}nk=1 their temporal correlation is

zn =
n∑
j=1

xky
∗
k

2.5.7 RELATION BETWEEN CORRELATION AND CONVOLUTION

zn =
n∑
j=1

xky
∗
k =

∞∑
j=−∞

xkhn−k = hn � xn

where

hk =
{
y∗n−k, k = 1, . . . , n

0, o.w.

2.5.8 CONVOLUTION AS A MATRIX OPERATION

Let hk be a causal filter and let xk be an input starting at time k = 1. Arranging n outputs zk in
a vector z it is easy to see that

z =

⎡⎢⎣ zn
...
z1

⎤⎥⎦ =

⎡⎢⎣
∑n

j=1 hn−jxj
...∑n

j=1 h1−jxj

⎤⎥⎦

=

⎡⎢⎢⎢⎢⎣
h0 h1 · · · hn−1

0 h0
. . . hn−2

...
. . . h0 h1

0 · · · 0 h0

⎤⎥⎥⎥⎥⎦
⎡⎢⎣ xn

...
x1

⎤⎥⎦

2.6 BACKGROUND REFERENCES

There are many useful textbooks that cover areas of this chapter. I learned elementary linear
algebra from Noble and Daniel [52]. A more advanced book that is focused on computational linear
algebra is Golub and Van Loan [19] which covers many fast and numerically stable algorithms
arising in signal processing. Another nice book on linear algebra with emphasis on statistical
applications is Graybill [21] that contains lots of useful identities for multivariate Gaussian models.
For background on signals and systems Oppenheim and Willsky [53] and Proakis and Manolakis
[56] are good elementary textbooks. The encyclopedic book by Moon and Stirling [49] is a good
general resource for mathematical methods in signal processing.
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2.7 EXERCISES

2.1 Let a, b be n × 1 vectors and let C be an invertible n × n matrix. Assuming α is not equal
to −1/(aTC−1b) show the following identity

[C + αabT ]−1 = C−1 −C−1abTC−1α/(1 + αaTC−1b).

2.2 A discrete time LTI filter h(k) is causal when h(k) = 0, k < 0 and anticausal when h(k) =
0, k > 0. Show that if |h(k)| < ∞ for all k, the transfer function H(z) =

∑∞
k=−∞ h(k)z−k

of a causal LTI has no singularities outside the unit circle, i.e. |H(z)| < ∞, |z| > 1 while
an anticausal LTI has no singularities inside the unit circle, i.e. |H(z)| <∞, |z| < 1. (Hint:
generalized triangle inequality |

∑
i ai| ≤

∑
|ai|)

2.3 A discrete time LTI filter h(k) is said to be BIBO stable when
∑∞

k=−∞ |h(k)| < ∞. Define
the transfer function (Z-transform) H(z) =

∑∞
k=−∞ h(k)z−k, for z a complex variable.

(a) Show that H(z) has no singularities on the unit circle, i.e |H(z)| <∞, |z| = 1.
(b) Show that if a BIBO stable h(k) is causal then H(z) has all its singularities (poles)

strictly inside the unit circle, i.e |H(z)| <∞, |z| ≥ 1.
(c) Show that if a BIBO stable h(k) is anticausal, i.e. h(k) = 0, k > 0, then H(z) has all its

singularities (poles) strictly outside the unit circle, i.e |H(z)| <∞, |z| ≤ 1.

2.4 If you are only given the mathematical form of the transfer function H(z) of an LTI, and not
told whether it corresponds to an LTI which is causal, anticausal, or stable, then it is not
possible to uniquely specify the impulse response {hk}k. This simple example illustration this
fact. The regions {z : |z| > a} and {z : |z| ≤ a}, specified in (a) and (b) are called the regions
of convergence of the filter and specify whether the filter is stable, causal or anticausal.
Let H(z) be

H(z) =
1

1− az−1

(a) Show that if the LTI is causal, then for |z| > |a| you can write H(z) as the convergent
series

H(z) =
∞∑
k=0

akz−k, |z| > |a|

which corresponds to hk = ak, k = 0, 1, . . . and hk = 0, k < 0.
(b) Show that if the LTI is anticausal, then for |z| < |a| you can write H(z) as the convergent

series

H(z) = −
∞∑
k=0

a−kzk+1, |z| < |a|

which corresponds to hk = −a−k, k = 1, 2 . . . and hk = 0, k ≥ 0.
(c) Show that if |a| < 1 then the causal LTI is BIBO stable while the anti-causal LTI is

BIBO unstable while if |a| > 1 then the reverse is true. What happens to stability when
|a| = 1?

2.5 An LTI has transfer function

H(z) =
3− 4z−1

1− 3.5z−1 + 1.5z−2
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(a) If you are told that the LTI is stable specify the region of convergence (ROC) in the
z-plane, i.e. specify the range of values of |z| for which |H(z)| < ∞, and specify the
impulse response.

(b) If you are told that the LTI is causal specify the region of convergence (ROC) in the
z-plane, and specify the impulse response.

(c) If you are told that the LTI is anticausal specify the region of convergence (ROC) in the
z-plane, and specify the impulse response.

End of chapter
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3 STATISTICAL MODELS

Keywords: sampling distributions, sufficient statistics, exponential families.

Estimation, detection and classification can be grouped under the broad heading of statistical
inference which is the process of inferring properties about the distribution of a random variable
X given a realization x, which is also called a data sample, a measurement, or an observation. A
key concept is that of the statistical model which is simply a hypothesized probability distribution
or density function f(x) for X. Broadly stated statistical inference explores the possibility of
fitting a given model to the data x. To simplify this task it is common to restrict f(x) to a class of
parameteric models {f(x; θ)}θ∈Θ, where f(x; •) is a known function and θ is a vector of unknown
parameters taking values in a parameter space Θ. In this special case statistical inference boils
down to inferring properties of the true value of θ parameterizing f(x; θ) that generated the data
sample x.

In this chapter we discuss several models that are related to the ubiquitous Gaussian distribution,
the more general class of exponential families of distributions, and the important concept of a
sufficient statistic for infering properties about θ.

3.1 THE GAUSSIAN DISTRIBUTION AND ITS RELATIVES

The Gaussian distribution and its close relatives play a major role in parameteric statistical in-
ference due to the relative simplicity of the Gaussian model and its broad applicability (recall the
Central Limit Theorem!). Indeed, in engineering and science the Gaussian distribution is probably
the most commonly invoked distribution for random measurements. The Gaussian distribution is
also called the Normal distribution. The probability density function (pdf) of a Gaussian random
variable (rv) X is parameterized by two parameters, θ1 and θ2, which are the location parameter,
denoted μ (μ ∈ IR), and the (squared) scale parameter, denoted σ2 (σ2 > 0). The pdf of this
Gaussian rv has the form

f(x;μ, σ2) =
1√
2πσ

e−
(x−μ)2

2σ2 , −∞ < x <∞

When μ = 0 and σ2 = 1, X is said to be a standard Gaussian (Normal) rv. A Gaussian random
variable with location parameter μ and scale parameter σ > 0 can be represented by

X = σZ + μ, (10)

where Z is a standard Gaussian rv.

The cumulative density function (cdf) of a standard Gaussian random variable Z is denoted N (z)
and is defined in the conventional manner

N (z) = P (Z ≤ z).

Equivalently,

N (z) =
∫ z

−∞

1√
2π
e−

v2

2 dv.

Using (10) the cdf of a non-standard Gaussian rv X with parameters μ and σ2 can be expressed
in terms of the cdf N (z) of a standard Gaussian rv Z:

P (X ≤ x) = P ((X − μ)/σ︸ ︷︷ ︸
Z

≤ (x− μ)/σ) = N
(
x− μ
σ

)
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The standard Normal cdf N (x) can be related to the error function or error integral [1]: erf(u) =
2√
π

∫ u
0 e

−t2dt, x ≥ 0, through the relation

N (x) =
{

1
2 [1 + erf(|x|/

√
2)] x ≥ 0

1
2 [1− erf(|x|/

√
2)], x < 0

.

For positive integer order ν, the moments of a standard Gaussian random variable Z are [30, 13.3]

E[Zν ] =
{

(ν − 1)(ν − 3) · · · 3 · 1, ν even
0, ν odd

where E[g(Z)] =
∫∞
−∞ g(z)f(z)dz denotes statistical expectation of the rv g(Z) under the pdf

f(z) for rv Z. These moment relations can easily be derived by looking at the coefficients of
(ju)k/k!, k = 1, 2, . . . in the power series expansion about ju = 0 of the characteristic function
ΦZ(u) = E[ejuZ ] = e−u2/2.

In particular, using (10), this implies that the first and second moments of a non-standard Gaussian
rv X are E[X] = μ and E[X2] = μ2 + σ2, respectively. Thus for a Gaussian rv X we can identify
the (ensemble) mean E[X] = μ and variance var(X) = E[(X − E[X])2] = E[X2] − E2[X] = σ2

as the location and (squared) scale parameters, respectively, of the pdf f(x;μ, σ2) of X. In the
sequel we will need the following expression for the (non-central) mean deviation E[|X + a|] for
Gaussian X [31, 29.6]:

E[|X + a|] =

√
2
π
e−a

2/2 + a(1− 2N (−a)). (11)

In referring to rv’s and operations on rv’s in this book the following compact notations are some-
times used:

* “X is distributed as a Gaussian random variable with mean μ and variance σ2”

X ∼ N (μ, σ2) (12)

* “X is equal to a scaled and shifted standard Gaussian random variable”

X = a Z︸︷︷︸
N (0,1)

+b ⇔ X ∼ N (b, a2)

or, in shorthand notation,

X = a N (0, 1) + b ⇔ X ∼ N (b, a2). (13)

For example, in the following shorthand notation X1, . . . ,Xn are independent identically dis-
tributed (iid) N (0, 1) rv’s

n∑
i=1

N (0, 1) =
n∑
i=1

Xi.

Note that the above is an abuse of notation since N (0, 1) is being used to denote both a Gaussian
probability distribution in (12) and a Gaussian random variable in (13). As in all abuses of this
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type the ambiguity is resolved from the context: we will never write N (0, 1) into an algebraic or
other type of equation like the one in (13) when N (0, 1) is meant to denote a Gaussian distribution
function as opposed to a Gaussian random variable.

Other notational shortcuts are the following. When we write

N (v) = α

we mean that “the cdf of a N (0, 1) rv equals α when evaluated at a point v ∈ IR.” Likewise

N−1(α) = v

is to be read as “the inverse cdf of a N (0, 1) rv equals v when evaluated at a point α ∈ [0, 1].”
Finally, by

X ∼ Nn(μ, R)

we mean “X is distributed as an n-dimensional Gaussian random vector with mean μ and covari-
ance matrix R”

3.1.1 MULTIVARIATE GAUSSIAN DISTRIBUTION

When one passes an i.i.d. Gaussian random sequence through a linear filter the output remains
Gaussian but is no longer i.i.d; the filter smooths the input and introduces correlation. Remarkably,
if the input to the filter is Gaussian then the output is also Gaussian, i.e., the joint distribution
of any p samples of the output is multivariate Gaussian. To be specific, a random vector X =
[X1, . . . ,Xp]T is multivariate Gaussian with mean parameter μ and covariance matrix parameter
Λ if it has a joint density of the form

f(x) =
1

(2π)p/2|Λ|1/2
exp
(
−1

2
(x− μ)Λ−1(x− μ)

)
x ∈ IRp. (14)

where |Λ| denotes the the determinant of Λ. The p-variate Gaussian distribution depends on
p(p + 3)/2 parameters, which we can concatenate into a parameter vector θ consisting of the p
elements of the mean vector

μ = [μ1, . . . , μp]T = E[X ],

and the p(p+ 1)/2 distinct parameters of the symmetric positive definite p× p covariance matrix

Λ = cov(Z) = E
[
(Z − μ)(Z − μ)T

]
.

Some useful facts about the multivariate Gaussian random variables are (for derivations of these
properties see Morrison [50]):

• Unimodality and symmetry of the Gaussian density: The multivariate Gaussian density
(14) is unimodal (has a unique maximum) and is symmetric about its mean parameter.

• Uncorrelated Gaussians are independent: When the covariance matrix Λ is diagonal, i.e.,
cov(Xi,Xj) = 0, i �= j, then the multivariate Gaussian density reduces to a product of univariate
densities

f(X) =
n∏
i=1

f(Xi)
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where

f(Xi) =
1√
2πσi

e
1

2σ2
i

(Xi−μi)
2

is the univariate Gaussian density with σ2
i = var(Xi). Thus uncorrelated Gaussian random vari-

ables are in fact independent random variables.

• Marginals of a Gaussian density are Gaussian: If X = [X1, . . . ,Xm]T is multivariate
Gaussian then any subset of the elements of X is also Gaussian. In particular X1 is univariate
Gaussian and [X1,X2] is bivariate Gaussian.

• Linear combination of Gaussian random variables are Gaussian: LetX = [X1, . . . ,Xm]T

be a multivariate Gaussian random vector and let H be a p×m non-random matrix. Then Y = HX
is a vector of linear combinations of the Xi’s. The distribution of Y is multivariate (p-variate)
Gaussian with mean μ

Y
= E[Y ] = Hμ and p× p covariance matrix ΛY = cov(Y ) = Hcov(X)HT .

• A vector of i.i.d. zero mean Gaussian random variables is invariant to rotation: Let
X = [X1, . . . ,Xm]T be vector of zero mean Gaussian random variables with covariance cov(X) =
σ2I. If U is an orthogonal m×m matrix, i.e., UTU = I, then Y = UTX has the same distribution
as X.

• The conditional distribution of a Gaussian given another Gaussian is Gaussian: Let
the vector ZT = [XT , Y T ] = [X1, . . . ,Xp, Y1, . . . , Yq]T be multivariate ((p + q)-variate) Gaussian
with mean parameters μT

Z
= [μT

X
, μT

Y
] and covariance parameters ΛZ . Then the conditional density

fY |X(y|x) of Y given X = x is multivariate (q-variate) Gaussian of the form (14) with mean and
covariance parameters μ and Λ respectively given by (15) and (16) below.

• Conditional mean of a Gaussian given another Gaussian is linear and conditional
covariance is constant: For the aforementioned multivariate Gaussian vector ZT = [XT , Y ]T

partition its covariance matrix as follows

ΛZ =
[

ΛX ΛX,Y

ΛT
X,Y ΛY

]
,

where ΛX = cov(X) = E[(X − μ
X

)(X − μ
X

)T ] is p × p, ΛY = cov(Y ) = E[(Y μ
Y

)(Y − μ
Y
)T ] is

q × q, and ΛX,Y = covθ(X,Y ) = E[(X − μ
X

)(Y − μ
Y
)T ] is p × q. The mean of the multivariate

Gaussian conditional density f(y|x), the conditional mean, is linear in x

μ
Y |X(x) = E[Y |X = x] = μ

Y
+ ΛT

X,YΛ−1
X (x− μ

X
) (15)

and the conditional covariance does not depend on x

ΛY |X = cov(Y |X = x) = ΛY −ΛT
X,YΛ−1

X ΛX,Y . (16)

3.1.2 CENTRAL LIMIT THEOREM

One of the most useful results in statistics is the central limit theorem, abbreviated to CLT.
This theorem allows one to approximate the distribution of sums of i.i.d. finite variance random
variables by a Gaussian distribution. Below we give a general version of the CLT that applies to
vector valued r.v.s. For a simple proof of the scalar case see Mood, Graybill and Boes [48]. For
proof in the multivariate case see Serfling [Ch. 1][62], which also covers the CLT for the non i.i.d.
case.
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(Lindeberg-Lévy) Central Limit Theorem: Let {X i}ni=1 be i.i.d. random vectors in IRp with
common mean E[X i] = μ and finite positive definite covariance matrix cov(X i) = Λ. Then as n
goes to infinity the distribution of the random vector Zn = n−1/2

∑n
i=1(Xi − μ) converges to a

p-variate Gaussian distribution with zero mean and covariance Λ.

The CLT can also be expressed in terms of the sample mean X = X(n) = n−1
∑n

i=1Xi: as n→∞
√
n(X(n)− μ) −→ Z

where Z is a zero mean Gaussian random vector with covariance matrix Λ. Thus, for large but
finite n, X is approximately Gaussian

X ≈ (Z/
√
n+ μ),

with mean μ and covariance Λ/n. For example, in the case of a scalar Xi, the CLT gives the
useful large n approximation

P (n−1
n∑
i=1

Xi ≤ y) ≈
∫ y

−∞

1√
2πσ2/n

exp
(
−(y − μ)2

2σ2/n

)
dy.

The approximation error can be bounded by using the Berry-Essene Theorems. See Serfling [62]
for details.

3.1.3 CHI-SQUARE

The (central) Chi-square density with k degrees of freedom (df) is of the form:

fθ(x) =
1

2k/2Γ(k/2)
xk/2−1e−x/2, x > 0, (17)

where θ = k, a positive integer. Here Γ(u) denotes the Gamma function,

Γ(u) =
∫ ∞

0
xu−1e−xdx,

For n integer valued Γ(n+ 1) = n! = n(n− 1) . . . 1 and Γ(n+ 1/2) = (2n−1)(2n−3)...5·3·1
2n

√
π.

If Zi ∼ N (0, 1) are i.i.d., i = 1, . . . , n, then X =
∑n

i=1 Z
2
i is distributed as Chi-square with n

degrees of freedom (df). Our shorthand notation for this is

n∑
i=1

[N (0, 1)]2 = χn. (18)

This characterization of a Chi square r.v. is sometimes called a stochastic representation since it
is defined via operations on other r.v.s. The fact that (17) is the density of a sum of squares of
independent N (0, 1)’s is easily derived. Start with the density function f(z) = e−z2/2/

√
2π of a

standard Gaussian random variable Z. Using the relation (
√

2πσ)−1
∫∞
−∞ e−u2/(2σ2)du = 1, the

characteristic function of Z2 is simply found as ΦZ2(u) = E[ejuZ
2
] = (1 + j2u)−1/2. Applying

the summation-convolution theorem for independent r.v.s Yi, ΦP
Yi

(u) =
∏

ΦYi(u), we obtain
ΦPn

i=1 Z
2
i
(u) = (1 + j2u)−n/2. Finally, using a table of Fourier transform relations, identify (17) as

the inverse fourier transform of ΦPn
i=1 Z

2
i
(u).
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Some useful properties of the Chi-square random variable are as follows:

* E[χn] = n, var(χn) = 2n

* Asymptotic relation for large n:

χn =
√

2nN (0, 1) + n

* χ2 an exponential r.v. with mean 2, i.e. X = χ2 is a non-negative r.v. with probability density
f(x) = 1

2e
−x/2.

*
√
χ2 is a Rayleigh distributed random variable.

3.1.4 GAMMA

The Gamma density function is

fθ(x) =
λr

Γ(r)
xr−1e−λx, x > 0,

where θ denotes the pair of parameters (λ, r), λ, r > 0. Let {Yi}ni=1 be i.i.d. exponentially
distributed random variables with mean 1/λ, specifically Yi has density

fλ(y) = λe−λy, y > 0.

Then the sum X =
∑n

i=1 Yi has a Gamma density f(λ,n). Other useful properties of a Gamma
distributed random variable X with parameters θ = (λ, r) include:

* Eθ[X] = r/λ

* varθ(X) = r/λ2

* The Chi-square distribution with k df is a special case of the Gamma distribution obtained by
setting Gamma parameters as follows: λ = 1/2 and r = k/2.

3.1.5 NON-CENTRAL CHI SQUARE

The sum of squares of independent Gaussian r.v.s with unit variances but non-zero means is called
a non-central Chi-square r.v. Specifically, if Zi ∼ N (μi, 1) are independent, i = 1, . . . , n, then
X =

∑n
i=1 Z

2
i is distributed as non-central Chi-square with n df and non-centrality parameter

δ =
∑n

i=1 μ
2
i . In our shorthand we write

n∑
i=1

[N (0, 1) + μi]2 =
n∑
i=1

[N (μi, 1)]2 = χn,δ. (19)

The non-central Chi-square density has no simple expression of closed form. There are some useful
asymptotic relations, however:

* E[χn,δ] = n+ δ, var(χn,δ) = 2(n + 2δ)

* √χ2,μ2
1+μ2

2
is a Rician r.v.
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3.1.6 CHI-SQUARE MIXTURE

The distribution of the sum of squares of independent Gaussian r.v.s with zero mean but different
variances is not closed form either. However, many statisticians have studied and tabulated the
distribution of a weighted sum of squares of i.i.d. standard Gaussian r.v.s Z1, . . . , Zn, Zi ∼ N (0, 1).
Specifically, the following has a (central) Chi-square mixture (also known as the Chi-bar square
[30]) with n degrees of freedom and mixture parameter c = [c1, . . . , cn]T , ci ≥ 0:

n∑
i=1

ci∑
j cj

Z2
i = χn,c

An asymptotic relation of interest to us will be:

* E[χn,c] = 1, , var(χn,c) = 2
∑N

i=1

(
ciP
j ci

)2

Furthermore, there is an obvious a special case where the Chi square mixture reduces to a scaled
(central) Chi square: χn,c1 = 1

n χn for any c �= 0.

3.1.7 STUDENT-T

For Z ∼ N (0, 1) and Y ∼ χn independent r.v.s the ratio X = Z/
√
Y/n is called a Student-t r.v.

with n degrees of freedom, denoted Tn. Or in our shorthand notation:

N (0, 1)√
χn/n

= Tn.

The density of Tn is the Student-t density with n df and has the form

fθ(x) =
Γ([n + 1]/2)

Γ(n/2)
1√
nπ

1
(1 + x2/n)(n+1)/2

, x ∈ IR,

where θ = n is a positive integer. Properties of interest to us are:

* E[Tn] = 0 (n > 1), var(Tn) = n
n−2 (n > 2)

* Asymptotic relation for large n:

Tn ≈ N (0, 1).

For n = 1 the mean of Tn does not exist and for n ≤ 2 its variance is infinite.

3.1.8 FISHER-F

For U ∼ χm and V ∼ χn independent r.v.s the ratio X = (U/m)/(V/n) is called a Fisher-F r.v.
with m,n degrees of freedom, or in shorthand:

χm/m

χn/n
= Fm,n.

The Fisher-F density with m and n df is defined as

fθ(x) =
Γ([m+ n]/2)
Γ(m/2)Γ(n/2)

(m
n

)m/2 x(m−2)/2

(1 + m
n x)

(m+n)/2
, x > 0
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where θ = [m,n] is a pair of positive integers. It should be noted that moments E[Xk] of order
greater than k = n/2 do not exist. A useful asymptotic relation for n large and n� m is

Fm,n ≈ χm.

3.1.9 CAUCHY

The ratio of independent N (0, 1) r.v.’s U and V is called a standard Cauchy r.v.

X = U/V ∼ C(0, 1).

It’s density has the form

f(x) =
1
π

1
1 + x2

x ∈ IR

. If θ = [μ, σ] are location and scale parameters (σ > 0) fθ(x) = f((x − μ)/σ) is a translated
and scaled version of the standard Cauchy density denoted C(μ, σ2). Some properties of note:
(1) the Cauchy distribution has no moments of any (positive) integer order; and (2) the Cauchy
distribution is the same as a Student-t distribution with 1 d.f.

3.1.10 BETA

For U ∼ χm and V ∼ χn independent Chi-square r.v.s with m and n df, respectively, the ratio
X = U/(U + V ) has a Beta distribution, or in shorthand

χm
χm + χn

= B(m/2, n/2)

where B(p, q) is a r.v. with Beta density having paramaters θ = [p, q]. The Beta density has the
form

fθ(x) =
1
βr,t

xr−1(1− x)t−1, x ∈ [0, 1]

where θ = [r, t] and r, t > 0. Here βr,t is the Beta function:

βr,t =
∫ 1

0
xr−1(1− x)t−1dx =

Γ(r)Γ(t)
Γ(r + t)

.

Some useful properties:

* The special case of m = n = 1 gives rise to X an arcsin distributed r.v.

* Eθ[B(p, q)] = p/(p + q)

* varθ(B(p, q)) = pq/((p + q + 1)(p + q)2)

3.2 REPRODUCING DISTRIBUTIONS

A random variable X is said to have a reproducing distribution if the sum of two independent
realizations, say X1 and X2, of X have the same distribution, possibly with different parameter
values, as X. A Gaussian r.v. has a reproducing distribution:

N (μ1, σ
2
1) +N (μ2, σ

2
2) = N (μ1 + μ2, σ

2
1 + σ2

2),
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which follows from the fact that the convolution of two Gaussian density functions is a Gaus-
sian density function [48]. Noting the stochastic representations (18) and (19) of the Chi square
and non-central Chi square distributions, respectively, it is obvious that they are reproducing
distributions:

*χn + χm = χm+n, if χm, χn are independent.

*χm,δ1 + χn,δ2 = χm+n,δ1+δ2, if χm,δ1 , χn,δ2 are independent.

The Chi square mixture, Fisher-F, and Student-t are not reproducing densities.

3.3 FISHER-COCHRAN THEOREM

This result gives a very useful tool for finding the distribution of quadratic forms of Gaussian
random variables. A more general result that covers the joint distribution of quadratic forms is
given in [57].

Theorem 1 Let X = [X1, . . . ,Xn]T be a vector of iid. N (0, 1) rv’s and let A be a symmetric
idempotent matrix (AA = A) of rank p. Then

XTAX = χp

A simple proof is given below.

Proof: Let A = UΛUT be the eigendecomposition of A. Then

* All eigenvalues λi of A are either 0 or 1

AA = UΛUTU︸ ︷︷ ︸
=I

ΛUT

= UΛ2UT = UΛUT

and therefore

XTAX = XTUΛ UTX︸ ︷︷ ︸
Z=Nn(0,I)

=
n∑
i=1

λiZ
2
i =

p∑
i=1

[N (0, 1)]2

�

3.4 SAMPLE MEAN AND SAMPLE VARIANCE

Let Xi’s be i.i.d. N (μ, σ2) r.v.’s. The sample mean and sample variance respectively approximate
the location μ and spread σ of the population.

* Sample mean: X = n−1
∑n

i=1Xi

* Sample variance: s2 = 1
n−1

∑n
i=1(Xi −X)2
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In the Gaussian case the joint distribution of the sample mean and variance can be specified.

(1). X = N (μ, σ2/n)

(2). s2 = σ2

n−1 χn−1

(3). X and s2 are independent rv’s.

These results imply that a weighted ratio of sample mean and sample variance is distributed as
Student t.

X − μ
s/
√
n

= Tn−1.

Proof of assertions (2) and (3): In view of the representation (13), it suffices consider the the case
of a standard Gaussian sample: μ = 0 and σ = 1.

First we show that the sample mean and the sample variance are independent random variables.
Define the vector of random variables Y = [Y1, . . . , Yn]T as follows. First define

Y1 =
√
nX = hT1X,

where
h1 = [1/

√
n, . . . , 1/

√
n]T .

Note that h1 has unit norm. Next apply the Gramm-Schmidt orthonormalization procedure of
Sec. 2.3.6 to complete the basis with respect to h1. This generates n − 1 vectors h2, . . . , hn that
are orthonormal, mutually orthogonal, and orthogonal to h1. The random vector Y is now defined
as

Y = HTX

where H = [h1, . . . , hn] is an n× n orthogonal matrix.

Since, X = HY, the orthogonality of H implies the following properties

1. The Yi’s are zero mean unit variance independent Gaussian random variables: Y ∼ Nn(0, I)
2. Y TY = XTX

As Y 1 =
√
nX Property 1 implies that X is independent of Y2, . . . , Yn. Furthermore, using the

equivalence:
n∑
i=1

(Xi −X)2 =
n∑
i=1

X2
i − n(X)2,

Property 2 and the definition of Y1 imply that

n∑
i=1

(Xi −X)2 =
n∑
i=1

Y 2
i − Y 2

1 = Y 2
2 + · · ·+ Y 2

n , (20)

that is, the sample variance is only a function of Y2, . . . , Yn and is therefore independent of Y1 =
the sample mean.

Furthermore, as Y2, . . . , Yn are independent N (0, 1) random variables, the representation (20)
implies that the (normalized) sample variance has a Chi-square distribution with n− 1 degrees of
freedom.

This completes the proof of assertions (2) and (3). �
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The Chi-square property in assertion (3) can also be shown directly using the Fisher-Cochran
theorem (Thm. 1). Note that the normalized sample variance on the extreme left of the equalities
(20) can be expressed as a quadratic form

[X − 1X]T [X − 1X] = XT [I− 11T
1
n

]︸ ︷︷ ︸
idempotent

[I− 11T
1
n

]XT

= XT [I− 11T
1
n

]︸ ︷︷ ︸
orth. proj.

X

where 1 = [1, . . . , 1]T . Observe: since rank[I− 11T 1
n ] = n− 1, we have that [X − 1X]T [X − 1X ] =

(n− 1) s2 is χn−1.

3.5 SUFFICIENT STATISTICS

Many detection/estimation/classification problems have the following common structure. A con-
tinuous time waveform {x(t) : t ∈ IR} is measured at n time instants t1, . . . , tn producing the
vector

x = [x1, . . . , xn]T ,

where xi = x(ti). The vector x is modelled as a realization of a random vector X with a joint
distribution which is of known form but depends on a handful (p) of unknown parameters θ =
[θ1, . . . , θp]T .

More concisely:

* X = [X1, . . . ,Xn]T , Xi = X(ti), is a vector of random measurements or observations taken over
the course of the experiment

* X is sample or measurement space of realizations x of X

* B is the event space induced by X , e.g., the Borel subsets of IRn

* θ ∈ Θ is an unknown parameter vector of interest

* Θ is parameter space for the experiment

* Pθ is a probability measure on B for given θ. {Pθ}θ∈Θ is called the statistical model for the
experiment.

The probability model induces the joint cumulative distribution function j.c.d.f. associated with
X

FX(x; θ) = Pθ(X1 ≤ x1, . . . ,Xn ≤ xn),

which is assumed to be known for any θ ∈ Θ. When X is a continuous random variable the j.c.d.f.
is specified by the joint probability density function (j.p.d.f.) that we will write in several different
ways, depending on the context: fθ(x) or f(x; θ), or, when we need to explicitly call out the r.v.
X , fX(x; θ). We will denote by Eθ[Z] the statistical expectation of a random variable Z with
respect to the j.p.d.f. fZ(z; θ)

Eθ[Z] =
∫
zfZ(z; θ)dz.

The family of functions {f(x; θ)}x∈X ,θ∈Θ then defines the statistical model for the experiment.
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The general objective of statistical inference can now be stated. Given a realization x of X infer
properties of θ knowing only the parametric form of the statistical model. Thus we will want to
come up with a function, called an inference function, which maps X to subsets of the parameter
space, e.g., an estimator, classifier, or detector for θ. As we will see later there are many ways to
design inference functions but a more fundamental question is: are there any general properties
that good inference functions should have? One such property is that the inference function only
need depend on the n-dimensional data vector X through a lower dimensional version of the data
called a sufficient statistic.

3.5.1 SUFFICIENT STATISTICS AND THE REDUCTION RATIO

First we define a statistic as any function T = T (X) of the data (actually, for T to be a valid
random variable derived from X it must be a measurable function, but this theoretical technicality
is beyond our scope here).

There is a nice interpretation of a statistic in terms of its memory storage requirements. Assume
that you have a special computer that can store any one of the time samples in X = [X1, . . . ,Xn],
Xk = X(tk) say, in a ”byte” of storage space and the time stamp tk in another ”byte” of storage
space. Any non-invertible function T , e.g., which maps IRn to a lower dimensional space IRm,
can be viewed as a dimensionality reduction on the data sample. We can quantify the amount of
reduction achieved by T by defining the reduction ratio (RR):

RR =
# bytes of storage required for T (X)

# bytes of storage required for X

This ratio is a measure of the amount of data compression induced by a specific transformation
T . The number of bytes required to store X with its time stamps is:

# bytes{X} = # bytes[X1, . . . ,Xn]T = # bytes{timestamps}+ # bytes{values} = 2n

Consider the following examples:

Define X(i) = as the i-th largest element of X. The X(i)’s satisfy: X(1) ≥ X(2) ≥ . . . ≥ X(n)

and are nothing more than a convenient reordering of the data sample X1, . . . ,Xn. The X(i)’s are
called the rank ordered statistics and do not carry time stamp information. The following table
illustrates the reduction ratio for some interesting cases

Statistic used Meaning in plain english Reduction ratio
T (X) = [X1, . . . ,Xn]T , entire data sample RR = 1
T (X) = [X(1), . . . ,X(n)]T , rank ordered sample RR = 1/2
T (X) = X, sample mean RR = 1/(2n)
T (X) = [X, s2]T , sample mean and variance RR = 1/n

A natural question is: what is the maximal reduction ratio one can get away with without loss
of information about θ? The answer is: the ratio obtained by compression to a quantity called a
minimal sufficient statistic. But we are getting ahead of ourselves. We first need to define a plain
old sufficient statistic.
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3.5.2 DEFINITION OF SUFFICIENCY

Here is a warm up before making a precise definition of sufficiency. T = T (X) is a sufficient
statistic (SS) for a parameter θ if it captures all the information in the data sample useful for
inferring the value of θ. To put it another way: once you have computed a sufficient statistic you
can store it and throw away the original sample since keeping it around would not add any useful
information.

More concretely, let X have a cumulative distribution function (CDF) FX(x; θ) depending on θ.
A statistic T = T (X) is said to be sufficient for θ if the conditional CDF of X given T = t is not
a function of θ, i.e.,

FX |T (x|T = t, θ) = G(x, t), (21)

where G is a function that does not depend on θ.

Specializing to a discrete valued X with probability mass function pθ(x) = Pθ(X = x), a statistic
T = T (X) is sufficient for θ if

Pθ(X = x|T = t) = G(x, t). (22)

For a continuous r.v. X with pdf f(x; θ), the condition (21) for T to be a sufficient statistic (SS)
becomes:

fX|T (x|t; θ) = G(x, t). (23)

Sometimes the only sufficient statistics are vector statistics, e.g. T (X) = T (X) = [T1(X), . . . , TK(X)]T .
In this case we say that the Tk’s are jointly sufficient for θ

The definition (21) is often difficult to use since it involves derivation of the conditional distribution
of X given T . When the random variable X is discrete or continuous a simpler way to verify
sufficiency is through the Fisher factorization (FF) property [57]

Fisher factorization (FF): T = T (X) is a sufficient statistic for θ if the probability density
fX(x; θ) of X has the representation

fX(x; θ) = g(T, θ) h(x), (24)

for some non-negative functions g and h. The FF can be taken as the operational definition of
a sufficient statistic T . An important implication of the Fisher Factorization is that when the
density function of a sample X satisfies (24) then the density fT (t; θ) of the sufficient statistic T
is equal to g(t, θ) up to a θ-independent constant q(t) (see exercises at end of this chapter):

fT (t; θ) = g(t, θ)q(t).

Examples of sufficient statistics:

Example 1 Entire sample

X = [X1, . . . ,Xn]T is sufficient but not very interesting

Example 2 Rank ordered sample
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X(1), . . . ,X(n) is sufficient when Xi’s i.i.d.

Proof: Since Xi’s are i.i.d., the joint pdf is

fθ(x1, . . . , xn) =
n∏
i=1

fθ(xi) =
n∏
i=1

fθ(x(i)).

Hence sufficiency of the rank ordered sample X(1), . . . ,X(n) follows from Fisher factorization.

Example 3 Binary likelihood ratios

Let θ take on only two possible values θ0 and θ1, e.g., a bit taking on the values “0” or “1” in a
communication link. Then, as f(x; θ) can only be f(x; θ0) or f(x; θ1), we can reindex the pdf as
f(x; θ) with the scalar parameter θ ∈ Θ = {0, 1}. This gives the binary decision problem: “decide
between θ = 0 versus θ = 1.” If it exists, i.e. it is finite for all values of X, the “likelihood ratio”

Λ(X) = f1(X)/f0(X) is sufficient for θ, where f1(x)
def= f(x; 1) and f0(x) def= f(x; 0).

Proof: Express fθ(X) as function of θ, f0, f1, factor out f0, identify Λ, and invoke FF

fθ(X) = θf1(X) + (1− θ)f0(X)

=

⎛⎜⎝θΛ(X) + (1− θ)︸ ︷︷ ︸
g(T,θ)

⎞⎟⎠ f0(X)︸ ︷︷ ︸
h(X)

.

�
Therefore to discriminate between two values θ1 and θ2 of a parameter vector θ we can throw away
all data except for the scalar sufficient statistic T = Λ(X)

Example 4 Discrete likelihood ratios

Let Θ = {θ1, . . . , θp} and assume that the vector of p− 1 likelihood ratios

T (X) =
[
fθ1(X)
fθp(X)

, . . . ,
fθp−1(X)
fθp(X)

]T
= [Λ1(X), . . . ,Λp−1(X)]T

is finite for all X . Then this vector is sufficient for θ. An equivalent way to express this vector
is as the sequence {Λθ(X)}θ∈Θ = Λ1(X), . . . ,Λp−1(X), and this is called the likelihood trajectory
over θ.

Proof

Define the p − 1 element selector vector uθ = ek when θ = θk, k = 1, . . . , p − 1 (recall that
ek = [0, . . . , 0, 1, 0, . . . 0]T is the k-th column of the (p− 1)× (p− 1) identity matrix). Now for any
θ ∈ Θ we can represent the j.p.d.f. as

fθ(x) = uTθ T︸︷︷︸
g(T ,θ)

fθp(x)︸ ︷︷ ︸
h(x)

,

which establishes sufficiency by the FF. �
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Example 5 Likelihood ratio trajectory

When Θ is a set of scalar parameters θ the likelihood ratio trajectory over Θ

Λ(X) =
{
fθ(X)
fθ0(X)

}
θ∈Θ

, (25)

is sufficient for θ. Here θ0 is an arbitrary reference point in Θ for which the trajectory is finite for
all X. When θ is not a scalar (25) becomes a likelihood ratio surface, which is also a sufficient
statistic.

3.5.3 MINIMAL SUFFICIENCY

What is the maximum possible amount of reduction one can apply to the data sample without
losing information concerning how the model depends on θ? The answer to this question lies in the
notion of a minimal sufficient statistic. Such statistics cannot be reduced any further without loss
in information. In other words, any other sufficient statistic can be reduced down to a minimal
sufficient statistic without information loss. Since reduction of a statistic is accomplished by
applying a functional transformation we have the formal definition.

Definition: Tmin is a minimal sufficient statistic if it can be obtained from any other sufficient
statistic T by applying a functional transformation to T . Equivalently, if T is any sufficient statistic
there exists a function q such that Tmin = q(T ).

Minimal sufficient statistics are not unique: if Tmin is minimal sufficient h(Tmin) is also minimal
sufficient if h is any invertible function. Minimal sufficient statistics can be found in a variety of
ways [48, 7, 41]. One way is to find a complete sufficient statistic; under broad conditions this
statistic will also be minimal [41]. A sufficient statistic T is complete if

Eθ[g(T )] = 0, for all θ ∈ Θ

implies that the function g is identically zero, i.e., g(t) = 0 for all values of t.

To see that a completeness implies minimality we can adapt the proof of Scharf in [60]. Let
M be a minimal sufficient statistic and let C be complete sufficient statistic. As M is minimal

it is a function of C. Therefore g(C) def= C − Eθ[C|M ] is a function of C since the conditional
expectation Eθ[X|M ] is a function of M . Since, obviously, Eθ[g(C)] = 0 for all θ and C is complete,
C = Eθ[C|M ] for all θ. Thus C is minimal since it is a function of M which is a function of any
other sufficient statistic. In other words, C inherits minimality from M .

Another way to find a minimal sufficient statistic is through reduction of the data to the likelihood
ratio surface.

As in Example 5, assume that there exists a reference point θo ∈ Θ such that the following
likelihood-ratio function is finite for all x ∈ X and all θ ∈ Θ

Λθ(x) =
fθ(x)
fθo

(x)
.

For given x let Λ(x) denote the set of likelihood ratios (a likelihood ratio trajectory or surface)

Λ(x) = {Λθ(x)}θ∈Θ.
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Definition 1 We say that a (θ-independent) function of x, denoted τ = τ(x), indexes the likeli-
hood ratios Λ when both

1. Λ(x) = Λ(τ), i.e., Λ only depends on x through τ = τ(x).

2. Λ(τ) = Λ(τ ′) implies τ = τ ′, i.e., the mapping τ → Λ(τ) is invertible.

Condition 1 is an equivalent way of stating that τ(X) is a sufficient statistic for θ.

Theorem:If τ = τ(x) indexes the likelihood ratios Λ(x) then Tmin = τ(X) is minimally sufficient
for θ.

Proof:

We prove this only for the case that X is a continuous r.v. First, condition 1 in Definition 1 implies
that τ = τ(X) is a sufficient statistic. To see this use FF and the definition of the likelihood ratios
to see that Λ(x) = Λ(τ) implies: fθ(X) = Λθ(τ)fθo

(X) = g(τ ; θ)h(x). Second, let T be any
sufficient statistic. Then, again by FF, fθ(x) = g(T, θ) h(x) and thus

Λ(τ) =
{
fθ(X)
fθo

(X)

}
θ∈Θ

=
{
g(T, θ)
g(T, θo)

}
θ∈Θ

.

so we conclude that Λ(τ) is a function of T . But by condition 2 in Definition 1 the mapping
τ → Λ(τ) is invertible and thus τ is itself a function of T . �
Another important concept in practical applications is that of finite dimensionality of a sufficient
statistic.

Definition: a sufficient statistic T (X) is said to be finite dimensional if its dimension is not a
function of the number of data samples n.

Frequently, but not always (see Cauchy example below), minimal sufficient statistics are finite
dimensional.

Example 6 Minimal sufficient statistic for mean of Gaussian density.

Assume X ∼ N (μ, σ2) where σ2 is known. Find a minimal sufficient statistic for θ = μ given the
iid sample X = [X1, . . . ,Xn]T .

Solution: the j.p.d.f. is

fθ(x) =
(

1√
2πσ2

)n
e−

1
2σ2

Pn
i=1(xi−μ)2

=
(

1√
2πσ2

)n
e−

1
2σ2 (Pn

i=1 x
2
i−2μ

Pn
i=1 xi+nμ2)

= e−
nμ2

2σ2 e

μ/σ2

T (x)︷ ︸︸ ︷
n∑
i=1

xi︸ ︷︷ ︸
g(T ,θ)

(
1√

2πσ2

)n
e−1/(2σ2)

Pn
i=1 x

2
i︸ ︷︷ ︸

h(x)
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Thus by FF

T =
n∑
i=1

Xi

is a sufficient statistic for μ. Furthermore, as q(T ) = n−1T is a 1-1 function of T

S = X

is an equivalent sufficient statistic.

Next we show that the sample mean is in fact minimal sufficient by showing that it indexes the
likelihood ratio trajectory Λ(x) = {Λθ(x)}θ∈Θ, with θ = μ, Θ = IR. Select the reference point
θo = μo = 0 to obtain:

Λμ(x) =
fμ(x)
f0(x)

= exp

(
μ/σ2

n∑
i=1

xi − 1
2nμ

2/σ2

)
.

Identifying τ =
∑n

i=1 xi, condition 1 in Definition 1 is obviously satisfied since Λμ(x) = Λμ(
∑
xi)

(we already knew this since we showed that
∑n

i=1Xi was a sufficient statistic). Condition 2 in
Definition 1 follows since Λμ(

∑
xi) is an invertible function of

∑
xi for any non-zero value of μ

(summation limits omitted for clarity). Therefore the sample mean indexes the trajectories, and
is minimal sufficient.

Example 7 Minimal sufficient statistics for mean and variance of Gaussian density.

Assume X ∼ N (μ, σ2) where both μ and σ2 are unknown. Find a minimal sufficient statistic for
θ = [μ, σ2]T given the iid sample X = [X1, . . . ,Xn]T .

Solution:

fθ(x) =
(

1√
2πσ2

)n
e−

1
2σ2

Pn
i=1(xi−μ)2

=
(

1√
2πσ2

)n
e−

1
2σ2 (

Pn
i=1 x

2
i −2μ

Pn
i=1 xi+nμ

2)

=
(

1√
2πσ2

)n
e−

nμ2

2σ2 e

[μ/σ2, −1/(2σ2)]

T (x)︷ ︸︸ ︷[
n∑
i=1

xi,
n∑
i=1

x2
i

]T
︸ ︷︷ ︸

g(T ,θ)

1︸︷︷︸
h(x)

Thus

T =

⎡⎢⎢⎢⎢⎣
n∑
i=1

Xi︸ ︷︷ ︸
T1

,

n∑
i=1

X2
i︸ ︷︷ ︸

T2

⎤⎥⎥⎥⎥⎦
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is a (jointly) sufficient statistic for μ, σ2. Furthermore, as q(T ) = [n−1T1, (n − 1)−1(T2 − T 2
1 )] is a

1-1 function of T (T = [T1, T2]T )
S =

[
X, s2

]
is an equivalent sufficient statistic.

Similarly to Example 6, we can show minimal sufficiency of this statistic by showing that it indexes
the likelihood ratio surface {Λθ(X)}θ∈Θ, with θ = [μ, σ2], Θ = IR × IR+. Arbitrarily select the
reference point θo = [μo, σ2

o ] = [0, 1] to obtain:

Λθ(x) =
fθ(x)
fθo(x)

=
(σo
σ

)n
e−nμ

2/(2σ2) e[μ/σ
2, −δ/2][Pn

i=1 xi,
Pn

i=1 x
2
i ]

T

,

where δ = σ2
o−σ2

σ2σ2
o

. Identifying τ =
[∑n

i=1 xi,
∑n

i=1 x
2
i

]
, again condition 1 in Definition 1 is obviously

satisfied. Condition 2 in Definition 1 requires a bit more work. While Λθ(τ) is no longer an
invertible function of τ for for any single value of θ = [μ, σ2], we can find two values θ ∈ {θ1, θ2} in
Θ for which the vector function [Λθ1(τ ),Λθ2(τ)] of τ is invertible in τ . Since this vector is specified
by Λ(x), this will imply that τ indexes the likelihood ratios.

To construct this invertible relation denote by λ = [λ1, λ2]T an observed pair of samples [Λθ1(τ),Λθ2(τ)]
T

of the surface Λ(x). Now consider the problem of determining τ from the equation λ = [Λθ1(τ ),Λθ2(τ )]
T .

Taking the log of both sides and rearranging some terms, we see that this is equivalent to a 2× 2
linear system of equations of the form λ′ = Aτ , where A is a matrix involving θo, θ1, θ2 and λ′ is a
linear function of lnλ. You can verify that with the selection of θo = [0, 1], θ1 = [1, 1], θ2 = [0, 1/2]
we obtain δ = 0 or 1 for θ = θ1 or θ2, respectively, and A = diag(1,−1/2), an invertible matrix.
We therefore conclude that the vector [sample mean, sample variance] indexes the trajectories,
and this vector is therefore minimal sufficient.

Example 8 Minimal sufficient statistic for the location of a Cauchy distribution

Assume that Xi ∼ f(x; θ) = 1
π

1
1+(x−θ)2 and, as usual, X = [X1, . . . ,Xn]T is an i.i.d. sample.

Then

f(x; θ) =
n∏
i=1

1
π

1
1 + (xi − θ)2

=
1
πn

1∏n
i=1(1 + (xi − θ)2)

.

Here we encounter a difficulty: the denominator is a 2n-degree polynomial in θ whose coefficients
cannot be determined without specifying the entire set of all possible cross products xi1 · · · xip ,
p = 1, 2, . . . , n, of the xi’s. Since this requires specifying the entire set of sample values there is no
finite dimensional sufficient statistic. However, each of these cross products is independent of the
ordering of its factors so the ordered statistic [X(1), . . . ,X(n)]T is minimally sufficient.

3.5.4 EXPONENTIAL FAMILY OF DISTRIBUTIONS

Let θ = [θ1, . . . , θp]T take values in some parameter space Θ. The distribution fθ of a random
variable X is a member of the p-parameter exponential family if for all θ ∈ Θ

fθ(x) = a(θ)b(x)ec
T (θ)t(x), −∞ < x <∞ (26)

for some scalar functions a, b and some p-element vector functions c, t. A similar definition of
exponential family holds for vector valued random variables X, see Bickel and Doksum [7, Ch. 2].
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Note that for any fθ in the exponential family its support set {x : fθ(x) > 0} does not depend on
θ. Note that, according to our definition, for fθ to be a member of the p-parameter exponential
family the dimension of the vectors c(θ) and t(x) must be exactly p. This is to guarantee that
the sufficient statistic has the same dimension as the parameter vector θ. While our definition is
the most standard [40, 48, 7], some other books, e.g., [55], allow the dimension of the sufficient
statistic to be different from p. However, by allowing this we lose some important properties of
exponential families [7].

The parameterization of an exponential family of distributions is not unique. In other words, the
exponential family is invariant to changes in parameterization. For example, if fθ, θ > 0, is a
member of an exponential family then if one defines α = 1/θ and gα = f1/θ then gα, α > 0, is
also in the exponential family, but possibly with different functions a(·), b(·), c(·) and t(·). More
generally, if fθ(x) is a member of the p-dimensional exponential family then transformation of the
parameters by any invertible function of θ preserves membership in the exponential family.

To illustrate, let’s say that the user redefined the parameters by the mapping c : θ −→ η defined
by the invertible transformation c(θ) = η. Then, using (26), fθ would be replaced by

fη(x) = ã(η)b(x)eη
T t(x), −∞ < x <∞, (27)

where ã(η) = a(c−1(η)). Thus fη remains in the exponential family. When expressed in the form
(27), the exponential family density fη is said to be in canonical form with natural parameterization
η. Under the natural parameterization the mean and covariance matrix of the sufficient statistic
T = t(X) are given by (assuming differentiable ã)

Eθ[T ] = ∇ ln ã(η),

and
covθ[T ] = ∇2 ln ã(η).

For a proof of these relations see Bickel and Doksum [7].

Another parameterization of an exponential family of densities is the mean value parameterization.
In this parameterization, the functions t(·), a(·), b(·) and c(·) in (26) are manipulated so that

Eθ[T ] = θ. (28)

As we will see in the next chapter, when an exponential family is expressed in its mean value
parameterization the sufficient statistic T is an unbiased minimum variance estimator of θ. Thus
mean value parameterizations are very special and advantageous.

Examples of distributions in the exponential family include: Gaussian with unknown mean or
variance, Poisson with unknown mean, exponential with unknown mean, gamma, Bernoulli with
unknown success probability, binomial with unknown success probability, multinomial with un-
known cell probabilities. Distributions which are not from the exponential family include: Cauchy
with unknown median, uniform with unknown support, Fisher-F with unknown degrees of freedom.

When the statistical model is in the exponential family, sufficient statistics for the model param-
eters have a particularly simple form:

fθ(x) =
n∏
i=1

a(θ)b(xi)ec
T (θ)t(xi)
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= an(θ) e
cT (θ)

T︷ ︸︸ ︷
n∑
i=1

t(xi)

︸ ︷︷ ︸
g(T ,θ)

n∏
i=1

b(xi)︸ ︷︷ ︸
h(x)

Therefore, the following is a p-dimensional sufficient statistic for θ

n∑
i=1

t(Xi) =

[
n∑
i=1

t1(Xi), . . . ,
n∑
i=1

tp(Xi)

]T
In fact this is a finite dimensional suff. statistic which is complete and minimal [7].

3.5.5 CHECKING IF A DENSITY IS IN THE EXPONENTIAL FAMILY

Due to the many attractive properties of exponential families, in many situations the first question
to be answered is: is the density of my data X a member of this exclusive club? This question
might arise, for example, if the input to a known filter or other system has a known density and
one can compute a mathematical representation of the density of the output of the filter. To check
if the output density is exponential one has to try and manipulate the density into exponential
form, as illustrated in the exercises. If this is difficult the next step is to try and show that the
density is not in the exponential family. Some properties can be checked immediately, e.g. that
the parameters space Θ does not depend on the range of X, e.g. as in a uniform density with
unknown region of support boundaries. Another simple test is to compute ∂2/∂θ∂x ln fθ(x) and
verify that it is not of separable form c′(θ)t′(x) for some functions c and t. This type of question
is explored in the exercises.

3.6 BACKGROUND REFERENCES

Mood, Graybill and Boes [48] offers an undergraduate introduction to mathematical statistics
with lots of fun exercises and examples. Two of the classic graduate level text books on linear
multivariate statistics are Rao [57] and Morrison [50]. Manoukian [43] is a reference book giving a
concise compilation of principal results from sampling distribution theory. The book by Johnson
etal [30], is the first of a set of several volumes of a very comprehensive encyclopedia of probability
distributions, random variables, and their properties.

3.7 EXERCISES

3.1 Show that the matrix Π = In − 11T /n is symmetric and idempotent, where In is the n × n
identity matrix and 1 = [1, . . . , 1]T is an n-element column vector of 1’s. Show that for
x ∈ IRn, Πx is the vector of residuals [x1 − xi, . . . , xn − xi]T where xi is the sample mean of
elements of x. Finally show that if x has the decomposition y+ c1 where y has zero (sample)
mean and c is an arbitrary scalar, then Πx = y, i.e the matrix Π extracts the zero (sample)
mean component of x. It is in this sense that Π is an orthogonal projection matrix onto the
space of zero (sample) mean vectors in IRn.
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3.2 Assume that a random vector X = [X1, . . . ,Xn]T has a density pθ(x) which depends on
an unknown parameter vector θ. In this exercise you will show that if a statistic S =
S(X) = [S1(X), . . . , Sk(X)]T satisfies the Fisher Factorization theorem then the conditional
density pθ(X |S) is not a function of θ and thus S is a sufficient statistic for θ. In the
following you should assume that X is a discrete random vector and that its joint density
pθ(x) = Pθ(X = x) is a probability mass function (i.e. pθ(x) = 0 except for a countable
number of points x ∈ {x1, x2, . . .} where pθ(xi) > 0, and

∑
xi
pθ(xi) = 1).

(a) Use Bayes rule to establish that

pθ(x|s)
def= Pθ(X = x|S = s) =

Pθ(S = s|X = x)pθ(x)∑
xi :S(xi)=s

pθ(xi)
,

where the summation of pθ(x) is over all possible realizations {xi} of the vector X such
that S(xi) = s.

(b) Show that Pθ(S = s|X = x) is equal to one or zero depending on whether S(x) = s or
S(x) �= s, respectively. (Hint: express the conditional probability as a ratio and use the
definition S = S(X) to evaluate the intersection of the events S = s and X = x).

(c) Using the Fisher Factorization pθ(x) = gθ(s) · h(x) show that

pθ(x|s) =

{
h(x)P

xi : S(xi)=s h(xi)
, S(x) = s

0, o.w.
,

which, as claimed, does not depend on θ.

3.3 Show that the Poisson distribution pλ(x) = Pλ(X = x) = λx

x! exp(−λ), x = 0, 1, 2, . . . is a
member of the one-parameter exponential family. For an i.i.d. sample X = [X1, . . . ,Xn]T of
these Poisson r.v.s find a one dimensional sufficient statistic for λ. Define α = 1/λ and show
that the reparameterized Poisson distribution pα(x) is also in the exponential family. Which
of these two parameterizations (α or λ) is a mean value paramaterization?

3.4 Let X = [X1, . . . ,Xn]T be a vector of i.i.d. r.v.s Xi which are uniformly distributed over the
interval (θ1, θ2), θ1 < θ2. Show that S(X) = [mini{Xi},maxi{Xi}]T is a sufficient statistic
for θ = [θ1, θ2]T .

3.5 Let Zi, i = 1, . . . , n, be a set of i.i.d. random variables each with the alpha density

pθ(z) =
β√

2πΦ(α)z2
exp
(
− 1

2 [α− β/z]2
)
,

where β > 0 is unknown, α is known and Φ(x) =
∫ x
−∞

1√
2π
e−u2/2du is the standard normal

CDF. The alpha distribution is often used to model tool wear for rotating machinery.

(a) Is the joint density pθ(z) a member of the exponential family of densities?
(b) using the Fisher Factorization find a two dimensional sufficient statistic for estimating

the parameter β based on the observation Z = [Z1, . . . , Zn]T . Show that this reduces to
a one dimensional (scalar) statistic when α = 0.

3.6 Let X = [X1, . . . ,Xn]T be a vector of i.i.d. Gaussian r.v.s with mean μ and variance σ2 = μ2

(Xi ∼ N (μ, μ2)).

(a) Show that the sample mean X i = 1
n

∑n
i=1Xi is not a sufficient statistic for μ by demon-

strating that the conditional jpdf of X given X is a function of μ.
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(b) Find a two dimensional sufficient statistic.

3.7 Let T = T (x) be a sufficient statistic for θ, where x ∼ f(x; θ) = g(T (x), θ)h(x) is a discrete
random variable. Show that T has probability mass function

f(t; θ) = g(t, θ)q(t),

where
q(t) =

∑
{x:T (x)=t}

h(x).

3.8 Consider the case that X = [X1, . . . ,Xn]T are drawn from a Bernoulli distribution, Xi ∈
{0, 1}, P (Xi = 1) = 1−P (Xi = 0) = p, p ∈ [0, 1], and Xi’s are i.i.d. Show that the Binomial
r.v. T =

∑n
i=1Xi is a sufficient statistic for p. Show that T is minimal. Also show that T is

a complete sufficient statistic (Hint: for any function g express Eθ[g(T )] as a polynomial in
θ = p and compute n-th order derivative wrt p).

3.9 Let X1, . . . ,Xn be i.i.d. uniform r.v.s having common density fXi(x; θ) = 1
θ I[0,θ](x) (θ > 0),

where IA(x) denotes the indicator function of the set A. Show that T = max(X1, . . . ,Xn) is
a complete sufficient statistic for θ by the following steps:

(a) Show the sufficiency of T .
(b) Derive the density function of T .
(c) Show that Eθ[g(T )] = 0, for all θ > 0 implies g is identically zero.

End of chapter
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4 FUNDAMENTALS OF PARAMETRIC ESTIMATION

In the last chapter we explored the foundation of statistical inference: the formulation of a sta-
tistical model and sufficient statistics for model parameters. In this chapter we go on to develop
explicit methods to estimate the parameters from random samples from the model, paying close
attention to how well the accuracy of these estimates hold up over different sample realizations.

We will start off with the basic mathematical formulation of estimation and then, specializing to the
case of scalar one-dimensional parameters, consider two different models: random parameters and
non-random parameters. It turns out, perhaps surprisingly, that estimation of random parameters
has a cleaner theory. This is because for random parameters one can more straightforwardly assess
the estimator’s mean accuracy and specify procedures for finding optimal estimators, called Bayes
estimators, having highest possible accuracy. In particular we define three different optimality
criteria mean squared error (MSE), mean absolute error (MAE), and mean uniform error, also
called probability of large error (Pe). We then turn to deterministic scalar parameters for which
we focus on bias and variance as measures of estimator accuracy. This leads to the concept of
Fisher information and the Cramèr-Rao lower bound on variance of unbiased estimators. Finally
we generalize the treatment to multiple (vector) parameters.

4.1 ESTIMATION: MAIN INGREDIENTS

We follow the same notation as in the last chapter, summarized below.

X ∈ X is a random measurement or observation
X is the sample space of measurement realizations x
θ ∈ Θ is an unknown parameter vector of interest
Θ ⊂ IRp is the parameter space
f(x; θ) is the pdf of X for given θ (a known function)

With these definitions, the objective of parameter estimation is to design an estimator function

θ̂ = θ̂(x)

which maps X to IRp ⊃ Θ. The concept is illustrated in Fig. 1.

It is important to distinguish between an estimator, which is a function of the sample X, and an
estimate, which is an evaluation of the function at a particular realization x of X, i.e.:

• the function θ̂ is an estimator.
• the point θ̂(x) is an estimate.

A natural question arises. What is an appropriate design criterion for constructing an estimator?
There are many possible approaches to this. In this chapter we will describe two of the principal
approaches. The first assumes that θ is random and the second assumes it is deterministic.
Common to both approaches is the specification of a loss function, also called a risk function,
associated with an estimator that measures the estimation error as a function of both the sample
and the parameter values.

Define c(θ̂(x); θ) a loss function associated with θ̂ for given θ and X = x. The optimum estimator,
should it exist, might be found by minimizing average loss E[C], where as usual, the capitalization
C denotes the random variable c(θ̂(X), θ).
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θ1

θ2

θ
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Figure 1: An estimator of a p-dimensional parameter θ given an n-dimensional random sample X is a mapping
of X to IRp

4.2 ESTIMATION OF RANDOM SCALAR PARAMETERS

For the case that θ is a random scalar parameter θ we have access to the following information:

f(θ): a prior p.d.f. for θ.

f(x|θ): a conditional p.d.f.

f(θ|x): the posterior p.d.f. for θ that is determined by Bayes rule:

f(θ|x) =
f(x|θ)f(θ)

f(x)
.

f(x): the marginal p.d.f. determined by marginalization over θ

f(x) =
∫

Θ
f(x|θ)f(θ)dθ

With the above we can compute the average loss, also called Bayes risk, as

E[C] =
∫

Θ

∫
X
c(θ̂(x), θ)f(x|θ)f(θ) dxdθ.

We now can naturally define an optimal estimator. A scalar estimator θ̂ which minimizes the
average loss is called a Bayes estimator. Some reasonable loss functions for this estimation problem
are

c(θ̂; θ) = |θ̂ − θ|2: squared error

c(θ̂; θ) = |θ̂ − θ|: absolute error

c(θ̂; θ) = I(|θ̂ − θ| > ε): uniform error
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Figure 2: Three loss functions for scalar parameter estimation: (a) squared error, (b) absolute error, (c)
uniform error.

Figure 2 illustrates these three loss functions as a function of the estimator error difference θ̂ − θ.
For each of the three loss functions we can compute the mean loss and obtain the Bayes risk
functions (functions of f(θ), f(x|θ) and θ̂):

Estimator MSE:
MSE(θ̂) = E[|θ̂ − θ|2]

Estimator MAE:
MAE(θ̂) = E[|θ̂ − θ|]

Error Probability:
Pe(θ̂) = P (|θ̂ − θ| > ε)

It remains to find the estimators θ̂, called optimal estimators, which minimize each of these criteria.

4.2.1 MINIMUM MEAN SQUARED ERROR ESTIMATION

The MSE is the most widespread estimation criterion and arguably the one with the longest
history. The optimal minimum mean squared error estimator (MMSEE) is the conditional mean
estimator (CME) defined as

θ̂(X) = E[θ|X] = meanθ∈Θ{f(θ|X)},

where
meanθ∈Θ{f(θ|X)} =

∫ ∞

−∞
θf(θ|X)dθ.

The CME has an intuitive mechanical interpretation as the center of mass (1st moment of inertia)
of the mass density f(θ|x) (Fig. 3). The CME corresponds to the posterior average value of the
parameter after you have observed the data sample.
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The CME satisfies an orthogonality condition: the Bayes estimator error is orthogonal to any
(linear or non-linear) function of the data. This condition is mathematically expressed below for
the general case of complex rv’s,

E[(θ − θ̂(X))g(X)∗] = 0,

for any function g of x. Here u∗ denotes complex conjugate of u.

f( |x)

CME E[ X=x
^

Figure 3: Conditional mean estimator minimizes MSE

Proof: Write the MSE as

E[|θ̂ − θ|2] = E[|(θ̂ − E[θ|X ])− (θ − E[θ|X ])|2]

= E[|θ̂ − E[θ|X ]|2] + E[|θ − E[θ|X ]|2]

−E[g(X)∗(θ −E[θ|X ])]− E[g(X)(θ − E[θ|X])∗]

where g(X) = θ̂ −E[θ|X ] is a function of X only.

Step 1: show orthogonality condition

E[g(X)(θ − E[θ|X])] = E [ E[g(X)(θ − E[θ|X])∗| X ] ]

= E

⎡⎣g(X) E [θ − E[θ|X ] | X]︸ ︷︷ ︸
=0

⎤⎦ = 0

Step 2: Next show E[θ|X] minimizes MSE
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E[|θ̂ − θ|2] = E[|θ̂ − E[θ|X ]|2] + E[|θ − E[θ|X ]|2]

≥ E[|θ − E[θ|X ]|2]

where “=” occurs iff θ̂ = E[θ|X ] �

4.2.2 MINIMUM MEAN ABSOLUTE ERROR ESTIMATOR

For convenience we assume θ is a real valued scalar and F (θ|x) =
∫ θ
f(θ′|x)dθ′ is a continuous

function of θ. The minimal mean absolute error estimator (MMAEE) is the conditional median
estimator (CmE)

θ̂(X) = medianθ∈Θ{f(θ|X)},

where

medianθ∈Θ{f(θ|X)} = min{u :
∫ u

−∞
f(θ|X)dθ = 1/2} (29)

= min
{
u :
∫ u

−∞
f(X|θ)f(θ)dθ =

∫ ∞

u
f(X|θ)f(θ)dθ

}
. (30)

The median of a density separates the density into two halves of equal mass (Fig. 4). When
F (θ|x) is strictly increasing over Θ the ”min” in the definition of the median is not necessary -
but it may be required when there are regions of Θ where the density f(θ|x) is equal to zero. If
f(θ|X) is continuous in θ the CmE also satisfies an orthogonality condition:

E[sgn(θ − θ̂(X))g(X)] = 0,

and thus for minimum MAE estimation it is the sign of the optimum estimation error that is
orthogonal to any function of the data sample.

Proof: Let θ̂m = median of f(θ|X).

Then by definition of median for continuous densities

E[sgn(θ − θ̂m) | X ] =
∫

Θ
sgn(θ − θ̂m(X)) f(θ|X)dθ

=
∫
θ>θ̂m(X)

f(θ|X)dθ −
∫
θ≤θ̂m(X)

f(θ|X)dθ

= 0

Step 1: show orthogonality condition:

E[sgn(θ − θ̂m)g(X)] = E[ E[sgn(θ − θ̂m)|X ]︸ ︷︷ ︸
=0

g(X)]
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Figure 4: Conditional median estimator minimizes MAE

Step 2: for θ̂ arbitrary we have (apply “useful formula” below)

MAE(θ̂) = E[| θ − θ̂m︸ ︷︷ ︸
a

+ θ̂m − θ̂︸ ︷︷ ︸
Δ

|]

= E[|θ − θ̂m|] + E[sgn(θ − θ̂)Δ]︸ ︷︷ ︸
=0

+E [sgn(a+ Δ)− sgn(a)](a+ Δ)︸ ︷︷ ︸
≥[sgn(a+Δ)−1](a+Δ)≥0

≥ E[|θ − θ̂m|]

Useful formula: |a+ Δ| = |a|+ sgn(a)Δ + [sgn(a+ Δ)− sgn(a)](a+ Δ)

4.2.3 MINIMUM MEAN UNIFORM ERROR ESTIMATION

Unlike the MSE or MAE, the MUE penalizes only those errors that exceed a tolerance level ε > 0
and this penalty is uniform. For small ε the optimal estimator is the maximum a posteriori (MAP)
estimator, which is also called the posterior mode estimator (Fig. 5)

θ̂(X) = argmaxθ∈Θ{f(θ|X)} (31)

= argmaxθ∈Θ

{
f(X|θ)f(θ)

f(X)

}
(32)

= argmaxθ∈Θ{f(X|θ)f(θ)}. (33)
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f( |x)

MAP

^

Figure 5: Maximum a posteriori estimator minimizes Pe

Notice that the third line of (33) is best suited to computation of the MAP estimator since it does
not require the marginal f(x), which can be difficult to compute.

Proof:

Assume that ε is a small and positive number. The probability that the magnitude estimator error
exceeds ε is simply expressed

Pe(θ̂) = 1− P (|θ − θ̂| ≤ ε)

= 1−
∫
X
dxf(x)

∫
{θ:|θ−θ̂(x)|≤ε}

f(θ|x)dθ.

Consider the inner integral (over θ) in the above expression. This is an integral over θ within
a window, which we call the length 2ε window, centered at θ̂. Referring to Fig. 6, it should be
evident to the reader that, if ε is sufficiently small, this integral will be maximized by centering the
length 2ε window at the value of θ that maximizes the integrand f(θ|x). This value is of course
the definition of the MAP estimate θ̂. �
Now that we have seen three different estimator criteria, and their associated optimal estimators,
we make several general remarks.

1. The CmE may not exist for discrete Θ since the median may not be well defined.
2. Only the CME requires (often difficult) computation of the normalization factor f(x) in the

posterior f(θ|x) = f(x|θ)/f(x).
3. Each of these estimators depends on x only through posterior f(θ|x).
4. When the posterior is continuous, unimodal, and symmetric then each of the above estimators

are identical (VanTrees [73])! See Fig. 7 for illustration.
5. If T = T (X) is a sufficient statistic the posterior depends on X only through T . Indeed, if
f(X|θ) = g(T ; θ)h(X), then by Bayes rule

f(θ|X) =
f(X|θ)f(θ)∫

Θ f(X|θ)f(θ)dθ
=

g(T ; θ)f(θ)∫
Θ g(T ; θ)f(θ)dθ
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f( |x)

^

2

Figure 6: Posterior density integrated over window of length 2ε

which is only a function of X through T . Thus, in terms of optimal estimation performance,
one loses nothing by compressing X to a sufficient statistic.

6. The CME has the following linearity property. For any random parameter variables θ1 and
θ2: E[θ1 + θ2|X] = E[θ1|X] +E[θ2|X ]. This property is not shared by the CmE or the MAP
estimator.

4.2.4 BAYES ESTIMATOR EXAMPLES

Here we give four examples of statistical models, priors, and derive their optimal estimators under
various criteria.

These are the examples we will cover (hotlinks on the web version)

* Estimation of width of uniform density

* Estimation of a Gaussian signal

* Estimation of magnitude of Gaussian signal

* Estimation of a binary signal in Gaussian noise

Example 9 ESTIMATION OF WIDTH OF UNIFORM PDF

Consider the following motivating problem. A networked computer terminal takes a random
amount of time to connect to another terminal after sending a connection request at time t = 0.
You, the user, wish to schedule a transaction with a potential client as soon as possible after
sending the request. However, if your machine does not connect within the scheduled time then
your client will go elsewhere. If one assumes that the connection delay is a random variable X
that is uniformly distributed over the time interval [0, θ] you can ensure your client that the delay
will not exceed θ. The problem is that you do not know θ so it must be estimated from past
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Figure 7: Symmetric and continuous posterior density

experience, e.g., the sequence of previously observed connection delays X1, . . . ,Xn. By assuming
a prior distribution on θ an optimal estimate can be obtained using the theory developed above.

So now let’s formulate this in our language of estimation theory.

We assume that X1, . . . ,Xn are conditionally i.i.d. uniform samples each with conditional density

f(x1|θ) =
1
θ
I[0,θ](x1).

Let’s say that based on your experience with lots of different clients you determine that a reasonable
prior on θ is

f(θ) = θ e−θ, θ > 0.

Figure 8 illustrates these two densities.

We will derive the CME, CmE, and MAP estimators of θ. There are two steps.

Step 1: Find the posterior f(θ|x) = f(x|θ)f(θ)/f(x)

f(x|θ)f(θ) =

(
n∏
i=1

1
θ
I[xi,∞)(θ)

) (
θe−θ

)
=

e−θ

θn−1

n∏
i=1

I[xi,∞)(θ)︸ ︷︷ ︸
I[x(1),∞)(θ)

=
e−θ

θn−1
I[x(1),∞)(θ).

where x(1) = max{xi}. Observe that the function e−θ

θn−1 is monotone decreasing over θ > 0 (verify
that the derivative of its logarithm is negative).
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f(x| )

x

f( )

a) (b)

Figure 8: (a) Uniform density of unknown width θ, (b) prior on θ

Furthermore,

f(x) =
∫ ∞

0
f(x|θ)f(θ)dθ

= q−n+1(x(1))

where qn is the monotone decreasing function

qn(x)
def=
∫ ∞

x
θne−θdθ

Recursive formula: q−n−1(x) = 1
n

(
1
xn e

−x − q−n(x)
)
, n = 0,−1,−2, . . ..

Step 2: find optimal estimator functions:

θ̂MAP = X(1)

θ̂CME = q−n+2(X(1))/q−n+1(X(1))

θ̂CmE = q−1
−n+1

(
1
2q−n+1(X(1))

)
.

Note that only the MAP estimator is a simple function of X while the two others require more dif-
ficult computation of integrals qn and/or an inverse function q−1

n . These estimators are illustrated
in Fig. 9 along with the posterior density f(θ|x).

Example 10 ESTIMATION OF GAUSSIAN AMPLITUDE
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x  x  x xx     x         x

MAP
^

CME
^
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^

Figure 9: The estimators CME, CmE and MAP for the width parameter θ of the underlying uniform density
with prior given by Fig. 8.b.

A very common assumption arising in many signal extraction problems is the assumption of a
Gaussian distributed signal observed in additive Gaussian noise. For example, a radar target
acquisition system might transmit a pulse to probe for possible targets in a cell located at a
particular point in space. If a strong reflecting target is present at that point then it reflects
some of the energy in the radar pulse back to the radar, resulting in a high energy signal, called a
radar return, at the radar receiver. The amplitude of this signal might contain useful information
about the identity of the target. Estimation of the radar return is complicated by the presence of
ambient noise generated in the radar receiver (thermal noise) or by interference from other sources
(clutter) in the cell. Based on field trials of the radar system prior mean and variances of the
received signal and the noise might be available.

To set this up more formally as an estimation problem we define two jointly Gaussian r.v.s: S,X
with known means, variances, and covariance

E[S] = μS, E[X] = μX ,

var(S) = σ2
S , var(X) = σ2

X

cov(S,X) = ρ σSσX .

S will play the role of the signal and X will be the measurement. Of course the specific form of
the covariance function will depend on the receiver structure, e.g., it reduces to a simple function
of σS and σX for an additive noise model.

The objective is to find an optimal estimator of S given measured X. As in the previous example
the derivation of CME, CmE and MAP estimators is divided into two parts.

Step 1: find the posterior density.

A fundamental fact about jointly Gaussian random variables is that if you condition on one of
the variables then the other variable is also Gaussian, but with different mean and variance equal
to its conditional mean and variance (see Fig. 11 and Exercise 4.25 at the end of chapter). In
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particular, the conditional density of S given X = x is Gaussian with mean parameter

μS|X(x) = E[S|X = x] = μS + ρ
σS
σX

(x− μX),

and variance parameter

σ2
S|X = E[(S −E[S|X])2|X = x] = (1− ρ2)σ2

S ,

so that the conditional density takes the form

fS|X(s|x) =
fX|S(x|s)fS(s)

fX(x)

=
1√

2πσ2
S|X

exp

{
−
(
s− μS|X(x)

)2
2σ2

S|X

}
.

 f(s|x)

s

 μs|x

 2σs|x

Figure 10: The posterior f(s|x) when s, x are jointly Gaussian is a Gaussian density.

Step 2: find the form of the optimal estimators

We immediately note that, as the posterior is continuous, symmetric and unimodal, the MAP,
CME, and CmE estimators are of identical form. Bringing out the explicit dependency of the
estimator Ŝ on the observed realization x we have:

Ŝ(x) = μS|X(x) = linear in x.

An interesting special case, relevant to the radar example discussed above, is the independent
additive noise model where X = S + V. For this case σ2

X = σ2
S + σ2

V , ρ2 = σ2
S/(σ

2
S + σ2

V ) and
therefore

Ŝ(x) = μS +
σ2
S

σ2
S + σ2

V

(x− μX) .
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We can easily derive the performance of the optimal estimator under the MSE criterion

Minimum MSE: E[(S − Ŝ)2] = (1− ρ2)σ2
S .

A little more work produces expressions for the performances of this optimal estimator under the
MAE and Pe (MUE) criteria:

Minimum MAE: E[|S − Ŝ|] =
√

(1− ρ2)σ2
S

√
2
π

Minimum Pe: P (|S − Ŝ| > ε) = 1− erf
(
ε/
√

2(1− ρ2)σ2
S

)
Example 11 Estimation of magnitude of Gaussian signal

Now we change Example 10 a little bit. What if the radar operator was only interested in the energy
of the received signal and not its sign (phase)? Then the proper objective would be to estimate the
magnitude |S| instead of the magnitude and phase S. Of course, an ad hoc estimation procedure
would be to simply take the previously derived estimator Ŝ and use its magnitude |Ŝ| to estimate
|S| but is this the best we can do?

Let’s see what the form of the best estimators of |S| are.
Again we define two jointly Gaussian r.v.s: S,X with means, variances, and covariance

E[S] = μS , E[X] = μX ,

var(S) = σ2
S , var(X) = σ2

X ,

cov(S,X) = ρ σSσX .

Now the objective is to estimate the random variable Y = |S| based on X. Note: the pair Y,X no
longer obeys a jointly Gaussian model. But, using first principles, we can easily derive the optimal
estimators. The first step is to compute the posterior density fY |X .

S

y=|s|

y

y+

-s- -s s    s+

Y

Figure 11: Illustration of the method of differentials for finding conditional density of Y = |S| given X from
the probability P (y < Y ≤ y + Δ|X = x) ≈ fY |X(y|x)Δ, 0 < Δ� 1.
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Since we know fS|X from the previous example this is a simple transformation of variables problem
of elementary probability. We use the method of differentials (see Fig. 11) to obtain the following
relation, valid for small Δ

fY |X(y|x)Δ = fS|X(y|x)Δ + fS|X(−y|x)Δ, y ≥ 0,

or more explicitly

fY |X(y|x) =

1√
2πσ2

S|X

(
exp

{
−
(
y − μS|X(x)

)2
2σ2

S|X

}
+ exp

{
−
(
y + μS|X(x)

)2
2σ2

S|X

})
I[0,∞)(y). (34)

 f(y|x)

y
−μs|x μs|x

Figure 12: Posterior density of Y = |S| given X

Unlike Example 10 this posterior density, shown in Fig. 12 is no longer symmetric in y. Hence we
expect the CME, CmE, and MAP estimators to be different.

The CME can be derived in explicit closed form by integration over y ∈ [0,∞) of the function
yfY |X(y|x) specified in (34)

ŶCME(x) = E[Y |X = x] =
∣∣μS|X(x)

∣∣ erf

(
|μS|X(x)|
σS|X

√
2

)
+

√
2
π
σS|X e

−μ2
S/2σ

2
S|X .

On the other hand, by investigating the MMAE equation
∫∞
Ŷ fY |X(y|x)dy =

∫ Ŷ
0 fY |X(y|x)dy it is

easily seen that the CmE can only be implicitly given as the solution Ŷ = ŶCmE of the following

erf

(
Ŷ − μS|X(x)

σS|X
√

2

)
+ erf

(
Ŷ + μS|X(x)

σS|X
√

2

)
=

1
2
.
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Finally, as fY |X(y|x) is concave and smooth in y, the MAP estimator Ŷ = ŶMAP occurs at a
stationary point in y of the so called “MAP equation”

0 =
∂f(y|x)
∂y

.

Using (34) this yields

Ŷ (x) = μS|X(x)
exp
{
−(Ŷ−μS|X(x))2

2σ2
S|X

}
− exp

{
−(Ŷ+μS|X(x))2

2σ2
S|X

}
exp
{
−(Ŷ−μS|X(x))2

2σ2
S|X

}
+ exp

{
−(Ŷ+μS|X(x))2

2σ2
S|X

} .

 f(y|x)

μy|x

MAP

CME

CmE

Figure 13: Three optimal estimators of Y = |S| when S,X are jointly Gaussian.

The above optimal estimators are illustrated in Fig. 13. It can be verified that as μS|X/σS|X →∞
all three estimators converge to an identical limit:

Ŷ (x)→
∣∣μS|X(x)

∣∣ .
This limiting case occurs since the posterior density becomes a dirac delta function concentrated
at y = μS|Y (x) as μS|X/σS|X → ∞. Observe that none of these estimators of |S| are given by
|Ŝ| where Ŝ is the corresponding MAP/CME/CmE estimate of S derived in Example 10. This
illustrates an important fact: estimation of random parameters is not invariant to functional
transformation,

Example 12 Estimation of sign of Gaussian signal

Above we derived optimal estimators for magnitude of a Gaussian random variable based on
Gaussian observations. Well, how about when only the phase is of interest, e.g., when the radar
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operator wants to estimate the sign as opposed to the magnitude of the signal? We treat a
simplified version of this problem in this example.

Assume that the model for the observation is

X = θ +W

where W is a zero mean Gaussian noise with variance σ2 and θ is an equally likely binary random
variable: P (θ = 1) = P (θ = −1) = 1

2 , Θ = {−1, 1}. This corresponds to our radar problem when
the prior mean μS is zero (why?) and an additive noise model is assumed.

Here the posterior density is a probability mass function since the signal θ is discrete valued:

p(θ|x) =
f(x|θ)p(θ)
f(x)

,

where p(θ) = 1/2. For convenience we have eliminated subscripts on densities. Furthermore, as
illustrated in Fig. 14,

f(x|θ) =

⎧⎨⎩
1√

2πσ2
exp
(

(x−1)2

2σ2

)
, θ = 1

1√
2πσ2

exp
(

(x+1)2

2σ2

)
, θ = −1

.

Hence
f(x) = f(x|θ = 1) 1

2 + f(x|θ = −1) 1
2 .

 f(θ|x)

θ

1/2

+1-1

Figure 14: The posterior density f(θ|x) concentrates mass on the pair of points θ = ±1.

From the following steps we discover that the MAP estimator is a minimum distance decision rule,
i.e., it selects the value θ̂ as that value of θ which is closest to the measured value X:

θ̂MAP = argmaxθ=1,−1f(X|θ)
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= argminθ=1,−1{(X − θ)2}

=
{

1, X ≥ 0
−1, X < 0

On the other hand, the CME estimator is

θ̂CME = (1)P (θ = 1|X) + (−1)P (θ = −1|X)

=
exp
(
− (X−1)2

2σ2

)
− exp

(
− (X+1)2

2σ2

)
exp
(
− (X−1)2

2σ2

)
+ exp

(
− (X+1)2

2σ2

) .
The MAP and CME estimators are illustrated in Fog. 15. Unfortunately, we cannot derive the
CmE since it is not well defined for discrete valued parameters θ (why?).

MAP
CME

x

θ̂

1

-1

Figure 15: MAP (light-font sign function) estimator and CME (heavy-font “S” curve) as functions of the
measurement x. Only the MAP estimator gives the correct discrete range of values {−1, 1} for θ

Based on these above examples we make the summary remarks:

1. Different error criteria usually give different optimal estimators.

2. Optimal estimators of random parameters are not invariant to functional transformations.
Specifically, if ĝ(θ) is an optimal estimator of g(θ) and θ̂ is an optimal estimator of θ:

ĝ(θ) �= g(θ̂)

in general.
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3. When they exist, the CmE and MAP estimators always take values in the parameter space Θ.
The values taken by CME may fall outside of Θ, e.g., if it is discrete or if it is not a convex set.

4. The “MAP equation” stationary point condition ∂f(θ|x)/∂θ = 0 at θ = θ̂MAP is only useful for
continuous densities that are differentiable and concave in continuous valued parameters θ (Fig.
16).

θ̂

 f1 (θ|x)

 f2 (θ|x)

θ̂

θ

θ̂

[
 f3 (θ|x)

123

Figure 16: Use of the stationary point MAP equation can fail to find the MAP estimator. In general there
may exist no stationary points of the posterior density (f2, f3). or there may be multiple stationary points of
the posterior density (f1).

4.3 ESTIMATION OF RANDOM VECTOR VALUED PARAMETERS

Define a vector parameter θ ∈ Θ ⊂ IRp, θ = [θ1, . . . , θp]T , and define the s-norm on Θ

‖θ‖s =

(
p∑
i=1

|θi|s
)1/s

.

Note that when s =∞ this norm is equal to the maximum of the |θi|’s.
The previously introduced scalar estimation criterion E[c(θ̂, θ)] needs to be generalized to handle
vector parameter estimation. This turns out to be quite easy, at least for two of our proposed
estimation criteria. Some possible generalizations of the previous three scalar criteria are (Figs.
17-20)

Estimator MSE:

MSE(θ̂) = E[‖θ̂ − θ‖22] =
p∑
i=1

E[(θ̂i − θi)2].

Estimator MAE:

MAE(θ̂) = E[‖θ̂ − θ‖1] =
p∑
i=1

E[|θ̂i − θi|].
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Estimator Error Probability (MUE) - (0 < p <∞):

Pe(θ̂) = 1− P (‖θ̂ − θ‖p ≤ ε).

When p =∞ Pe is the probability that the magnitude of at least one element of the vector θ̂ − θ
exceeds ε.

C(θ,θ)
^

 θ1− θ1
^

 θ2− θ2
^

Figure 17: Squared error criterion

The MAE criterion, also known as total variation norm, does not often lead to unique optimal
vector-valued estimators. Although the total variation norm has been of substantial recent interest,
in our introductory treatment only MSE and Pe will be discussed.

4.3.1 VECTOR SQUARED ERROR

As MSE(θ̂) =
∑p

i=1 MSE(θ̂i) is an additive function, the minimum MSE vector estimator attains
the minimum of each component MSE(θ̂i), i = 1, . . . , p. Hence, we have the nice result that the
vector minimum MSE estimator is simply the vector of scalar CME’s for each component:

θ̂CME = E[θ|X] =

⎡⎢⎣ E[θ1|X]
...

E[θp|X]

⎤⎥⎦
As in the case of scalar estimation the minimum MSE estimator is the center of mass of the
multivariate posterior density (Figs. 21-22).

4.3.2 VECTOR UNIFORM ERROR

For small ε the minimum mean uniform error (Pe) is attained by the vector MAP estimator which
has form similar to the scalar MAP estimator

θ̂MAP = argmaxθ∈Θf(θ|x).
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Figure 18: Absolute error criterion

Figure 19: Uniform error criterion
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Figure 20: Constant contours of three error criteria

 f(θ|x)

θ1
θ2

Figure 21: Bivariate posterior density of two unknown parameters. Optimal estimates shown in Fig. 22.
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Figure 22: Vector MAP estimate and CME for bivariate posterior illustrated in Fig. 23. The MAP estimate
occurs at the global maximum of the posterior while the CME occurs at the center of mass.

4.4 ESTIMATION OF NON-RANDOM PARAMETERS

To estimate random parameters one has a prior distribution and we can define a global estimation
error criterion, the Bayes risk, which depends on the prior but not on any particular value of the
parameter. In non-random parameter estimation there is no prior distribution. One can of course
look at the problem of estimation of non-random parameters as estimation of random parameters
conditioned on the value of the parameter, which we could call the true value. However, the
formulation of optimal non-random parameter estimation requires a completely different approach.
This is because if we do not have a prior distribution on the parameter virtually any reasonable
estimation error criterion will be local, i.e., it will depend on the true parameter value. Thus
we will need to define weaker properties than minimum risk, such as unbiasedness, that a good
estimator of non-random parameters should have.

As before we first consider estimation of scalar non-random parameters θ. In this case it does not
make sense to use the conditional density notation f(x|θ) and we revert to the alternative notation
for the model fθ(x) = f(x; θ).

So, what are some possible design criteria for estimators of scalar real θ? One could try to minimize
MSE, defined as

MSEθ = Eθ[(θ̂ − θ)2].

Here we encounter a difficulty: if the true value θ is θ0, the constant estimator θ̂ = c attains 0
MSE when θo = c (Fig. 23).

4.4.1 SCALAR ESTIMATION CRITERIA FOR NON-RANDOM PARAMETERS

Some possible scalar criteria for designing good estimators are the minimax criteria.
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ΜSEθ

θ
θo

Figure 23: MSE curve as function of θ for trivial estimator θ̂ = θo of non-random parameter.

1. Minimize worst case MSE. Choose θ̂ to minimize

max
θ

MSEθ(θ̂) = max
θ
Eθ[(θ̂ − θ)2]

2. Minimize worst case estimator error probability:

max
θ
Pe = max

θ
Pθ(|θ̂ − θ| > ε)

If we would be satisfied by minimizing an upper bound on maxPe, then we could invoke Tchebychev
inequality

Pθ(|θ̂ − θ| ≥ ε) ≤
Eθ[|θ̂ − θ|2]

ε2
(35)

and focus on minimizing the worst case MSE. There is a large literature on minimax MSE esti-
mation, see for example [40], but the mathematical level necessary to develop this theory is too
advanced for an introductory treatment. We will not consider minimax estimation further in this
book.

We next give several weaker conditions that a good estimator should satisfy, namely consistency
and unbiasedness.

Definition: θ̂n = θ̂(X1, . . . ,Xn) is said to be (weakly) consistent if for all θ and all ε > 0

lim
n→∞Pθ(|θ̂n − θ| > ε) = 0

This means that θ̂n converges in probability to the true parameter θ. It also means that the pdf
of the estimator concentrates about θ (Fig. 24). Furthermore, by the Tchebychev inequality (35),
if MSE goes to zero as n→∞ then θ̂n is consistent. As the MSE is usually easier to derive than
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 f(θ; θ)

θ

2ε

θ̂

Figure 24: Density f(θ̂; θ) of θ̂ measures concentration of θ̂ about true parameter θ

Pe, showing that MSE converges to zero is the typical way that one shows that an estimator is
consistent.

For an estimator θ̂ define the estimator bias at a point θ to be

bθ(θ̂) = Eθ[θ̂]− θ.

Likewise the estimator variance is

varθ(θ̂) = Eθ[(θ̂ − Eθ[θ̂])2].

Here the reader should recall the definition of the expectation operatorEθ: Eθ[g(X)] =
∫
X g(x)f(x; θ)dx,

where X is a r.v. with density f(x; θ). As compared to the Bayes expectation E[g(X)] used for
random parameters, this expectation acts like a conditional expectation given a specific value of
θ.

It is natural to require that a good estimator be unbiased, i.e., bθ(θ̂) = 0 for all θ ∈ Θ. This
suggests a reasonable design approach: constrain the class of admissible estimators to be unbiased
and try to find one that minimizes variance over this class. In some cases such an approach leads
to a really good, in fact optimal, unbiased estimator called a UMVU estimator (Fig. 25). A caveat
to the reader is necessary however: there exist situations where unbiasedness is not a desirable
property to impose on an estimator. For example there are models for which no unbiased estimator
of the model parameter exists and others for which the biased estimator has unreasonably high
MSE, see Exercises at the end of this chapter and [58, Sec. 7.11, 7.15]. Fortunately, such models
do not frequently arise in signal processing applications.

Definition: θ̂ is said to be a uniform minimum variance unbiased (UMVU) estimator if for all

θ ∈ Θ it has less variance than any other unbiased estimator ˆ̂
θ. Thus a UMVU estimator satisfies

varθ(θ̂) ≤ varθ(
ˆ̂
θ), θ ∈ Θ
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Figure 25: A UMVU estimator θ̂ is an unbiased estimator that has lower variance than any other unbiased
estimator ˆ̂

θ

Unfortunately, UMVU estimators only rarely exist for finite number n of samplesX1, . . . ,Xn. Thus
one is usually forced to sacrifice the unbiasedness constraint in order to develop good tractable
estimation procedures. For such estimators there exists an important relation between MSE,
variance and bias:

MSEθ(θ̂) = Eθ[(θ̂ − θ)2] = Eθ[
(
(θ̂ − Eθ[θ̂]) + (Eθ[θ̂]− θ)

)2
]

= Eθ[(θ̂ − Eθ[θ̂])2]︸ ︷︷ ︸
varθ(θ̂)

+
(
Eθ[θ̂]− θ

)2

︸ ︷︷ ︸
bθ(θ̂)

+2Eθ[θ̂ − Eθ[θ̂]]︸ ︷︷ ︸
=0

bθ(θ̂)

= varθ(θ̂) + b2θ(θ̂)

The above relation implies that in general, for specified MSE, there always exists a “bias-variance
tradeoff,” at least for good estimators: any reduction in bias comes at the expense of an increase
in variance.

We now get down to the business of defining some general procedures for designing good estimators
of non-random parameters. Two important classes of estimation procedures we will consider are:

* method of moments

* maximum likelihood

4.4.2 METHOD OF MOMENTS (MOM) SCALAR ESTIMATORS

The method of moments is a very natural procedure which consists in finding the parameter that
attains the best match between empirically computed moments and ensemble moments. Specifi-
cally, for positive integer k let mk = mk(θ) be the k-th order ensemble moment of f(x; θ):

mk = Eθ[Xk] =
∫
xkf(x; θ)dx.
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What if we could find a set of K moments such that some vector function h could be found that
satisfies

θ = h(m1(θ), . . . ,mK(θ)).

For example, let’s say we could compute a closed form expression g(θ) for the k-th ensemble
moment Eθ[Xk] and found that the function g was invertible. Then if someone only reported the
value mk of this ensemble moment without specifying the θ for which it was computed we could
recover θ by applying the inverse function

θ = g−1(mk).

Since g−1 recovers θ from the ensemble moment of X, if we only have access to an i.i.d. sample
X1, . . . ,Xn from f(x; θ) it makes sense to estimate θ by applying g−1 to an estimated moment
such as the empirical average

m̂k =
1
n

n∑
i=1

Xk
i ,

yielding the estimator
θ̂ = g−1(m̂k).

In many cases it is difficult to find a single ensemble moment that gives an invertible function
of θ. Indeed, using only the k-th moment we may only be able to find a constraint equation
g(θ) = m̂k that gives several possible solutions θ̂. In these cases, one can sometimes compute
other ensemble and empirical moments to construct more constraint equations and force a unique
solution. We will explore this approach in the examples below. Next we give some important
asymptotic optimality properties of MOM estimators (see Serfling [62] for proofs).

IMPORTANT PROPERTIES OF MOM ESTIMATORS

When the moments mk are smooth functions of the parameter θ and an inverse function g−1,
described above, exists:

1. MOM estimators are asymptotically unbiased as n→∞
2. MOM estimators are consistent

Note that MOM estimators are not always unbiased in the finite sample regime. There are, how-
ever, some inherent difficulties that one sometimes encounters with MOM which are summarized
below.

1. MOM estimator is not unique, i.e., it depends on what order moment is used.

2. MOM is inapplicable in cases where moments do not exist (e.g. Cauchy p.d.f.) or are unstable.

An alternative to MOM which can sometimes circumvent the existence problem is to match sample
and ensemble fractional momentsmk where k is a positive rational number less than one. Fractional
moments can exist when integer moments do not exist and can be quite useful in these situations
[63].

Let’s do some examples.

Example 13 X i.i.d. Bernoulli random variables
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Bernoulli measurements arise anytime one deals with (binary) quantized versions of continuous
variables, e.g., thresholded radar signals (”radar return is above or below a threshold”), failure
data, or digital media, e.g., Internet measurements. In these cases the parameter of interest is
typically the probability of success, i.e., the probability that the measured variable is a ”logical
1.”

The model is that X = [X1, . . . ,Xn] are i.i.d. with

Xi ∼ f(x; θ) = θx(1− θ)1−x, x = 0, 1.

Here θ ∈ [0, 1] or, more specifically, θ = P (Xi = 1), 1− θ = P (Xi = 0).

Objective: find a MOM estimator of θ

Note that for any k > 0 E[Xk
i ] = P (Xi = 1) = θ so that all moments are identical and the function

g mapping moments to θ is the identity map. Thus a MOM estimator of θ is simply sample mean:

θ̂ = X.

It is obvious that θ̂ is unbiased since Eθ[X] = m1 = θ. Furthermore, it has variance taking a
maximum at θ = 1

2 (Fig. 26)

varθ(X) = (m2 −m2
1)/n = θ(1− θ)/n.

1/2 10
θ

Figure 26: Variance of MOM estimator of probability of success of Bernoulli r.v.

Reiterating, for this Bernoulli example the order of the moment used in the moment matching
process leads to identical MOM estimators. This behavior of MOM is very unusual.

Example 14 X i.i.d. Poisson random variables

Poisson measurements are ubiquitous in many scenarios where there are counting measurements.
For example, in positron emission tomography (PET) the decay of an isotope in a particular spatial
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location within a patient’s body produces a gamma ray which is registered as a single ”count” on
a detector. The temporal record of the times at which these counts are registered on the detector
forms a Poisson process [65]. The total number of counts registered over a finite time interval
is a Poisson random variable with rate parameter determined by the mean concentration of the
isotope. The objective of a PET system is to reconstruct, i.e., estimate, the distribution of rates
over the imaging volume. The Poisson distribution is also frequently used as a model for the
number of components or degrees of freedom generating the measured values. For example, the
number of molecules in a mass spectroscopy measurement, the number of atoms in a molecule, or
the number of targets in a cell detected by a radar.

Again assuming i.i.d. measurements, the model for each data sample is

Xi ∼ p(x; θ) =
θx

x!
e−θ, x = 0, 1, 2, . . . ,

where θ > 0 is the unknown rate. It is readily verified that the mean m1 is equal to θ. Therefore,
like in the Bernoulli example a MOM estimator of θ is the sample mean

θ̂1 = X.

Alternatively, as the second moment satisfies m2 = θ+θ2, another MOM estimator is the (positive)
value of θ̂2 which satisfies the equation : θ̂2 + θ̂2

2 = 1
n

∑n
i=1X

2
i := X2, i.e.

θ̂2 =
−1±

√
1 + 4X2

2
.

As yet another example, we can express m2 as m2 = θ +m2
1 or θ = m2 −m2

1 = varθ(Xi). Hence,
a MOM estimator is

θ̂3 = X2 −X2 = n−1
n∑
i=1

(Xi −X)2.

Among all of these MOM estimators only the sample mean estimator is unbiased for finite n:

Eθ(θ̂1) = θ, varθ(θ̂1) = θ/n,

Eθ(θ̂3) =
n− 1
n

θ, varθ(θ̂3) ≈ (2θ2 + θ)/n.

Closed form expressions for bias and variance of θ̂2 do not exist.

You should notice that θ̂1 compares favorably to θ̂3 since it has both lower bias and lower variance.

We make the following observations.

1. θ̂1 is unbiased for all n.

2. θ̂2, θ̂3 are asymptotically unbiased as n→∞.

3. Consistency of θ̂1 and θ̂3 is directly verifiable from the above expressions for mean and variance
and Thebychev’s inequality.
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4.4.3 MAXIMUM LIKELIHOOD (ML) SCALAR ESTIMATORS

Maximum likelihood (ML) is arguably the most commonly adopted parametric estimation principle
in signal processing. This is undoubtedly due to the fact that, unlike other methods, ML usually
results in unique estimators and is straightforward to apply to almost all problems.

For a measurement X = x we define the “likelihood function” for θ

L(θ) = f(x; θ)

and the log-likelihood function
l(θ) = ln f(x; θ).

These should be viewed as functions of θ for a fixed value of x (Fig. 27). Readers may find it strange
that the x-dependence of the functions L(θ) and l(θ) is not indicated explicitly. This convention of
dropping such dependencies to clarify the “working” variable θ is common in statistics and signal
processing.

 θ(x1)
^

 θ(x2)
^

θ

 f(x;θ)

x1

x2

 maxθ f(x1;θ)

Figure 27: The likelihood function for θ

The ML estimator θ̂ is defined as the value of θ which causes the data x to become ”most likely,”
i.e., θ̂ makes it most likely that x was generated from f(x; θ). Mathematically, we have the
equivalent definitions

θ̂ = argmaxθ∈Θf(X; θ)

= argmaxθ∈ΘL(θ)

= argmaxθ∈Θl(θ).

In fact the ML estimate can be found by maximizing any monotone increasing function of L(θ).
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Important properties of ML estimators for smooth likelihoods (Ibragimov and Has’minskii [29],
Serfling [62]) are

Property 1. MLE’s are asymptotically unbiased. The proof requires additional technical condi-
tions.

Property 2. MLE’s are consistent. The proof requires additional technical conditions.

Property 3. Unlike many other estimators, e.g. MAP and UMVUE estimators, MLE’s are invariant
to any transformation of the parameters, i.e.,

ϕ = g(θ) ⇒ ϕ̂ = g(θ̂).

This is easy to see for monotone transformations (Fig. 28) but in fact it applies to arbitrary
transformations (See exercises).

 g(θ)

θ

θ

^

θ

^

^

ϕ

 ϕ = g(θ)

θ

f(x;θ)

^

Figure 28: Invariance of MLE to functional transformation g

Property 4: MLE’s are asymptotically UMVU in the sense that

lim
n→∞nvarθ(θ̂) =

1
F1(θ)

,

where F1 is a quantity known as the Fisher information, which will be introduced soon, and 1/F1

specifies the fastest possible asymptotic rate of decay of any unbiased estimator’s variance. The
proof requires additional technical conditions.

Property 5: MLE’s are asymptotically Gaussian in the sense

√
n(θ̂n − θ)→ Z, (i.d.)

where Z ∼ N (0, 1/F1(θ)). Here the notation i.d. denotes convergence in distribution. This
means that the cumulative distribution function (cdf) of

√
n(θ̂n − θ) converges to the (standard

normal) cdf of Z. The proof requires additional technical conditions.
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Property 6: The MLE is equivalent to the MAP estimator for a uniform prior f(θ) = c.

Property 7: If the MLE is unique, the MLE is a function of the data only through the sufficient
statistic.

Now let’s go back and revisit our MOM examples with the MLE in mind.

Example 15 X i.i.d. Bernoulli random variables

We can solve for the MLE in two ways: (1) considering the entire observation X; and (2) consid-
ering only a sufficient statistic T (X).

1. With the entire observation X = x the likelihood function is the product

L(θ) = f(x; θ) =
n∏
i=1

θxi(1− θ)1−xi .

Is is convenient to rewrite this in the form

L(θ) = θ
Pn

i=1 xi(1− θ)n−
Pn

i=1 xi

= θnxi(1− θ)n−nxi. (36)

As this function smooth and concave in θ, differentiation with respect to θ yields a stationary
point condition, the ”ML equation,” for the MLE θ̂

0 =
∂

∂θ̂
f(x; θ̂) = n

[
(1− θ̂)xi − θ̂(1− xi)

θ̂(1− θ̂)

]
f(x; θ̂).

Solving the equation (1− θ̂)xi − θ̂(1− xi) = 0 we obtain the MLE

θ̂ = X, (37)

which is identical to the MOM estimator obtained above.

2. Using the Fisher factorization (24) on the p.d.f. (36) of X it is easily seen that T (X) =∑n
i=1Xi is a sufficient statistic for θ. The distribution of T is binomial with parameter θ:

fT (t; θ) =
(
n

t

)
θt(1− θ)n−t, t = 0, . . . , n,

where the subscript T on the density of T is to clarify that this is the p.d.f. of the r.v. T .
Identification of t = nX reveals that this is of exactly the same form, except for a constant
multiplication factor, as (36). The ML equation is therefore the same as before and we obtain
the identical MLE estimator (37).

Example 16 X i.i.d. Poisson random variables

To find the MLE of the rate parameter θ express the density of the samples as:

f(x; θ) =
n∏
i=1

θxi

xi!
e−θ.
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The likelihood function L(θ) = f(x; θ) has to be maximized over θ to produce the MLE. It is more
convenient to deal with the log likelihood

θ̂ml = argmaxθ>0 lnL(θ)

and we have

l(θ) = ln f(x; θ)

= ln
n∏
k=1

θxk

xk!
e−θ

=
n∑
k=1

xk ln θ − nθ −
n∑
k=1

lnxk!︸ ︷︷ ︸
constant in θ

= xin ln θ − nθ + c,

where c is an irrelevant constant.

It is easily verified (look at second derivative) that the log-likelihood l(θ) is a smooth strictly
concave function of θ. Thus the MLE is the unique solution θ = θ̂ of the equation

0 = ∂ ln f/∂θ =
nxi
θ
− n.

We find that the MLE is identical to the first MOM estimator we found for this problem:

θ̂ = X,

which we know is unbiased with variance equal to θ.

Let’s check the asymptotic Gaussian property. Write

√
n(X − θ) =

√
n

(
1
n

n∑
i=1

(Xi − θ)
)

=
1√
n

n∑
i=1

(Xi − θ).

By the central limit theorem (CLT), this converges in distribution to a Gaussian r.v.

Eθ[
√
n(X − θ)] = 0

varθ(
√
n(X − θ)) = θ.

4.4.4 SCALAR CRAMÈR-RAO BOUND (CRB) ON ESTIMATOR VARIANCE

The CRB can be defined for both random and non-random parameters. However the CRB is more
useful for non-random parameters as it can be used to establish optimality or near optimality of
an unbiased candidate estimator. Unlike the non-random case, for random parameters the optimal
estimator and its MSE are functions of the known joint density of θ and X. Thus there exist more
accurate alternatives to the CRB for approximating estimator MSE, most of which boil down to
approximating an integral representation of the minimum mean squared error. We therefore focus
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our energies on the CRB for non-random parameters - the interested reader can refer to [73] for
the random case.

The Cramèr-Rao Lower Bound Let θ ∈ Θ be a non-random scalar and assume:

1. Θ is an open subset, e.g. (a, b), of IR.

2. f(x; θ) is smooth (Ibragimov and Has’minskii [29]) and differentiable in θ.

The following is the Cramèr-Rao bound for scalar θ

For any unbiased estimator θ̂ of θ

varθ(θ̂) ≥ 1/F (θ), , (38)

where “=” is attained iff for some non-random scalar kθ

∂

∂θ
ln f(x; θ) = kθ(θ̂ − θ). (39)

Here kθ is a constant that can depend on θ but not on x. When the CRB is attainable it is said
to be a tight bound and (39) is called the CRB tightness condition.

In the CRB F (θ) is the Fisher information which can be shown [73] to take on either of the
following two equivalent forms:

F (θ) = Eθ

[(
∂

∂θ
ln f(X; θ)

)2
]

= −Eθ
[
∂2

∂θ2
ln f(X; θ)

]
This latter second derivative form of the Fisher information can be used to show that the scalar
kθ in the tightness condition (39) is in fact equal to F (θ). To see this simply differentiate both
sides of the equation (39), take expectations, and use the fact that θ̂ is unbiased.

Before going on to some examples, we provide a simple derivation of the scalar CRB here. A more
detailed proof of the more general vector parameter CRB will be given later. There are three
steps to the derivation of the scalar CRB - assuming that interchange of the order of integration
and differentiation is valid. The first step is to notice that the mean of the derivative of the
log-likelihood is equal to zero:

Eθ[∂ ln fθ(X)/∂θ] = Eθ

[
∂fθ(X)/∂θ
fθ(X)

]
=
∫

∂

∂θ
fθ(x)dx

=
∂

∂θ

∫
fθ(x)︸ ︷︷ ︸
=1

dx

= 0
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The second step is to show that the correlation between the derivative of the log-likelihood and
the estimator is a constant:

Eθ[(θ̂(X)− Eθ[θ̂])(∂ log fθ(X)/∂θ)] =
∫

(θ̂(x)− Eθ[θ̂])
∂

∂θ
fθ(x)dx

=
∂

∂θ

∫
θ̂(x)fθ(x)︸ ︷︷ ︸
=Eθ[θ̂]=θ

dx

= 1

Where we have used the result of step 1 in line 2 above. Finally, apply the Cauchy-Schwarz (CS)
inequality E2[UV ] ≤ E[U2]E[V 2] to obtain:

1 = E2
θ [(θ̂(X)− Eθ[θ̂])(∂ ln fθ(X)/∂θ)]

≤ Eθ[(θ̂(X)− Eθ[θ̂])2] · Eθ[(∂ ln fθ(X)/∂θ)2]
= varθ(θ̂) · F (θ).

Equality occurs in the CS inequality if and only if U = kV for some non-random constant k. This
gives (38) and completes the derivation of the CRB.

To illustrate the CRB let’s go back and reconsider one of the previous examples.

Example 17 CRB for the Poisson rate

Assume again that X = [X1, . . . ,Xn] is a vector of i.i.d. Poisson random variables

Xi ∼ f(x; θ) =
θx

x!
e−θ, x = 0, 1, 2, . . .

To find the CRB we must first compute the Fisher information. Start with

ln f(x; θ) =
n∑
k=1

xk ln θ − nθ −
n∑
k=1

lnxk!︸ ︷︷ ︸
constant in θ

,

and differentiate twice

∂ ln f(x; θ)/∂θ =
1
θ

n∑
k=1

xk − n (40)

∂2 ln f(x; θ)/∂θ2 = − 1
θ2

n∑
k=1

xk. (41)

Therefore, as E[
∑n

k=1Xk] = nθ, the Fisher information given the n i.i.d. samples is

Fn(θ) =
n

θ
.

The CRB asserts that for any unbiased estimator of the Poisson rate θ

varθ(θ̂) ≥
θ

n
.
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It is useful to make the following key observations.

Observation 1: From example (14) we know that the sample meanX is unbiased and has varθ(X) =
θ/n. This is equal to the CRB and we conclude the CRB is tight.

Observation 2: In fact we could have concluded by inspection that the unbiased estimator X
achieves the CRB; i.e., without having to explicitly compute its variance and compare to one
over the Fisher information. This follows from the fact that equation (40) implies that the CRB
tightness condition (39) is satisfied:

∂ ln f(X; θ)/∂θ =
1
θ

n∑
k=1

Xk − n =
n

θ︸︷︷︸
kθ

( X︸︷︷︸
θ̂

−θ). (42)

Furthermore, once tightness is established in this fashion the variance of X can be computed by
computing the CRB. This indirect method can sometimes be simpler than direct computation of
estimator variance.

Observation 3: the expectation of the right hand side of (42) is zero since θ̂ is unbiased. This
implies that

Eθ [∂ ln f(X; θ)/∂θ] = 0.

The interpretation is that the gradient at θ of the log-likelihood is an unbiased estimator of zero
when θ is the true parameter, i.e. the parameter appearing in the subscript of the expectation. This
relation is generally true: it holds for any density satisfying the differentiability and smoothness
conditions [29]) sufficient for existence of the CRB.

GENERAL PROPERTIES OF THE SCALAR CRB

Property 1. The Fisher information is a measure of the average (negative) curvature of the log
likelihood function ln f(x; θ) near the true θ (Kass and Voss [34]) (Fig. 30).

θ

 l(θ) = ln f(x;θ)

 curvature

Figure 29: The curvature of the log likelihood function ln f(x; θ) in the vicinity of true θ



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 81

Property 2. Let Fn(θ) be the Fisher information for a sample of n i.i.d. measurements X1, . . . ,Xn.
Then

Fn(θ) = nF1(θ).

Hence, for smooth likelihood functions of continuous parameters, and unbiased estimators, the
variance varθ(θ̂) cannot decay faster than order 1/n

Proof of Property 2:

Since X = [X1, . . . ,Xn]T are i.i.d.

f(x; θ) =
n∏
i=1

f(xi; θ)

so that

Fn(θ) = −E
[
∂2

∂θ2
ln f(X; θ)

]

= −E
[

n∑
i=1

∂2

∂θ2
ln f(Xi; θ)

]

=
n∑
i=1

−E
[
∂2

∂θ2
ln f(Xi; θ)

]
︸ ︷︷ ︸

F1(θ)

�
For unbiased estimators, the CRB specifies an unachievable region of variance as a function of
n (Fig. 30). Good unbiased estimators θ̂ = θ̂(X1, . . . ,Xn) of scalar continuous parameters have
variance that behaves as varθ(θ̂) = O(1/n).

Property 3. If θ̂ is unbiased and varθ(θ̂) attains the CRB for all θ, θ̂ is said to be an efficient
estimator. Efficient estimators are always UMVU (but not conversely, e.g., see counterexample in
[58, Ch 9]). Furthermore, if an estimator is asymptotically unbiased and its variance decays with
optimal rate constant

lim
n→∞ bθ(θ̂) = 0, lim

n→∞nvarθ(θ̂) = 1/F1(θ),

where F1 is the Fisher information given a single sample Xi, then θ̂ is said to be asymptotically
efficient.

Exponential families play a special role with regard to efficiency. In particular, ifX is a sample from
a density in the exponential family with scalar parameter θ having the mean value parameterization
(recall discussion in Sec. 3.5.4) then (See exercise 4.32)

θ = Eθ[t(X)] (43)
F (θ) = 1/varθ(t(X)), (44)

where F (θ) is the Fisher information given the sample X. Therefore, if one has an i.i.d. sample
X = [X1, . . . ,Xn]T from such a density then θ̂ = n−1

∑n
i=1 t(Xi) is an unbiased and efficient

estimator of θ.
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var
^

Achievable region

Figure 30: The CRB defines an unachievable region of variance which is under the CRB curve, indicated by
the unshaded area. Good unbiased estimators of continuous parameters have variance that decays as 1/n.

Somewhat surprisingly, the next property states that efficient estimators can exist only when the
sample comes from an exponential family with mean value parameterization.

Property 4. Efficient estimators for θ can only exist when the underlying model is in an exponential
family, defined in Sec. 3.5.4:

f(x; θ) = a(θ)b(x)e−c(θ)t(x).

and when Eθ[t(X)] = θ, i.e., the density is in its mean value parameterization.

Proof of Property 4:

Without loss of generality we specialize to the case of a single sample n = 1 and Θ = (−∞,∞).
Recall the condition for equality in the CR bound to be achieved by an estimator θ̂ is that the
p.d.f. be expressible as

∂

∂θ
ln f(x; θ) = kθ(θ̂ − θ). (45)

For fixed θo, integrate the LHS of condition (45) over θ ∈ [θo, θ′]∫ θ′

θo

∂

∂θ
ln f(x; θ)dx = ln f(x; θ′)− ln f(x; θo).

On the other hand, integrating the RHS of the condition∫ θ′

θo

kθ(θ̂ − θ)dθ = θ̂

∫ θ′

θo

kθdθ︸ ︷︷ ︸
c(θ′)

−
∫ θ′

θo

kθθdθ︸ ︷︷ ︸
d(θ′)

.
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Or combining the integrals of RHS and LHS of (45)

f(x; θ) = e−d(θ)︸ ︷︷ ︸
a(θ)

f(x; θo)︸ ︷︷ ︸
b(x)

e−c(θ)

t(x)︷︸︸︷
θ̂ .

�
We illustrate the above properties with two more examples.

Example 18 Parameter estimation for the exponential density.

A non-negative random variable X has an exponential density with mean θ if its p.d.f. is of the
form f(x; θ) = θ−1exp(−x/θ) where θ > 0. The exponential random variable is commonly used as
a model for service time or waiting time in networks and other queuing systems. You can easily
verify that this density is in the exponential family specified by a(θ) = θ−1, b(x) = I[0,∞)(x),
c(θ) = −θ−1 and t(x) = x. As Eθ[X] = θ the p.d.f. f(x; θ) is in its mean value parametrization
and we conclude that the sample mean X is an unbiased estimator of θ. Furthermore, it is efficient
and therefore UMVU when n i.i.d. observations X = [X1, . . . ,Xn]T are available.

NOTE: we cannot conclude from the above arguments that 1/X is an efficient estimator of 1/θ.

Example 19 X i.i.d., Xi ∼ N (θ, σ2)

The Gaussian ”bell curve” distribution arises in so many applications that it has become a standard
model. Use of this model is usually justified by invocation of the Central Limit Theorem as
describing the measurements, or measurement noise, as the sum of many small contributions, e.g.
random atomic collisions, scattered light, aggregation of repeated measurements.

Our first objective will be to find the MLE and CRB for estimating the mean θ of univariate
Gaussian with known variance σ2. As the Gaussian with unknown mean is in the exponential
family we could take the same approach as above to find efficient estimators. But let’s spice things
up and follow an alternative route of trying to tease an efficient estimator out of the tightness
condition in the CRB.

f(x; θ) =
(

1√
2πσ2

)n
exp

{
− 1

2σ2

n∑
k=1

(xk − θ)2
}
.

Or

ln f(x; θ) = −n
2

ln(σ2)− 1
2σ2

n∑
k=1

(xk − θ)2 + c,

where c is constant. Compute the first derivative

∂ ln f/∂θ =
1
σ2

n∑
k=1

(xk − θ)

=
n

σ2︸︷︷︸
kθ

(xi − θ). (46)
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Thus the CRB tightness condition (39) is satisfied and we can identify, once again, the sample
mean xi as the optimal estimator of the common mean of a Gaussian sample.

We take another derivative of the log-likelihood with respect to θ and invert it to verify what we
already knew about the variance of the sample mean

varθ(X) = 1/Fn(θ) = σ2/n.

The first inequality is only true since we know that X is efficient.

Note that the leading factor in the tight CRB condition (46) is: kθ = var−1
θ (X). This is always

true for efficient estimators when kθ does not depend on θ.

4.5 ESTIMATION OF MULTIPLE NON-RANDOM PARAMETERS

We now turn the more general problem of many unknown deterministic parameters. This problem
is quite different from the previously studied case of multiple random parameters since there is no
joint posterior density to marginalize. First we arrange all unknown parameters in a vector:

θ = [θ1, . . . , θp]T ,

and state the problem as finding a vector valued estimator θ̂ of θ.

The joint density for the measurements X is written as:

f(x; θ1, . . . , θp) = f(x; θ).

POSSIBLE ESTIMATOR PERFORMANCE CRITERIA

As for a scalar estimator we define the vector estimator bias vector:

bθ(θ̂) = Eθ[θ̂]− θ,

and the symmetric estimator covariance matrix:

covθ(θ̂) = Eθ[(θ̂ − E[θ̂])(θ̂ − E[θ̂])T ]

=

⎡⎢⎢⎢⎢⎣
varθ(θ̂1) covθ(θ̂1, θ̂2) . . . covθ(θ̂1, θ̂p)

covθ(θ̂2, θ̂1) varθ(θ̂2)
. . .

...
...

. . . . . .
...

covθ(θ̂p, θ̂1) · · · · · · varθ(θ̂p)

⎤⎥⎥⎥⎥⎦ .
This matrix is often referred to as the variance-covariance matrix.

In many cases, only the diagonal entries of the estimator covariance matrix, i.e. the component
estimator variances, will be of interest. However, as we will soon see, the entire estimator covariance
matrix is very useful for generalizing the scalar parameter CRB.

We can also define the estimator concentration:

Pθ(‖θ̂ − θ‖ > ε) =
∫
‖θ̂−θ‖>ε

f(θ̂; θ)dθ̂

=
∫
{x:‖θ̂(x)−θ‖>ε}

f(x; θ)dx

The first order of business is to extend the CRB to vector parameters, called the matrix CRB.
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4.5.1 MATRIX CRAMÈR-RAO BOUND (CRB) ON COVARIANCE MATRIX

Let θ ∈ Θ be a p× 1 vector and assume:

1. Θ is an open subset of IRp

2. f(x; θ) is smooth [29] and differentiable in θ

3. covθ(θ̂) and F(θ) (defined below) are non-singular matrices

The matrix CRB for vector valued parameters is the following. For any unbiased estimator θ̂ of θ

covθ(θ̂) ≥ F−1(θ), (47)

where “=” is attained iff the following is satisfied for some non-random matrix Kθ

Kθ∇θ ln f(X; θ) = θ̂ − θ. (48)

In the case that this tightness condition (48) is satisfied θ̂ is said to be an efficient vector estimator.

In the matrix CRB (47) F(θ) is the Fisher information matrix, which takes either of two equivalent
forms,

F(θ) = E
[(
∇θ ln f(X; θ)

) (
∇θ ln f(X; θ)

)T ]
= −E

[
∇2
θ ln f(X; θ)

]
.

where we have defined the gradient operator

∇θ =
[
∂

∂θ1
, . . . ,

∂

∂θp

]T
,

and the symmetric Hessian (curvature) operator

∇2
θ =

⎡⎢⎢⎢⎢⎢⎢⎣

∂2

∂θ21

∂2

∂θ1∂θ2
. . . ∂2

∂θ1∂θp

∂2

∂θ2∂θ1
∂2

∂θ22

. . .
...

...
. . . . . .

...
∂2

∂θp∂θ1
· · · · · · ∂2

∂θ2p

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix CR Bound (47) has a few more properties than the scalar CRB.

Property 1: The inequality in the matrix bound should be interpreted in the sense of positive
definiteness. Specifically if A,B are p× p matrices

A ≥ B ⇐⇒ A−B ≥ 0,

where A−B ≥ 0 means A−B is non-negative definite. This means that, in particular,

zT (A−B)z ≥ 0

for any vector z ∈ IRp, and all eigenvalues of A − B are non-negative. For example, choosing
z = [1, 0, . . . , 0]T : and z = [1, . . . , 1]T , respectively, A ≥ B, A ≥ B implies both

aii ≥ bii, and
∑
i,j

aij ≥
∑
ij

bij .
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However, A ≥ B does NOT mean aij ≥ bij in general. A simple counterexample is constructed as
follows. Let 0 < ρ < 1 and consider[

2 0
0 2

]
︸ ︷︷ ︸

A

−
[

1 ρ
ρ 1

]
︸ ︷︷ ︸

B

=
[

1 −ρ
−ρ 1

]
,

which has two eigenvalues 1− ρ > 0 and 1 + ρ > 0. Hence A−B > 0 while clearly a12 = 0 �> ρ.

Property 2: The matrix inequality (47) implies a scalar CRB on the variance of the i-th component
of an unbiased vector estimator θ̂

varθ(θ̂i) ≥ [F−1(θ)]ii,

where the right hand side (RHS) denotes the i-th element along the diagonal of the inverse Fisher
information matrix.

Property 3. Fisher information matrix is a measure of the average curvature profile of the log
likelihood near θ

Property 4. Let Fn(θ) be the Fisher information for a sample of n i.i.d. measurements X1, . . . ,Xn.
Then, as in the scalar parameter case,

Fn(θ) = nF1(θ).

Hence varθ(θ̂) = O(1/n) is also expected for good estimators of multiple unknown continuous
valued parameters.

Property 5. Efficient vector estimators only exist for multiparameter exponential families with
mean value parameterization

f(x; θ) = a(θ)b(x)e−[c(θ)]T [t(x)]

and
Eθ[t(X)] = θ.

Furthermore, in this case E[n−1
∑n

i=1 t(Xi)] = θ, θ̂ = n−1
∑n

i=1 t(Xi) is an unbiased efficient
estimator of θ.

Property 6. If an estimator θ̂ satisfies

∇θ ln f = Kθ(θ̂ − θ),

for some non-random matrix Kθ then we can immediately conclude:

1. θ̂ is unbiased since, as shown in proof of the multiple parameter CRB;

Eθ[∇θ ln f(X; θ)] = 0,

2. θ̂ is efficient and thus its components are UMVU estimators;
3. The covariance of θ̂ is given by the inverse Fisher information F(θ);
4. Kθ is the Fisher information F(θ) since

Eθ[∇2
θ ln f(X, θ)] = Eθ[∇Tθ∇θ ln f(X, θ)] = Eθ[∇θ{Kθ(θ̂ − θ)}]

and, by the chain rule and the unbiasedness of θ̂

Eθ[∇θ{Kθ(θ̂ − θ)}] = ∇θ{Kθ}Eθ[(θ̂ − θ)}] + KθEθ[∇θ{(θ̂ − θ)}] = −Kθ
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5. The estimator covariance is
covθ(θ̂) = K−1

θ .

Proof of Matrix CR bound:

There are 3 steps in our derivation, which, with one exception, is a direct generalization of the
proof of the scalar CRB: (1) show that the gradient of the log-likelihood is zero mean; (2) the
correlation between the gradient of the log-likelihood and estimator is constant; (3) the covariance
matrix of the concatenated gradient and estimator error gives a relation between Fisher info and
estimator covariance.

Step 1. Show Eθ
[
∇θ ln f(X; θ)

]
= 0.

⇒ = Eθ

[
1

f(X; θ)
∇θf(X; θ)

]
=
∫
X
∇θf(x; θ)dx

= ∇θ
∫
X
f(x; θ)dx︸ ︷︷ ︸

=1

= 0.

Step 2. Eθ
[
∇θ ln f(X; θ) (θ̂ − θ)T

]
= I.

First observe

Eθ

[
∇θ ln f(X; θ) θ̂

T
]

= Eθ

[
1

f(X; θ)
∇θf(X; θ)θ̂

T
]

=
∫
X
∇θf(x; θ)θ̂

T
(x)dx

= ∇θ
∫
X
f(x; θ)θ̂

T
(x)dx︸ ︷︷ ︸

Eθ[θ̂
T

]=θT

= I.

Now putting this together with result of the previous step

Eθ

[
∇θ ln f(X; θ) (θ̂ − θ)T

]
= Eθ

[
∇θ ln f(X; θ) θ̂

T
]

︸ ︷︷ ︸
=I

−Eθ
[
∇θ ln f(X; θ)

]︸ ︷︷ ︸
=0

θT .

Step 3. Define a 2p× 1 random vector U :

U =
[

θ̂ − θ
∇θ ln f(X; θ)

]
. (49)

Since any matrix expressed as an outer product of two vectors is non-negative definite

Eθ
[
UUT

]
≥ 0.
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Using the results of steps 1 and 2, we have

Eθ
[
UUT

]
=
[

covθ(θ̂) I
I F(θ)

]
≥ 0.

It only remains to apply the result of Sec. 2.4 to the above partitioned matrix to see that this
implies that

covθ(θ̂)− F−1(θ) ≥ 0.

An alternative, and more direct, way to show this is to let w and y be arbitrary p-vectors and

define v =
[
w
y

]
. Then, as vT Eθ

[
UUT

]
v ≥ 0,

wT covθ(θ̂)w + 2wT y + yTF(θ)y ≥ 0.

Taking y = −F−1(θ) w in the above we obtain

wT [covθ(θ̂)− F−1(θ)]w ≥ 0.

It remains to obtain the tightness condition ensuring equality in the CRB. Note first that if
covθ(θ̂) = F−1 then Eθ[UUT ] necessarily has rank p (see exercises at end of chapter). This can
only happen if the random vector U (49) has p linearly independent components. As covθ(θ) and
F(θ) have been assumed non-singular, θ̂ − θ can have no linear dependencies and neither does
∇θ ln f . Hence it can only be that

Kθ∇θ ln f = θ̂ − θ

for some non-random matrix Kθ. In other words the gradient of the log likelihood lies in the span
of the estimator errors. �
We move on to generalizations of MOM and ML estimators to the vector parameter case.

4.5.2 METHODS OF MOMENTS (MOM) VECTOR ESTIMATION

Let mk = mk(θ) be the k-th order moment of f(x; θ). The vector MOM estimation procedure
involves finding K moments such that the vector function of θ ∈ IRp

g(θ) = [m1(θ), . . . ,mK(θ)]

can be inverted, i.e., there exists a unique value θ satisfying

θ = g−1(m1, . . . ,mK).

As in the scalar case, the MOM estimator is constructed by replacingmk with its empirical estimate

θ̂ = g−1(m̂1, . . . , m̂K),

where m̂k = 1
n

∑n
i=1X

k
i .
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4.5.3 MAXIMUM LIKELIHOOD (ML) VECTOR ESTIMATION

The vector MLE is an obvious generalization of the scalar MLE

θ̂ = argmaxθ∈Θf(X; θ).

For smooth likelihood functions, vector MLEs have several key properties ([29]):

1. Vector MLE’s are asymptotically unbiased;

2. Vector MLE’s are consistent;

3. Vector MLE’s are invariant to arbitrary vector transformations;

ϕ = g(θ) ⇒ ϕ̂ = g(θ̂);

4: Vector MLE’s are asymptotically efficient and thus their component estimators are asymptoti-
cally UMVU;

5. Vector MLE’s are asymptotically Gaussian in the sense
√
n(θ̂n − θ)→ z, (i.d.)

where z ∼ Np(0,F−1
1 (θ)) and F1(θ) is the single sample Fisher information matrix

F1(θ) = −Eθ
[
∇2
θ log f(X1; θ)

]
.

A couple of examples will illustrate these estimators.

Example 20 Joint estimation of mean and variance in a Gaussian sample

This is an extension of Example 20 to the case where both the mean and the variance are unknown.
Assume an i.i.d. sample X = [X1, . . . ,Xn] of Gaussian r.v.s Xi ∼ N (μ, σ2). The unknowns are
θ = [μ, σ2].

The log-likelihood function is

l(θ) = ln f(x; θ) = −n
2

ln(σ2)− 1
2σ2

n∑
k=1

(xk − μ)2 + c. (50)

A. MOM approach to estimation:

We know that m1 = μ, m2 = σ2 + μ2 and thus

μ = m1, σ2 = m2 −m2
1.

Hence a MOM estimator of θ is:

θ̂ = [μ̂, σ̂2]
= [m̂1, m̂2 − m̂2

1]

=
[
X,X2 −X2

]
=
[
X, (X −X)2

]
.
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As usual we denote

X = n−1
n∑
k=1

Xk

(X −X)2 = n−1
n∑
k=1

(Xk −X)2 =
n− 1
n

s2,

and

s2 = (n− 1)−1
n∑
k=1

(Xk −X)2

is the sample variance.

B. ML approach.

As l(θ) (50) is a concave function (verify that −∇2
θ ln f is positive definite) we can use the likelihood

equation (stationary point condition) for finding θ = θ̂

0 = ∇θ ln f(x; θ) =

⎡⎢⎣
1
θ2

∑n
k=1(xk − θ1)

n/2
θ2
− 1

2θ22

∑n
k=1(xk − θ1)2

⎤⎥⎦ .
Therefore,

θ̂1 = μ̂ = X, θ̂2 = σ̂2 =
n− 1
n

s2,

so that the MLE and MOM estimators are identical.

Let’s consider the performance of the ML/MOM estimator. The bias and covariance are simple
enough to compute (recall that in Sec. 3.4 we showed that (n− 1)s2/σ2 is Chi square distributed
with n− 1 degrees of freedom):

Eθ[μ̂] = μ︸ ︷︷ ︸
unbiased

, Eθ[σ̂2] =
(
n− 1
n

)
σ2︸ ︷︷ ︸

biased

;

varθ(X) = σ2/n;

and

varθ(σ̂2) =
(
n− 1
n

)2

varθ(s2) = 2σ4/n

(
n− 1
n

)
.

Since the sample mean and sample variance are uncorrelated (recall Sec. 3.4)

covθ(θ̂) =
[
σ2/n 0

0 2σ4/n
(
n−1
n

) ] . (51)

Next we compute the Fisher information matrix by taking the expectation of the Hessian−∇2
θ ln f(X; θ)

F(θ) =
[
n/σ2 0

0 n/(2σ4)

]
, (52)



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 91

giving the CR bound

covθ(θ̂) ≥
[
σ2/n 0

0 2σ4/n

]
. (53)

Some interesting observations are the following:

Observation 1. MOM and ML estimators derived above have covariances which violate the CR
bound (compare the (2,2) elements of matrices (51) and the RHS of (53)). This is not a contra-
diction since the ML variance estimator is not unbiased!

Observation 2. Consider the bias-corrected estimator of [μ, σ2]T

ˆ̂
θ = [X, s2]T .

This estimator is unbiased. Now, as s2 =
(

n
n−1

)
σ̂2

varθ(s2) =
(

n

n− 1

)2

varθ(σ̂2),

covθ(
ˆ̂
θ) =

[
σ2/n 0

0 2σ4/n
(

n
n−1

) ] ≥ F−1(θ).

We conclude that the bias-corrected estimator’s covariance no longer violates the CRB. Indeed,
X is efficient estimator of μ since

varθ(μ̂) = [F−1]11 = σ2/n.

However, s2 is not an efficient estimator of σ2 since

varθ(s2) > [F−1]22.

Observation 3. as predicted, the MLE is asymptotically efficient as n→∞.

ncovθ(θ̂) =
[
σ2 0
0 2σ4

(
n−1
n

) ] → [
σ2 0
0 2σ4

]
= F−1

1 (θ).

Observation 4. We can also verify that, as predicted, [μ̂, σ̂2] is asymptotically Gaussian. It suffices
to consider the following results:

a) μ̂ and σ̂2 are independent r.v.s;

b)
√
n(μ̂− μ) = N (0, σ2);

c)
√
n(s2 − σ2) = σ2√n(χ2

n−1/(n − 1)− 1);

d) χ2
ν ∼ N (ν, 2ν), ν →∞.

Observation 5. We can easily manipulate the condition for equality in the CR bound to find an
efficient vector estimator (but not of θ as originally specified!):

∇θ ln f(X; θ) = Kθ

[
X − μ

X2 − (σ2 + μ2)

]
,
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where

Kθ :=
[
n/σ2 0

0 n/2σ4

] [
1 0
2μ 1

]−1

.

As the sample moments are unbiased estimates of the ensemble moments, we conclude that X,X2

are efficient estimators of the first moment E[X] = μ and second (non-central) moment E[X2] =
σ2 + μ2, respectively.

We continue with another example, which requires special treatment due to functional dependen-
cies that exist between parameters.

Example 21 N = [N1, . . . , Np]T a multinomial random vector

The multinomial model is a generalization of the binomial model to more than two categories, ”0”
and ”1”, of outcome. Let the outcome Z of a single trial be one of the p elementary vectors in IRp,
e1 = [1, 0, . . . , 0]T , . . . , ep = [0, 0, . . . , 1]T , with probabilities θ1, . . . , θp, respectively. The vector ek
could be a tag attached to the event that a random throw of a die resulted in a face with k dots
(p = 6) or that a symbol received by a teletype (who remembers those?) corresponds to the k-th
letter of the alphabet (p = 27). The multinomial model describes the distribution of the sum

N = [N1, . . . , Np]T =
n∑
i=1

Zi

of these vectors obtained after n i.i.d. trials.

The probability of a particular multinomial outcome N gives the probability mass function

p(N ; θ) =
n!

N1! · · · Np!
θN1
1 . . . θ

Np
p .

where Ni ≥ 0 are integers satisfying
∑p

i=1Ni = n and θi ∈ [0, 1] are cell probabilities satisfying∑p
i=1 θi = 1.

A MOM estimator of θ is obtained by matching the first empirical moment N to the first ensemble
moment Eθ[N ] = θn. This yields the estimator θ̂ = N/n, or more explicitly

θ̂ =
[
N1

n
, . . . ,

Np

n

]
To find the MLE of θ we need to proceed with caution. The p parameters θ live in a p−1 subspace
of IRp due to total cell probability constraint. We can find the MLE either by reparameterization
of the problem or by using Lagrange multipliers. The Lagrange multiplier method will be adopted
here.

To account for the constraint we replace the log-likelihood function with the penalized log-
likelihood function

J(θ) = ln f(N ; θ)− λ
(

p∑
i=1

θi − 1

)
,

where λ is a Lagrange multiplier which will be selected. in order to satisfy the constraint.
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Now as J is smooth and concave we set the gradient of J(θ) to zero to find the MLE:

0 = ∇θJ(θ) = ∇θ

[
p∑
i=1

Ni ln θi − λθi

]

=
[
N1

θ1
− λ, . . . , Np

θp
− λ
]
.

Thus
θ̂i = Ni/λ, i = 1, . . . , p

Finally, we find λ by forcing θ̂ to satisfy constraint

p∑
i=1

Ni/λ = 1 ⇒ λ =
p∑
i=1

Ni = n.

The solution to this equation gives the MLE and it is identical to the MOM estimator.

To derive the CRB requires more advanced theory of constrained CR bounds [20] since the θi’s
are linearly dependent.

4.6 HANDLING NUISANCE PARAMETERS

In many cases only a single parameter θ1 is of direct interest while the other unknowns θ2, . . . , θp
are nuisance parameters which are not of interest. For example, in the Gaussian example with
both unknown mean and variance, Example 20, the variance may not be of intrinsic interest. In
this example, we found that the estimator covariance is diagonal, which implies that there is no
correlation between the mean parameter estimation errors and the variance parameter estimation
errors. As we will see below, this means that the variance is a rather benign nuisance parameter
since knowledge or lack of knowledge of the variance does not affect the variance of the ML
mean estimator. We divide the discussion of nuisance parameters into the cases of random and
non-random parameters.

CASE I: HANDLING RANDOM NUISANCE PARAMETERS:

For random parameters the average loss only penalizes θ̂1’s estimation errors:

E[c(θ̂1, θ1)] =
∫

Θ1

dθ1

∫
X
dx c(θ̂1(x), θ1)f(x|θ1)f(θ1).

The prior on θ1 is computed from the prior on θ

f(θ1) =
∫
dθ2 . . .

∫
dθp f(θ1, θ2, . . . , θp).

The conditional density of X given θ1 is therefore

f(x|θ1) =
∫
dθ2 . . .

∫
dθp f(x|θ1, θ2, . . . , θp)f(θ2, . . . , θp|θ1),

yielding the posterior on θ1

f(θ1|x) =
∫
dθ2 . . .

∫
dθp f(θ1, . . . , θp|x).
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Observe that explicit estimates of θ2, . . . , θp are not required to implement the posterior distri-
bution of θ1. However, integration (marginalization) of the conditional density over θ2, . . . , θp is
required and this may be quite difficult.

CASE II: HANDLING NON-RANDOM NUISANCE PARAMETERS:

The case of non-random parameters is quite different. The average loss still only penalizes for θ̂1
estimation errors but nonetheless depends on all unknowns:

Eθ[C] =
∫
X
c(θ̂1(x), θ1)f(x; θ) dx.

The maximum Likelihood Estimator of θ1 is simply

θ̂1 = argmaxθ1

(
max
θ2,...,θp

log f(X|θ1, θ2, . . . , θp)
)
.

Note that now we require maximization over all nuisance parameters or, equivalently, explicit
estimates of the nuisance parameters are necessary.

CR BOUND PREDICTIONS FOR NON-RANDOM NUISANCE PARAMETERS

As above let’s say we are interested in unbiased estimation of only the first entry θ1 in the vector
of unknown parameters θ. Our derivation of the matrix CRB (47) made the explicit assumption
that there existed unbiased estimators of all of the parameters. It turns out that this restriction
is unnecessary when only θ1 is of interest (see exercises).

Assume that θ = [θ1, . . . , θp]T is an unknown parameter vector. The variance of any unbiased
estimator θ̂1 of θ1 obeys the lower bound:

varθ(θ̂) ≥ [[F−1(θ)]]11, (54)

where equality occurs iff there exists a nonrandom vector hθ such that

hTθ∇θ ln f(X; θ) = (θ̂1 − θ1).

In (54) [[A]]ij denotes the ij entry of matrix A, and as before

F(θ) = −E

⎡⎢⎢⎢⎢⎢⎢⎣

∂2l(θ)
∂θ21

∂2l(θ)
∂θ1∂θ2

. . . ∂2l(θ)
∂θ1∂θp

∂2l(θ)
∂θ2∂θ1

∂2l(θ)
∂θ22

. . .
...

...
. . . . . .

...
∂2l(θ)
∂θp∂θ1

· · · · · · ∂2l(θ)
∂θ2p

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and l(θ) = ln f(x; θ).

Let the Fisher matrix be partitioned as

F(θ) =
[
a bT

b C

]
,

where

* a = −Eθ[∂2 ln f(X; θ)/∂θ2
1 ] = Fisher info for θ1 without nuisance parameters,
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* b = −Eθ[∂∇θ2,...,θp ln f(X; θ)/∂θ1] = Fisher coupling of θ1 to nuisance parameters,

* C = −Eθ[∇2
θ2,...,θp

ln f(X ; θ)] = Fisher info for nuisance parameters.

Using the partitioned matrix inverse identity (2) the RHS of CRB (54) can be expressed as

[[F−1(θ)]]11 =
1

a− bTC−1b
.

This gives several insights:

Observation 1: [[F−1(θ)]]11 ≥ 1/a = 1/[[F(θ)]]11. Thus presence of nuisance parameters can only
degrade estimator performance;

Observation 2: the amount of degradation is directly proportional to the amount of information
coupling between θ1 and θ2, . . . , θp;

Observation 3: no degradation occurs when the Fisher matrix is block diagonal;

4.7 BACKGROUND REFERENCES

One of my favorite introductory texts covering estimation theory is the book on mathematical
statistics by Mood, Graybill and Boes [48], mentioned before, which is concise, easy to read,
and has many interesting examples and exercises. Nice books on this subject that focus on the
Bayesian point of view are Ferguson and [16] and DeGroot [14]. A good survey of Bayesian tools
for statistical inference, and estimation in particular, is the book by Tanner [71]. Texts which
have more of an engineering flavor are the now classic book by Van Trees [73], and the more
recent books by Kay [36], Srinath, Rajasekaran and Viswanathan [67], and Scharf [60]. For a more
advanced treatment, requiring some background in real analysis, I like Bickel and Doksum [7],
Lehmann [40], and Ibragimov and Has’minskii [29], and Poor [55].

4.8 EXERCISES

4.1 Prove the formula |a+ Δ| = |a|+ sgn(a)Δ + [sgn(a+ Δ)− sgn(a)](a + Δ) in Sec. 4.2.2.

4.2 Show the equivalence of the two expressions (29) and (30).

4.3 Let X = [X1, . . . ,Xn]T be a vector of i.i.d. r.v.s Xi which are uniformly distributed over the
interval (θ1, θ2), θ1 < θ2. Find the maximum likelihood estimator of θ.

4.4 Let Zi, i = 1, . . . , n, be a set of i.i.d. random variables each with the alpha density

pθ(z) =
β√

2πΦ(α)z2
exp
(
− 1

2 [α− β/z]2
)
,

where β > 0 is unknown, α is known and Φ(x) =
∫ x
−∞

1√
2π
e−u2/2du is the standard normal

CDF. Assuming that α = 0 and that β has an exponential prior density: p(β) = 1
σβ
e−β/σβ ,

where σβ > 0 is known. Find an expression for the MAP estimate of β. What does the MAP
estimate reduce to as σβ →∞ (least informative prior)?

4.5 Let Wi, i = 1, . . . , n, be a set of zero mean i.i.d. Gaussian random variables with variance
σ2
w. Let a be a zero mean Gaussian random variable with variance σ2

a which is independent
of Wi. The objective is to estimate the value of a given the observation

Xi = a+Wi, i = 1, . . . , n
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(a) Find the MMSE estimator of a. How does this estimator compare to the MAP and
MMAE estimators of a?

(b) Compute the MSE of the MMSE estimator (Hint: express error as a sum of two in-
dependent r.v.’s to simplify algebra). What happens to the MSE as n → ∞ or as
SNR = σ2

a/σ
2
w →∞?

4.6 Let X = [X1, . . . ,Xn]T be a vector of i.i.d. Gaussian r.v.s with mean μ and variance σ2 = μ2

(Xi ∼ N (μ, μ2)).

(a) Find a method of moments (MOM) estimator of μ based on the first moment.
(b) Find the maximum likelihood estimate of μ.

4.7 LetXi, i = 1, . . . , n, be an i.i.d. sample from the shifted exponential density f(x; θ) = e−(x−θ),
x ≥ θ, where θ is an unknown parameter −∞ < θ <∞. Assume that n > 1.

(a) Find a MOM estimator of θ.
(b) Find the ML estimator of θ.
(c) Assuming the exponential prior for θ, f(θ) = e−θ, θ ≥ 0, find the MAP estimator, the

MMSE estimator, and the MMAE estimator of θ given the i.i.d. sample (be careful with
your limits of integration in computing f(θ|x)!). What happens to these estimators as
n→∞?

(d) Calculate the MSE of each of the estimators derived in part (c) (assume large n). Verify
that the MMSE estimator has the lowest MSE.

4.8 The mean square error of a certain unbiased estimator θ̂(x) of the mean of a measured random
variable is equal to σ2/2 where σ2 = var(x). What if anything does this tell you about the
distribution of x (Hint: what does the CR bound say about distributions that are impossible)?

4.9 Available are n i.i.d. samples of a random variable X with density

f(x; θ) = 1
2

1 + 3θx2

1 + θ

where −1 ≤ x ≤ 1 and θ ≥ 0.

(a) Is this density in the exponential family?
(b) Is the sample mean a sufficient statistic? If so, prove it for general n. If not, give a

counterexample, e.g. specialize to n = 2.
(c) Find a MOM estimator of θ.
(d) Find the CR bound on estimator variance for any unbiased estimator of θ.
(e) Using either numerical integration (MATLAB) or analysis find the bias and variance of

the MOM estimator and compare to the CR bound for large n (e.g. n = 100).

4.10 Let the observation X have conditionally uniform density

f(x|θ) =
{

1
θ , 0 < x ≤ θ
0, o.w.

where θ is a random variable with density

fθ(θ) =
{
θ exp(−θ), θ ≥ 0

0, o.w.

A useful formula (v ≥ 0):
∫∞
v ue−udu = (v + 1)e−v
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(a) Find the MAP estimator of θ.
(b) Find the minimum mean squared error estimator of θ.
(c) Find the minimum mean absolute error estimator of θ.

4.11 Let Z be a single observation having density function

pθ(z) = (2θz + 1− θ), 0 ≤ z ≤ 1

where −1 ≤ θ ≤ 1.

(a) Assuming that θ is a nonrandom parameter, find and plot the maximum likelihood esti-
mator of θ as a function of Z.

(b) Is the ML estimator unbiased? If so does it achieve the CR bound?
(c) Now assume that θ is a random variable with uniform prior density: pθ(θ) = 1

2 , θ ∈
[−1, 1]. Find and plot the minimum mean square error estimator of θ as a function of Z.

(d) Compute the conditional bias E[θ̂|θ]−θ and the conditional MSE E[(θ̂−θ)2|θ] given θ for
each of the estimators of part a and c. Plot the two conditional MSE functions obtained
and compare the MSE’s of the two estimators. Does one estimator perform uniformly
better than the other?

4.12 X = [X1, . . . ,Xn]T is an i.i.d. observation from the Gamma density

Xi ∼ f(x|θ) =
1

Γ(θ)
xθ−1e−x, x ≥ 0

where θ is an unknown non-negative parameter and Γ(θ) is the Gamma function. You should
note the useful formulae

Γ(θ) =
∫ ∞

0
xθ−1e−xdx and

Γ(θ + k)
Γ(θ)

= θ(θ + 1) . . . (θ + k − 1)

.

(a) Find the CR bound on unbiased estimators of θ.
(b) Find the first order MOM estimator of θ by matching ensemble mean to sample mean.

Is your estimator unbiased? Compute the variance of your estimator.

4.13 In this exercise you will establish that UMVUE’s do not always exist. Let Z be a r.v. with
probability mass function

pθ(z) =
{
θ, z = −1
(1− θ)2θz, z = 0, 1, 2, . . .

where θ ∈ (0, 1).

(a) Define the estimator

θ̂o(z) =
{

1, z = −1
0, z = 0, 1, 2, . . .

.

Show that θ̂o is an unbiased estimator of θ.
(b) Note that any unbiased estimator θ̂ can be expressed in the form θ̂ = θ̂o + U where

U = U(Z) is a statistic satisfying Eθ[U ] = 0 (any U satisfying this condition is called
an ancillary statistic). Using this condition and the form for the pmf of Z given above,
establish that U must be of the form U(Z) = aZ for some non-random constant a (Hint:
Z-transform tables may be helpful).



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 98

(c) Now find an expression for the variance of an unbiased θ̂ and show that the value a which
minimizes the variance is a function of θ. Hence no single unbiased estimator can achieve
minimum variance for all θ ∈ (0, 1) and therefore no UMVUE for θ exists.

(d) Show that a UMVUE for φ = (1 − θ)2 does exist even though a UMVUE for θ does not
exist (Hint: define φ̂o(z) = 1 for z = 0 and φ̂o(z) = 0, otherwise and repeat the steps in
part a through c).

4.14 The observation consists of x1, . . . , xn i.i.d. samples where xi ∼ f(x|θ) and

f(x|θ) =
{

1
θx

1
θ
−1, 0 ≤ x ≤ 1

0, o.w.

where θ, 0 < θ <∞ is an unknown parameter.

(a) Compute the CR bound on unbiased estimators of θ. Is there an estimator that achieves
the bound?

(b) Find the maximum likelihood estimator of θ.
(c) Compute the mean and variance of the maximum likelihood estimator. Specify a function

ϕ = g(θ) for which the maximum likelihood estimator of ϕ is efficient.
(d) From one of your answers to parts a-c you should be able to derive the following formula∫ 1

0
uβ ln

(
1
u

)
du =

1
(1 + β)2

, β > −1.

4.15 The measurement x = [x1, . . . , xn]T is i.i.d. Gaussian with unknown mean μ and variance
σ2.

(a) Show that the sample mean xi = n−1
∑n

i=1 xi and sample variance s2 = (n−1)−1
∑n

k=1(xk−
xi)2 are unbiased estimators and that they are uncorrelated and independent random vari-
ables (Hint: show that the Gaussian random variables xi − xi and xi are uncorrelated
for i = 1, . . . , n).

(b) Using the results of part (a) derive the covariance matrix for the estimator θ̂ = [xi, s2]T .
(Hint: to save yourself lots of algebra you should represent s2 = s2(x) in terms of σ2

and the sample variance s2(z) for z a vector of n i.i.d. zero mean unit variance Gaussian
variables. Then use the representation (ch. 3 of course notes) s2(z) = 1

n−1 χn−1 and
properties of the Chi square r.v. to find the expression for variance of s2).

(c) Derive the CR bound on the covariance matrix of any unbiased estimator θ̂ of θ =
[θ1, θ2]T = [μ, σ2]T . Compare to the result of part (b).

4.16 Show that if the CR bound is attained with equality then Eθ[UUT ] has rank p, where U is
given by (49). (Hint: show that the matrix

Eθ
[
UUT

]
=
[

F−1(θ) I
I F(θ)

]
has rank p.)

4.17 An alternative approach to parameter estimation is called the ”quantile matching method”
and you will explore this method here. Let f(x; θ) be a density of the continuous r.v. X pa-
rameterized by the scalar parameter θ and define the theoretical cdf F (x; θ) =

∫ x
−∞ f(u; θ)du.
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For n i.i.d. realizations {Xi}ni=1 from f(x; θ) define the empirical cdf as the fraction of Xi’s
which are less than or equal to x:

F̂ (x) =
1
n

n∑
i=1

I(−∞,x](Xi)

where IA(y) equals 1 if y ∈ A and zero otherwise (the indicator function of set A).

(a) Derive the mean Eθ[F̂ (x)] and covariance covθ(F̂ (x), F̂ (y)) of F̂ . Show that F̂ (x) is an
asymptotically consistent estimator of F (x; θ).

(b) The quantile matching estimate (QME) θ̂ is defined as that value of t which minimizes∫ ∞

−∞
|F (x; t) − F̂ (x)|2dx (55)

Let θ be a location parameter: f(x; θ) = f(x− θ). Using the definition (55), show that
θ̂ must satisfy the following equation (Hint: use integration by parts):∫ ∞

−∞
f(x− θ̂)F̂ (x)dx− 1/2 = 0. (56)

Show that if θ̂ is the unique solution to (56) it is an asymptotically consistent estimator
of θ (Hint: for θ̂ = t fixed and non-random, compute mean square value of left hand side
of (56) and show that as n→∞ it goes to a function of t which equals zero at t = θ).

(c) Using matlab, or other software application of your choice, simulate the QME and the
MLE for the following cases:
i. f(x; θ) Gaussian with variance 1 and mean θ.
ii. f(x; θ) = αe−α(x−θ)I[θ,∞)(x) (shifted exponential) with α = 1.

Run the above simulations 50-100 times each for the cases of n = 1, 5, 10, 15, 20, 25
observations, respectively. Using the results of your simulations find and plot as a function
of n: 1) the average mean-squared error for MLE and QME estimators; 2) the average
quantile squared error (55) evaluated at t = θ̂ (you should show 4 different plots). Also
generate a couple of representative plots of the objective function (55) as a function
of t for the Gaussian and shifted exponential cases above. Comment on what can be
concluded from your simulation study.

4.18 Available are n i.i.d. samples of a discrete random variable X with probability mass function
P (X = k) = p(k; θ), given by

p(k; θ) =

{ (
θ

1+θ

)k−ko
1

1+θ , k = ko, ko + 1, . . .
0, o.w.

,

where ko is a known non-negative integer and θ is unknown with 0 ≤ θ <∞. (A potentially
useful identity:

∑∞
k=0 ka

k = a/(1 − a)2).
(a) Is this density in the exponential family with mean value parameterization? Find a one

dimensional sufficient statistic for θ.
(b) Find a MOM estimator of θ.
(c) Find the ML estimator of θ.
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(d) Find the Fisher information on estimator variance for any unbiased estimator of θ. Are
either of the estimators of part (b) or part (c) efficient?

4.19 Available is a single measurement of a random variable W . The model for W is

W = (1− Z)X + ZY,

where Z is Bernoulli with P (Z = 0) = P (Z = 1) = 1/2, X is Gaussian with zero mean and
variance σ2, and Y is Gaussian with mean μ and variance σ2. Assume that μ and σ2 are
known and that X,Y,Z are independent.
(a) Find the posterior distribution of Z.
(b) Find the minimum mean squared error estimator of Z. Plot the estimator as a function

of W .
(c) Find the MAP estimator of Z. Plot the estimator as a function of W .
(d) Find the affine minimum mean squared error estimator of Z. Plot the estimator as a

function of W .
4.20 Let X1,X2, . . . ,Xn be i.i.d. variables with the standard Pareto density:

f(x; θ) =
{
θcθx−(θ+1), x ≥ c
0, o.w.

where c > 0 is known and θ > 0 is unknown.
(a) Is f(x; θ) a member of the exponential family? Why or why not?
(b) Find a one dimensional sufficient statistic for θ given X1,X2, . . . ,Xn.
(c) Find the Fisher information and state the CR bound for unbiased estimators of θ.
(d) Derive the maximum likelihood estimator θ̂ of θ.
(e) Is your estimator efficient?

4.21 Let X1,X2, . . . ,Xn be i.i.d. variables with the generalized Pareto density:

f(x; θ) =
{
cθcx−(c+1), x ≥ θ
0, o.w.

where c > 0 is known and θ > 0 is unknown.
(a) Is f(x; θ) a member of the exponential family? Why or why not?
(b) Find a one dimensional sufficient statistic for θ given X1,X2, . . . ,Xn.
(c) Derive the maximum likelihood estimator θ̂ of θ.

4.22 The posterior density of a scalar parameter θ given an observation x = [x1, . . . , xn]T is a
function of the form f(θ|x) = g(xi − θ) where xi is the sample mean and g is an integrable
function satisfying g(−u) = g(u) and g(0) > g(u), u �= 0. Derive the MAP, CME and CmE
estimators of θ.

4.23 The CRB has several generalizations that we explore in this problem for scalar parameters θ
of a density fθ(x).
(a) Define the finite difference δf = (fθ+Δ− fθ)/Δ. Show that for any unbiased estimator θ̂

of non-random θ

varθ(θ̂) ≥
1

Eθ

[
(δfθ/fθ)

2
]

with equality iff δfθ/fθ = kθ(θ̂ − θ) for non-random constant kθ. The above bound is
called the Chapman Robbins version of the Barankin bound
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(b) Show that the bound of part (a) implies the CRB in the case that θ is a non-random
continuous parameter and fθ is smooth (Hint: take limit as Δ→ 0).

(c) When θ is a random variable with prior density p(θ) show that

E[(θ̂ − θ)2] ≥ 1
J

where
J = E

[
(δp(θ|X)/p(θ|X))2

]
and δp(θ|X) = (p(θ + Δ|X)− p(θ|X))/Δ. Here the expectation E is taken over both X
and θ.

4.24 Let g(x;φ1) and h(x;φ2) be densities where φ1, φ2 are unknown scalar parameters. The
arithmetic epsilon mixture model for X is:

fA(x; θ) = (1− ε)g(x;φ1) + εh(x;φ2)

where 0 ≤ ε ≤ 1 and θ = [φ1, φ2, ε]T . The geometric epsilon mixture model for X is:

fG(x; θ) =
1
d(θ)

g1−ε(x;φ1)hε(x;φ2), (57)

where
d(θ) =

∫
g1−ε(x;φ1)hε(x;φ2)dx

is a normalizing constant (related to the Rènyi ε-divergence between g and h). From this
exercise you will appreciate that the mixture fG is easier to deal with than fA for the purposes
of investigating CR bounds, detectors and estimators. Assume that g and h are members of
the exponential family of densities.

(a) Show that the three parameter density fG(x; θ) is a member of the exponential family.
Show that fA(x; θ) is not a member of this family.

(b) Derive expressions for the six distinct entries of the Fisher information matrix (FIM)
for jointly estimating the parameters θ from n i.i.d. observations from fG. An explicit
expression for the FIM does not generally exist for the standard mixture model fA.

(c) For n i.i.d. observations from fG give a condition on the parameter vector θ which
guarantees that an efficient estimator exist for θ, i.e. for which the inverse FIM is an
achievable lower bound on the covariance of unbiased estimators of θ (Hint: what is the
mean value parameterization as defined by (28)?).

(d) In the sequel of this exercise we specialize fG to the case of a geometric mixture of two
exponential densities

g(x; θ) = φ1 exp(−xφ1), h(x; θ) = φ2 exp(−xφ2), (58)

where x, φ1, φ2 > 0. Derive an expression for d(θ). Is the CR bound achievable for this
model?

(e) Let n i.i.d. realizations be available from the geometric mixture fG specified by (57) and
(58). By evaluating the gradient of the likelihood function, find a set of (non-linear)
equations which must be satisfied by the MLE of θ. Using these equations, and assuming
that φ1, φ2 are known, find an explicit expression for the MLE of ε.
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4.25 Let S and X be jointly Gaussian distributed with means and variances

E[S] = μS, E[X] = μX ,

var(S) = σ2
S , var(X) = σ2

X

cov(S,X) = ρ σSσX .

Specifically the joint density is bivariate Gaussian

fS,X(s, x) =
1

2πσSσX
√

1− ρ2
exp
(

−1
2(1− ρ2)

[
(s− μS)2

σ2
S

− 2ρ
(s− μS)(x− μX)

σSσX
+

(x− μX)2

σ2
X

])
.

(a) By integrating the joint density over s, show that the marginal density fX of X is a
univariate Gaussian density with mean parameter μX and variance parameter σ2

X .
(b) Using the above to show that the conditional density fS|X(s|x) of S given X is univariate

Gaussian with mean and variance parameters

μS|X(x) = μS + ρ
σS
σX

(x− μX),

σ2
S|X = (1− ρ2)σ2

S .

Note that while the mean parameter depends on x the variance parameter is independent
of x.

(c) Using this form for the conditional density show the mean and variance parameters are
precisely the conditional mean and variance of S given X = x, respectively.

4.26 A charity box is placed in a mall. The box can only accept quarters. With probability p (a
deterministic quantity), a (good) person would come and place a quarter in the box, thus
incrementing the number of quarters in the box by one. With probability 1 − p, a (bad)
person would come and empty the box, thus setting the number of quarters in the box to
zero.
Assuming stationarity, it can be shown that the probability that k quarters will be observed
at the end of the d-th day is

P (T (d) = k) = pk(1− p).

(Notation: T (d) is the random variable representing the number of quarters in the box at the
end of the d-th day.) In the following you should assume that T (1), T (2), . . . , are independent
identically distribute (i.i.d) random variables.

(a) Maximum Likelihood and Efficiency: To estimate the percentage of good people p, the
box monitor counts the number of quarters in the box at the end of each day, D days in
a row.
• Write down the joint PDF of the vector of number of quarters observed [T (1), T (2), . . . , T (D)].
• Find the ML estimator of p given T (1) = k1, T (2) = k2, . . ., T (D) = kD.
• Is the ML estimator p̂ML efficient ?

(b) Method of Moments: Define the the average number of quarters observed as k̄ = 1
D

∑D
d=1 kd.

• Find the expected value of the average number of quarters observed E[k̄] (hint:∑∞
n=0 np

n = p
(1−p)2 ).

• Based on this result, suggest a method of moments estimator for p.
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(c) Efficiency and the CRB: To investigate how well the charity box is doing, a new measure
is considered γ = p

1−p , the ratio of the percentage of good people to the percentage of
bad people, otherwise known as the good-to-bad ratio (GBR).
• Is the ML estimator of the GBR γ̂ML efficient ?
• Find the ML estimator of the GBR γ̂ML.
• Find the Cramér-Rao bound (CRB) on the MSE of an unbiased estimator for the

GBR.
• Find the MSE of the ML estimator of the GBR.

4.27 Here you will show that the MLE is invariant to arbitrary functional transformations of the
parameter. Let θ be a scalar parameter with range Θ = (−∞,∞), assume the sample X has
j.p.d.f f(x; θ), and that there exists a unique MLE θ̂. Given a transformation g define the
new parameter ϕ = g(θ).
(a) Assume that g is monotone, i.e. g(θ) is 1-1 invertible over all Θ. Show that the MLE of

ϕ is
ϕ̂ = g(θ̂).

(b) Next assume that g is smooth in the sense of piecewise monotonicity, i.e., there exists a
partition of Θ into intervals (−∞, θ1], (θ1, θ2], . . . , (θM ,∞) such that g is monotone over
each of these intervals (M may not be finite). Define the integer function h by: h(θ) = k,
if θ is in the k-th interval, k = 1, . . . ,M + 1. Show that the scalar-to-vector mapping
θ → [g(θ), h(θ)] is 1-1 invertible.

(c) Using result of (b) show that the MLE is invariant to piecewise monotone functional
transformation.

4.28 Derive the CR bound (54) on the variance of an unbiased scalar estimator θ̂1 of θ1 when the
rest of the parameters θ2, . . . , θp in θ are unknown nuisance parameters. Do not assume that
the nuisance parameters have unbiased estimators (Hint: define U = [θ̂1− θ1,∇Tθ ln f(X; θ)]T

and proceed as in the proof of the matrix CRB).
4.29 A sequence of measurements X1, . . . ,Xn are i.i.d. with marginal density

fXi(x; θ) =
θ

x2
e−

θ
x , x > 0

where θ > 0 is an unknown parameter.
(a) For part (a) and (b) assume that θ is non-random. Is this density a member of the

exponential family? Find a one dimensional sufficient statistic for θ.
(b) Find the maximum likelihood estimator of θ.
(c) For part (c) and (d) assume that θ is a random variable having density

f(θ) = e−θ, θ > 0.

Find the MAP estimator of θ.
(d) Find the minimum mean squared error estimator of θ and compare to your result in part

(c). Hint:
∫∞
0 αne−αdα = n!.

4.30 Show that the vector conditional mean estimator θ̂CME of a random vector parameter θ
satisfies the property that, for any other estimator θ̂

E[(θ − θ̂)(θ − θ̂)T ] ≥ E[(θ − θ̂CME)(θ − θ̂CME)T ],

where the matrix inequality A ≥ B is interpreted in terms of non-negative definiteness of
A−B.



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 104

4.31 Let θ be a nonrandom vector parameter of some smooth (in θ) density function f(x; θ). Show
that Eθ

[
∇θ ln f(X; θ)(∇θ ln f(X; θ))T

]
= Eθ[−∇2

θ ln f(X; θ)].

4.32 Assume that X is a sample from a density in an exponential family with scalar parameter
θ having the mean value parameterization (Eθ[t(X)] = θ, recall discussion in Sec. 3.5.4).
Assuming the Fisher information F (θ) exists show that

F (θ) = 1/varθ(t(X)). (59)

Now show that if one has an i.i.d. sample X = [X1, . . . ,Xn]T from such a density then
θ̂ = n−1

∑n
i=1 t(xi) is an unbiased and efficient estimator of θ.

End of chapter
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5 LINEAR ESTIMATION

In the previous chapter we discussed several strategies for estimating parameters given a model
f(x; θ) for the probability distribution of the measurements. These strategies all require precise
knowledge of this model which may not always be available. Furthermore, even when one has full
confidence in the model these strategies usually yield estimators that are non-linear function of the
measurements and whose implementation may be difficult, e.g. involving analytical maximization
of a complicated density or analysis of its moments as a function of θ. In this chapter we present an
alternative linear estimation approach which only requires knowledge of the first two moments or
empirical estimates of these moments. While linear methods do not have the optimality properties
of optimal Bayes estimators, such as MAP or CME, they are very attractive due to their simplicity
and to their robustness to unknown variations in higher order moments.

Linear estimation theory starts out by assuming random parameters, adopting a squared error loss
function, and then seeking to minimize the mean squared error over all estimator functions defined
as linear or affine functions of the measurements. It turns out that this linear minimum mean
squared error (LMMSE) problem can be recast as minimization of a norm in a linear vector space.
This leads to an elegant and intuitive geometric interpretation of the optimal LMMSE estimator via
the projection theorem and orthogonality condition of min-norm problems on linear vector spaces.
The resultant LMMSE estimator depends on the mean and variance of the measurement, the
mean of the parameter, and the covariance of the measurements and parameter. Not surprisingly,
when the measurements and parameters are jointly Gaussian distributed the affine estimator is
equivalent to the optimal conditional mean estimator. When the means and covariances are not
known a priori an analogous nonstatistical linear least squares (LLS) estimation theory can be
developed, leading to the well known problem of linear regression.

As usual the main ingredients for linear estimation will be the vector of measurements x =
[x1, . . . , xn]T and the vector of parameters θ = [θ1, . . . , θp]T . In Sec. 5.1 we cover the case
where these vectors are realizations of random variables with known first and second (ensemble)
moments. In Sec. 5.6 we turn to the case where these moments are unknown.

5.1 MIN MSE CONSTANT, LINEAR, AND AFFINE ESTIMATION

First we will assume that x and θ are realizations of two random vectors X and θ. Similarly to the
last chapter, we use the notation E[θ] =

∫
f(θ)dθ to denote expectation. However, in this section

we will never refer to the density f(θ) explicitly since we will only assume knowledge of its first
and second order moments. The overall objective is to find the solution to the minimization

min
θ̂

MSE(θ̂) = min
θ̂
E[‖θ − θ̂(X)‖2]

where the expectation is over both θ and X and the minimization is restricted to constant, linear
or affine functions θ̂ of X . The norm in this minimization is the standard euclidean 2-norm
‖u‖ =

√
uTu. We first specialize to scalar parameters to eliminate unnecessary complications in

the derivations to follow. We extend the treatment to vector parameters in Sec. 5.5.
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5.1.1 BEST CONSTANT ESTIMATOR OF A SCALAR RANDOM PARAME-
TER

This is the simplest possible estimator structure as the constant estimator θ̂ = c does not depend on
the measurements. It turns out that the best constant estimator only depends on the mean of the
parameter and no additional information about the measurements or the parameter distributions
is needed.

The problem is to find the constant θ̂ = c that minimizes MSE

MSE(c) = E[(θ − c)2].

Solution: θ̂ = E[θ] is the best constant estimator.

As the MSE is a quadratic function of c this can easily be proven by setting the derivative d
dcMSE(c)

to zero. Another, more direct way of deriving this solution is add and subtract the mean E[θ]
from θ − c and expand the square in MSE(c) to obtain a sum of two terms, one of which is zero:

MSE(θ̂) = E[((θ − E[θ])− (c− E[θ]))2

= E[(θ − E[θ])2] + (E[θ]− c)2 − 2(E[θ]− c)E[θ − E[θ]]︸ ︷︷ ︸
=0

= E[(θ − E[θ])2] + (E[θ]− c)2.

As only the second term in the last line depends on c and it is non-negative it is obvious that
c = E[θ] is the best constant estimator. The resultant min MSE is immediate:

min
c

MSE(c) = E[(θ − E[θ])2],

which is just the prior variance var(θ) of θ.

Since the constant estimator uses no information about the measurements we can expect that any
good X-dependent estimator of θ will have lower MSE than var(θ).

5.2 BEST LINEAR ESTIMATOR OF A SCALAR RANDOM PARAME-
TER

The next step up in complexity is an estimator that depends linearly on X

θ̂ = hTX,

where h = [h1, . . . , hn]T is a set of linear coefficients to be determined. It will be seen that to
implement the linear minimum MSE (LMMSE) estimator we require the second moment matrix,

MX = E[XXT ]

and the cross-moment vector
mX,θ = E[Xθ].

We will assume that MX is an invertible matrix.

The problem is to find the coefficient vector h that minimizes MSE

MSE(h) = E[(θ − hTX)2].
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Solution: θ̂ = mT
X,θM

−1
X X is the LMMSE estimator.

To derive this solution we note that the MSE is a quadratic function of h:

MSE(θ̂) = E[(θ − θ̂)2] = E[(θ − hTX)2]
= hTE[XXT ]h+ E[(θ)2]− hTE[Xθ]− E[θXT ]h

The h that minimizes this quadratic form can be found by differentiation or by completion of the
square. Following the former route (see Sec. 2.4.3 for review of derivatives of functions of a vector
variable) we obtain:

0T = ∇hMSE(h) =
[
∂

∂h1
, . . . ,

∂

∂hn

]
MSE(θ̂)

= 2
(
hTE[XXT ]− E[θXT ]

)
Therefore the optimal h satisfies the equation:

E[XXT ]h = E[Xθ]

Assuming non-singular MX = E[XXT ] this is equivalent to

h = M−1
X mXθ

and the optimal linear estimator is

θ̂ = mT
XθM

−1
X X,

as claimed.

By plugging the optimal solution back into MSE(h) it is easy to see that the minimum MSE over
linear estimators is

MSEmin = E[θ2]−mT
XθM

−1
X mXθ.

Note that, as M−1
X is positive definite, this MSE can never exceed the a priori second moment

E[|θ|2] of θ. If the parameter is zero mean then E[θ2] = E[(θ − E[θ])2] = var(θ), i.e., the second
moment is equal to the a priori variance and the LMMSE estimator generally outperforms the
best constant estimator θ̂ = E[θ] = 0. However, if E[θ] �= 0 then E[θ2] > E[(θ − E[θ])2] and
the linear estimator may not even do as well as the constant estimator. The problem is that the
LMMSE estimator can be a biased estimator of θ in the sense that its average bias E[θ̂]−E[θ] �= 0
unless E[θ] = 0. The way to handle this bias is to generalize the class of linear estimators to the
class of affine estimators.

5.3 BEST AFFINE ESTIMATOR OF A SCALAR R.V. θ

An affine estimator also depends linearly on X but incorporates a constant term to control bias

θ̂ = hTX + b = hT (X − E[X ]) + c,

where c = b+ hTE[X ] and b are just different parameterizations of the bias controlling constant.
It will be easier to deal with c here. The objective is to determine the best coefficients {h =
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[h1, . . . , hn]T , c}. To implement the affine minimum MSE estimator we require knowledge of the
means E[X ], E[θ], the (assumed invertible) covariance matrix,

RX = cov(X) = E[(X − E[X ])(X − E[X ])T ],

and the cross-correlation vector

rX,θ = cov(X, θ) = E[(X − E[X ])(θ −E[θ])].

The problem is to find the vector h and the scalar c that minimizes MSE

MSE(h, c) = E[(θ − hT (X −E[X ])− c)2].

Solution: θ̂ = E[θ] + rTX,θR
−1
X (X − E[X ]) is the best affine estimator.

To derive this solution we again note that the MSE is a quadratic function of the unknowns h, c

MSE(θ̂) = E[|θ − θ̂|2] = E[|(θ − c)− hT (X − E[X ])|2]
= hT E[(X − E[X ])(X − E[X ])T ]︸ ︷︷ ︸

RX

h+ E[|θ − c|2]

−hT E[(X − E[X ])(θ − c)]︸ ︷︷ ︸
rX,θ

−E[(θ − c)(X − E[X ])T ]︸ ︷︷ ︸
rθ,X

h

= hTRXh+ E[|θ − c|2]− 2hT rX,θ.

Note that the only dependence on c is through a single term that is minimized by choosing c = E[θ].
As for h, the minimizer can be found by differentiation,

0 = ∇hMSE = hTRX − rθ,X ,

which leads to the equation for the minimizer h

RXh = rX,θ.

When RX is non-singular this is equivalent to

h = R−1
X rX,θ

and the optimal affine estimator is therefore

θ̂ = E[θ] + rTX,θR
−1
X (X − E[X ]).

Unlike the linear estimator, the affine estimator is on-the-average unbiased in the sense that
E[θ̂] = E[θ].

The minimum MSE attained by this estimator is simply computed as

MSEmin = var(θ)− rTX,θR−1
X rX,θ.

Thus we see that, by virtue of its handling of bias, the optimal optimal affine estimator has MSE
that will never exceed var(θ), the MSE of the constant estimator.
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5.3.1 SUPERPOSITION PROPERTY OF LINEAR/AFFINE ESTIMATORS

Let ψ and φ be two random variables. Then, as statistical expectation is a linear operator, the
best linear (affine) estimator of the sum θ = ψ + φ given X is

θ̂ = ψ̂ + φ̂, (60)

where ψ̂ and φ̂ are the best linear (affine) estimators of ψ given X and of φ given X, respectively.

5.4 GEOMETRIC INTERPRETATION: ORTHOGONALITY CONDITION
AND PROJECTION THEOREM

There is a deeper geometrical interpretation of the structure of affine or linear minimum mean
squared error estimators. To get at this geometrical interpretation we recast the affine estimation
problem into a linear approximation problem in a vector space. For the reader who has only a
dim memory of vector spaces we provide a quick review in the Appendix, Sec. 5.10.

5.4.1 LINEAR MINIMUM MSE ESTIMATION REVISITED

The key to embedding this problem into a vector space is to identify the right space for the
approximation problem. There are two spaces that we need to keep in mind: the spaceH containing
quantities we wish to approximate, e.g., θ, and the space S, called the solution subspace, in which
we construct the approximation, e.g., linear combinations of theXi’s. The problem then reduces to
finding a linear combination of vectors in S that is closest to the quantity we wish to approximate
in H. For the machinery to work it is absolutely required that S ⊂ H. Once we identify these
spaces it only remains to construct an inner product that induces the proper norm that expresses
approximation error as the MSE.

As in the min MSE problem we are attempting to approximate the scalar random variable θ with
a linear combination of the measured random variables X1, . . . ,Xn it makes sense to define H as
the space of all scalar zero mean random variables and S as the linear span span{X1, . . . ,Xn}
of the measurements. For technical reasons we will require that all random variables in H have
finite second moment - otherwise one may end up with vectors with infinite norms and nonsensical
approximations of infinity. The MSE between two vectors, i.e., random variables, η, ν ∈ H can
then be adopted as the squared norm

‖η − ν‖2 = E[(η − ν)2],

which is induced by the inner product

〈η, ν〉 = E[ην].

Since θ̂ = hTX =
∑n

i=1 hiXi is in S the linear minimum MSE estimate of θ is the vector θ̂ ∈ S
which minimizes the norm squared ‖θ − θ̂‖2. Application of the projection theorem thus asserts
the following (see also Fig. 31):

Linear estimator projection theorem: the best linear estimator of θ based on X1, . . . ,Xn is
the projection of θ onto S = span{X1, . . . ,Xn}.
By the orthogonality condition of the projection theorem, the best linear estimator θ̂ must satisfy

〈θ − θ̂, u〉 = 0, for all u ∈ S
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θ

u1 θ - θ S
θ

= span(x1, …., xp)^

^

Figure 31: The orthogonality condition for the best linear estimator θ̂ of a random variable θ given X1, . . . ,Xn

Equivalently, if u1, . . . , un′ is any basis for S:

〈θ − θ̂, ui〉 = 0, i = 1, . . . , n′. (61)

When {Xi}ni=1 are linearly independent the dimension of S is equal to n and any basis must have
n′ = n linearly independent elements.

Now we simply have to adopt a particular basis to find the form of the best linear estimator.
Perhaps the most natural basis is the set of measurements themselves ui = Xi, i = 1, . . . , n,
(assuming that they are linearly dependent) and, concatenating the n′ = n equations (61) into a
row vector we obtain

E[(θ − θ̂)XT ] = 0.

Equivalently,
E[(θ − hTX)XT ] = MT

X,θ − hTMX = 0.

As linear independence of the Xi’s implies that MX = E[XXT ] is invertible, this yields the
identical solution to the optimal coefficients of the linear estimator obtained above: h = M−1

X MX,θ.

It turns out that a second application of the orthogonality condition yields an immediate expression
for minimum MSE:

‖θ − θ̂‖2 = 〈θ − θ̂, θ − θ̂〉
= 〈θ − θ̂, θ〉 − 〈θ − θ̂, θ̂︸︷︷︸

∈S
〉

= 〈θ − θ̂, θ〉
= E[θ2]− hTMX,θ = E[θ2]−MT

X,θM
−1
X MX,θ,

where in the second to last line we have used the fact that the optimal error is orthogonal to any
vector in S.
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5.4.2 AFFINE MINIMUM MSE ESTIMATION

The affine minimum MSE estimation problem is also easily cast into a vector space minimum norm
problem. One way to do this is to subtract the mean from the parameter and subtract the mean
from the measurements and proceed as in linear estimation - adding the parameter mean back
into the solution at the end. A more direct approach is to include the degenerate constant random
variable ”1” into the measurement vector (we can always add a virtual sensor to the measurement
system that measures a nonrandom constant!). To see how this would work first re-express the
affine estimator equation as

θ̂ = hTX + b

= [hT , b]
[
X
1

]
.

We now identify the solution subspace

S := span{X1, . . . ,Xn, 1},

which gives the following affine projection theorem:

Affine projection theorem: the best affine estimator of θ based r.v.sX1, . . . ,Xn is the projection
of θ onto span{X1, . . . ,Xn, 1}.
We leave it to the reader to verify that the aplication of the orthogonality condition to the pro-
jection theorem gives the same solution that we derived before.

5.4.3 OPTIMALITY OF AFFINE ESTIMATOR FOR LINEAR GAUSSIAN MODEL

Introduce the addition assumption that X, θ are jointly Gaussian distributed. Then the minimum
MSE estimator θ̂ = θ̂(X) is in fact affine:

E[θ|X ] = E[θ] + rTX,θR
−1
X (X − E[X ]).

One way to show this is to simply compute the conditional mean estimator and verify that it is
in fact of the form of the affine estimator above. We take a different approach. Without loss of
generality, let’s specialize to the case of zero mean θ and X. Let θ̂l be the LMMSE estimator,
which is identical to the affine estimator in this case. From the linear projection theorem we know
that the optimal estimator error is orthogonal to the measurements

E[(θ − θ̂l)X ] = 0

However, since θ − θ̂l is a linear combination of Gaussian r.v.s it is itself Gaussian. Furthermore,
since Gaussian r.v.s that are orthogonal are in fact independent r.v.’s

E[(θ − θ̂l)|X ] = E[(θ − θ̂l)] = 0.

Therefore, as θ̂l is a function of X we have

0 = E[(θ − θ̂l)|X] = E[θ|X]− θ̂l,

or
E[θ|X ] = θ̂l

Which establishes the desired result.
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5.5 BEST AFFINE ESTIMATION OF A VECTOR

When the parameter θ = [θ1, . . . , θp]T is a vector it turns out that our previous results for scalar
θ generalize very easily if we adopt the sum of the component MSEs as our error criterion. Define
the prior mean vector E[θ] and the cross-correlation matrix

RX,θ = cov(X, θ) = E[(x− E[X ])(θ − E[θ])T ].

The sum MSE criterion is defined as

MSE(θ̂) =
p∑
i=1

MSE(θ̂i)

=
p∑
i=1

E|θi − θ̂i|2 = trace
(
E[(θ − θ̂) (θ − θ̂)T ]

)
.

Let the affine estimator θ̂i of the i-th component of θ be defined by

θ̂i = hTi X + bi, i = 1, . . . , p.

Define the affine vector estimator

θ̂ = [θ̂1, . . . , θ̂p]T = HTX + b

H = [h1, . . . , hp].

The affine minimum MSE vector estimation problem is to find H, b to minimize the sum MSE
denoted as MSE(H, b).

The solution is the optimal vector affine estimator

θ̂ = E[θ] + Rθ,XR−1
X (X − E[X ]). (62)

The derivation of this result relies on the fact that each pair hi and bi appears separately in each
of the summands of MSE(θ̂). Hence the minimization of MSE is equivalent to the uncoupled
minimization of each MSE(θ̂i).

min
θ̂

MSE(H, b) =
p∑
i=1

min
hi,bi

MSE(hi, bi).

Therefore the minimum MSE solution is simply the concatenation of the optimal scalar affine
estimators of each θi: ⎡⎢⎣ θ̂1

...
θ̂p

⎤⎥⎦ =

⎡⎢⎣ E[θ1]
...

E[θp]

⎤⎥⎦+

⎡⎢⎣ rθ1,XR−1
X (X − E[X ])

...
rθp,XR−1

X (X − E[X ])

⎤⎥⎦ ,
which is equivalent to (62).

We can express the resultant minimum sum MSE as

MSEmin = trace
(
Rθ −Rθ,XR−1

X RX,θ

)
.
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5.5.1 LINEAR ESTIMATION EXAMPLES

Here we apply the above min MSE results to several examples.

Example 22 Min MSE Linear Prediction

In linear prediction one assumes that one measures a segment {Xk−p, . . . ,Xk−1} of a time sequence
of measurements {Xi}∞i=∞, also called a time series, and the objective is to form a linear p-th order
1-step predictor of the form

X̂k =
p∑
i=1

aiXk−i.

We will assume that {Xi}i a zero mean wide sense stationary (w.s.s.) random sequence with
autocorrelation function

r(k) := E[XiXi−k]

The problem is to find the predictor coefficients a = [a1, . . . , ap]T that minimize the mean squared
prediction error: MSE(a) = E[(Xk − X̂k)2].

i

 x(i)

PredictPast data segment

FIR filter
 x(k)^

Figure 32: Linear predictor as a FIR filter.

To solve for the optimal predictor coefficents identify θ = Xk as the random scalar parameter, X
as the time segment measured, and h = a as the coefficient vector to be determined. We solve the
problem in two steps:

Step 1: Rewrite predictor equation in vector form

X̂k = aTX

where
X = [Xk−1, . . . ,Xk−p]T , a = [a1, . . . , ap]T
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Step 2: Express orthogonality condition as

E[(Xk − aTX)Xk−i] = 0, i = 1, . . . , p

or concatenation into a row vector gives

0T =

⎡⎢⎣ E[(Xk − aTX)Xk−1]
...

E[(Xk − aTX)Xk−p]

⎤⎥⎦ = E[(Xk − aTX)XT ].

This specifies the optimal predictor coefficients a = â as

â = R−1r

where we have defined the correlation vector:

rT = [r1, . . . , rp] = E[XXk],

and the (Toeplitz) covariance matrix

R = ((r(i−j)))i,j=1,p = E[X XT ].

Finally, the predictor has minimum MSE

MSEmin = 〈Xk − âTX,Xk〉
= r0 − âT r
= r0 − rTR−1r

Relation: The optimal linear predictor can be related to a so-called autoregressive order p (AR(p))
model for {Xi}.
To see this define residual prediction error Vk = Xk − X̂k. Then, obviously

Xk = X̂k + Vk =
p∑
i=1

aiXk−i + Vk

When Vk is w.s.s. white noise the above representation is called an AR(p) model for {Xi}.

Example 23 An Inverse Problem

Assume a measurement model:
X = Aθ +N

where

* X = [X1, . . . ,Xm]T : random measurements

* θ = [θ1, . . . , θp]T : unknown random parameters

* N = [n1, . . . , nm]T : zero mean measurement noise with covariance RN

* θ,N uncorrelated

* A: a known m× p matrix
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θκ

hm

h1

n1k

nmk

x1k

xmk

P-tap FIR filter bank

Figure 33: Block diagram for inverse problem

The problem is to find an affine min MSE estimator θ̂ of θ.

Solution: this directly follows from our vector minimum MSE estimation results:

θ̂ = E[θ] + Rθ,XR−1
X (X − E[X ]).

It remains to determine the form of the optimal affine estimator in terms of A and RN .

E[X ] = E[Aθ +N ] = AE[θ]
RX = cov( Aθ +N︸ ︷︷ ︸

uncorrelated

) = ARθAT + RN

RX,θ = cov((Aθ +N), θ) = ARθ.

Thus we obtain the final result:

θ̂ = E[θ] + RθAT [ARθAT + RN ]−1(X −AE[θ]),

and the resultant minimum sum MSE is

MSEmin = trace
(
Rθ −RθAT [ARθAT + RN ]−1ARθ

)
Remarks:

1. When RN dominates ARθAT : MSEmin ≈ traceRθ

2. When ARθAT dominates RN and A is full rank: MSEmin ≈ 0.

5.6 NONSTATISTICAL LEAST SQUARES (LINEAR REGRESSION)

In some cases one does not have a good enough model to compute the ensemble averages, e.g. R
and RXθ, required for implementation of the linear minimum MSE estimators discussed above.
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In these cases one must resort to training data to estimate these ensemble averages. However,
a natural question arises: to what extent is it optimal to simply substitute empirical averages
into the formulas derived above? The answer depends of course on our definition of optimality.
Non-statistical least squares is a new formulation of this problem for which the optimal solutions
turn out to be the same form as our previous solutions, but with empirical estimates substituted
for R and RX,θ.

Assume that a pair of measurements available (n ≥ p)

yi, xi = [xi1, . . . , xip]T , i = 1, . . . , n.

xip could be equal to xi−p here, but this is not necessary.

a

 x(k)

 v(k)

 y(k)

System diagram for regression model

Figure 34: System identification block diagram for linear regression

Postulate an “input-output” relation:

yi = xTi a+ vi, i = 1, . . . n

* yi is response or output or dependent variable

* xi is treatment or input or independent variable

* a is unknown p× 1 coefficient vector to be estimated

a = [a1, . . . , ap]T

Objective: find linear least squares estimator â of a that minimizes sum of squared errors

SSE(a) =
n∑
i=1

(yi − xTi a)2

Equivalent n× 1 vector measurement model:
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⎡⎢⎣ y1,
...
yn

⎤⎥⎦ =

⎡⎢⎣ xT1
...
xTn

⎤⎥⎦ a+

⎡⎢⎣ v1,
...
vn

⎤⎥⎦
y = Xa+ v,

where X is a non-random n× p input matrix.

The estimation criterion is

SSE(a) = (y −Xa)T (y −Xa)

Solution to LLSE of a:

Step 1. Identify vector space containing y: H = IRn

Inner product: 〈y, z〉 = yT z

Step 2. Identify solution subspace containing Xa

S = span{columns of X}

which contains vectors of form

Xa =
p∑
k=1

ak
[
x1k, . . . , xnk

]T
Step 3. apply projection theorem

Orthogonality Condition: the best linear estimator â satisfies

〈y −Xâ, ui〉 = 0, i = 1, . . . , n

where ui are columns of X, or equivalently

0T = (y −Xâ)TX

= yTX− âT XTX

or, if X has full column rank p then XTX is invertible and

â = [XTX]−1 XT y

= [n−1XTX]−1 [n−1XT ]y

= R̂−1
x r̂xy.

Here

R̂x
def=

1
n

n∑
i=1

xi x
T
i , r̂xy

def=
1
n

n∑
i=1

xi yi
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We next specify the projection operator form of predicted output response

ŷ = Xâ

which, using above, can be represented as the orthogonal projection of y onto S

ŷ = Xâ

= X[XTX]−1 XT y

= X[XTX]−1XT︸ ︷︷ ︸
orthog. projection

y

Properties of orthogonal projection operator:

ΠX = X[XTX]−1XT

Property 1. ΠX projects vectors onto column space of X

Define decomposition of y into components y
X

in column space of X and y⊥
X

orthogonal to column
space of X

y = y
X

+ y⊥
X

Then for some vector α = [α1, . . . , αp]T

Column span X

y

yx

 yx
⊥

Figure 35: Column space decomposition of a vector y

y
X

= Xα, XT y⊥
X

= 0
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We have:

ΠXy = ΠX(y
X

+ y⊥)

= X [XTX]−1XTX︸ ︷︷ ︸
=I

α+ X[XTX]−1 XT y⊥
X︸ ︷︷ ︸

=0

= Xα

= y
X

so that ΠX extracts the column space component of y. Thus we can identify y
X

= ΠXy so that
we have the representation

y = ΠXy + (I −ΠX)y︸ ︷︷ ︸
y⊥
X

It follows immediately that 2. I −ΠX projects onto the space orthogonal to span{colsX}
3. ΠX is symmetric and idempotent: ΠT

XΠX = Π

4. (I −ΠX)ΠX = 0

Projection operator form of LS estimator gives alternative expression for minimum SSE

SSEmin = (y − ŷ)T (y − ŷ)
= yT [I −ΠX]T [I −ΠX]y

= yT [I −ΠX]y

Example 24 LS optimality of sample mean

Measure x = [x1, . . . , xn]T

Objective: Find best constant c which minimizes the sum of squares

n∑
k=1

(xi − c)2 = (x− c1)T (x− c1)

where 1 = [1, . . . , 1]T

Step 1: identify solution subspace

S is diagonal line: {y : y = a1, a ∈ IR}
Step 2. apply orthogonality condition

(x− c1)T 1 = 0 ⇐⇒ c =
xT 1
1T 1

= n−1
n∑
k=1

xi

Example 25 LLS linear prediction from training sample
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1

1

1

1=[1, …, 1]T

S

Figure 36: Diagonal line is solution subspace for LS scalar

i

 x(i)

PredictPast data segment

FIR filter
 x(k)^

Training sequence for constructing FIR predictor

Figure 37: Construction of LLS predictor from training sequence
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Measurement sequence {zi}
Training sequence of n+ p samples of zi

{zi}p+ni=1 , i = 1, . . . , n

Fit an AR(p) model to training sequence

zk =
p∑
i=1

aizk−i + vk, k = p+ 1, . . . , n

such that SSE is minimized

SSE(n) =
n∑
k=1

(zk+p −
p∑
i=1

aizk+p−i)2

Solution

Step 1. Identify response variables yk = zk and input vectors zk = [zk−1, . . . , zk−p]T .

⎡⎢⎣ zn+p,
...

zp+1

⎤⎥⎦ =

⎡⎢⎣ zTn+p,
...

zTp+1

⎤⎥⎦ a+

⎡⎢⎣ vn+p
...

vp+1

⎤⎥⎦
y = Xa+ v,

Step 2. Apply orthogonality condition

The LLS p-th order linear predictor is of the form:

ẑk =
p∑
i=1

âizk−i

where â = [â1, . . . , âp]T is obtained from formula

â = [XTX]−1XT y = R̂−1 r̂

and we have defined the sample correlation quantities:

r̂ = [r̂1, . . . , r̂p]T

R̂ = ((r̂(i− j)))i,j=1,p

r̂j := n−1
n∑
i=1

zi+pzi+p−j, j = 0, . . . , p
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5.7 LINEAR MINIMUM WEIGHTED LEAST SQUARES ESTIMATION

As before assume linear model for input and response variables

⎡⎢⎣ y1,
...
yn

⎤⎥⎦ =

⎡⎢⎣ xT1 ,
...
xTn

⎤⎥⎦a+

⎡⎢⎣ v1,
...
vn

⎤⎥⎦
y = Xa+ v,

The linear minimum weighted least squares (LMWLS) estimator â of a minimizes

SSE(a) = (y −Xa)T W (y −Xa)

where W is a symmetric positive definite n× n matrix

Solution to LMWMS problem:

Step 1. Identify vector space containing y: H = IRn

Inner product: 〈y, z〉 = yT Wz

Step 2. Identify solution subspace S

Xa = span{columns of X}

Step 3. apply projection theorem

Orthogonality Condition: the best linear estimator â satisfies

0 = (y −Xâ)TWX

= yTWX− âT XTWX

or, if X has full column rank p then XTWX is invertible and

â = [XTWX]−1XTWy

5.7.1 PROJECTION OPERATOR FORM OF LMWLS PREDICTOR

The vector ŷ of least squares predictors ŷi = xTi â of the actual output y is

ŷ = Xâ

which can be represented as the “oblique” projection of y onto H
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Column span Xφ

y

y

^

Figure 38: Oblique projection interpretation of WLS estimator

ŷ = X[XTWX]−1XTW︸ ︷︷ ︸
oblique projection ΠX,W

y

Resultant weighted sum of square error:

WSSEmin

= yT [I −X[XTWX]−1XTW][I−X[XTWX]−1XTW]T y

= yT [I−ΠX,W]T [I−ΠX,W]y

ALTERNATIVE INTERPRETATION: LMWLS predictor as linear minimum least squares pre-
dictor (unweighted) with preprocessing and postprocessing:

As W is symmetric positive definite there exists a square root factorization of the form

W = W
1
2 W

1
2

and

ŷ = W− 1
2 W

1
2 X[XTW

1
2 W

1
2 X]−1XTW

1
2︸ ︷︷ ︸

orthog. projector Π
W

1
2 X

[W
1
2 y]

= W− 1
2 Π

W
1
2 X

W
1
2 y
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^
y y

W1/2 W-1/2Π

Figure 39: Interpretation of LMWLS estimator as pre- and postprocessing with orthogonal projection

Example 26 Adaptive Linear Prediction

Now want to fit AR(p) model

zk =
p∑
i=1

aizk−i + vk, k = 1, 2, . . .

such that at time n we minimize weighted least squares criterion

WSSE(n) =
n∑
k=1

ρn−k(zk+p −
p∑
i=1

aizk+p−i)2

ρ ∈ [0, 1] is an exponential forgetting factor

Solution of LMWMS problem:

As before, identify response variables yk = zk and input vectors xk = [zk−1, . . . , zk−p]T .

Also identify weight matrix

W =

⎡⎢⎣ ρ0 0 0

0
. . . 0

0 0 ρn−1

⎤⎥⎦
In this way we obtain LMWMS predictor coefficients as

â = [XTWX]−1XTWy

= ˆ̃R
−1

ˆ̃r
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n
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−1/lnρ  n+1

 ρ n-i

i

Figure 40: Exponential forgetting factor applied to past errors for adaptive prediction

and we have defined the smoothed sample correlation quantities:

ˆ̃r = [ˆ̃r1, . . . , ˆ̃rp]T

ˆ̃R = ((ˆ̃r(i− j)))i,j=1,p

ˆ̃rj :=
n∑
i=1

ρn−izi+pzi+p−j, j = 0, . . . , p

Minimum weighted sum of squared errors (WSSE) is:

WSSEmin = ˆ̃r0 − ˆ̃r
T ˆ̃R

−1
ˆ̃r

5.8 OPTIMALITY OF LMWMS IN THE GAUSSIAN MODEL

Recall that the LMMSE estimator turned out to be globally optimal among arbitrary (linear or
non-linear) estimators for a jointly Gaussian measurement and parameter model. Here we show
an analogous result for the linear minimum WSSE estimator.

Hypothesize the particular Gaussian model:

Y = X a+ V

where we assume:

* V ∼ Nn(0,R)

* covariance matrix R is known
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n

Steady state

Figure 41: Typical trajectory of the error criterion for predicting a stationary AR(1) process

* X is known non-random matrix of measurements

Under the above hypothesis, for any given X or a the density function of Y is multivariate Gaussian

f(y; a) =
1√

(2π)n|R|
exp
(
−1

2
(y −Xa)TR−1(y −Xa)

)
.

This implies that the maximum likelihood (ML) estimator of a is identical to the LMWMS esti-
mator. To see this express

âml = argmaxa ln f(Y ; a)

= argmina(Y −Xa)TR−1(Y −Xa).

Hence

Ŷ = Xâml = X[XTR−1X]−1XTR−1Y = ΠX,W Y .

Under the hypothesized model we can evaluate estimator performance by looking to satisfy the
condition for equality in the Cramér-Rao bound (CRB)

(∇a ln f)T = (Y −Xa)T R−1X

=

⎛⎜⎝Y TR−1X[XTR−1X]−1︸ ︷︷ ︸
âT

−aT

⎞⎟⎠ XTR−1X︸ ︷︷ ︸
Ka

We conclude: when X is nonrandom and noise covariance R is known to be equal to the LS
weighting matrix W−1 then

* the LMWMS estimator â is unbiased

* the LMWMS estimator is efficient and therefore UMVUE
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* recalling property 5 of the CRB in Section 4.5.1, as Ka is not a function of a the estimator
covariance is

cova(â) = K−1
a = [XTR−1X]−1 = ˆ̃R

−1 1
n

5.9 BACKGROUND REFERENCES

Two classic statistical references for linear estimation are Rao [57] and Anderson [2]. For treat-
ments with more of a signal processing flavor the reader is referred to books by Scharf [60], Van
Trees [73] and Kay [36]. The area of control and systems identification have also developed their
own distinctive approaches to this problem, see Kailath [32] and Soderstrom and Stoica [66].

5.10 APPENDIX: VECTOR SPACES

For a concise overview of vector spaces in the context of signal processing the reader is referred to
Moon and Stirling [49]. For a more advanced treatment with an orientation towards optimization
see Luenberger [42].

Definition: H is a vector space over a scalar field F if for any elements x, y, z ∈ H and scalars
α, β ∈ F
1. α · x+ β · y ∈ H (Closure)

2. x+ (y + z) = (x+ y) + z

3. α · (x+ y) = α · x+ α · y
4. (α+ β) · x = α · x+ β · x
5. There is a vector φ ∈ H s.t.: x+ φ = x

6. There are scalars 1, 0 s.t.: 1 · x = x, 0 · x = φ

A normed vector space H has an inner product 〈·, ·〉 and a norm ‖ · ‖ which is defined by ‖x‖2 =
〈x, x〉 for any x ∈ H. These quantities satisfy

1. 〈x, y〉 = 〈y, x〉∗

2. 〈α · x, y〉 = α∗〈x, y〉
3. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
4. ‖x‖ ≥ 0

5. ‖x‖ = 0 iff x = φ

6. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality)

7. |〈x, y〉| ≤ ‖x‖ ‖y‖ (Cauchy-Schwarz inequality)

8. Angle between x, y: ψ = cos−1
( 〈x,y〉
‖x‖ ‖y‖

)
9. 〈x, y〉 = 0 iff x, y are orthogonal

10. |〈x, y〉| = ‖x‖ ‖y‖ iff x = α · y for some α

The linear span of vectors {x1, . . . , xk} is defined as

span {x1, . . . , xk} :=

{
y : y =

k∑
i=1

αi · xi, αi ∈ F
}
.
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A basis for H is any set of linearly independent vectors x1, . . . xk such that span{x1, . . . , xk} = H

x1

x2

Figure 42: Illustration of linear span of two vectors in IR3

The dimension of H is the number of elements in any basis for H A linear subspace S is any subset
of H which is itself a vector space. The projection x of a vector y onto a subspace S is a vector x
that satisfies

〈y − x, u〉 = 0, for all u ∈ S

The following are some examples of vector spaces:

1. Euclidean p-dimensional space IRp. Identify x with x and y with y

〈x, y〉 = xT y =
p∑
i=1

xiyi

A one dimensional subspace: the line

S = {y : y = av, a ∈ IR}

where v ∈ IRp is any fixed vector.

2. Complex p-space: x = [x1, . . . , xp], y = [y1, . . . , yp],

〈x, y〉 = xHy =
p∑
i=1

x∗i yi

An n-dimensional subspace:
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x

 

y

 y-x

u1

u2

Figure 43: The projection of a vector x onto a subspace S in the plane

v

Figure 44: A line is a one dimensional subspace of H = IRp
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S = {y : y =
n∑
i=1

aivi, ai ∈ Cl }

= span{v1, . . . , vn}

where vi ∈ Cl p are any linearly independent vectors in H.

3. The space of square integrable cts. time functions x(t)

〈x, y〉 =
∫
x(t)y(t) dt

A one dimensional subspace: scales of a given function

S = {g : g(t) = a f(t), a ∈ IR}

where f = f(t) is any fixed function in H.

0  f(t)

t

 a f(t)

Figure 45: All scalings of a fixed function is a one dimensional subspace of H

4. The space of second order real random variables X defined on a sample space. Identify x, y as
random variables X,Y :

〈X,Y 〉 = E[XY ] =
∫

Ω
X(ω)Y (ω)f(ω) dω

Ω: sample space of elementary outcomes ω

Q. How to use vector spaces for estimation?

A. Identify H = {Y : Y a r.v. with E[|Y |2]〈∞}.
Inner product beween two “vectors” in H is defined as
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〈X,Y 〉 := E[XY ]

(X,Y real r.v.s)

5.11 EXERCISES

5.1 Give a concrete example of two zero mean random variables X and Z for which the linear
minimum mean square error estimator of X given Z is equal to 0. Give another concrete
example where the overall (linear or non-linear) minimum mean square error estimator is 0.

5.2 Here you explore how linear minimum MSE estimation principles can be applied to non-linear
estimation. Given an observed random variable X define the vector of monomials in X:

Y = [1,X,X2, . . . ,Xm]T ,

where m ≥ 1 is a positive integer. A non-linear polynomial estimator of order m of another
random variable θ given observation X is simply a linear combination of the elements of Y :

θ̂ = hTY ,

where h = [h0, . . . , hm]T is a set of estimation coefficients to be determined. For questions (b)
and (c) you may find is useful to use the following facts about a zero mean Gaussian random
variable Z: E[Zk] = 0 if k is odd integer while otherwise E[Zk] = σkZ · (k− 1) · (k− 3) · · · 3 · 1.
Also E[|Z|] = σZ

√
2/π.

(a) What is the choice of h that minimizes the MSE E[(θ− θ̂)2]? What is the mean squared
error of the resulting optimal non-linear polynomial estimator?

(b) Let X = sgn(S) + W , where sgn(u) is the sign of u, S,W are uncorrelated, jointly
Gaussian and zero mean. Find the optimal first order (m = 1) estimator of S given
measurement of X and its resulting minimum MSE. This is the standard optimal linear
(affine) estimator we have studied in class.

(c) For the same measurement model for X as in part (b) find the optimal second order
(m = 2)and third order (m = 3) non-linear polynomial estimator of S in terms of σ2

w

and σ2
s .

5.3 The least squares method can also be applied to multiple-response linear observation models
of the form

y1k + α1y2k . . .+ αp−1ypk = β1x1k + . . .+ βqxqk + vk, k = 1, . . . , n

where {y1k, . . . , ypk}k are n different observed waveforms (responses) and the αi. and βi
coefficients are to be determined by minimizing the least squares criterion

SSE(α, β) =
n∑
k=1

(yk + α1y2k + . . .+ αp−1ypk − β1x1k − . . .− βqxqk)2

(a) Show that the above observation model is equivalent to the vector model

Y [1, αT ]T = Xβ + v

where Y and X are n× p and n× q matrices, respectively, v is a n× 1 vector of residuals
vk, α = [α1, . . . , αp−1]T and β = [β1, . . . , βq]T .
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(b) Assuming that X has linearly independent columns (full rank) find the least squares
estimates β̂ and α̂ and the resulting minimum SSE. (Hint: first minimize over β then
over α)

(c) Assume that the vector u = [1, α]T is constrained to have length ‖u‖ = c, where c ≥ 1
is a specified constant. Derive an explicit form for the LS estimators. (Hint: Rayleigh
theorem (Ch. 2 or [19]) on minimizing quadratic forms).

(d) The “sensor selection problem” is the following. Fix p
′
and consider choosing the subset

of p
′
response waveforms {yi1,k}nk=1, . . . , {yip′ ,k}

n
k=1, i1, . . . , ip′ distinct integers in 1. . . . , p,

out of the p responses which provide the best fit, i.e. minimize the residuals. Show that
the algorithm for solving this sensor selection problem requires solving p!/(p

′
!(p − p′

))!
separate least squares problems.

(e) The optimal sensor selection algorithm which you obtained in the previous part of this
exercise is of high computational complexity, in the worst case it requires solving approx-
imately pp

′
least squares problems. Comment on how the solutions to parts (b) or (c) of

this exercise could be used to approximate the optimal solution.

5.4 Let the observation have the standard linear model yk = xTk a + vk, k = 1, . . . , n. We
saw in this chapter that when yk and xk are known and vk is Gaussian the MLE of a is
equivalent to the WLSE with weight matrix equal to the covariance matrix of the vector
v = [v1, . . . , vn]T . In many applications there exist outliers, i.e. a small number of unusually
large residual errors vk, and the Gaussian assumption is not appropriate. Here we treat the
case of heavy-tailed distributions of vk which leads to an estimate of a which is more robust
to outliers.

(a) Assume that vk are i.i.d. r.v.s with marginal density fv(v). Show that the MLE of a is

â = argmina

{
n∑
k=1

log fv(yk − xTk a)
}

(b) Assuming fv is a smooth function, derive the CR bound on unbiased estimators of a.
Under what conditions is the bound attainable?

(c) Show that for Laplacian noise with fv(v) = β
2 exp(−β|v|), β ≥ 0, the MLE reduces to

the minimizer of the sum of the absolute errors |yk − xTk a|.
(d) Consider the noise density fv(v) = c(α, b) exp(−v2/(α2 + v2)), v ∈ [−b, b], b and α fixed

known parameters and c a normalizing constant. Show that the MLE â can be interpreted
as a non-linearly weighted LSE in the sense that it satisfies the “orthogonality condition”

n∑
k=1

λk(â)(yk − xTk â)xk = 0

where
λk(â) =

1
α2 + (yk − xTk â)2

(e) The solution to the non-linearly weighted LSE above can be approximated using an
“iterative reweighted least squares” technique which consists of approximating the above
“orthogonality condition” by implementing the following procedure
i. Initialize â0 = â equal to the standard unweighted LS estimate â = [XTX]XT y.
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ii. Repeat until convergence:

âi+1 = [XTWiX]−1XTWiy, i = 1, 2, . . .

where Wi is a diagonal weight matrix with diagonal entries λ1(âi), . . . , λn(âi).
Implement this algorithm in MATLAB and study its convergence for various values of
α, b.

5.5 In many applications involving fitting a model to a set of input and output measurements X
(n×p) and y (n×1), not only are the output measurements noisy but the input measurements
may also be noisy. In this case the method of Total Least Squares (TLS) [19] is applicable.
One formulation of TLS is to model the measurements by

yk = (xk + εk)
Ta+ vk, k = 1, . . . , n

where vk is a zero mean white Gaussian noise with variance σ2
v and εk is an i.i.d. sequence of

zero mean Gaussian p× 1 random vectors with diagonal covariance matrix σ2
ε Ip.

(a) Find the likelihood equation which must be satisfied by the MLE of a when σv and σε
are known. To what does your equation reduce when σ2

v dominates σ2
ε ? What is the ML

estimator for a in this case?
(b) Show that the MLE of a is identical to the standard LS estimator for unknown σε.
(c) Find the Fisher information and the CR bound on unbiased estimator covariance for the

case of known σv and σε. Repeat for the case of unknown σε. For which of these cases,
if any, is the CR bound achievable?

5.6 It is desired to find the linear least sum of squares (LLSS) fit of a complex valued vector a
to the model

yk = xTk a+ vk, k = 1, . . . , n

where yk and xk = [xk1, . . . , xkp]T are observed. Defining the vector space H of complex
valued n-dimensional vectors with norm < y, z >= yHz (“H” denotes complex conjugate
transpose) and vector y = [y1, . . . , yn]T and matrix X = [x1, . . . , xn]

T (analogously to the
case studied in sec. 5.6 of notes). Assume that X is full rank. Using the projection theorem
show that the solution to the LLSE problem mina ‖y −Xa‖2 is of the form

â = [XHX]−1XHy

with minimum LLSS residual error squared

‖y −Xâ‖2 = yH [I −X[XHX]−1XH ]y.

5.7 This problem applies the solution to the previous exercise. Let the complex observations be
given as X = {X(0), . . . ,X(N −1)}. Hypothesize that X(k) is a damped sinusoid in additive
noise:

X(k) = ae−αkej2πf0k + Z(k), k ≥ 0,

where a ∈ Cl is an unknown complex scale factor, α ≥ 0 is an unknown decay constant, and
f0 ∈ [0, 1

2 ] is an unknown frequency.
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(a) For known α and f0 show that the least-squares estimator of a which minimizes the sum
of the squared residuals SSE(a) =

∑N−1
k=0 |X(k) − ae−αkej2πf0k|2 over a has the form

(large N):
â = X (z0) (1− e−2α),

where X (z0) =
∑N−1

k=0 X(k)z−k0 is the Z-transform of X evaluated at the point z = z0 =
eα+j2πf0 outside the unit circle. Note that for α = 0 this is just the DFT of X(k).

(b) Now for known α but unknown a show that the (non-linear) least-squares estimator for f0

which minimizes the sum of the squared residuals SSE(â) =
∑N−1

k=0 |X(k)−âe−αkej2πf0k|2
over fo is obtained by maximizing the Z-transform of X over the radius eα circle |z| = eα:

f̂0 = argmaxf0 |X (z0)|2 ,

and:
â = X (eα+j2πf̂0) (1− e−2α).

Note that f̂0 reduces to the location of the highest peak in the magnitude “frequency
spectrum” S(f) =

∣∣X (e2πf )
∣∣ of X(k) when α is known to be equal to 0.

(c) Finally for unknown a, α, f0 show that the non-linear least-squares estimator of α, f0 is
obtained by maximizing the scaled Z-transform of X over the exterior of the unit disk:

f̂0, α̂ = argmaxf0,α≥0 |X (z0)|2 (1− e−2α),

and:
â = X (eα̂+j2πf̂0) (1− e−2α̂).

5.8 It is desired to fit the coefficients α and β to the linear model for the measurements yk =
α+ βk + vk, k = 1, . . . , N , where vk is the model error residual to be minimized by suitable
chice of α, β. Find the linear least squares estimator for these coefficents (you can leave your
solution in the form of a pair of simultaneous equations if you wish).

5.9 It is hypothesized that the relation between a pair of measured variables yk and xk is non-
linear. A reasonable model for this is

yk = a0 + a1xk + . . . + apx
p
k + vk, k = 1, . . . , n

(a) For a single sample (n = 1) find the set of coefficients a0, . . . , ap which minimizes the
mean squared error E[(yk − [a0 + a1xk + . . .+ apx

p])2] under the assumption that yk and
xk are r.v.’s with known moments E[ykxlk], l = 0, . . . , p, and E[xlk], l = 0, . . . , 2p.

(b) Repeat part (a) for the non-statistical least squares estimation error criterion for n sam-
ples

∑n
k=1(yk − [a0 + a1xk + . . .+ apx

p])2 .
(c) Show that the two estimators found in (a) and (b) become equivalent as n→∞.

5.10 A sequence of obervations yk, k = 1, . . . , N is to be modeled as the sum of two sinusoids

yk = A cos(ωok) +B sin(ωok) + vk

where vk is an error residual, ωo is known, and A,B are to be determined.

(a) Derive the linear least squares estimators of A,B. Express your result in terms of the
real and imaginary parts of the DFT Y(ω) =

∑N
k=1 yke

−jωk of yk. You may assume that∑N
k=1 cos(2ωok) =

∑N
k=1 sin(2ωok) = 0.
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(b) Now assume that A and B are uncorrelated r.v.s with mean μA and μB and variance σ2

and that vk is zero mean white noise of unit variance uncorrelated with A,B. Derive the
affine minimum mean square error estimator of A,B given yk, k = 1, . . . , N .

(c) Express the result of (b) in terms of the real and imaginary parts of the DFT Y(ω) =∑N
j=1 yke

−jωk of yk and compare to the result of part (a)

5.11 In this problem you will explore least squares deconvolution. Available for measurement are
the noisy outputs Yk, k = 1, . . . , n, of a known LTI filter (channel), with known finite impulse
response {hk}pk=0 and having an unknown input {Xk}, and measured in additive noise {Wk}

Yk =
p∑
i=0

hiXk−i +Wk, k = 1, . . . , n

The objective is to deconvolve the measurements using the known channel {hk} to recover
the input {Xk}. Assume that Xk = 0 for k ≤ 0.

(a) Show that the above measurement equation can be put in the form

Y = HX +W,

where H is a matrix of impulse responses of the FIR filter. Identify the entries of the
vectors X , W and the matrix H.

(b) Assuming thatH has linearly independent columns (full rank) find the linear least squares
estimate X̂ which minimizes the sum of squared errors

∑n
k=1(Yk−hk∗Xk)2 (“ * ” denotes

convolution). Give a relation on p, n or {hi} to ensure that H has full rank.
(c) In some cases estimation errors in the recent past are more important than errors in the

more distant past. Comment on how you would incorporate this into a weighted linear
least squares criterion and find the criterion-minimizing linear estimator X̂.

(d) A simple model for imprecise knowledge of the channel is

Y = (H + zI)X +W

where z is a zero mean Gaussian random variable with variance σ2. Assuming that W
is zero mean Gaussian random vector with identity covariance (I) find the likelihood

function for θ def= X based on the observation Y . Show that the ML estimator reduces
to the linear least squares estimate of part (b) when σ2 → 0.

End of chapter
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6 OPTIMAL LINEAR FILTERING AND PREDICTION

In the last chapter linear and affine estimation was explored for the case of a small number n of
measurements, or at least small enough so that the n×n covariance matrix RX could be inverted
permitting implementation of the linear minimum mean squared error estimator. In this chapter
we turn to the case where an online linear predictor is desired, the number n of measurements
is increasing over time, and matrix inversion quickly becomes impractical. This situation arises
in many signal processing applications where ”streaming data” is collected. The approach that
is taken for this problem is to model the measurements as coming from a random process with
known autocorrelation function (acf). Under some additional assumptions on the acf the linear
predictors can be implemented recursively by applying a filter to the data stream. In Wiener
filtering, designed for wide sense stationary (wss) processes, this filter is causal and linear time
invariant (LTI) while in Kalman-Bucy filtering, designed for non-stationary processes, the filter is
linear time varying (LTV).

We will cover the following topics.

* Wiener-Hopf Equations of min MSE filtering for w.s.s. processes

* Non-causal filtering, estimation, and prediction

* Causal LTI prewhitening: spectral factorization

* Causal LTI prediction: the Wiener filter

* Causal LTV prewhitening: the innnovations filter

* Causal LTV prediction: the Kalman-Bucy filter

A word about notation is in order here. Up to now in this text we have used upper case letters
for random variables reserving lower case for their realizations. However, it is customary to drop
the upper case for random processes and we will do so in this chapter putting the reader at small
risk of confusion between realizations, i.e. waveforms, and random processes. Fortunately, second
order statistical treatments like that covered here incur fewer accidents due to this kind of abuse
of notation.

6.1 WIENER-HOPF EQUATIONS OF OPTIMAL FILTERING

The Wiener filter is useful for linear prediction when one assumes that the underlying random
processes are wide sense stationary. The derivation of the filter below requires some facility with
z-domain power spectral densities (PSD) for which the reader is referred to the Appendix, Sec.
6.13.

Two zero mean w.s.s. discrete time random processes x and g are of interest to us:

* x = {xk : k ∈ I}: observed over an index set I
* g = {gk : −∞ < k <∞}: unobserved and to be estimated from x

Objective: estimate a time sample of g, e.g. gi, by a linear function of the waveform x. Note that
gk plays the role of a random parameter, which we denoted θk in previous chapters.

ĝk =
∑
j∈I

h(k, j)xj

such that we achieve minimum MSE over choice of linear coefficients h = {h(k, j)}k,j :
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I

i

 g(i)

 x(i)

k

 g(k)

Figure 46: Two random processes over time. Objective is to predict gk as a linear function of observation xi
over a time interval I.

MSE(h) = E[|gk − ĝk|2]

Solution: by orthogonality condition

E[(gk − ĝk)u∗i ] = 0, i ∈ I

for any basis set {ui} spanning span{xi : i ∈ I}. The basis ui = xi, i ∈ I, will suffice here.

Obtain Wiener-Hopf (WH) equation for optimal filter h(k, j) from orthogonality. condition

0 = E[(gk − ĝk)x∗i ]

= E[gkx∗i ]−
∑
j∈I

h(k, j)E[xjx∗i ]

= rgx(k − i)−
∑
j∈I

h(k, j)rx(j − i), i ∈ I

When I is finite this is equivalent to a matrix equation which can be solved as in previous section.

Two cases of interest here:

Case I: I = {−∞, . . . ,∞}: non-causal estimation (smoothing)

Case II: I = {−∞, . . . , k}: Causal estimation (filtering)
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6.2 NON-CAUSAL ESTIMATION

For I = {−∞, . . . ,∞} WH equation becomes

rgx(k − i)−
∞∑

j=−∞
h(k, j)rx(j − i) = 0, −∞ < i <∞

Fact: solution h(k, j) is an LTI filter h(k − j) (Exercise in this chapter).

Take double-sided Z-transform to obtain:

Pgx(z)−H(z)Px(z) = 0

or optimum filter has frequency domain transfer function

H(ejω) =
Pgx(ejω)
Px(ejω)

By invoking the orthogonality condition the minimum MSE can be expressed as follows

MSEmin = E[(gk − hk ∗ xk)g∗k]

= rg(0)− hk ∗ rxg(k)|k=0

Or in frequency domain (recall notation P(ω) for P(ejω))

MSEmin =
1
2π

∫ π

−π
[Pg(ω)−H(ω)Pxg(ω)] dω

=
1
2π

∫ π

−π

[
Pg(ω)− Pgx(ω)Pxg(ω)

Px(ω)

]
dω (63)

Example 27 Wide sense stationary signal in additive noise

Measurement model

xi = si + wi, −∞ < i <∞

* s,w are uncorrelated w.s.s. random processes

* gk = sk to be estimated

Obtain min MSE filter for estimation of sk and its min MSE

H(ω) =
Ps(ω)

Ps(ω) + Pw(ω)
=
{

1, Ps(ω)/Pw(ω)� 1
0, Ps(ω)/Pw(ω)� 1

MSEmin =
1
2π

∫ π

−π

Ps(ω)Pw(ω)
Ps(ω) + Pw(ω)

dω =
{

0, minωPs(ω)/Pw(ω)� 1
var(sk), maxω Ps(ω)/Pw(ω)� 1

Problem: H(ω) is non-negative real so that hk is symmetric impulse response. This implies that
ŝk =

∑∞
j=−∞ h(j)xk−j depends on future measurements (non-causal)!
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 h(k)

k

Figure 47: Min MSE filter for estimating w.s.s. signal in noise has symmetric impulse response.

6.3 CAUSAL ESTIMATION

Objective: find linear min MSE estimate of gk based only on past measurements

ĝk =
k∑

j=−∞
h(k − j)xj

where h satsifies Wiener-Hopf equations

0 = rgx(k − i)−
k∑

j=−∞
h(k − j)rx(j − i), −∞ < i ≤ k (64)

Let’s explicitly constrain filter hj to be causal: h(j) = 0, j < 0. Then we have after change of
variable (see homework exercises)

0 = rgx(l)−
∞∑

j=−∞
h(l − j)rx(j), l ≥ 0 (65)

Difficulty: cannot just take z-transform as we did before due to restriction on l. Indeed the
equation (65) does not specify the value of the difference on the LHS for negative values of l; these
values can be arbitrary as long as RHS = 0 for l ≥ 0.
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6.3.1 SPECIAL CASE OF WHITE NOISE MEASUREMENTS

One case where solution to WH is simple: xi = wi = white noise of unit variance:

rw(k) = δk =
{

1, k = 0
0, k �= 0

Wiener-Hopf Eqn becomes

rgw(l)−
∞∑

j=−∞
h(l − j)rw(j) = rgw(l)− h(l), l ≥ 0

Hence we can specify optimal causal filter as

h(k) =
{
rgw(k), k ≥ 0

0, o.w.

Or in z-transform domain:

H(z) = {Pgw(z)}+ (66)

where we have defined truncated z-transform of a time function b(k) with z-transform B(z)

{B(z)}+
def=

∞∑
k=0

b(k)z−k

k

Figure 48: Truncated z-transform of a function bk.
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6.3.2 GENERAL CASE OF NON-WHITE MEASUREMENTS

Our derivation of the Wiener filter is based on the approach of Bode and Shannon [8]. The main
idea behind this derivation is the following. If we could “prewhiten” x with a filter hw then we
could follow with optimal filter of form (66). This suggests a “prewhitening approach” to solving
general problem. However, not just any old whitening filter will do. In keeping with the original
objective of causal linear minimum mean square error estimation, the prewhitening filter must
itself be causal and, to ensure that we lose no information about {xi}ki=−∞, it must be causally
invertible, i.e. we must be able to recover past values of the input {xi}ki=−∞ from past values of
the output.

 x(k)  w(k)  g(k)^
Hw H

~

Figure 49: Solution of the causal estimation problem by a cascade of a prewhitening filter hw and an optimal
wiener filter h̃ for white noise.

Thus the optimal filter H̃ for whitened measurements is specified by

H̃(z) = {Pgw(z)}+

=
{
Pgx(z)Hw(z−1)

}
+

The filter Hw must satisfy conditions

1. hw whitens the input process

Pw(z) = Hw(z)Hw(z−1)Px(z) = 1

2. hw is causal

3. hw is causally invertible

Definition: A filter (discrete time) hw with transfer function Hw(z) is causal and causally invertible
iff Hw(z) and 1/Hw(z) have no singularities outside the unit circle, i.e.,
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|Hw(z)| <∞, |z| > 1

and similarly,
1/|Hw(z)| <∞, |z| > 1

.

 x(k)  w(k)
Hw Hw

1
 x(k)

Figure 50: The cascade of causal filters Hw and 1/Hw is causal and all pass thus implying that {wi}ki=−∞
contains same information as {xi}ki=−∞, i.e. wi is white sufficient statistic.

6.4 CAUSAL PREWHITENING VIA SPECTRAL FACTORIZATION

Assume xk is w.s.s. with

* rx(k) positive definite and summable
(∑∞

k=−∞ |rx(k)| <∞
)

* rational PSD

Px(z) =
∑
k

rx(k)z−k =
b(z)
a(z)

where

rx(k) = E[xixi−k] is acf of x

b(z) = bqz
q + · · ·+ b1z + b0

a(z) = apz
p + · · · + a1z + a0

For hw to satisfy whitening condition require

Hw(z)Hw(z−1) =
1
Px(z)

(67)
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Pole zero constellationof rational PSD

Re(z)

Im(z)

�

�

�

�

o

o

o

o

1-1

Figure 51: Pole zero constellation of a rational PSD.

Next we deal with causality conditions

Any rational PSD can be factored into the form of a ratio of factors of simple first order polynomials

Px(z) = c
Πq
i=1(1− z/zoi)(1− zzoi)

Πp
i=1(1− z/zpi)(1− zzpi)

,

where c is a real constant and zoi, zpi are zeros and poles of Px(z).
This factorization implies the following important properties of rational PSDs

Px(z−1) = Px(z), (symmetric rk)
Px(z∗) = P∗

x(z), (real rk)
Px(z)→ no poles on unit circle (bounded rk)
Px(z)→ zeros on unit circle occur in pairs ( p.d. rk)

These conditions imply that there exist positive square root factors P+
x (z) and P−

x (z) which satisfy:

Px(z) = P+
x (z)P−

x (z)

P+
x (z−1) = P−

x (z)

and

P+
x (z) has all poles and zeros inside unit circle

P−
x (z) has all poles and zeros outside unit circle

Therefore, conclude that the assignment
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Hw(z) = 1/P+
x (z)

satisfies whitening condition (67) and H(z), 1/H(z) have all their poles inside unit circle

Can identify 1/Hw(z) causal synthesis filter for measurement process xk

xk = h−1
w (k) ∗ wk

where h−1
w (k) is the inverse Z-transform of 1/Hw(z) = P+

x (z).

This can be useful for simulation of xk with arbitrary rational PSD from pseudo-random white
noise samples wk.

 w(k)

Hw

1
 x(k)

Figure 52: A representation of xk with PSD Px as output of LTI causal filter Hw(z) = P+
x driven by white

noise

6.5 CAUSAL WIENER FILTERING

Putting Hw and H̃ together we obtain formula for the causal Weiner filter

H(z) = Hw(z) H̃(z) =
1

P+
x (z)

{
Pgx(z)Hw(z−1)

}
+

=
1

P+
x (z)

{
Pgx(z)
P−
x (z)

}
+

. (68)

A time-domain expression for the minimum mean squared error MSEmin = E[(gk − ĝk)2] can be
simply derived using the orthogonality condition

MSEmin = rg(0) −
∞∑
k=0

h(k)rxg(−k), (69)
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where h(k) is the inverse Z-transform of H(z) in (68). Unlike the case of non-causal estimation
(recall expression (63) there is no simple frequency-domain representation for MSEmin.

Example 28 Causal prewhitening an AR(1) noise process

x(k) = −ax(k − 1) + u(k), (−1 < a < 1)

where u(k) is white noise with variance 1.

 u(k)  x(k)

1+a z-1

1

Figure 53: Synthesis filter of AR(1) process is a single pole IIR.

First find PSD.

Px(z) =
1

(1 + az−1)︸ ︷︷ ︸
P+

x (z)

1
(1 + az)︸ ︷︷ ︸
P−

x (z)

, rx(k) =
ak

1− a2

The causal prewhitening filter is FIR

Hw(z) = 1 + az−1 ⇐⇒ hw(k) = δ(k) + aδ(k − 1)

Can be implemented even without access to infinite past

Example (ctd.) Prediction of an AR(1) from noiseless observations

Now we let gk = xk+α where α is a positive integer. When α > 0 this is a prediction problem. In
light of the fact that we have just found the prewhitening filter, it remains to find the quantity{

Pgx(z)
P−
x (z)

}
+

to specify the Wiener filter-predictor (68).
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 rx(k)

1-a2

1

k
−1/ln a

1/e
1-a2

Figure 54: Auto-correlation function of AR(1) process with AR coefficient a is slowly decaying double sided
exponential for −1� a ≤ 0. (figure k-axis label should be −1/ ln |a|).

 x(k)  w(k) = u(k)

1+a z-1

Figure 55: Causal prewhitening filter for AR(1) process with AR coeffient a is a single tap FIR filter.



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 147

As rgx(k) = E[xi+αxi−k] = rx(k + α): Pgx(z) = zαPx(z). Hence{
Pgx(z)
P−
x (z)

}
+

=
{
zαP+

x (z)
}

+

=
{
zα/(1 + az−1)

}
+

Now, using the identity (95) derived in the exercises, we see that{
zα/(1 + az−1)

}
+

= (−a)α/(1 + az−1)

Hence, the Wiener filter-predictor is simply

H(z) =
1

P+
x (z)

(
(−a)α

1 + az−1

)
= (−a)α

which in the time domain gives the optimal predictor as x̂k+α = (−a)αxk. This just corresponds
to scaling the most recent observation and is consistent with xk being a 1st order Markov sequence
so that, for predicting the future, past information is not useful given present information.

Example 29 Causally prewhitening an AR(1) plus white noise process

x(k) = vAR(1)(k) + V (k)

where

* vAR(1)(k) is AR(1) with a = −0.8

* V (k) is white noise of variance 1/0.36

* vAR(1)(k) and V (k) are uncorrelated

Using result (94) derived in the Exercises, find PSD as a rational function with double pole and
double zero

Px(z) =
1

(1− 0.8z−1)
1

(1− 0.8z)
+ 1/0.36

=
d(1 + bz−1)
(1 + az−1)︸ ︷︷ ︸

P+
x (z)

d(1 + bz)
(1 + az)︸ ︷︷ ︸
P−

x (z)

where a = −0.8, b = −0.5 and d = 1/
√

0.225.

Unlike previous example, the causal prewhitening filter hw(k) is now IIR

Hw(z) = 1/d
(1 + az−1)
(1 + bz−1)

and thus prewhitening cannot be implemented without access to infinite past.
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Note that the synthesis filter 1/Hw(z) can be applied to white noise wk to obtain recursion for
xk with both an autoregressive (AR) component (LHS) and a moving average (MA) component
(RHS):

xk + axk−1 = b1wk + b2wk−1

where b1 = d and b2 = db. Random processes xk that satisfy the recursion above are “ARMA(1,1)”
process.

Example (ctd.) Prediction of AR(1) from noisy observations

Similarly to the previous example we let ĝ(k) = vAR(1)(k+α) where α is a non-negative integer. As
the measurement noise u(k) and the AR(1) process vAR(1)(k) are uncorrelated Pgx(z) = Pgv(z) =
zαPv(z) where Pv(z) is the PSD of vAR(1) and Pgv(z) is the cross spectral density of g and vAR(1).
Therefore, after substitution of the expression for P−

x obtained above,{
Pgx(z)
P−
x (z)

}
+

=
1
d

{
zα

1
1 + bz

1
1 + az−1

}
+

. (70)

Before proceeding further, we will need to express the product of two ratios in {·}+ as a sum of
two ratios in order to apply the identities (95) and (96). To do this, observe

1
1 + bz

1
1 + az−1

=
z−1

b+ z−1

1
1 + az−1

=
A

b+ z−1
+

B

1 + az−1

where A and B are to be determined. Comparing the LHS of the top line to the bottom line of
this last equation it is obvious that

A = lim
z−1→−b

z−1

1 + az−1
= −b/(1− ab)

B = lim
z−1→−1/a

z−1

b+ z−1
= 1/(1 − ab)

Thus we have from (70){
Pgx(z)
P−
x (z)

}
+

=
1

d(1 − ab)

{
zα

1 + az−1
− zα+1b

1 + bz

}
+

=
1

d(1 − ab)
(−a)α

1 + az−1

where we have used the identity (96) which shows that only the first additive term in {·}+ survives
(the second term corresponds to an anticausal component).

Hence, using (68) the Wiener filter-predictor is simply

H(z) =
q

1 + bz−1

where q = (−a)α

d2(1−ab) , which can be implemented in the time domain as the single pole IIR filter
recursion

ĝ(k) = −bĝ(k − 1) + qxk.
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with ĝ(k) = v̂AR(1)(k + α). It can be readily verified that in the limit as the measurement noise
var(u(k)) goes to zero, b → 0, d2 → 1, and q → (−a)α so that this IIR predictor filter reduces to
the simple Wiener predictor filter of the previous example having no measurement noise.

Derivation of the MSE of the Wiener filter is left as an exercise for the reader.

6.6 CAUSAL FINITE MEMORY TIME VARYING ESTIMATION

The Wiener filter is limited to the cases where the processes gk and xk are jointly w.s.s. and the
estimating filter is LTI, i.e. access to infinite past is available. In practice, however, this is not the
case and we will need to handle the situation for which

1. gk, xk may not be jointly w.s.s.

2. estimator filter is turned on at time k = 0 with initial conditions (finite memory) and is not
LTI.

Objective: find linear min MSE estimate of gk based only on finite past+present measurements

ĝk =
k∑
j=0

h(k, j)xj (71)

We know that optimal h satisfies the k × k system of Wiener-Hopf equations.

0 = rgx(k, i) −
k∑
j=0

h(k, j)rx(j, i), 0 ≤ i ≤ k

Or, since summation is over finite number of indices we can express this in the familiar matrix
form

hk = R−1
x rxg

where hk = [h(k, k), h(k, k − 1), . . . , h(k, 1)]T , Rx is the (k + 1)× (k + 1) covariance matrix of the
first k measurements, and rgx is the (k + 1)-element vector of cross correlations between g and
x(0), . . . , x(k).

Difficulty: standard matrix inverse approach has growing memory and computation as k increases:
not suitable for real time implementation.

6.6.1 SPECIAL CASE OF UNCORRELATED MEASUREMENTS

As before we first convert to a case where solution to WH is simple:

⇒ xi = ηi = non-stationary white noise

rη(j, i) = σ2
η(i) δj−i

Solution to WH equation is now immediate
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 x(k)  η(k)

TVF
g(k)

H
~

^

Figure 56: Decomposition of min MSE filter by prefiltering with time-varying innovations filter.

0 = rgη(k, i) −
k∑
j=0

h(k, j)rη(j, i) = rgη(k, i) − h(k, i)σ2
η(i), 0 ≤ i ≤ k

and gives optimal filter as a projection coefficient associeted with projecting gk onto the i-th noise
component ηi

h(k, i) =
< gk, ηi >

< ηi, ηi >

= rgη(k, i)/σ2
η(i), 0 ≤ i ≤ k

6.6.2 CORRELATED MEASUREMENTS: THE INNOVATIONS FILTER

Q. How to “prewhiten” xk?

A. A time-varying “prewhitening filter” has to yield output variables {ηi} which are uncorrelated,
which are causally and linearly generated from past of {xi}, and from which the past {xi} can be
recovered in a causal fashion

This translates to the following required conditions on ηi:

1. cov(ηi, ηj) = 0, i �= j

2. span{ηk, ηk−1, . . . , η0} = span{xk, xk−1, . . . , x0}, k = 1, 2, . . .

Recursive construction of {ηi}:
Let x̂k|k−1 be the optimal 1-step linear predictor of xk given past {xk−1, . . . , x0}
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x̂k|k−1 =
k−1∑
i=0

ak,i xi

Equivalently,

x̂k|k−1 =
k−1∑
i=0

αk,i ηi

Recall orthogonality condition

E[(xk − x̂k|k−1)xi] = 0, i = 0, . . . , k − 1

Suggests following algorithm for ηi’s

η0 = x0

η1 = x1 − x̂1|0
...

...
ηk = xk − x̂k|k−1

or, more explicitly, in matrix form

⎡⎢⎣ η0
...
ηk

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 · · · 0

−a10
. . . 0

...
...

. . . . . . 0
−ak,0 · · · −ak,k−1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎣ x0

...
xk

⎤⎥⎦

η
k

= A xk

* ηi is the ”innovations process”

* Rows of A specify causal invertible “innovations filter”

* Note: as A is invertible {ηi} is equivalent to {xi}.

6.6.3 INNOVATIONS AND CHOLESKY DECOMPOSITION

The innovations representation gives a decomposition for covariance Rx of x

Rx = E[xxT ]
= E[A−1ηηTA−T ]

= A−1E[ηηT ]A−T

= A−1 Rη A−T
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Linear
predictor z-1

xk|k-1
^

xk
ηk

-

Figure 57: The innovations filter produces equivalent uncorrelated measurement sequence ηi.

Equivalently, the representation gives us a way to diagonalize RX without the need to form an
eigendecomposition:

A RX AT = Rη.

This decomposition is closely related to the Cholesky decomposition of positive definite matrices
[19], which exists in two forms:

FORWARD CHOLESKY DECOMPOSITION

Any symmetric positive definite matrix B has a decomposition of the form

B = Lf Pf LTf

where

* Pf diagonal matrix of “forward prediction error variances”

* Lf is lower triangular matrix of “forward prediction coefficients”

* Pf and Lf are non-singular

BACKWARD CHOLESKY DECOMPOSITION

Any symmetric positive definite matrix B has a decomposition of the form

B = LTb Pb Lb

where

* Pb diagonal matrix of “backwards prediction error variances”

* Lb is lower triangular matrix of “backwards prediction coefficients”

* Pb and Lb are non-singular
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When the measurement sequence {xi} is w.s.s. the covariance matrix RX is Toeplitz and there exist
fast algorithms, known as the Levinson-Durbin algorithm [19], for diagonalizing the covariance
matrix and computing these decompositions.

6.7 TIME VARYING ESTIMATION/PREDICTION VIA THE KALMAN
FILTER

Since span{ηi}ki=0 = span{xi}ki=0, the innovations are just another basis spanning the observations,
which happens to be a orthogonal basis. Thus we have the equivalent representation for the optimal
causal finite memory estimator (71) of gk

ĝk = ĝk|k =
k∑
j=0

h̃(k, j)ηj

where h̃ is the projection coefficient

h̃(k, j) =
< gk, ηj >

< ηj , ηj >
=
rgη(k, j)
σ2
η(j)

We can now write a “pseudo recursion” for ĝk|k

ĝk|k =
k−1∑
j=0

h̃(k, j)ηj + h̃(k, k) ηk

= ĝk|k−1 + h̃(k, k) ηk (72)

This is not a “true recursion” since we do not yet know how to compute the update h̃(k− 1, j)→
h̃(k, j) for the projection coefficient nor the update ηk−1 → ηk of the innovations. To obtain
a true recursion we will need to assume a dynamical model for xk. The derivation will then
proceed in two steps: first we will consider generating a recursion for the innovations, which will
require developing the recursion x̂k|k−1 → x̂k+1|k; second we will specialize gk to the case of signal
prediction, gk = sk+1, and signal filtering, gk = sk, for the case that xk satisfies the linear model
xk = sk + vk.

6.7.1 DYNAMICAL MODEL

Specifically, we will assume that xk is given by the model

xk = sk + vk

sk = cTk ξk
ξ
k+1

= Ak+1,k ξk + Bk wk, ξ
0

= ξ
o

(73)

where:

sk is a (scalar) signal and vk is a (scalar) measurement noise,

ξ
k

is a p dimensional “state vector” (“internal state” of system generating {sk}),
ck is a p-element vector describing how the state affects the signal component sk of the measurement
xk,
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wk is a state noise vector (q × 1)

Bk is the state noise input matrix (p × q)
Ak+1,k is a state transition matrix (p × p) describing the signal dynamics which are due soley to
the initial condition ξ

o
(in the absence of driving noise wk).

We make the following simplifying statistical assumptions:

State Model (SM) Assumptions A1-A4

A1 vk: uncorrelated sequence with zero mean and variance E[v2
k] = σ2

v(k)

A2 wk: uncorrelated sequence with zero mean and covariance matrix E[wkw
T
k ] = Rw(k) (q × q)

A3 ξ
o

has zero mean and covariance matrix E[ξ
o
ξT
o
] = Rξ(0) (p× p)

A4 vk, ξ0, wj are mutually uncorrelated for all j, k

x(k)

v(k)

w(k)
Bk

Ak+1|k

Ckz-1
ξκ

ξκ+1
s(k)

Figure 58: State space model for observation.

6.7.2 KALMAN FILTER: ALGORITHM DEFINITION

Here we summarize the Kalman filter as derived in the next section. Under the assumptions
A1-A4 the innovations ηk from {xj}k−1

j=0 can be recursively generated from the following Kalman
recursions for innovation

Kalman Recursions for innovations and state prediction

First we have the Measurement Update Equations:

ηk = xk − cTk ξ̂k|k−1
(74)

ξ̂
k+1|k = Ak+1,k ξ̂k|k−1

+ Γk+1,k ηk, ξ̂
0|−1

= 0 (75)

where Γk+1,k is the Kalman Gain, computed offline as function of state predictor error covariance

Rξ̃(k|k − 1) = E[(ξ
k
− ξ̂

k|k−1
)(ξ

k
− ξ̂

k|k−1
)T ]
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Γk+1,k = Ak+1,kRξ̃(k|k − 1)ck
1

σ2
η(k)

(76)

where σ2
η(k) is the innovations variance

σ2
η(k) = cTkRξ̃(k|k − 1)ck + σ2

v(k). (77)

The covariance matrix Rξ̃(k|k − 1) is updated according to the Time Update Equations:

Rξ̃(k + 1|k) = [Ak+1,k − Γk+1,kc
T
k ]Rξ̃(k|k − 1)[Ak+1,k − Γk+1,kck]

T (78)

+BkRw(k)BT
k + Γk+1,kΓ

T
k+1,kσ

2
v(k).

Rξ̃(0| − 1) = Rξ(0) (79)

Γk

Ak+1|k

Ckz-1
ξκ+1|κ

s(k|k-1)^

ξκ|κ−1
^^x(k)

-

η(k)

Figure 59: Kalman filter block diagram for generation of ηk and ŝ(k)

6.7.3 KALMAN FILTER: DERIVATIONS

We will derive the Kalman filter in two different ways. The first, called the classical derivation,
imposes no distributional assumptions on the state or measurements. The second imposes an addi-
tional assumption of Gaussian distributed state and observations. The first derivation historically
precedes the second and is based on the projection theorem applied to the innovations process.
The second derivation, called the Bayesian derivation, is more direct but less intuitive, relying on
posterior density update equations and their differentials.

CLASSICAL KALMAN FILTER DERIVATION

This derivation is based on the Gevers and Kailath innovations approach [18].

Step 1: Gather Together Key Properties

The simplifying assumptions (A1-A4) imply the following properties

Properties P1-P3
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P1 {ξ
j
}kj=1 is uncorrelated with wk (A2,A4) and with vk (A1,A4), and therefore

P2 {xj}kj=1 is uncorrelated with wk and vk+1.
P3 < xk, ηj >=< sk + vk, ηj >=< sk, ηj >, j < k, since < vk, ηj >= 0, j < k, as ηj ∈

span{xj , xj−1, . . . , x0} and vk is uncorrelated sequence (A1).

Step 2: Establish relation between x̂k|k−1 and ξ̂
k|k−1

Putting P2 and P3 together we obtain from representation (72) for gk = sk:

x̂k|k−1 =
k−1∑
j=0

< sk, ηj >

‖ηj‖2
ηj

= cTk

k−1∑
j=0

< ξ
k
, ηj >

‖ηj‖2
ηj︸ ︷︷ ︸

ξ̂
k|k−1

.

Step 3: Establish update formula for ξ̂
k|k−1

→ ξ̂
k+1|k

Recall that the linear minimum mean square estimator for a random vector is simply the con-
catenation of the linear minimum mean square estimators for each element of the random vector.
Thus, with abuse of notation, denoting < ξ

k+1
, ηk > the vector composed of inner products

< (ξk+1)i, ηk >, i = 1, . . . , p,

ξ̂
k+1|k =

k∑
j=0

< ξ
k+1

, ηj >

‖ηj‖2
ηj

=
k−1∑
j=0

< ξ
k+1

, ηj >

‖ηj‖2
ηj +

< ξ
k+1

, ηk >

‖ηk‖2
ηk (80)

Define the Kalman gain vector

Γk+1,k =
< ξ

k+1
, ηk >

‖ηk‖2
, (81)

and note that, from the state equation (73) for ξ
k

and the fact that wk and ηj are uncorrelated
for j ≤ k,

< ξ
k+1

, ηj >

‖ηj‖2
=

< Ak+1,kξk, ηj >

‖ηj‖2
+
< Bkwk, ηj >

‖ηj‖2

= Ak+1,k

< ξ
k
, ηj >

‖ηj‖2
, j ≤ k

which is Ak+1,k times the projection coefficient for projecting ξ
k

onto ηj.

Substitution of the above back into (80) gives the desired recursion

ξ̂
k+1|k = Ak+1,k

k−1∑
j=0

< ξ
k
, ηj >

‖ηj‖2
ηj + Γk+1,kηk

= Ak+1,kξ̂k|k−1
+ Γk+1,kηk (82)
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with initial condition ξ̂
0|−1

= 0.

Step 4: Find expression for ‖ηk‖2

Define the state estimator error vector

ξ̃
k|k−1

= ξ
k
− ξ̂

k|k−1
.

Then, again using the state model for xk,

ηk = xk − x̂k|k−1 = cTk ξk + vk − cTk ξ̂k|k−1
= cTk ξ̃k|k−1

+ vk (83)

We can use this result to find the innovations variance ‖ηk‖2 = σ2
η(k) which is required for com-

puting the projection coefficients in (80), specifically the Kalman gain (81) needed for recursion
(82). As ξ̃

k|k−1
∈ span{ξk, xk−1, . . . , x0}, ξ̃k|k−1

is uncorrelated with vk, from (83)

σ2
η(k) = cTkRξ̃(k|k − 1)ck + σ2

v(k) (84)

where Rξ̃(k|k − 1) is the state estimator error covariance matrix. To evaluate this we will need
to establish a recursion for this error covariance matrix. However, an expression for the Kalman
gain will be required to develop the error covariance update equations.

Step 5: Express Kalman gain Γk+1,k in terms of state estimator error covariance
Rξ̃(k|k − 1)

The Kalman gain vector Γk+1,k (81) can be related to the state estimator error covariance by the
following steps

1. < ξ
k+1

, ηk >= Ak+1,k < ξ
k
, ηk > +Bk < wk, ηk >= Ak+1,k < ξ

k
, ηk > (from whiteness of wk

and fact that ηk ∈ span{xk, . . . , x0}).
2. < ξ

k
, ηk >=< ξ

k
− ξ̂

k|k−1
, ηk >=< ξ̃

k|k−1
, ηk > (noting that < ξ̂

k|k−1
, ηk >= 0 from orthogo-

nality principle of linear estimation)

3. < ξ̃
k|k−1

, ηk >= E[ξ̃
k|k−1

ηk] = E[ξ̃
k|k−1

ξ̃
T

k|k−1
]ck (ηk = cTk ξ̃k|k−1

+ vk and vk is white noise

uncorrelated with ξ̃
k|k−1

)

Putting the above together, and recalling that ‖ηk‖2 = σ2
η(k) calculated in (84), we obtain

Γk+1,k =
< ξ

k+1
, ηk >

‖ηk‖2
= Ak+1,k

< ξ
k
, ηk >

‖ηk‖2

= Ak+1,kRξ̃(k|k − 1)ck
1

cTkRξ̃(k|k − 1)ck + σ2
v(k)

(85)

Step 6: Find recursive update for estimator error covariance Rξ̃(k|k−1) → Rξ̃(k+1|k)

First find update equation for ξ̃
k|k−1

by subtracting the state estimator update equation (82) from
the actual state update equation (73)

ξ
k+1
− ξ̂

k+1|k = Ak+1,k(ξk − ξ̂k|k−1
) + Bkwk − Γk+1,kηk.
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Identifying ξ̃
k+1|k = ξ

k+1
− ξ̂

k+1|k and using ηk = cTk ξ̃k|k−1
+ vk in the above

ξ̃
k+1|k = Ak+1,kξ̃k|k−1

+ Bkwk − Γk+1,k(c
T
k ξ̃k|k−1

+ vk)

= [Ak+1,k − Γk+1,kc
T
k ]ξ̃

k|k−1
+ Bkwk − Γk+1,kvk (86)

Now properties P1-P3 imply that the three additive terms in (86) are mutually uncorrelated.
Therefore, the covariance of the RHS is the sum of three covariance matrices and we obtain the
update equation (79)

Rξ̃(k + 1|k) = [Ak+1,k − Γk+1,kc
T
k ]Rξ̃(k|k − 1)[Ak+1,k − Γk+1,kc

T
k ]T

+BkRw(k)BT
k + Γk+1,kΓ

T
k+1,kσ

2
v(k).

An alternative form of the recursion (79) can be derived by using (77) and (81) which makes
Rξ̃(k|k − 1) explicit in the quantity Γk+1,k. After some algebra this produces the equivalent
update equation

Rξ̃(k + 1|k) = Ak+1,kRξ̃(k|k − 1)AT
k+1,k + BkRw(k)BT

k

−Ak+1,kRξ̃(k|k − 1)cTk ckRξ̃(k|k − 1)AT
k+1,k/σ

2
η(k) (87)

where σ2
η(k) = cTkRξ̃(k|k − 1)ck + σ2

v(k), as defined above.

Drawing all of the results of this subsection together we obtain the Kalman filtering equations
(74)-(79) of Section 6.7.2.

BAYESIAN KALMAN FILTER DERIVATION

Similarly to Section 6.7.3 we assume that the observations yk obey a dynamical model, except
that here we also assume that the additive noises and the initial state are Gaussian. Specifically,

yk = sk + vk,

sk = cT ξ
k
, k = 0, 1, . . .

ξ
k+1

= Aξ
k

+ Bkwk,

where ξ
0
, vk and wk are mutually independent zero mean temporally uncorrelated Gaussian vari-

ables for k = 0, 1, . . .. As before vk and wk are zero mean (white) noises with variance σ2
v and

covariance matrix Rw, respectively. All other assumptions on the model are identical to those
made in the previous section. Let the posterior density of the state ξ

k
given the observation

sequence Yl = {yl, yl−1, . . . , y0} up to time l be denoted fξ
k
|Yl

.

The Bayesian derivation of the Kalman filter equations is split into 4 steps.

Step 1: Show that posterior density of state is a multivariate Gaussian density

The key to the Bayes derivation of the Kalman filter is that the posterior density fξ
k
|Yk

must be
of the form

fξ
k
|Yl

(ξ
k
|Yk) =

1
|Rξ̃(k|k)|

1
2 (2π)p/2

exp
(
−1

2
(ξ
k
− ξ̂

k|k)
TR−1

ξ̃
(k|k)(ξ

k
− ξ̂

k|k)
)

(88)

where ξ̂
k|k is the Kalman filter’s state estimator and Rξ̃(k|k) = E[(ξ

k
− ξ̂

k|k)(ξk − ξ̂k|k)
T ] is the

state estimator error covariance matrix.
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To see that relation (88) holds, recall that for any two jointly Gaussian r.v.s W,Z the conditional
distribution of Z given W is N (E[Z|W ], cov(Z|W )). E[Z|W ] is identical to the linear minimum
mean squared error estimator of Z given W , which, for Z = ξ

k
and W = Yk must be the output

of the Kalman filter. Furthermore, the conditional covariance cov(ξ
k
− ξ̂

k
|Yk) = cov(ξ

k
− ξ̂

k
) since

(projection theorem) the error ξ
k
− ξ̂

k
is uncorrelated with past observations Yk and therefore,

since the error and the past observations are jointly Gaussian, they are statistically independent.
Hence the conditional covariance is equal to the unconditional error covariance Rξ̃(k|k) of the
Kalman state estimator.

Step 2: Derive update equation for posterior density of state

The next step is to show that the state posterior density ρk(ξk)
def= fξ

k
|Yk

(ξ
k
|Yk) obeys the

Chapman-Kolmogorov formula

ρk+1(ξk+1
) =

fyk+1|ξk+1
(yk+1|ξk+1

)

fyk+1|Yk
(yk+1|Yk)

∫
IRp

fξ
k+1

|ξ
k
(ξ
k+1
|ξ
k
)ρk(ξk)dξk.. (89)

This formula is valid even if ξ
o
, vk, wk are not Gaussian.

To show (89) start with Bayes formula

fξ
k+1

|Yk+1
(ξ
k+1
|Yk+1) = fξ

k+1
|Yk+1

(ξ
k+1
|yk+1,Yk)

=
fξ

k+1
,yk+1|Yk

(ξ
k+1

, yk+1|Yk)
fyk+1|Yk

(yk+1|Yk)

Next we express the numerator as

fξ
k+1

,yk+1|Yk
(ξ
k+1

, yk+1|Yk) = fyk+1|ξk+1
,Yk

(yk+1|ξk+1
,Yk)fξ

k+1
|Yk

(ξ
k+1
|Yk)

= fyk+1|ξk+1
(yk+1|ξk+1

)fξ
k+1

|Yk
(ξ
k+1
|Yk)

where in the last step we used the fact that, given ξ
k+1

, yk+1 is independent of the past Yk since the
noise vk is white (recall the model yk+1 = cT ξ

k+1
+vk). This establishes the Chapman-Kolmogorov

recursive formula (89)

When ξ
o
, vk, wk are Gaussian the density fξ

k+1
|ξ

k
(u|ξ

k
) has the form of a multivariate Gaussian

density over u with mean parameter g(ξ
k
) and covariance matrix parameter BRwBT and the

density fyk+1|ξk+1
(z|ξ

k+1
) has the form of a univariate Gaussian density over z with mean parameter

cT ξ
k+1

and variance parameter σ2
v . Indeed, given ξ

k+1
, yk+1 is obviously Gaussian distributed with

mean cT ξ
k+1

and variance σ2
v . To show the Gaussian form of fξ

k+1
|ξ

k
(u|ξ

k
) use the law of total

probability to obtain

fξ
k+1

|Yk
(ξ
k+1
|Yk) =

∫
IRp

fξ
k+1

,ξ
k
|Yk

(ξ
k+1

, ξ
k
|Yk)dξk

=
∫
IRp

fξ
k
|Yk

(ξ
k
|Yk)fξ

k+1
|ξ

k
,Yk

(ξ
k+1
|ξ
k
,Yk)dξk.

Now, as ξ
k+1

is independent of Yk given ξ
k

(recall that wk and vk are independent Gaussian
white noises), the second factor in the integrand is simply fξ

k+1
|ξ

k
(ξ
k+1
|ξ
k
) which is a multivariate

Gaussian density.
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Step 3: Find expression for exponents in posterior density update equation

Next we derive a relation for the quadratic form (ξ
k+1
−ξ̂

k+1|k+1
)TR−1

ξ̃
(k+1|k+1)(ξ

k+1
−ξ̂

k+1|k+1
)

by equating the exponent on the left hand side of the Chapman-Kolmogorov equations to the
exponent on the right hand side using the Gaussian forms of all the densities expressed in these
equations.

Completion of the square in the integrand of (89) gives the expression

fξ
k+1

|ξ
k
(ξ
k+1
|ξ
k
)ρk(ξk) (90)

= c exp
(
−1

2
(ξ
k+1
−Aξ̂

k|k −A(ξ
k
− ξ̂

k|k))
T [BRwBT ]−1(ξ

k+1
−Aξ̂

k|k −A(ξ
k
− ξ̂

k|k))
)

exp
(
−1

2
(ξ
k
− ξ̂

k|k)
TR−1

ξ̃
(k|k)(ξ

k
− ξ̂

k|k)
)

= c exp
(
−1

2
(ξ
k
− ξ̂

k|k −Q−1uk)
TQ(ξ

k
− ξ̂

k|k −Q−1uk)
)

exp
(
−1

2
(q1 − q2)

)
where c is an unimportant constant and

u = [AT [BRwBT ]−1A(ξ
k+1
−Aξ̂

k|k)

Q = AT [BRwBT ]−1A + R−1
ξ̃

(k|k)

q1(ξk+1
) = (ξ

k+1
−Aξ̂

k|k)
T [BRwBT ]−1(ξ

k+1
−Aξ̂

k|k)

q2(ξk+1
) = uTQ−1u.

The result of integration of () over ξ
k
∈ IRp (recall that the Gaussian density integrates to 1) gives

the following expression for the integral in (89)

c1 exp
(
−1

2
(q1 − q2)

)
for some constant c1. Now the exponent on the RHS of (89) can be easily found

−1
2

(
(yk+1 − cT ξk+1

)2/σ2
v − (yk+1 − cT ξ̂k+1|k+1

)2/σ2 + q1(ξk+1
) +−q2(ξk+1

)
)

(91)

where σ2 = var(yk+1 − cT ξ̂k+1|k+1
) = cTRξ̃(k + 1|k + 1)c+ σ2

v . Thus we have the relation

(ξ
k+1
− ξ̂

k+1|k+1
)TR−1

ξ̃
(k + 1|k + 1)(ξ

k+1
− ξ̂

k+1|k+1
) = (92)

(yk+1 − cT ξk+1
)2/σ2

v − (yk+1 − cT ξ̂k+1|k+1
)2/σ2 + q1(ξk+1

) +−q2(ξk+1
)

Step 3: Differentiate the exponent of the posterior update equation

Using the relation (92) we now derive the Kalman filter equations specifying state estimator
updates ξ̂

k|k → ξ̂
k+1|k+1

and inverse covariance updates R−1
ξ̃

(k|k) → R−1
ξ̃

(k + 1|k + 1) in the

following manner. To derive state update equation we take the derivative of relation (92) with
respect to ξ

k+1
and evaluate the resulting equation at ξ

k+1
= Aξ̂

k|k. To derive the covariance
update equation we take the second derivative with respect to ξ

k+1
. Here are the details.
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Differentiation of the LHS of (92) twice in the argument ξ
k+1

yields 2R−1

ξ̃
(k + 1|k + 1). Likewise

twice differentiating the RHS of (92) and equating to 2R−1
ξ̃

(k + 1|k + 1) gives

R−1

ξ̃
(k+1|k+1) = [BRwBT ]−1−[BRwBT ]−1A[AT [BRwBT ]−1A+R−1

ξ̃
(k|k)]−1AT [BRwBT ]−1+

ccT

σ2
v

Application of the Sherman-Morrison-Woodbury identity (1) to the first two terms on the RHS
gives a compact recursion for the inverse covariance

R−1
ξ̃

(k + 1|k + 1) = [BRwBT + ARξ̃(k|k)A
T ]−1 +

ccT

σ2
v

(93)

Next we differentiate the LHS and RHS of (92) once wrt ξ
k+1

and evaluate at ξ
k+1

= Aξ̂
k|k to

obtain
R−1

ξ̃
(k + 1|k + 1)(Aξ̂

k|k − ξ̂k+1|k+1
) = − c

σ2
v

(yk+1 − cTAξ̂k|k)

Which yields the Kalman filter recursion

ξ̂
k+1|k+1

= Aξ̂
k|k + Γk|k(yk+1 − cTAξ̂k|k)

where we have identified the Kalman gain

Γk|k = R−1

ξ̃
(k + 1|k + 1)

c

σ2
v

.

Thus we obtain the Kalman filtering equations (74)-(79) of Section 6.7.2.

6.8 KALMAN FILTERING: SPECIAL CASES

The Kalman filter equation (75) generates the innovations sequence ηk which is needeed to com-
pute the estimate ĝk|k defined in Sec. 6.7 by the equation (72). Also needed are the projection
coefficients h̃(k, j), j = 1, . . . , k. We discuss two special cases for which these coefficients are
simply computed, Kalman prediction and Kalman filtering

6.8.1 KALMAN PREDICTION

The linear prediction problem is to predict future value of the observation xk+1 from a linear
combination of past and present observations {xj}kj=0, or, equivalently, from the past and present
innovations {ηj}kj=0. Recalling the measurement model (73), xk+1 = sk+1 + vk+1 is the sum of two
uncorrelated components. Hence, denoting the predictor by x̂k+1|k and applying the superposition
property (60) of linear estimators of a sum of random variables

x̂k+1|k = ŝk+1|k + v̂k+1|k = ŝk+1|k

where v̂k+1|k = 0 due to the fact that vk is white and thus uncorrelated with the past innovations,
i.e. unpredictable. Finally, as sk+1 = cTk+1ξk+1

ŝk+1|k = cTk+1ξ̂k+1|k

which can be computed from the Kalman filter (75) for state estimation discussed in the previous
sub-section.
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6.8.2 KALMAN FILTERING

The filtering problem is to estimate the signal component sk in xk = sk+vk from past and present
measurements {xj}kj=0 (equivalently {ηj}kj=0). Let ŝk|k denote this estimate. Set gk = sk and from
the general recursion (72) we obtain

ŝk|k = ŝk|k−1 + h̃(k, k)ηk,

where ŝk|k−1 is the linear predictor derived in the last subsection and

h̃(k, k) =
E[skηk]
var(ηk)

=
cTkE[ξ

k
ηk]

var(ηk)
.

Recall that in the process of showing the expression (85) for the Kalman gain Γk+1,k we established
E[ξ

k
ηk] = Rξ̃(k|k − 1)ck. Putting this together with the expression (77) we obtain

h̃(k, k) =
cTkRξ̃(k|k − 1)ck

cTkRξ̃(k|k − 1)ck + σ2
v(k)

.

All of the above quantites are available from the Kalman filter recursions (74) and (79).

6.9 KALMAN FILTER FOR SPECIAL CASE OF GAUSSIAN STATE AND
NOISE

Assume:

* vk, ξo and wk are jointly Gaussian

Then:

* xk = sk + vk is a Gaussian random process

* Kalman filter yields min MSE state predictor

ξ̂
k|k−1

= E[ξ
k
|xk−1, . . . , x1]

* {ηk} is an equivalent uncorrelated Gaussian measurement

6.10 STEADY STATE KALMAN FILTER AND WIENER FILTER

Assume

* Ak+1,k, bk, ck and Rw(k) are time-invariant

* Rv(k) is time-invariant

* The state error covariance matrix Rξ̃(k+1, k) converges to a positive definite matrix as k →∞.

Then:

* sk is w.s.s. as k →∞
* xk is w.s.s. as k →∞
⇒ Steady state innovations filter is equivalent to Wiener prewhitening filter
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In particular, in steady state, ηk becomes a (w.s.s.) white noise with

σ2
η(k)→ σ2

η(∞) = cTRξ̃(∞)c+ σ2
v

The steady state error covariance matrix Rξ̃(∞) can be found in two steps:

Step 1: set Rξ̃(k, k−1) = Rξ̃(k+1, k) = Rξ̃(∞) in covariance update equation (79), equivalently,
(87), obtaining the steady state covariance equation:

Rξ̃(∞) = ARξ̃(∞)AT + BRwBT

−ARξ̃(∞)cT cRξ̃(∞)AT /σ2
η(∞),

Step 2: Noting that, as σ2
η(∞) is linear in Rξ̃(∞), the steady state covariance equation is equiv-

alent to a quadratic equation in Rξ̃(∞), called an algebraic Ricatti equation [32]. This can be
solved numerically but for small state dimension Rξ̃(∞) it can be often found by hand.

Example 30 Kalman filter for estimation of a constant signal

This example is credited to R. Raich. The objective is to find an optimal recursive estimator of a
constant signal in random noise given a finite number of observations. Accordingly, let’s assume
the following special case of the dynamical observation model (73)

xk = sk + vk

sk+1 = sk.

Here sk is a scalar state and we can identify ck = 1,Bk = 0,Ak+1,k = 1, and Rξ(0) = σ2
s . For

notational simplicity define the normalized state error covariance (actually the variance since the
state is one dimensional):

Tk+1 = Rξ̃(k + 1, k)/σ2
v .

With this notation, and the identifications above, the (scalar) update equation (87) for Rξ̃(k+1, k)
gives

Tk+1 = Tk/(Tk + 1), To = σ2
s/σ

2
v ,

which has explicit solution Tk = 1/(k + 1/SNR), where SNR= σ2
s/σ

2
v . The Kalman gain is simply

Γk+1,k =
Tk

Tk + 1
= Tk+1.

Therefore, the Kalman filter update for ŝk|k−1 is

ŝk+1|k = ŝk|k−1 + Γk+1,kηk,

which, using ηk = xk − ŝk|k−1 is equivalent to the AR(1) recursion

ŝk+1|k = [1− Γk+1,k]ŝk|k−1 + Γk+1,kxk,

with initial condition ŝ0|−1 = 0. approximation to Γk+1,k = Tk+1:

Tk+1 ≈ 1
k + 1

,
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yielding the large k form of the AR(1) recursion:

ŝk+1|k =
k

k + 1
ŝk|k−1 +

1
k + 1

xk,

which is equivalent to

ŝk+1|k =
1

k + 1

k∑
i=0

xk.

Thus, as expected, the Kalman filter estimator of a constant signal becomes identical to the sample
mean estimator of the ensemble mean for large k - as the transients of the filter die down the initial
condition has no more influence.

It should be observed in the above example that the Kalman filter does not converge in steady
state to a LTI filter since the asymptotic state covariance is not positive definite - the variance is
equal to zero.

6.11 SUMMARY OF STATISTICAL PROPERTIES OF THE INNOVA-
TIONS

We summarize important properties of the innovations that will be important in the sequel. As
the observation noise vk is uncorrelated with the signal sk, we have three equivalent expressions
for the innovations

ηk = xk − x̂k|k−1

ηk = xk − ŝk|k−1

ηk = cTk (ξ
k
− ξ̂

k|k−1
) + vk

Furthermore:

E[ηi] = 0
cov(ηi, ηj) = 0, i �= j

and, as shown above, the innovations variance is

var(ηk) = σ2
η(k)

= cTkRξ̃(k)ck + σ2
v(k)

6.12 BACKGROUND REFERENCES

The Wiener filter was originally published (as a classified report) by Norbert Wiener in the early
1940’s and the Kalman filter was published by Kalman and Bucy in the early 1960’s. The book
by Kailath [32] provides a nice overview of the historical context for both of these breakthroughs.
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Other books covering linear prediction from a signal processing perspective are Hayes [23], Mendel
[45], and Moon and Stirling [49]. A very comprehensive mathematically concise coverage of signal
processing algorithms for non-statistical least squares and linear prediction can be found in the
book by Strobach [70]. Finally, for a different time series perspective of mathematical statistics
the reader can consult the excellent book by Brockwell and Davis [12].

6.13 APPENDIX: POWER SPECTRAL DENSITIES

Here we provide a quick primer on autocorrelation functions (acf) and power spectral densities
(PSD) for zero mean wide sense stationary (wss) random sequences. For more detailed information
see Thomas [72] or Davenport and Root [13].

6.13.1 ACF AND CCF

The autocorrelation function of a zero mean finite variance discrete time random process {xk} is
defined as

rx(i, j) = E[xix∗j ].

The acf is non-negative definite in the sense that for any absolutely summable sequence {uk}∑
i,j

u∗i rx(i, j)uj ≥ 0.

For two zero mean finite variance discrete time random sequences xk and yk the cross-correlation
function (ccf) of x and y is defined as

rxy(i, j) = E[xiy∗j ].

The ccf has conjugate symmetry, rxy(i, j) = r∗yx(j, i), and is equal to zero when x and y are
uncorrelated random sequences.

6.13.2 REAL VALUED WIDE SENSE STATIONARY SEQUENCES

When xk is zero mean real and wss its acf satisfies (by definition of wss): rx(i, j) = rx(i − j, 0).
The function rx(i, i − k) is usually denoted as rx(k) and it is conjugate symmetric

rx(−k) = rx(k)

and satisfies rx(0) ≥ rx(k) for all k. A real wss xk has a PSD defined as the Discrete Time Fourier
Transform (DTFT) of rx:

Px(ω) = F{rx(k)} =
∞∑

k=−∞
rx(k)e−jωk

from which rx can be recovered using the inverse DTFT:

rx(k) = F−1{Px(ω)} =
1
2π

∫ π

π
Px(ω)ejωk.
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Due to the real, symmetric, non-negative definiteness of rx its PSD is real, symmetric, and non-
negative:

P∗
x(ω) = Px(ω), Px(−ω) = Px(ω), Px(ω) ≥ 0.

For two zero mean real jointly wss random sequences xk and yk the ccf similarly satisfies: rxy(i, i−
k) = rxy(k). The ccf also has a kind of symmetry property rxy(−k) = ryx(k). The cross PSD is
defined as the DTFT of rxy. It is neither real nor symmetric but inherits the following property
from rxy

Pxy(−ω) = P∗
xy(ω) = Pyx(ω).

When xk and yk are uncorrelated the CPSD is equal to zero and therefore if zk = xk + yk

Pz(ω) = Px(ω) + Py(ω).

Let hk be the impulse response of a stable linear time invariant (LTI) system and let H(ω) = F(hk)
be its frequency-domain transfer function. If yk = hk ∗ xk is the output of this LTI system then

Py(ω) = |H(ω)|2Px(ω),

and
Pxy(ω) = H∗(ω)Px(ω), Pyx(ω) = H(ω)Px(ω).

6.13.3 Z-DOMAIN PSD AND CPSD

Analogously to the frequency domain PSD defined above, one can define the z-domain PSD by

P̃x(z) = Z{rx(k)} =
∞∑

k=−∞
rx(k)z−k

We have the obvious relation Px(ω) = P̃x(ejω). The z-domain CPSD is defined analogously:
P̃xy(z) = Z{rxy(k)}. The z-domain PSD and CPSD inherit various properties from their frequency-
domain versions. In particular, radial symmetry about the unit circle

P̃x(z−1) = P̃x(z), P̃xy(z−1) = P̃yx(z)

and conjugate symmetry
P̃x(z∗) = P̃∗

x(z).

Finally, when yk = hk ∗ xk is the output of an LTI system with z-domain transfer function H̃(z)
then we have the analogous relations to before

P̃y(z) = H̃(z)H̃(z−1)P̃x(z),

and
P̃xy(z) = H̃(z−1)P̃x(z), P̃yx(z) = H̃(z)P̃x(z).

NB: When there is little danger of confusion, we usually drop the tilde notation when expressing
z-domain PSDs or transfer functions
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6.14 EXERCISES

6.1 As we know, the optimal filter h(k, j) for estimating the sample g(k) of the process {g(k)}∞i=−∞
from zero mean process {x(i)}∞i=−∞ satisfies the Wiener-Hopf equation

rgx(k, i)−
∞∑

j=−∞
h(k, j)rx(i, j) = 0, −∞ < i <∞

Show that when g and x are jointly w.s.s. random processes, i.e. rx(i, j) = rx(i − j) and
rgx(k, i) = rgx(k − i), h(k, j) can be assumed to be linear time invariant (LTI), i.e. h(k, j) =
h(k − j) will satisfy the WH equation. Now show that the same holds for the causal optimal
filter h(k, j) which satisfies

rgx(k, i) −
∞∑

j=−∞
h(k, j)rx(i, j) = 0, −∞ < i ≤ k.

(Hint: Find Weiner-Hopf equations for estimating y(k+ l) where l is an arbitrary time shift,
make a change of index i and a change of variable j and show by comparison to the Weiner-
Hopf equations for estimating y(k) that h(k, j) = h(k − j, 0)).

6.2 Derive the equation (65) for the Causal Wiener filter 0 = rgx(l) −
∑∞

m=−∞ h(l − m)rx(m)
from the original equation (64) by making two changes of variable in sequence: reindex i by
l = k − i and reindex j by m = k − j.

6.3 For constants a, c and the definitions q = 1 + c+ ca2, r = ca, derive the following identity

1
(1 + az−1)

1
(1 + az)

+ c =
d(1 + bz−1)
(1 + az−1)

d(1 + bz)
(1 + az)

(94)

where

b =
q/r ±

√
(q/r)2 − 4
2

, d2 = q/(1 + b2)

Observe that when c is positive real, one of the roots in the equation for b satisfies |b| ≤ 1
while the other satisfies |b| ≥ 1.

6.4 In the development of the causal and non-causal Weiner estimators we have assumed that all
processes were zero mean. Here we deal with the case of non-zero mean w.s.s. processes for
which the affine Weiner estimator is appropriate.
Assume the measurement process {xk}k and the target process {gk}k to be estimated are
w.s.s. and have non-zero means E[xk] = μx(k) and E[gk] = μg(k).

(a) The affine non-causal Wiener estimator of gk is defined by the filter h(k, j) and sequence
of constants sk as

ĝk = ak +
∞∑

j=−∞
h(k, j)xj

where h(k, j) and ak are selected to minimize the mean square estimation error MSE(h, a) =
E[(gk−ĝk)2]. Show that the optimal filter satisfies h(k, j) = h(k−j) where h(j) is the op-
timal linear time invariant non-causal Weiner filter for estimating the zero mean process
gk − μg(k) from the centered zero mean measurements xk − μx(k) and that the optimal
sequence ak is μg(k) +

∑∞
j=−∞ h(k − j)μx(j). Further show that the minimum MSE of

the affine non-causal Wiener estimator is functionally independent of the means μg and
μx.
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(b) Repeat question (a) for the case of the causal affine Wiener estimator which satisfies the
additional restriction that h(k, j) = h(k − j) = 0, k < j.

6.5 You have the measurement model
xk = s2k + wk

where wk is zero mean white noise of variance σ2 and sk is a w.s.s. zero mean Gaussian
random sequence with acf rs(k) = ak/(1 − a2), k ≥ 0. wk is independent of sk.

(a) Find the quantities E[s2i s
2
i−k] and E[s2i si−k] (Hint: use the property that for any zero

mean jointly Gaussian r.v.s W,X, Y,Z: E[XY Z] = 0 and E[WXY Z] = E[WX]E[Y Z]+
E[WZ]E[XY ] + E[WY ]E[XZ])

(b) Using the results of (a) find the optimal affine non-causal Wiener estimator for sk. Ex-
plain your result.

(c) Using the results of (a) find the optimal affine non-causal Wiener estimator for s2k.

6.6 Assume the measurement model
xk = ask + vk

where sk and vk are zero mean jointly w.s.s. and uncorrelated, and a is a random variable
independent of sk having mean μa and variance σ2

a.

(a) Find the non-causal Weiner filter for estimating sk.
(b) Find the MSE of the output of the non-causal Weiner filter. How does it behave as a

function of μa and σ2
a?

(c) Find the causal Weiner filter for estimating sk. Specialize to the case where sk is an AR(1)
process as in Example 29 with pole at −a and where vk is white noise with variance σ2.

6.7 For |a| < 1, use the geometric series formula
∑∞

k=0 c
kzk = 1/(1− cz), |cz| < 1 to derive the

following two results: {
zl

1 + az−1

}
+

=

{
(−a)l 1

1+az−1 , l ≥ 0
zl

1+az−1 , l < 0
(95)

and {
zl

1 + az

}
+

=
{

1, l = 0
0, l > 0

(96)

Now apply these results to compute the Z-domain quantity (for l ≥ 0){
zl

(1 + az−1)(1 + bz)

}
+

|a|, |b| < 1

.

6.8 Let the measurement model be
xk = hk ∗ sk + vk

where sk and vk are zero mean jointly w.s.s. and uncorrelated, and hk is a causal and causally
invertible filter with Z-transform H(z).

(a) Find the non-causal Weiner filter for estimating sk.
(b) Find the causal Weiner filter for estimating sk.
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(c) Compare the results for (a) and (b) to the estimator h−1
k ∗ ŝk where ŝk is the output of

the standard Weiner filter for estimating sk using the measurement model xk = sk + vk
and h−1

k is the inverse Z-transform of 1/H(z).

6.9 Let the measurement model be as in Example 29

xk = sk + vk

where sk and vk are zero mean jointly w.s.s. and uncorrelated. It is desired to estimate
gk = hk ∗ sk where hk is the causal FIR filter with transfer function

H(z) = 1 + αz−1, α ∈ (−1, 1)

. Assume that α �= a �= b.

(a) Find the non-causal Weiner filter for estimating gk.
(b) Find the causal Weiner filter for estimating gk.
(c) Compare the results for (a) and (b) to the estimator ĝk = hk ∗ ŝk where ŝk is alterna-

tively the output of the standard non-causal and causal Weiner filters, respectively, for
estimating sk.

6.10 The process sk is a zero mean AR(2) process following the recursion

sk = 0.8sk−1 − 0.15sk−2 + wk

where wk is zero mean white noise of variance 1.5 uncorrelated with sk−1, sk−2, . . .. The
observation is

xk = sk + vk

where vk is zero mean white noise with variance 0.5 independent of sk.

(a) Express the AR(2) recursion in Z-transform domain as Z{sk} = H(z)Z{wk} and use the
input/output PSD relation Ps(z) = H(z)H(z−1)Pw(z) to determine the PSD Ps(z) of
sk.

(b) Find the non-causal Wiener filter for estimating sk.
(c) Find the causal Wiener filter for estimating sk.

6.11 TBD

6.12 A common multipath model for a communications receiver is that the direct path signal plus
an attenuated and delayed indirect path version of the signal are received in additive white
noise:

xk = sk + bsk−1 + wk

The objective is to estimate the signal sk given a set of measurements {xk}k. In the following
assume that wk is zero mean white with variance σ2

w, sk is zero mean white with variance
σ2
s , b is a constant |b| < 1, and sk, wk are uncorrelated. You can assume that (σ2

s(1 + b2) +
σ2
w)/(σ2

sb) = 5/2 if that helps simplify your answers to the following.

(a) Find the power spectral density (PSD) Px(ejω) of xk, the cross PSD Psx(ejω) of sk and
xk, and the spectral factorization of Px(z), z ∈ Cl .

(b) Find the optimal non-causal Wiener filter for estimating sk.
(c) Find the optimal causal Wiener filter for estimating sk.
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6.13 In the derivation of the discrete time Kalman filter we assumed that the state noise wk was
uncorrelated with the measurement noise v(k). In this problem we generalize the Kalman
filter to the case where E[wkv(l)] = Vwvδkl where δkl is the kronecker delta function. Derive
the Kalman filter equations.

6.14 The measurement equation is given by

xk = sk + vk

where sk satisfies the dynamic model (|a| < 1)

sk+1 = ask + wk, s0 = so

and vk, wk, so are uncorrelated, vk and wk are zero mean white noises with variances σ2
v and

σ2
w, respectively.

(a) Derive the Kalman filter equations.

(b) Derive the steady state state error covariance (variance) Rs̃(∞) def= limk→∞Rs̃(K|K−1)
by setting Rs̃(k + 1|k) = Rs̃(k|k − 1) = Rs̃(∞) in the Kalman error covariance update
formula and solving explicitly for Rs̃(∞). Find the corresponding steady state Kalman
gain.

(c) By taking the Z-transform of the steady state Kalman state recursion show that the
Kalman predictor ŝk+1|k is the output of a LTI with input xk.

(d) Compare the steady state Kalman predictor previously derived to the causal Wiener
predictor based on the infinite past.

6.15 Let the random sequence {xk} be zero mean and wide sense stationary of the form

xk = sk + vk

where sk is a signal with PSD Ps and vk is a white noise. You only get to measure the value
of xk for odd indices k = 2n − 1, n = −∞, . . . ,∞. The objective is to estimate sk at both
odd and even time instants k. Note that when vk = 0 the problem reduces to ”filling in” the
missing (even) data points.

(a) What is the system of Wiener-Hopf equations which must be satisfied by the optimal
linear filter for estimating {sk} from the measurements? Is the solution to this system
of equations time-invariant? If so find an expression for the optimal non-causal Wiener
filter transfer function H(z).

(b) Now assume that sk = ask−1 + wk−1 where |a| < 1 and wk is white noise independent
of vk. Derive Kalman filter equations for recursively generating estimates ŝ2n−1|2n−1 and
ŝ2n|2n−1 from the past measurements {x2k−1}nk=1. Does the KF reduce to a linear time
invariant filter as n→∞.

6.16 Derive the minimum mean square error expression (69) for the Wiener filter and use it to
find the MSE of the optimal predictors of Examples 28 and 29.

6.17 TBD

6.18 In this exercise you will explore the extended Kalman filter (EKF) for non-linear state dy-
namics by extending the Bayesian derivation of the Kalman filter in Section 6.7.3. Similarly
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to that section we assume that the observations yk obey a dynamical model, except that here
we assume that the state can evolve non-linearly

yk = sk + vk

sk = cT ξ
k

, k = 0, 1, . . .
ξ
k+1

= g(ξ
k
) + Bkwk

where g is a possibly non-linear p-dimensional function of the p-dimensional state vector ξ
k
,

vk and wk are mutually independent zero mean temporally uncorrelated (white) noises which
are Gaussian distributed with variance σ2

v and covariance matrix Rw, respectively. All other
assumptions on the model are identical to those made in Section 6.7.3. Let the posterior
density of the state ξ

k
given the observation sequence Yl = {yl, yl−1, . . . , y0} up to time l be

denoted fξ
k
|Yl

.
In this exercise you will apply Laplace’s approximation to the posterior distribution to obtain
approximate state and covariance update recursions from Eq. (89). Laplace’s approximation
[17] asserts that the posterior is approximately Gaussian for large sample sizes

fξ
k
|Yk

(ξ
k
|Yk) ≈

|Fk|
1
2

(2π)p/2
exp
(
−1

2
(ξ
k
− ξ̂

k|k)
TFk(ξk − ξ̂k|k)

)
where ξ̂

k|k = argmaxξ
k
fξ

k
|Yk

(ξ
k
|Yk) is the MAP estimator of ξ

k
given past observations Yk

and Fk = F(ξ̂
k|k) is the p× p observed Fisher information matrix (FIM) where, for u ∈ IRp

F(u) = −∇2
u ln fξ

k
|Yk

(u|Yk).

(a) Using Laplace’s approximation, and the approximation g(ξ
k
) = g(ξ̂

k|k) +∇g(ξ̂
k|k)(ξk −

ξ̂
k|k), in the integrand of the right hand side of (89), evaluate the integral by completion

of the square.
(b) Using the results of part (a), and an analogous differentiation method to the one we used

in the Bayesian derivation of the Kalman filter, generate a recursion ξ̂
k|k → ξ̂

k+1|k+1

for the MAP state estimator and a recursion Fk → Fk+1 for the observed FIM. These
recursions represent the EKF filter. Represent your state estimator recursion in a form
reminiscent of the Kalman filter, i.e.,

ξ̂
k+1|k+1

= g(ξ̂
k|k) + Γkηk

where ηk is an analog to the Kalman innovation sequence and Γk is an analog to the
Kalman Gain matrix (but which depends on ξ̂

k|k).

(c) Evaluate the EKF specified by the recursions found in (b) for the case of a scalar (p = 1)
state ξk, scalar state noise wk, scalar c, and the quadratic plant

g(ξk) = aξ2k,

where |a| < 1. If the Fisher recursion is initialized by F−1 > 0 will the observed Fisher
information remain Fk positive for all k ≥ 0?
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6.19 This is a continuation of the previous exercise. An approach to the EKF which does not
require making the supplemental approximation g(ξ

k
) = g(ξ̂

k|k) + ∇g(ξ̂
k|k)(ξk − ξ̂k|k) is to

apply the Laplace approximation to the posterior of the successive pair of states

fξ
k+1

,ξ
k
|Yk

(ξ
k+1

, ξ
k
|Yk) ≈

|Qk|
1
2

(2π)p
exp

⎛⎝−1
2

[
ξ
k+1
− ξ̂

k+1|k+1

ξ
k
− ξ̂

k|k

]T
Qk

[
ξ
k+1
− ξ̂

k+1|k+1

ξ
k
− ξ̂

k|k

]⎞⎠
where Qk = Q(ξ̂

k+1|k+1
, ξ̂
k|k) is the 2p × 2p observed FIM where, for u, v ∈ IRp

Q(u, v) = −
[

∇2
u ∇u[∇v]T

∇v[∇u]T ∇2
v

]
ln fξ

k+1
,ξ

k
|Yk

(u, v|Yk).

Find a set of EKF equations by using this approximation and compare to your solution in
part (b) of Ex. 6.18. (You can assume that the state is 1 dimensional if you like).

w(n)
� H(z)

s(n)
�

��
��
+�

� ρ �
��
��

�

+

�
v(n)

�
x(n)

√
1− ρ2

u(n)
�

(a) Block diagram for question 6.20

w(n)
� H(z)

s(n)
� H(z)+ρ

H(z)
�

s′(n)

��
��
+

�

√
1− ρ2

u(n)
�

�
x(n)

�

(b) Equivalent diagram for question 3

Figure 60: Block diagrams for question 6.20.

6.20 Wiener filtering of a signal corrupted by noise which is correlated with the signal (R. Raich):
Consider the system in Fig. 60(a). The observations x(n) are given by

x(n) = s(n) + v(n)

where s(n) is an AR(1) random process (H(z) = 1
1+az−1 , |a| < 1) given by

s(n) = (−a)s(n− 1) + w(n)

and v(n) is a noise which is partially correlated with the signal and is given by

v(n) = ρw(n) +
√

1− ρ2u(n),

where 0 ≤ ρ ≤ 1 . Both u(n) and w(n) are uncorrelated, zero mean, white noise processes
with variances σ2

u and σ2
w, respectively. To simplify the problem, an equivalent block diagram

is presented in Fig. 60(b). (Hint H(z) + ρ = 1
1+az−1 + ρ can be simplified as (1 + ρ) 1+bz−1

1+az−1 ,
where b = ρ

ρ+1a).
[(a)]

(a) Non-causal Wiener Filtering: Find the non-causal Wiener filter for s(n) given x(n).
Express the filter in terms of ρ, H(z), σ2

w, and σ2
u. (There is no need to substitute

H(z) = 1
1+az−1 yet.)
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(b) Explain and interpret what happens when ρ = 0 and ρ = 1. Obtain closed-form expres-
sions for the Wiener filter in terms of σ2

w, σ2
u, a, and z (here, substitute H(z) = 1

1+az−1 ).
(c) Causal Wiener Filtering: Consider the case where ρ = 1. Find the whitening filter for

the causal Wiener filter of s(n) given x(n).
(d) Causal Wiener Filtering: Consider the case where ρ = 1. Find the causal Wiener filter

of s(n) given x(n).

u(n)
� H(z) �

s(n)

��
��
+

�
v(n)

�
x(n)

�

Figure 61: Block diagram for question 6.21

6.21 Wiener/Kalman filtering of a moving average (MA) system (R. Raich): Consider the system
in Fig. 61. The observations x(n) are given by

x(n) = s(n) + v(n)

where s(n) is an MA(1) random process (H(z) = 1 + az−1, |a| < 1) given by

s(n) = au(n− 1) + u(n).

Both v(n) and u(n) are uncorrelated, zero mean, white noise processes with variances σ2
v and

σ2
u, respectively.

[(a)]
(a) Non-causal Wiener Filtering: Find the non-causal Wiener filter for s(n) given x(n).
(b) Causal Wiener Filtering:

• Find the whitening filter for the causal Wiener filter of s(n) given x(n). (Hint: find a
similar relationship to the one in Exercise 6.3, which is applicable to this question.)

• Find the causal Wiener filter of s(n) given x(n).
(c) Kalman Filtering: Derive the Kalman filter for s(n) given x(n). (Hint: choose the state

vector as ξ
n

= [u(n), u(n − 1)]T ).

(d) Kalman Filtering: Find the steady state Kalman gain in terms of a, σ2
v , and σ2

u.

6.22 Let sk be a signal satisfying the AR(1) recursion sk+1 = ask + wk, −∞ < k < ∞, where
a = 0.75 and wk is white noise with variance σ2

w = 1. The signal sk is observed in uncorrelated
white noise vk of variance σ2

v = 1:

xk = sk + vk, −∞ ≤ k <∞.

It is desired to estimate gk = sk − 1
2sk−1.

(a) Find the non-causal Wiener filter for estimating gk.
(b) Find the causal Wiener filter for estimating gk.
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(c) If Hncw is the non-causal Wiener filter for estimating sk and ŝnck is the output of this
filter, compare the estimator of part (a) to the estimator ĝnck = ŝnck − 1

2 ŝ
nc
k−1. Comment

on the difference between these estimators. Which one gives lower MSE?.
(d) If Hcw is the causal Wiener filter for estimating sk and ŝck is the output of this filter,

compare the estimator of part (b) to the estimator ĝck = ŝck − 1
2 ŝ
c
k−1. Comment on the

difference between these estimators. Which one gives lower MSE?

6.23 Available for observation is a zero mean w.s.s. signal s(n) in additive white noise v(n) of
variance σ2

v :
x(n) = s(n) + v(n),

where s(n) and v(n) are uncorrelated and s(n) obeys the recursion

s(n) = as(n− 2) + w(n)

and |a| < 1, w(n) is zero mean white noise with variance 1. The objective is to estimate the
signal g(k) = s(k + α) for α ≥ 0 a non-negative integer.

(a) Derive the power spectral density Px(z)of x(n) in terms of a and σ2
v .

(b) Plot the pole zero constellation of Px and find the spectral factors P+
x (z) and P−

x (z).
(c) Derive the cross spectral density Pgx(z).
(d) Find the non-causal Wiener filter. To what does your filter reduce when σ2

v = 0 and
α = 1?

(e) Find the causal Wiener filter for estimating gk when σ2
v = 0. Specialize to the case of

α = 1 and compare to your answer for part (d).
(f) Find the causal Wiener filter for σ2

v > 0.

6.24 Oftentimes there are outliers or missing observations that prevent direct implementation of
the Kalman filter. In this problem you will explore one way to handle this scenario. You are
given an observation model similar to the model (65) in Chapter 6.

xk = sk + vk

sk = cT ξ
k

ξ
k+1

= Aξ
k

+ Bwk

where everything is the same as for (65) except that the observation noise vk has variance
σ2
v(k) that is itself a random variable with two states, a good state (small variance) and a

bad state (large variance). This can be modeled by introducing a random switching variable
bk into the definition of σ2

v(k)

σ2(k) = bkσ
2
0 + (1− bk)σ2

1

where σ2
0 < σ2

1 , and {bk} are i.i.d. Bernoulli random variables with P (bk = 1) = p and
P (bk = 0) = 1− p. We assume that the bk’s are independent of the states {ξ

k
}. This model

introduces missing observations by taking the limit of expressions for the optimal predictors
as σ2

1 →∞. To handle the case of unobserved switching variables we will assume in (b), (c)
and (d) that the noises vk, wk and the initial state ξ

0
are independent Gaussian distributed.

(a) For the case that the measurements xk and the switching variables bk are both observed,
i.e. the outlier indices are known, give the filtering equations for the Kalman filter esti-
mator of sk given (xk, bk), (xk−1, bk−1), . . . , (x0, b0). Be sure to specify the state estimator
updates, the Kalman gain, and the error covariance updates in terms of bk.
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(b) To what do your equations in part (a) converge as σ2
1 → ∞? How about as σ2

1 → σ2
0?

How do your state update equations compare to those of the standard Kalman filter?
(c) Show that the conditional density fξ

k+1
|ξ

k
(ξ|ξ

k
) has the form of a multivariate Gaussian

density and specify the mean and covariance matrix of this conditional density.
(d) For the case of unobserved switching variables, find an expression for the instantaneous

state likelihood function fxk|ξk
(x|ξ) in terms of the switching probability p. (Hint: you

will need to ”integrate out” the switching variables).

(e) Use Bayes theorem to show that the posterior density of the state, ρk(ξk)
def= fξ

k
|Xk

(ξ
k
|Xk),

where Xk = {xk, xk−1, . . . , x0}, obeys the recursion

ρk+1(ξk+1
) =

fxk+1|ξk+1
(xk+1|ξk+1

)

fxk+1|Xk
(xk+1|Xk)

∫
fξ

k+1
|ξ

k
(ξ
k+1
|ξ
k
)ρk(ξk)dξk.

where the density fξ
k+1

|ξ
k
(ξ
k+1
|ξ
k
) has the form of a multivariate Gaussian density. This

recursion can be used to generate an update equation for the conditional mean state
estimator (see part (f)).

(f) Use the recursion (e) to find a time update of the conditional mean ŝk|k = E[sk|Xk] of
the form ŝk|k → ŝk+1|k+1. You may specialize to the AR(1) model for sk = ξ

k
as in

homework problem (6.14) and assume low SNR, e.g., a2/σ2
1 , σ

2
w/σ

2
1 << 1.

End of chapter
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7 FUNDAMENTALS OF DETECTION

Next we treat the problem of detection: this is equivalent to estimation when there are only a
small number of possible values for the unknown parameter θ. Some may argue that detection has
a simpler and more elegant theory than estimation, and this might be true depending on the ”eye
of the beholder.” However, as we will see in the next chapter detection and estimation are closely
linked when there exist unknown nuisance parameters that can confound our detection algorithms.

We will cover the following in this chapter

* Optimal detection theory

* Bayesian approach to detection

* Frequentist approach to detection

* Reciever Operating Characteristic (ROC) curves

* Multiple hypothesis testing

Example 31 A motivating radar example

We start with a practical example to motivate the detection theory to come later. Assume that
you make a continuous time measurement x(t) over a time interval [0, T ] and you wish to decide
whether x(t) is noise alone

x(t) = w(t), 0 ≤ t ≤ T

or whether it is signal plus noise

x(t) = θs(t− τ) + w(t), 0 ≤ t ≤ T.

Here we assume

* s(t) is a known signal that may or may not be present

* w(t) is a zero mean Gaussian white noise with known power spectral density level No/2

*τ is a known time delay, 0 ≤ τ � T

*
∫ T
0 |s(t− τ)|2dt =

∫ T
0 |s(t)|2dt is the signal energy

* θ ∈ {0, 1} unknown nuisance parameter

The detection objective is to decide whether the signal is present or not, and to do this with
minimum average number of decision errors.

There is a common notation that has been developed for stating the detection hypotheses: ”no
signal present” (H0) vs ”signal present” (H1)

H0 : x(t) = w(t) H0 : θ = 0
⇔

H1 : x(t) = s(t− τ) + w(t) H1 : θ = 1

Without trying to choose a decision function to optimize any particular detection performance
criterion - we will do this later - two methods of detection could be considered, shown in Fig. 62:

Energy-threshold detector:
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y =
∫ T

0
|x(t)|2dt

H1

>
<
H0

η

Filter-threshold detector

y =
∫ T

0
h(T − t)x(t)dt

H1

>
<
H0

η

Ho

H1

 h(t) >
<

y

 t=T

 x(t) = s(t-τ)+w(t)

Ho

H1

(   )2 >
<

y (a)

(b)

 x(t) = s(t-τ)+w(t) Τ

0

Figure 62: (a) energy-threshold detector, (b) filter-threshold detector

ERROR ANALYSIS:

Referring to Fig. 63, there are two types of decision error to be concerned about:

FALSE ALARM: y > η when no signal present

MISS: y < η when signal present

We can easily compute the conditional probabilities of these errors when there is no signal present
and when there is a signal present, respectively:

PF = P (say signal|no signal) =
∫
y>η

f(y|no signal)dy

PM = P (say no signal|signal) =
∫
y≤η

f(y|signal)dy

TWO QUESTIONS

Q1: Is there an optimal way of trading off PM for PF ?

Q2: Can we optimize the filter h(·) in the filter-threshold detector to give optimal tradeoff?
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y(t)

t

y(t) | H1

y(t) | H0

miss false alarm miss false alarm

η

Figure 63: Repeated tests of radar produce sequence of yi’s. One sequence has signal present (H1) and one
has signal absent (H0).

η PF

f(y|H1)f(y|H0)

η
PM

y

y

Figure 64: Miss probability PM and false alarm probability PF for the radar example. Note that decreasing
one type of error by changing the decision threshold η is necessarily accompanied by increasing the other type
of error.
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We will defer the answer to Q1 till later. The filter in the filter-threshold detector can be chosen
to optimize a design criterion. As a large overlap of the two densities in Fig. 64 makes the tradeoff
much worse between the two types of error, a reasonable strategy would be to choose the filter
h(·) to minimize this overlap. A measure of the amount of overlap is the deflection

d2 =
|E[y|signal]− E[y|no signal]|2

var(y|no signal)
.

Large values of d2 translate into well separated densities f(y|H0) and f(y|H1) with low overlap.
Our objective should be to maximize d2 and thus minimize the overlap.

We can easily compute the deflection for our radar example. Note that the presence of the signal
produces shift in mean but not in the variance

E[y|no signal] = 0

E[y|signal] =
∫ T

0
h(T − t)s(t− τ)dt

var[y|no signal] = No/2
∫ T

0
|h(t)|2dt.

Then, applying the Cauchy-Schwarz inequality

d2 =
2
No

∣∣∣∫ T0 h(T − t)s(t− τ)dt
∣∣∣2∫ T

0 |h(T − t)|2dt
≤ 2
No

∫ T

0
|s(t− τ)|2︸ ︷︷ ︸

R T
0

|s(t)|2=‖s‖2

dt

with “=” if and only if h(T − t) = as(t− τ) for some constant a.

⇒ obtain “matched filter” solution as optimal deflection filter:

h(t) = s(T + τ − t)

CASE of s(τ) = a short duration ”pulse”

*
∫ T
0 |s(t− τ)|2dt does not depend on τ

* optimal detector can be implemented as:

y =
∫ T

0
s(t− τ)x(t)dt

=
∫ ∞

−∞
s(t− τ)x(t)dt

= s(−t) ∗ x(t)|t=τ
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Ho

H1

 s(T+ τ -t) >
<

y

 t=T

 x(t) = s(t-τ)+w(t)

Figure 65: SNR optimal receiver implemented as a matched filter reciever for delayed signal in noise.

Ho

H1

>
<

y x(t) = s(t-τ)+w(t)

s(t-τ)

Τ

0

Figure 66: SNR optimal receiver implemented as a correlator reciever for delayed signal in noise.
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7.1 THE GENERAL DETECTION PROBLEM

Let’s now turn to the general detection problem. We have the following setup, as before:

X a measured random variable, random vector, or random process

x ∈ X is a realization of X

θ ∈ Θ are unknown parameters

f(x; θ) is p.d.f. of X (a known function)

Two distinct hypotheses on θ

θ ∈ Θ0, or θ ∈ Θ1

Θ0,Θ1 is partition of Θ into two disjoint regions

Θ0 ∪Θ1 = Θ, Θ0 ∩Θ1 = {empty}

0 y

f(y|H0) f(y|H1)

μ1

PDη

Figure 67: Detection probability PD = 1− PM for the radar example.

NOTATION:

H0 : θ ∈ Θ0 H0 : X ∼ f(x; θ), θ ∈ Θ0

⇔
H1 : θ ∈ Θ1 H1 : X ∼ f(x; θ), θ ∈ Θ1

H0: the null hypothesis, noise alone hypothesis

H1: the alternative hypothesis, signal present hypothesis

As the true hypothesis is not under our control it is often called the ”true state of nature.”
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Θ

Θ1

Θ0

Figure 68: The detector must decide on the region of Θ that contains the unknown parameter θ.

7.1.1 SIMPLE VS COMPOSITE HYPOTHESES

When θ can take on only two values and Θ0 and Θ1 are singleton sets, the hypotheses are said to
be simple.

Θ = {θ0, θ1}, Θ0 = {θ0}, Θ1 = {θ1}.
In this case the p.d.f. f(x; θ) is completely known given either H0 or H1

If the hypotheses are not simple then at least one of Θ1 or Θ0 is not a singleton and is said to be
composite. Simple hypotheses are much easier to deal with and one is lucky to encounter them in
practical problems!

7.1.2 THE DECISION FUNCTION

Detection objective: design a decision rule (test function)

φ(x) =
{

1, decide H1

0, decide H0
. (97)

The test function φ(x) maps X to the decision space {0, 1} for deciding H0 and H1. The function
φ(x) induces a partition of X into decision regions

X0 = {x : φ(x) = 0}, X1 = {x : φ(x) = 1}

FALSE ALARM AND MISS ERRORS

False alarm and miss probabilities associated with the test function φ can be expressed simply:

PF (θ) = Eθ[φ] =
∫
X
φ(x)f(x; θ)dx, θ ∈ Θ0,



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 183

φ(x)

1

�0

�1

Figure 69: Test function separates measurement space into two decision regions X0 and X1 (the region under
the raised platform).

PM (θ) = Eθ[1− φ] =
∫
X

[1− φ(x)]f(x; θ)dx, θ ∈ Θ1,

where in the expectation expressions the reader must interpret φ = φ(X) as a random variable.
Equivalently

PF (θ) =
∫
X1

f(x|θ)dx, θ ∈ Θ0

PM (θ) = 1−
∫
X1

f(x|θ)dx, θ ∈ Θ1

The probability of correctly deciding H1 is called the (correct-) detection probability:

1− PM (θ) = PD(θ) = Eθ[φ], θ ∈ Θ1

We give separate treatment for case of random and non-random θ

7.2 BAYES APPROACH TO DETECTION

There are three elements involved in taking a Bayesian approach. One must:

1. Assign a prior f(θ) density for θ

2. Assign a cost or risk to wrong decisions

* cij = cost of deciding Hi when Hj is true

3. Find and implement decision rule which has minimum average risk
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 );f( 1θx

 );f( 0θx

X 0

X 1

Figure 70: Illustration of decision regions χ0 and χ1 for deciding H0 and H1 for an observation x in the plane.
Also shown are constant contours of the H0 and H1 densities f(x; θ0) f(x; θ1). False alarm probability PF is
integral of f(x; θ0) over χ1, miss probability PM is integral of f(x; θ1) over χ0, and detection probability PD
is integral of f(x; θ1) over χ1.

7.2.1 ASSIGNING PRIOR PROBABILITIES

Obtain prior probabilities on H0, H1

P (H0) = P (θ ∈ Θ0) =
∫

Θ0

f(θ)dθ

P (H1) = P (θ ∈ Θ1) =
∫

Θ1

f(θ)dθ

with P (H0) + P (H1) = 1

In this case we can compute conditional p.d.f.’s given H0 and H1 by integrating over θ

f(x|H0) =

∫
Θ0
f(x|θ)f(θ)dθ

P (H0)

f(x|H1) =

∫
Θ1
f(x|θ)f(θ)dθ

P (H1)

7.2.2 MINIMIZATION OF AVERAGE RISK

We first define the cost or risk matrix:

C =
[
c11 c10
c01 c00

]
.
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We will assume throughout that cii ≤ cij , i.e. the cost of making a correct decision is less than
that of making an incorrect one. The actual cost incurred for a given realization of X, which
we will call C, is a function of the outcome φ(X) of the test and a function of the true state,
H0 or H1, of nature. The cost C ∈ {c11, c10, c01, c00} is therefore a random variable and we can
seek decision rules that minimize its average value, called the ”average risk” associated with the
decision function.

We adopt the following “Bayes” design criterion: Select φ, equivalently X0 and X1, to minimize
average risk, equal to the statistical expectation E[C] of the incurred cost C

E[C] = c11P (say H1|H1)P (H1) + c00P (say H0|H0)P (H0)
+c10P (say H1|H0)P (H0) + c01P (say H0|H1)P (H1) (98)

Define the Bayesian false alarm and miss probabilities

PF =
∫
X1

f(x|H0)dx = P (say H1|H0)

(99)

PM = 1−
∫
X1

f(x|H1)dx = P (say H0|H1)

These differ from the probabilities PF (θ) and PM (θ) defined above since they denote error proba-
bilities that involve averages of θ over Θ0 and Θ1. With these definitions we can express (98) in
equivalent form

E[C] = c00P (H0) + c11P (H1)

+[c01 − c11]P (H1)PM + [c10 − c00]P (H0)PF

Observe: E[C] linear in PM , PF , P (H1), P (H0) for any fixed decision rule φ. This will become
important when we start comparing performances of different decision rules so take note!

7.2.3 OPTIMAL BAYES TEST MINIMIZES E[C]

Using the integral representation (99) allows us to rewrite E[C] explicitly as function of decision
region X1

E[C] = c00P (H0) + c01P (H1)

+
∫
X1

([c10 − c00]P (H0)f(x|H0)− [c01 − c11]P (H1)f(x|H1)) dx

The solution is now obvious: if we had a choice to assign a candidate point x to X1 or to X0 we
would choose X1 only when it decreased the average risk, i.e., made the integrand negative. Thus,
assign x to X1 if

[c10 − c00]P (H0)f(x|H0) < [c01 − c11]P (H1)f(x|H1)

and assign x to X0 otherwise. This obvious solution can be formally proved by using an exchange
argument: assume that a point x for which the integrand was positive was assigned to X1 and
reason that you could always decrease the integral by reassigning the point to X0.
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When c10 > c00 and c01 > c11 the optimal test is therefore the Bayes likelihood ratio test (BLRT)

ΛB(x) :=
f(x|H1)
f(x|H0)

H1

>
<
H0

η

where η is the optimal Bayes threshold

η =
[c10 − c00]P (H0)
[c01 − c11]P (H1)

The random variable ΛB(X) is called the Bayes likelihood ratio test (BLRT) statistic. Note that
the costs and the prior probability p = P (H0) = 1− P (H1) only influence the BLRT through the
threshold η, the Bayes likelihood ratio statistic ΛB(x) does not depend on p.

7.2.4 MINIMUM PROBABILITY OF ERROR TEST

Consider the special case of c00 = c11 = 0 and c01 = c10 = 1. This turns the average risk into the
prob. error criterion

E[C] = PMP (H1) + PFP (H0) = Pe

which is minimized by the LR test

f(x|H1)
f(x|H0)

H1
>
<
H0

P (H0)
P (H1)

.

Using Bayes rule you can easily see that this is equivalent to the “Maximum a posteriori” (MAP)
test

P (H1|x)
P (H0|x)

H1

>
<
H0

1.

7.2.5 PERFORMANCE OF BAYES LIKELIHOOD RATIO TEST

To simplify notation we define C = E[C]. Let the minimum of risk C, attained by the BLRT, be
denoted C

∗

C
∗ = c00P (H0) + c11P (H1)

+[c01 − c11]P (H1)P ∗
M (η) + [c10 − c00]P (H0)P ∗

F (η)

where

P ∗
F (η) = P (ΛB > η|H0), P ∗

M (η) = P (ΛB ≤ η|H1).

Viewing C∗ = C
∗(p) as a function of p, the minimum risk describes a performance curve (Fig. 71)

as a function of p = P (H0) that is called the minimum risk curve. Note that this curve does not
specify the performance of any single test function as a function of p; recall that the average risk of
any specified test is linear in p. Rather it specifies the risk that would be attainable if the different
optimal BLRT’s were implemented for different values of p, i.e. different BLRT thresholds. Thus
the minimum risk curve prescribes a lower bound on the average risk attained by any test for any
value of p.
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unachievable region

0 1

C

p)(C*

p = p(H0)

Figure 71: The minimum risk curve associated with optimal BLRTs specifies an achievable lower bound on
average risk of any test.

7.2.6 MIN-MAX BAYES DETECTOR

In many cases the true value of p is unknown to the experimenter or designer of the test. Therefore,
the optimal threshold of the BLRT cannot be implemented. As any specified test, even a BLRT
with fixed threshold, has a linear average risk it might incur an unacceptably large average risk as
p approaches either 0 or 1 (see straight line in Fig. 72). A sensible alternative in such a situation
is for the designer to adopt a minimax strategy: if nature gets to select the true p then we should
select a test to minimize worst case average risk

Cminimax = max
p∈[0,1]

C(p)

It is intuitively obvious from Fig. 72 that the minimax test must be an optimal Bayes test, i.e., a
test whose average risk line is tangent to the minimum risk curve, implemented with a threshold
η∗ which makes C a horizontal line, i.e. the slope of C should be zero. Thus we have the following
minimax optimality condition

C = [c00(1− P ∗
F (η)) + c10P

∗
F (η)− c11(1− P ∗

M (η))− c01P ∗
M (η)]︸ ︷︷ ︸

=0

p

+c11(1− P ∗
M (η)) + c01P

∗
M (η)

where P ∗
F (η) and P ∗

M (η) are the Bayesian false alarm and miss probabilities of the BLRT imple-
mented with threshold η.

In the special case C = Pe: c00 = c11 = 0, c10 = c01 = 1 we obtain the minimax condition on the
MAP test:

C = [P ∗
F (η) − P ∗

M (η)]︸ ︷︷ ︸
=0

p+ P ∗
M (η)
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(p)Cmax φ
p

      

(p)Cφ

      

minmax )(C (p)C
*

p=φ

)p(*C

p*
0 1 p = p(H0)

Figure 72: Power curve of any fixed test φ is a straight line. The minimax optimal test φ∗ has a horizontal
power curve which is tangent to the minimum risk, denoted C∗(p), at its maximum.

This implies that η should be selected so as to ensure the “equalization” condition is satsified

P ∗
F (η) = P (ΛB > η|H0) = P (ΛB ≤ η|H1) = P ∗

M (η).

Denoting this minimax value of η as η∗, and noting that the designer can choose a threshold by
choosing (guessing) a value of p, the minimax threshold is related to a minimax choice p∗ through
the relation η∗ = p∗/(1− p∗).

7.2.7 EXAMPLES

Example 32 Radar example revisited

Objective: Given the matched filter output y find the Bayes optimal detector.

1. Assume that P (H0) = P (H1) = 1
2

2. Recall that y is

y =
∫ T

0
s(t)x(t)dt

which is a realization of a Gaussian random variable Y having means and variances

E[Y |H0] = 0, var[Y |H0] = No/2
∫ T
0 |s(t)|2dt = σ2

0

E[Y |H1] =
∫ T
0 |s(t)|2dt = μ1, var[Y |H1] = No/2

∫ T
0 |s(t)|2dt = σ2

0

Bayes LR test is
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ΛB(y) =

1√
2πσ2

0

e
− 1

2σ2
0
(y−μ1)2

1√
2πσ2

0

e
− 1

2σ2
0
y2

= eyμ1/σ2
0− 1

2μ
2
1/σ

2
0

H1
>
<
H0

η = 1

LR test statistic ΛB(Y ) is a monotone function of Y since μ1 > 0.

Equivalent test is filter-threshold detector

Y
H1
>
<
H0

γ = 1
2μ1

Performance of Bayes LRT for radar example

PF = P (Y > γ|H0)
= P (Y/σ0︸ ︷︷ ︸

N (0,1)

> γ/σ0|H0)

=
∫ ∞

γ/σ0

1√
2π
e−u

2/2du

= 1−N (γ/σ0) := Q(γ/σ0)

and

PM = P (Y < γ|H1)
= P ((Y − μ1)/σ0︸ ︷︷ ︸

N (0,1)

> (γ − μ1)/σ0|H1)

= N ((γ − μ1)/σ0)

Note: since the standard Gaussian p.d.f. is symmetric

N (−u) = 1−N (u) and thus, since γ = μ1/2

PM = PF = 1−N (μ1/(2σ0)).

We thus conclude that the Bayes threshold γ is actually minimax! Therefore the probability of
error reduces to

Pe = PM 1
2 + PF 1

2

= PF



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 190

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

pdf

-u u

N(u)

N(-u)=1-N(u)

cdf

Figure 73: CDF N (u) of symmetric Gaussian density
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Figure 74: Equally likely hypotheses have minmax threshold γ = 1
2μ1 for problem of detection of shift in mean

of a Gaussian r.v.
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1 - FN(0) = 0.5

1 - FN(1) = 0.15

σo

Pe

μ1

Figure 75: Error probability curve of Bayes LRT as function of μ1 = ‖s‖2.

7.3 TESTING MULTIPLE HYPOTHESES

We measure x having conditional p.d.f. f(x|θ)
* θ ∈ Θ

Consider partition Θ1, . . . ,ΘM of parameter space

OBJECTIVE: To test M hypotheses on θ

H1 : θ ∈ Θ1

...
...

...
HM : θ ∈ ΘM

DECISION FUNCTION:

φ(x) = [φ1(x), . . . , φM (x)]T

where

φi(x) ∈ {0, 1},
M∑
i=1

φi(x) = 1

NOTE: decision function specifies a partition of measurement space X into M decision regions

Xi = {x : φi(x) = 1}, i = 1, . . . ,M

BAYES APPROACH: has three elements:
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Θ

ΘΜ

Θ1 Θ2

Figure 76: Partition of Θ into M different regions

Θ

ΘΜ

Θ1
Θ2 rtition

of X

X1

X2

φ

Figure 77: Partition of parameter space into M hypotheses is equivalent (via the test function φ(x)) to partition
of X into M regions.



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 193

1. Assign a prior f(θ) density for θ

2. Assign costs to wrong decisions

cij = cost of deciding Hi when Hj is true

3. Find and implement decision rule which has minimum average cost

7.3.1 PRIOR PROBABILITIES

Obtain prior probabilities on Hi, i = 1, . . . ,M

P (Hi) = P (θ ∈ Θi) =
∫

Θi

f(θ)dθ

with
∑M

i=1 P (Hi) = 1

We now have conditional p.d.f.s

f(x|Hi) =

∫
Θi
f(x|θ)f(θ)dθ

P (Hi)

⇒ Thus we have reduced the composite hypotheses above to the following simple hypotheses

H1 : X ∼ f(x|H1)
...

...
...

HM : X ∼ f(x|HM)

where Hi has prior probability P (Hi)

7.3.2 MINIMIZE AVERAGE RISK

Cost or risk matrix is now M ×M :

C =

⎡⎢⎣ c11 · · · c1M
...

. . .
...

cM1 · · · cMM

⎤⎥⎦
Design Criterion: Select φ, equivalently {Xi}Mi=1, to minimize average risk E[C] = C

C =
M∑
i,j=1

cijP (say Hi|Hj)P (Hj)

Specialize to case
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* cii = 0

* cij = 1, i �= j

Then we have C = Pe

C =
∑
i,j:i�=j

P (say Hi|Hj)P (Hj)

= 1−
∑

i,j:i=j
P (say Hi|Hj)P (Hj)

= 1−
∑

i,j:i=j
P (X ∈ Xi|Hi)P (Hi)

= 1−
M∑
i=1

∫
Xi

f(x|Hi)dx P (Hi)

Observe: to make C as small as possible

x ∈ Xi ⇔ f(x|Hi)P (Hi) ≥ f(x|Hj)P (Hj), j �= i

Or in terms of decision function:

φi(x) =
{

1, f(x|Hi)P (Hi) ≥ f(x|Hj)P (Hj)
0, o.w.

Shorthand notation

Ĥi = Ĥi(x) = argmaxHj
{f(x|Hj)P (Hj)}

This is equivalent to the “MAP” rule

Ĥi = argmaxHj
{P (Hj|x)}

REMARKS:

* MAP decision rule minimizes average Pe
* Minimum average Pe is equal to

P ∗
e = 1−

M∑
i=1

E[φi(x)|Hi]P (Hi)

* MAP decision rule on x depends only through LR = sufficient statistic

* For equally likely Hi, P (Hi) = 1/M and MAP test is of form

Ĥi = argmaxHj
{f(x|Hj)}

which should be read: “estimate Ĥi = H1 if f(x|H1) > f(x|H0).” This can be interpreted as the
“Maximum likelihood” estimate of true hypothesis Hj
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Example 33 Classifier of Gaussian Means

* X = [X1, . . . ,Xn]T are i.i.d. N (μ, σ2)

* σ2 is known

OBJECTIVE: classify μ among three possible values

H1 : μ = μ1

H2 : μ = μ2

H3 : μ = μ3

Assume equally likely hypotheses

We know that MAP classifier depends on the X only through sufficient statistic for μ:

X = n−1
n∑
i=1

Xi

which is Gaussian with mean μ and variance σ2/n.

Therefore, the MAP test is of form:

Decide Hk iff

f(X|Hk) ≥ f(X|Hj)

where

f(x|Hk) =
1√

2πσ2/n
exp
(
− 1

2σ2/n
(X − μk)2

)
or eliminating common factors and taking logarithm

Xμk − 1
2μ

2
k ≥ Xμj − 1

2μ
2
j

⇒ Linear decision regions!

Concrete example: μ1 = −1, μ2 = +1 , μ3 = 2

Plot 3 lines as a function of X to find the decision regions:

X1 = {X : X ≤ 0}
X2 = {X : 0 < X ≤ 3/2}
X3 = {X : X ≥ 3/2}

These are regions separated by hyperplanes in X = IRn.
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11/2 3/2
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x

Figure 78: For three hypotheses on Gaussian mean the decision regions are specified by intersections of three
lines y = xμk − 1

2μ
2
k, k = 1, 2, 3, which are graphed here over domain x.

7.3.3 DEFICIENCIES OF BAYES APPROACH

* Requires assigning prior to θ, H0, H1, . . .

* Only ensures best average performance w.r.t. selected prior

* Provides no guaranteed protection against FA, M

7.4 FREQUENTIST APPROACH TO DETECTION

The frequentist approach assumes no priors on H0 or H1 so one cannot sensibly define an average
probability of error or risk to minimize. Thus we adopt the alternative criterion: constrain FA and
minimize M probabilities. It turns out that to find an optimum test satisfying such a constraint
we will need to extend our previous definition of a test function φ so as to allow for randomized
decisions

φ(x) =

⎧⎨⎩
1, say H1

q, flip a coin w/ prob Heads (H1) = q
0, say H0

Note, we have interpretation:

φ(x) = P (say H1|observe x)

False alarm probability and detection probability are functions of θ

Eθ[φ] =
∫
X
φ(x)f(x; θ)dx =

{
PF (θ), θ ∈ Θ0

PD(θ), θ ∈ Θ1

Definition: A test φ is said to be of (FA) level α ∈ [0, 1] if
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max
θ∈Θ0

PF (θ) ≤ α

Definition: The power function’ of a test φ is

β(θ) = PD(θ) = 1− PM (θ), θ ∈ Θ1

7.4.1 CASE OF SIMPLE HYPOTHESES: θ ∈ {θ0, θ1}

H0 : X ∼ f(x; θ0)

H1 : X ∼ f(x; θ1)

Neyman-Pearson Strategy: find most powerful (MP) test φ∗ of level α:

Eθ1 [φ
∗] ≥ Eθ1 [φ]

for any other test satisfying Eθ0 [φ] ≤ α.

Lemma 1 Neyman Pearson Lemma: The MP test of level α ∈ [0, 1] is a randomized LRT of
the form

φ∗(x) =

⎧⎨⎩
1, f(x; θ1) > ηf(x; θ0)
q, f(x; θ1) = ηf(x; θ0)
0, f(x; θ1) < ηf(x; θ0)

(100)

where η and q are selected to satisfy

Eθ0[φ
∗] = α

Proof 1 of NPL: uses Kuhn-Tucker theory [42] of constrained maximization. If you do not have
the background don’t worry, we give a more elementary (but longer) proof below.

The MP test maximizes power Eθ1 [φ(x)] subject to constraint Eθ0 [φ(x)] ≤ α. This constrained
estimation problem is equivalent to maximizing the unconstrained objective function

L(φ) = Eθ1 [φ(x)] + λ (α− Eθ0 [φ(x)])

where λ > 0 is Lagrange multiplier selected so that solution φ∗ meets the equality in the original
constraint, i.e., Eθ0 [φ] = α.

Now the power can be expressed via the likelihood ratio transformation for expectation, also known
as the ”Girsanov representation:”

Eθ1 [φ(x)] = Eθ0

[
φ(x)

f(x; θ1)
f(x; θ0)

]
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and hence:

L(φ) = Eθ0

[
φ(x)

(
f(x; θ1)
f(x; θ0)

− λ
)]

+ λα.

Our now familiar exchange argument establishes that for a given x ∈ X we should choose to
assign φ(x) = 1 only if the likelihood ratio exceeds λ. If the LR is less than λ assign φ(x) = 0.
This leaves the case for which the LR is equal to λ at which point we randomize the decision, i.e.
choose φ(x) = q, 0 < q < 1, in order to achieve the desired false alarm level. Thus we obtain the
randomized LRT (100)of the NPL. �
Proof 2 of NPL: more elementary

Need show that for φ arbitrary, φ∗ satisfies

Eθ1 [φ
∗] ≥ Eθ1[φ], when Eθ0 [φ

∗] = α, Eθ0 [φ] ≤ α

Two steps:

Step 1: Show by enumerating all possible cases of >,< and = between the terms on RHS and
LHS

φ∗(x)[f(x; θ1)− ηf(x; θ0)] ≥ φ(x)[f(x; θ1)− ηf(x; θ0)] (101)

Step 2: integrate (101) over all x

∫
X
φ∗(x)[f(x; θ1)− ηf(x; θ0)]dx ≥

∫
X
φ(x)[f(x; θ1)− ηf(x; θ0)]dx

=
∫
X
φ∗(x)f(x; θ1)dx︸ ︷︷ ︸

Eθ1 [φ∗]

−η
∫
X
φ∗(x)f(x; θ0)dx︸ ︷︷ ︸

Eθ0 [φ∗]

≥
∫
X
φ(x)f(x; θ1)dx︸ ︷︷ ︸

Eθ1 [φ]

−η
∫
X
φ(x)f(x; θ0)dx︸ ︷︷ ︸

Eθ0 [φ]

Hence

Eθ1 [φ
∗]− Eθ1 [φ] ≥ η(Eθ0 [φ∗]︸ ︷︷ ︸

=α

−Eθ0[φ]︸ ︷︷ ︸
≤α

) ≥ 0

Which establishes NPL. �
RESOURCE ALLOCATION INTERPRETATION OF MP TEST

Assume that you knew the current and future values of a certain set of securities (stocks) x in
which you had an opportunity to invest in. You can only buy a single share of each stock. Identify:
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f(x; θ0) = current value of security x

f(x; θ1) = future value of security x

φ(x) = decision whether or not to invest in security x

α = total available dollars for investment

β = total future value of investment

The NPL says simply: it is best to invest your α$ in the securities which have the overall highest
returns f(x; θ1)/f(x; θ0). In particular, to maximize the average return you should order all of the
stocks in decreasing order of return and start buying stocks in that order until you almost run out
of money. At that point flip a biased coin and if it comes up heads, borrow some money from a
friend, and buy the next stock on the list. If you choose the right bias on your coin flip you will
maximize your expected return and (on average) can pay off the loan to your friend without going
into debt (assuming that your friend does not charge interest)!

Current price    Future price        %Return ratio

Block 1
Block 2

Block 3
Block 4

Block 5
Block 6

Block 7
Block 8

Block 9

Figure 79: Future value, current value, and relative return of a set of securities X

GENERAL REMARKS CONCERNING MP TESTS

Remark 1. shorthand LRT notation

Λ(x) = f(x; θ1)/f(x; θ0)
H1

>
<
H0

η

Remark 2. PF of MP test is (Λ denotes Λ(X))

PF = Eθ0 [φ
∗(x)] = Pθ0(Λ > η)︸ ︷︷ ︸

1−FΛ(η|H0)

+qPθ0(Λ = η). (102)

Randomization must be performed only if it is impossible to find an η such Pθ0(Λ > η) = α. This
can only occur if the CDF FΛ(t|H0) has jump discontinuities, i.e., there exist points t > 0 where
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Pθo(Λ = t) > 0 and Λ = Λ(x) is not a cts random variable Otherwise q can be set to zero and
randomization is not necessary.

When one cannot find a suitable η that gives Pθ0(Λ > η) = α, the design procedure is as follows
(See Fig. 80):

1. Find the smallest value of t for which Pθ0(Λ > t) is less than α - when there is a jump
discontinuity in the CDF this always exists since all CDFs are right continuous. Call this value,
α− and set the threshold η to this value of t.

2. Define α+ = Pθ0(Λ = η) + α−, where α− and η are determined in step 1. Then from (102) for
any value q the test will have the false alarm rate

PF = α− + q(α+ − α−).

Setting PF = α this equation can be solved for q yielding

q =
α− α−

α+ − α− . (103)

0

)( P)|(F1
o

0 tHt

t

Figure 80: Randomization is necessary to attain a level α when 1− α is not in the range of values of the cdf
of Λ.

Remark 3. LR is identical to Bayes LR for simple hypotheses

Remark 4. Unlike BLRT threshold η is specified by only one quantity α.

Remark 5. If T = T (X) is a sufficient statistic for θ, LRT depends on X only through T (X)

Indeed if f(X; θ) = g(T, θ)h(X) then

Λ(X) = g(T, θ1)/g(T, θ0) = Λ(T )

Conclude: can formulate the LRT based on p.d.f. of T instead of the p.d.f. of entire data sample
X.
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7.5 ROC CURVES FOR THRESHOLD TESTS

All threshold tests have PF and PD indexed by a parameter η.

The Receiver Operating Characteristic (ROC) is simply the plot of the parametric curve {PF (η, q), PD(η, q))}η,q .
Equivalently, ROC is the plot of β = PD vs α = PF .

1

1
α

β ROC

Figure 81: A typical ROC curve.

PROPERTIES OF ROC’S

1. ROC for coin flip detector (φ(x) = q independent of data) is a diagonal line with slope =1

α = PF = Eθ0 [φ] = q

β = PD = Eθ1 [φ] = q

2. ROC of any MP test always lies above diagonal: MP test is “unbiased” test

Definition: a test φ is unbiased if its detection probability β is at least as great as its false alarm
α: β ≥ α.

3. ROC of any MP test is always convex cap (concave).

To see concavity, let (α1, β1) be the level and power of a test φ1 and (α2, β2) be the level and
power of a test φ2. Define the test

φ12 = pφ1 + (1− p)φ2

This test can be implemented by selecting φ1 and φ2 at random with probability p and 1 − p,
respectively. The level of this test is

α12 = E0[φ12] = pE0[φ1] + (1− p)E0[φ2] = pα1 + (1− p)α2

and its power is similarly
β12 = E1[φ12] = pβ1 + (1− p)β2
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1

1
α

β

Chance line

Figure 82: ROC curve for coin flip detector.

1

1
α

β

Chance line

Bad ROC

Figure 83: ROC curve for MP test always lies above diagonal.
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1

1
α

β
Chance line

Bad ROC
Better ROC

α          α    

β

β1

1

2

2

Figure 84: ROC of any MP test is always convex cap. A test with non-convex ROC (thick line) can always
be improved by randomization which has effect of connecting two endpoints ((α1, β1) and (α2, β2) on ROC by
straight line.

Thus, as p varies between 0 and 1, φ12 has performance (α12, β12) which varies on a straight line
connecting the points (α1, β1) and (α2, β2).

4. If ROC curve is differentiable, MP-LRT threshold needed for attaining any pair (α,PD(α)) on
ROC can be found graphically as slope of ROC at the point α.

η =
d

dα
PD(α)

5. When the hypotheses H0 and H1 are simple, the MP-LRT threshold that attains minmax Pe
can also be found graphically by intersection of line PM = 1− PD = PF and ROC.

Example 34 Test against uniform density

Two hypotheses on a scalar r.v. x

H0 : f(x) = f0(x)

H1 : f(x) = f1(x)

where f0 and f1 are two densities shown in Fig. 87.

Objective: find the MP-LRT

Solution: LRT is

Λ(x) =
f1(x)
f0(x)

H1

>
<
H0

η
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1

1
α

β ROC

Slope= η

α desired

Figure 85: Threshold of MP-LRT can be found by differentiation of ROC curve.

1

1
α

β ROC

α =Pf=Pm=1- β

Minmax α

Figure 86: Threshold of min-max Bayes test can be found by intersection.
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1

1 x x

2

1½

f0(x)
f1(x)

Figure 87: Two densities to be tested

or equivalently

f1(x)
H1
>
<
H0

ηf0(x)

From Fi. 88 it is obvious that for a given η the H1 decision region is

X1 =
{
{η/4 < x < 1− η/4}, 0 ≤ η ≤ 2

empty, o.w.

Setting threshold

Select η to meet constraint PF = α.

FIRST: attempt to set η without randomization (q = 0).

Assume η ∈ [0, 2]

α = P (X ∈ X1|H0) =
∫ 1−η/4

η/4
f0(x)dx

= 1− η/2

Hence required η is simply

η = 2(1 − α)

and we see that no randomization is required.

Power of MP-LRT is:
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η

η/4 1−η/4

)(f1 x

)(f 0 x

x
1x

Figure 88: Region X1 for which MP-LRT decides H1 are set of values x for which triangle exceeds horizontal
line of height η.

PD = P (X ∈ X1|H1) =
∫ 1−η/4

η/4
f1(x)dx

= 2
∫ 1

2

η/4
f1(x)dx = 2

∫ 1
2

η/4
4xdx

= 1− η2/4

Plug in level α threshold η = 2(1− α) to power expression to obtain the ROC curve

β = 1− (1− α)2

Example 35 Detecting an increase in Poisson rate

Let X be the reading of the number of photons collected by a charge coupled device (CCD) array
over a certain period of time. In ambient conditions the average number of photons incident on
the array is fixed and known, let’s call it θ0. This is sometimes called the dark current rate [38].
When a known source of photons is present the photon rate increases to a known value θ1 where
θ1 > θ0. The goal of the photodetector is to detect the presence of the source based on measuring
X = x. It is customary to assume that X is a Poisson random variable

X ∼ f(x; θ) =
θx

x!
e−θ, x = 0, 1, . . .

and the problem is to detect the increase from θ0 to θ1 in the Poisson rate parameter θ, i.e., to
test the simple hypotheses

H0 : θ = θ0

H1 : θ = θ1
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1

1

α

β

Figure 89: ROC curve for uniform vs. triangle pdf example.

where θ1 > θ0 > 0. Here we consider the design of a MP test of prescribed level α ∈ [0, 1].

Solution: we know that the MP test is a LRT

Λ(x) =
(
θ1
θ0

)x
eθ0−θ1

H1
>
<
H0

η.

Since the logarithm is a monotone increasing function, and θ1 > θ0, the MP-LRT is equivalent to
a linear test

x
H1

>
<
H0

γ

where (needed for Bayes LRT but not for MP-LRT) γ = ln η+θ1−θ0
ln(θ1/θ0) .

We first try to set threshold γ without randomization:

α = Pθ0(X > γ) = 1− Poθ0(γ)

where Poθ(·) is the CDF of a Poisson r.v. with rate θ. Here we run into a difficulty illustrated by
Fig. 90. As the Poisson CDF is not continuous only a discrete number of values are attainable by
the nonrandomized LRT

α ∈ {αi}∞i=1, αi = 1−Poθ0(i).

Assume α ∈ (αi, αi+1). Then we need to randomize the LRT by selecting γ, q to satisfy:

α = Pθ0(X > γ) + qPθ0(X = γ).

Following the procedure described in connection with equation (103) we select

γ = γ∗ := Po−1
θ0

(1− αi)

which gives Pθ0(X > γ∗) = αi, and we set the randomization according to

q = q∗ :=
α− αi
αi+1 − αi

.
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1- αi
1- α

1- αi+1

)|    P(X  )|(F 00X HxHx <=

x

η

Figure 90: CDF of LR test statistic for testing increase in Poisson rate is staircase function

With these settings the power of the randomized MP-LRT is simply

PD = Pθ1(X > γ∗) + q∗Pθ1(X = γ∗),

which is plotted as an ROC curve in Fig. 91.

Example 36 On Off keying (OOK) in Gaussian noise

On-off keying is a type of binary modulation that is used in many digital communications systems
and can be traced back to the early days of Morse code and the telegraph. Over a single bit
interval the integrated output X of the receiver can be modeled as either noise alone W (if the
transmitted bit is zero) or a constant, assumed equal to 1, plus noise. The decoder has to decide
between

H0 : X = W

H1 : X = 1 +W

where we assume W ∼ N1(0, 1), i.e., the received SNR is 0dB. The LR statistic is simply
expressed as

Λ(x) =
1√
2π
e− 1

2 (x−1)2

1√
2π
e− 1

2x
2 = ex− 1

2 .

As usual the ROC curve is obtained from PD = P (X > λ|H1) = P (X − 1 > λ − 1|H1) =
1−N (λ− 1). Substituting the above λ expressions into this equation

β = PD = 1−N (λ− 1) = 1−N (N−1(1− α)− 1).

This curve is shown in Fig. 93 along with operating points for three different ways of setting the
threshold of the LRT: the Bayes LRT, the minmax LRT, and the MP-LRT.
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1

1

α

β

λ = 10

Figure 91: Power curves of LRT for detecting an increase in rate of a Poisson r.v. The smooth curve is the
(randomized) MP test while the staircase curve is the non-randomized LRT.

0 1λ

f(x;0) f(x;1)

x

Figure 92: Densities under H0 and H1 for on-off keying detection.
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Figure 93: ROC curve for Gaussian OOK example.

1. Min Pe (Bayes) test for equally likely H0, H1 (η = 1):

x
H1

>
<
H0

ln η + 1
2 = 1

2

2. Minmax test:

x
H1
>
<
H0

ln η + 1
2 := λ,

where λ is chosen to satisfy

PF = 1−N (λ) = N (λ− 1) = PM .

The solution to this equation is again λ = 1
2 since N (−x) = 1−N (x).

3. MP test of level α:

x
H1

>
<
H0

λ

where α = P (X > λ|H0) = 1−N (λ) or

λ = N−1(1− α)

A quantitative performance comparison is shown in Table 7.5 where we have specified the FA level
α = 0.001 for the MP-LRT (corresponding MP-LRT threshold is λ = 2.329).

Note from the table that the Bayes and minimax test have identical performance since they use
identical threshold and that the NP test has much lower FA rate but also significantly lower PD
and higher Pe.
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PF PD Pe
Bayes 0.31 0.69 0.31
Minmax 0.31 0.69 0.31
NP 0.001 0.092 0.5

Table 1: Performance comparisons for three different threshold settings in OOK example.

7.6 BACKGROUND AND REFERENCES

There are many good textbooks on detection theory for signal processing, control and communi-
cations. The books by Van Trees [73] and Whalen [76] are classics in the field. One of the earliest
relevant reference books covering signal detection theory is Middleton’s statistical communica-
tions theory opus [46] which adopts a mathematical-physics perspective. The more recent book
by Helstrom [25] takes a similar but more engineering-oriented perspective. Another recent book
with a signal processing focus on signal detection is Srinath, Rajasekaran and Viswanathan [67].
For a somewhat more advanced mathematical treatment the reader may wish to consult the book
by Poor [55]. The above books concentrate on continuous time measurements which we do not
cover in this chapter. The book by Mood, Graybill and Boes [48] has a very nice but elementary
treatment of the statistical methodology. More advanced treatments are found in books by Bickel
and Doksum [7], Lehmann [39] and Ferguson [16].

7.7 EXERCISES

7.1 A proprietary binary hypothesis test φ is implemented in a software package which you are
considering purchasing based on a trial examination period. You run several experiments and
obtain the following table of probabilities of detection β vs. false alarm α

α β
0.1 0.2
0.3 0.4
0.5 0.8
0.7 0.9

Comment on the quality of this test. Could you improve on this test? If so specify the
improved test and compute its ROC curve.

7.2 Let Z be a random variable with values in the interval [−1, 1] having density function

pθ(z) =
1
2

3
3 + θ

(
θz2 + 1

)
where θ > 0. Note θ controls the deviation of pθ from the uniform density p0. You are to
test Z against non-uniformity given a single sample Z.

(a) Assuming priors p = P (H1) = 1− P (H0) (note this is opposite to the convention of this
chapter) derive the minimum probability of error (MAP) test for the simple hypotheses
H0 : θ = 0 vs. H1 : θ = θ1, where θ1 is a fixed and known positive value.

(b) Find an expression for the ROC curve and plot for θ1 = 0, 1, 10.
(c) Now find the form of the min-max test. Show how you can use your answer to part b)

to graphically determine the min-max threshold.
(d) Derive the MP test for the same simple hypotheses as in part (a).
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7.3 Let Z be a single observation having density function

pθ(z) = (2θz + 1− θ), 0 ≤ z ≤ 1

where −1 ≤ θ ≤ 1.

(a) Find the most powerful test between the hypotheses

H0 : θ = 0
H1 : θ = 1

Be sure to express your test in terms of the false alarm level α ∈ [0, 1]. Plot the ROC
curve for this test.

(b) repeat part (a) for H1 : θ = −1.

7.4 It is desired to test the following hypotheses based on a single sample x:

H0 : x ∼ f0(x) =
3
2
x2,−1 ≤ x ≤ 1

H1 : x ∼ f1(x) =
3
4

(1− x2),−1 ≤ x ≤ 1

(a) Under the assumption that the prior probabilities of H0 and H1 are identical, find the
minimum probability of error (Bayes) test.

(b) Find the Most Powerful test of level α ∈ [0, 1].
(c) Derive and plot the ROC curve for these tests.

7.5 Let f(x|H0) and f(x|H1) be densities of an observed r.v. x and assume that the likelihood
ratio Λ = f(x|H1)/f(x|H0) has corresponding densities fΛ(λ|H0) and fΛ(λ|H1) under H0

and H1, respectively. Show that the slope dβ/dα at a point α of the ROC of the LRT is equal
to the threshold η attaining level α. (Hint: show that dβ/dα = fΛ(η|H1)/fΛ(η|H0) and then
apply fΛ(u|Hk) =

∫
{x:Λ(x)=u} f(x|Hk)dx, k = 0, 1.)

7.6 Let a detector have the ROC curve {(α, β) : α ∈ [0, 1]} where the power function β = β(α)
is a function of the false alarm level α. The area under the ROC is defined as

AUC =
∫ 1

0
β(α)dα

The AUC is frequently used as an alternative to the power function to assess the performance
of various detectors. Assume simple hypotheses and invoke properties of ROCs in answering
the following questions.

(a) Show that among all tests the MP LRT maximizes AUC.
(b) Show the following inequalities for the AUC of a MP LRT

1
2
≤ AUC ≤ β( 1

2 ) ≤ 1

(c) Show that for any LRT whose ROC β(α) is differentiable in α

AUC = 1−
∫ 1

0
αη(α)dα

where η = η(α) is the LRT’s threshold attaining the false alarm level α. When com-
bined with (b) this implies the interesting result for LRT’s: as the integral is bounded
limα→0(αη) = 0, i.e. α decreases to zero faster than η(α) increases to ∞.
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7.7 Available is a single random sample X from density fθ(x), where θ ∈ {0, 1} and

f1(x) =
1√
2π

exp(−x2/2)

f0(x) =
1
2

exp(−|x|).

You are to develop tests for the hypotheses

H0 : θ = 0
H1 : θ = 1

(a) Derive the (non-randomized) likelihood ratio test (LRT) and the induced decision region
X1={x : decide H1} for given threshold η. Draw the decision region as a function of the
threshold, i.e. plot the region X1 for several values of η > 0.

(b) Compute the false alarm probability PF and the detection probability PD of the test.
Find an equation for and plot the ROC curve.

(c) Find the optimal Bayes test when H0 and H1 have prior probabilities P (H0) = 1/4 and
P (H1) = 3/4, the cost of correct decisions is zero and the cost of incorrect decisions is
one. What is PF and PD for this test?

(d) Find the optimal minimax test for unknown P (H0), P (H1). What is PF and PD for this
test?

(e) Find the Most Powerful test of level α = 0.2. What is PF and PD for this test?

7.7 Here we consider the problem of simultaneously testing hypotheses on a large number of
independent variables, the so called problem of multiple comparisons, in the Bayesian setting.
Consider a set of N i.i.d. pairs of random variables {(Xi, θi)}Ni=1. Conditioned on θi, Xi

has density fθi
(x), where θi ∈ {0, 1}. The θi have prior probabilities P (θi = 1) = p and

P (θi = 0) = 1 − p. Given that we observe the Xi’s but not the θi’s we wish to test the
following N hypotheses

H0(k) : θk = 0
H0(k) : θk = 1,

or, equivalently, H0(k) : Xk ∼ f0 vs H1 : Xk ∼ f1, k = 1, . . . , N .

(a) Define the test function φi = φ(Xi) ∈ {0, 1} for testing the i-th hypothesis, i.e., if φi = 1
we decide that θi = 1 else decide θi = 0. Show that the false alarm and miss probabilities
associated with φi can be represented as:

PF = E[φi(1− θi)]/(1 − p)

PM = E[(1 − φi)θi]/p,
respectively, and that the total probability of error is

Pe(i) = E[φi(1− θi)] + E[(1 − φi)θi].

By using nested conditional expectation on Pe(i) show that the optimal test function
that minimizes Pe(i) is the one that assigns φ(Xi) = 1 whenever

E[θi|Xi]/(1 − E[θi|Xi]) > 1,

and this is equivalent to the MAP decision rule.
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(b) For a given set of samples {(Xi, θi)}Ni=1 the number of declared detections, or “discover-
ies,” is defined as the random variable M =

∑N
i=1 φi. The Bayesian false discovery rate

(FDR) is defined as the average proportion of false positives occurring among these M
“discoveries”

FDR = E[
N∑
i=1

φi(1− θi)/M ].

Constrain the FDR of these tests to have FDR ≤ q. Subject to this constraint we would
like to minimize the average number of missed “θi = 1” events. Equivalently, we want to
maximize the average number of true positives discovered:

TP = E[
N∑
i=1

φiθi].

Similarly to how we derived the Neyman=Pearson MP test in class, this optimal Bayesian
FDR constrained test of level q must maximize the Lagrangian

L(φ1, . . . , φN ) = TP + λ(q − FDR)

where λ is an undetermined multiplier selected to satisfy the FDR constraint. Show
that the optimal Bayesian FDR test of level q is the following “MAP test with linearly
increasing threshold:” assign φi = 1 to all i such that

Ti =
P (θi = 0|Xi)
P (θi = 1|Xi)

< M/λ,

where λ > 0 is selected to attain FDR = q. This test can be implemented by rank
ordering all of the scores (also called “posterior odds ratios”) Ti in increasing order
T(1) ≤ . . . ≤ T(N) and finding the first index M at which T(i) goes above the straight line
Ti = i/λ. Only those hypotheses having scores less than than M/λ should be declared
as valid discoveries.

(c) Let f0(x) = a0e
−a0x and f1(x) = a1e

−a1x, for x > 0 and a0 > a1 > 0. For N = 2 derive
an expression for the threshold λ in part (b) and compute the ROC. Use Matlab or other
tool to plot the ROC if you like. You might find it interesting to simulate this test for
large N .

End of chapter
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8 DETECTION STRATEGIES FOR COMPOSITE HYPOTHE-

SES

In practical detection applications it is rare that one fully knows the distributions under each of
the hypotheses. When these distributions are approximated as parametric models one can express
this uncertainty as an unknown variation of the parameters and formulate the detection problem
as a test of composite hypotheses consisting of unknown parameter values under either H0 or H1 or
both. A Bayes approach to handling such uncertainty would be to assign priors to these parameter
values and derive the Bayes-optimal LRT, as discussed in the previous chapter, that minimizes
the average probability of decision error. Thus the Bayes strategy is not at all complicated by the
presence of composite hypotheses and we need not discuss it further.

However, if one is interested in maximizing detection probability while controlling false alarm the
presence of uncertainty in parameters presents challenges. Most powerful tests of a given level
are rarely extendible to composite hypotheses; there seldom exists a test which is most powerful
at a prescribed level α for all values of the unknown parameters. There are a number of other
non-Bayesian strategies that can be adopted and in this chapter we present several of these whose
aim is to guarantee performance more or less robust to unknown parameter variations.

We will first present strategies for composite hypothesis testing that have finite sample optimal-
ity properties. These include the uniformly most powerful test, the locally most powerful tests,
unbiased tests, CFAR tests, and minimax tests. We then present a sub-optimal but very widely
adopted strategy called the Generalized Likelihood Ratio (GLR) test which is an LRT implemented
with plug-in estimates of the unknown parameters. The GLR test is only briefly introduced in this
chapter. Chapters 9 and 12 continue the development of the GLRT in the context of the Gaussian
hypothesis testing problem.

A basic property that any reasonable test must have is that its PD never be less than its PF for
any value of the parameters. If a threshold test violated this property then one could easily beat
this test by being a contrarian and deciding H0 when it decided H1 and vice-versa. Indeed for
simple hypotheses the LRT always has this property (recall our discussion of ROCs in Section
7.5). This property of tests is called unbaisedness. Mathematically speaking, a test is said to be
unbiased if

Eθ[φ] ≥ α, all θ ∈ Θ1. (104)

Otherwise, there will be some θ for which the test gives PD < PF , and the test is said to be biased.

While unbiasedness is a basic property one expects in a test, a ”ideal” test might not only be
unbiased but also a most powerful test for any value of θ ∈ Θ1, i.e., a uniformly most powerful
(UMP) test. A test that is UMP is always unbiased but when an UMP test does not exist even a
LRT test can be biased. This will be illustrated by an example below.

8.1 UNIFORMLY MOST POWERFUL (UMP) TESTS

After reading this section the reader may feel that UMP tests are better described as a miracle
than a strategy. However, development of the theory of UMP tests is very instructive as it helps
understand the challenges posed in trying to test composite hypotheses. We start by considering
a simple null hypothesis with composite alternative

H0 : θ = θ0 (105)
H1 : θ ∈ Θ1. (106)



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 216

Note that the power PD = PD(θ1) of any good FA level α detector usually varies as a function of
θ1 ∈ Θ1. For example, if θ1 parameterized signal strength one would expect a good detector to
have better PD as signal strength increased.

Recall from Chapter 7 that a test of (106) is characterized by its test function φ (97). This test is
of level α if

PF = Eθ0 [φ] ≤ α.

A false alarm constrained uniformly most powerful test (UMP) is a test which is MP for any and
all values of θ ∈ Θ1, i.e., it is more powerful than any other similarly constrained test (Fig. 94).
We give a formal definition below

Definition: a test φ∗ is a uniformly most powerful (UMP) test of level α if for any other level α
test φ

β∗(θ) = Eθ[φ∗] ≥ Eθ[φ] = β(θ), for all θ ∈ Θ1.

θ

β(θ)

β∗(θ)

Figure 94: Power curve β∗(θ), θ ∈ Θ1 of a UMP test is uniformly higher than that of any other test of the
same level α.

There are two steps for discovering a UMP when it exists and, short of this, establishing that a
UMP does not exist:

Step 1: Fix θ ∈ Θ1 and find MP test of level α

Step 2: if decision regions of this MP test do not depend on our choice of θ ∈ Θ1 then the MP
test is actually UMP over θ ∈ Θ1.

Example 37 Tests of mean in Gaussian sample with known variance

X = [X1, . . . ,Xn]T i.i.d., X1 ∼ N (μ, σ2), σ2 is known.

Three cases of interest:
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H0 : μ = 0 H0 : μ = 0 H0 : μ = 0
H1 : μ > 0︸ ︷︷ ︸

Case I

H1 : μ < 0︸ ︷︷ ︸
Case II

H1 : μ �= 0︸ ︷︷ ︸
Case III

Step 1: find LRT for fixed μ under H1

It suffices to work the problem based on a sufficient statistic T = X for μ. We know:

X ∼ N (0, σ2/n), under H0

X ∼ N (μ, σ2/n), under H1

therefore,

Λ(μ) =
f(X;μ)
f(X; 0)

=
exp
(
− (X−μ)2

2σ2/n

)
exp
(
− X

2

2σ2/n

)
= exp

(
nμ

σ2
X − nμ2

2σ2

) H1

>
<
H0

η

For clarity, our notation explicitly brings out the dependance of the likelihood ratio on μ. Note
that Λ(μ) is monotone increasing in μX so that one form of the MP-LRT is

μ

(√
n X

σ

) H1

>
<
H0

γ

CASE I: Single sided alternative H1 : μ > 0

In this case μ can be absorbed into RHS without changing inequalities:

T (X) =
√
n X

σ

H1
>
<
H0

γ+

or equivalently, MP-LRT is the linear detector

n∑
i=1

Xi

H1

>
<
H0

γ
′
= γ+ √n σ2

Next we must set threshold:

Since we know X ∼ N (0, σ2/n) under H0:

α = P0(
√
n X/σ︸ ︷︷ ︸
N (0,1)

> γ+) = 1−N (γ+)

Or
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Ho

H1

  >  <

 xk
γΣ

Figure 95: Optimal detector for positive Gaussian mean is a memoryless linear device followed by a summer
and decision mechanism.

γ+ = N−1(1− α)

Final form of MP-LRT for H1 : μ > 0 reveals that it is UMP against unknown positive μ

y
def=
√
n X

σ

H1
>
<
H0

N−1(1− α)

Equivalent form in terms of sample mean statistic

X
H1
>
<
H0

σ√
n
N−1(1− α)

Equivalent form in terms of sum statistic

n∑
i=1

Xi

H1

>
<
H0

√
n σ N−1(1− α)

Power of single sided test:

Since X ∼ N (μ, σ2/n) under H1

β = P1(
√
n X/σ︸ ︷︷ ︸

N (
√
n μ/σ, 1)

> γ+)

= 1−N
(
γ+ −

√
nμ

σ

)
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0 y�� n

��-(1 � N=+

�area =

-1

,1)�� n(  ;1)f( Ny =(0,1)  ;0)f( Ny =

Figure 96: Threshold γ+ of MP-LRT for H0 : μ = 0 vs. H1 : μ > 0 in i.i.d. Gaussian with known variance.
f(y; 0) and f(y; 1) denote the densities of y =

√
n X
σ under H0 and H1, respectively.

= 1−N
(
N−1(1− α)− d

)
where d is the positive detectability index

d =
√
nμ

σ

=
|E[T |H1]− E[T |H0]|√

var0(T )

CASE II: Single sided alternative H1 : μ < 0

Recall that the MP LRT for fixed μ has the form

μ

√
n X

σ

H1

>
<
H0

γ

This is now equivalent to

√
n X

σ

H0

>
<
H1

γ−

Setting threshold:

α = P0(
√
n X/σ︸ ︷︷ ︸
N (0,1)

≤ γ−) = N (γ−)
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1

1

β

α

 d=0

d=1

d=5

Figure 97: The ROC curve of MP-LRT for H0 : μ = 0 vs. H1 : μ > 0 for n i.i.d. Gaussian with known
variance for various values of d.

1

μ

α

β

Figure 98: The power curve of MP-LRT for H0 : μ = 0 vs. H1 : μ > 0 for n i.i.d. Gaussian with known
variance plotted as a function of d > 0



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 221

or now

γ− = N−1(α) = −N−1(1− α)

Again we see MP-LRT is UMP against unknown negative μ

0 y

,1)�� n(  ;1)f( Ny =
(0,1)  ;0)f( Ny =

�� n+

= N -1(α) = - N -1(1-α)γ−

Figure 99: Threshold determination for MP-LRT of H0 : μ = 0 vs. H1 : μ < 0 for n i.i.d. Gaussian
observations with known variance

Power curve for μ < 0 case can be derived similarly

β = 1−N

⎛⎜⎜⎝N−1(1− α) +
√
n μ

σ︸ ︷︷ ︸
−|d|

⎞⎟⎟⎠
where d is now negative valued

d =
√
nμ

σ

CASE III: Double sided alternative H1 : μ �= 0

Recall again the form of MP LRT for fixed μ

μ

√
n X

σ

H1

>
<
H0

γ

Unfortunately it is no longer possible to absorb μ into threshold without affecting the inequalities.
We thus conclude that the decision region varies depending on sign of μ. Therefore no UMP test
exists.
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1

μ

α

β

Figure 100: The power curve of MP-LRT for H0 : μ = 0 vs. H1 : μ < 0 in i.i.d. Gaussian with known
variance plotted as a function of d

If we use single sided test from CASE I then

β = 1−N
(
N−1(1− α)− d

)
,

which means that PD < PF and the test is biased for d < 0, i.e., μ < 0. On the other hand if we
use single sided test from CASE II then

β = 1−N
(
N−1(1− α) + d

)
,

which is biased for d > 0, i.e., μ > 0.

Example 38 Test of variance in Gaussian sample with known mean

X = [X1, . . . ,Xn]T i.i.d., X1 ∼ N (μ, σ2), μ known.

Again three cases of interest:

H0 : σ2 = σ2
o H0 : σ2 = σ2

o H0 : σ2 = σ2
o

H1 : σ2 > σ2
o︸ ︷︷ ︸

Case I

H1 : σ2 < σ2
o︸ ︷︷ ︸

Case II

H1 : σ2 �= σ2
o︸ ︷︷ ︸

Case III

Solution

STEP 1: find MP-LRT for fixed σ2

Approach 1: work problem directly from entire random data sample X .

The likelihood ratio depends on σ2 and, for fixed value of σ2, is given by:
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+�

f0f1

y

Figure 101: The single sided MP-LRT for H0 : μ = 0 vs. H1 : μ > 0 fails to detect negative signal.

−�

f0 f1

y

Figure 102: The single sided MP-LRT for H0 : μ = 0 vs. H1 : μ > 0 fails to detect positive signal.
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d

βΙΙ βΙ

α  Η 1: μ < 0 Η 1: μ > 0

Figure 103: The power curve of Case I or Case II MP-LRT’s for double sided hypotheses is biased over range
−∞ < d <∞.

Λ(σ2) =

(
1√

2πσ2

)n
exp
(
− 1

2σ2

∑n
k=1(Xk − μ)2

)(
1√
2πσ2

o

)n
exp
(
− 1

2σ2
o

∑n
k=1(Xk − μ)2

)
=
(
σ2
o

σ2

)n/2
exp

(
σ2 − σ2

o

2σ2σ2
o

n∑
k=1

(Xk − μ)2
)

H1
>
<
H0

η

Which is monotone increasing in the quantity

(σ2 − σ2
o)

n∑
k=1

(Xk − μ)2

Thus we obtain MP-LRT

(σ2 − σ2
o)
n σ̂2

μ

σ2
o

H1

>
<
H0

γ

where

σ̂2
μ = n−1

n∑
k=1

(Xk − μ)2

Approach 2: work problem based on sufficient statistic for σ2
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T (X) =
n∑
i=1

(Xi − μ)2

The density of T (X)/σ2 is Chi-square with n d.f.

⇒ using standard transformation of variables formula, p.d.f. of T is:

f(T ;σ2) = σ−2 fχ(T σ−2)

= σ−2 1
2n/2Γ(n/2)

e−T/(2σ
2)(T/σ2)n/2−1

Hence MP-LRT is

Λ(σ2) =
(
σ2
o

σ2

)n/2
exp
{
σ2 − σ2

o

2σ2σ2
o

T

} H1

>
<
H0

η

Which is monotone in (σ2 − σ2
o) T .

Thus we obtain MP-LRT

(σ2 − σ2
o)
n σ̂2

μ

σ2
o

H1
>
<
H0

γ

where again

σ̂2
μ = n−1

n∑
k=1

(Xk − μ)2

CASE I: Single sided alternative H1 : σ2 > σ2
o

In this case MP-LRT is simply

T (X) =
n σ̂2

μ

σ2
o

H1

>
<
H0

γ+

or equivalently, we have a square law detector

T (X) =
1
σ2
o

n∑
i=1

(Xi − μ)2
H1

>
<
H0

γ+

Under H0, Xk ∼ N (μ, σ2
o) so the test statistic T (X) is Chi-square with n d.f.

Therefore

α = P0(T (X) > γ+) = 1− χn(γ+)
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Ho

H1

  >  <

 xk
γΣ

-

μ

(   )2

Figure 104: Optimal detector for increase in Gaussian variance is a memoryless non-linear device (squarer)
followed by a summer and decision mechanism. This detector has been called the square law detector and the
energy detector.

and

γ+ = χ−1
n (1− α)

Hence MP-LRT is

n σ̂2
μ

σ2
o

H1
>
<
H0

χ−1
n (1− α)

which is UMP against any σ2 > σ2
o for known μ.

Power: since σ2
o
σ2

nσ̂2
μ

σ2
o

= χn

β = P1

(
n σ̂2

μ/σ
2
o > γ+

)
= 1− χn

(
σ2
o

σ2
χ−1
n (1− α)

)
CASE II: Single sided alternative H1 : σ2 < σ2

o

Find that MP-LRT has form

n σ̂2
μ

σ2
o

H0
>
<
H1

γ−

where now

γ− = χ−1
n (α)
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f(T;σ0
2)

f(T;σ2), σ2 >σ0
2

��-(11-
n� χ=+

T

Figure 105: Density functions under H0 and H1 of optimal UMP test statistic for testing against σ2 > σ2
o for

known mean μ. Threshold γ+ is determined by the 1− α quantile of the H0 density.

β

σ2/σ2
0

n = 3
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Figure 106: Power curves for one sided test of variance σ2 > σ2
o for known mean μ with i.i.d. Gaussian

observations for various values of σ2/σ2
o and n = 3.
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Figure 107: ROC curves for one sided test of variance σ2 > σ2
o with i.i.d. Gaussian observations for various

values of σ2/σ2
o and n = 3.
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Figure 108: Density functions under H0 and H1 of optimal UMP test statistic for testing against σ2 < σ2
o for

known mean μ. Threshold γ+ is determined by the 1− α quantile of the H0 density.
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Figure 109: ROC curves for one sided test of variance σ2 < σ2
o with i.i.d. Gaussian observations for various

values of σ2/σ2
o and n = 3.

So that we have UMP test against σ2 < σ2
o for known μ

Power:

β = 1− χn
(
σ2
o

σ2
χ−1
n (α)

)
Case III: Double sided alternative H1 : σ2 �= σ2

o

No UMP exists.

Example 39 One sided test on median of Cauchy density

Assume X1, . . . ,Xn i.i.d. with marginal density

f(x1; θ) =
1
π

1
1 + (x1 − θ)2

Objective: investigate existence of UMP test for

H0 : θ = 0
H1 : θ > 0

Step 1: First find LRT for fixed θ > 0

Λ(θ) =
f(x; θ)
f(x; 0)

=
n∏
i=1

1 + x2
i

1 + (xi − θ)2
H1

>
<
H0

η
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where we have explicitly indicated the dependency of Λ on θ in the notation (dependence of Λ on
x is suppressed). For the special case of a single sample (n = 1):

Λ(θ) =
1 + x2

1

1 + (x1 − θ)2
H1
>
<
H0

η

Step 2: The decision region depends on θ even if θ > 0 (See exercises). Therefore, in this case no
UMP exists even for the one sided hypothesis!

8.2 GENERAL CONDITION FOR UMP TESTS: MONOTONE LIKELI-
HOOD RATIO

Consider testing a composite alternative hypothesis against a simple null hypothesis

H0 : θ = θ0 (107)
H1 : θ ∈ Θ1, (108)

Then if the likelihood ratio is monotone there exists a UMP test. We specialize to a 1D parameter
θ ∈ IR. Let f(x; θ) have Fisher Factorization

f(x; θ) = g(T, θ)h(x),

where T is a sufficient statistic. The Carlin-Rubin monotonicity theorem states that [39]

Monotone Likelihood Ratio Theorem: an UMP test of (108) at any level α ∈ [0, α] exists if
the likelihood ratio is either monotone increasing or monotone decreasing in T for all θ ∈ Θ1

Λ =
f(x; θ)
f(x; θ0)

=
g(T ; θ)
g(T ; θ0)

= Λθ(T )

To prove the theorem note that the MP test for a simple alternative H1 : θ = θ1 is

Λθ1(T )
H1

>
<
H0

η

which is equivalent to a test that compares T to a threshold γ = Λ−1
θ1

(η)

T
H1
>
<

H0

γ (increasing Λ)

T
H0
>
<

H1

γ (decreasing Λ)

For the special case of a one sided alternative H1:

H1 : θ > θ0, or H1 : θ < θ0,

there are several densities that satisfy the monotone LR condition and which therefore admit UMP
tests, which can be obtained by selecting a θ1 > θ0 and deriving the MP-LRT of H0 versus the
simple alternative H1 : θ = θ1. The following are examples
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1. x i.i.d. sample from 1D exponential family,

2. In particular: Gaussian, Bernoulli, Exponential, Poisson, Gamma, Beta

3. x i.i.d. sample from a Uniform density U(0, θ)

4. x i.i.d. sample from noncentral-t, noncentral Fisher F

5. x i.i.d. sample from shifted Laplace, logistic

In fact, it can be shown [39] that the monotone LR condition guarantees that the MP-LRT is
UMP wrt Ho : θ < θ0 too!

There are lots of situations where the monotone LR does not hold. For example, the following

1. Gaussian density with single sided H1 on mean but having unknown variance

2. Cauchy density with single sided H1

3. Exponential family with double sided H1

8.3 COMPOSITE HYPOTHESIS DETECTION STRATEGIES

Here it is desired to test doubly composite

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

Now, most fixed detectors will have both PF and PD varying as functions of θ ∈ Θ0 and θ ∈ Θ1,
respectively.

Recall that for composite H0 we say that test φ is of level α if

max
θ0∈Θ0

PF (θ0) ≤ α

where PF (θ) = Eθ0 [φ]

Two classes of strategies:

1. Optimize alternative detection criterion

2. Constrain form of detector to a class for which UMP may exist

8.4 MINIMAX TESTS

A conservative approach to testing composite hypotheses would be to maximize worst case power
under a constraint on worst case false alarm. This approach is called a minimax strategy and
leads to conservative but minimax optimal tests. Minimax approaches are not very widespread in
signal processing applications due to their overly conservative performance and their often difficult
implementation.

Objective: find level α test which satisfies the constraint:

max
θ∈Θ0

Eθ[φ] ≤ α,
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Figure 110: Various power curves for different test functions and their minima over the unknown parameter
θ varying over H1 parameter space Θ1. Minimax NP test φα3 maximizes minimum power.

and maximizes the worst case power
min
θ∈Θ1

Eθ[φ].

METHOD OF SOLUTION: find “least favorable” densities

Simplifying assumption: Θ discrete parameter space.

Fundamental identity on the mean [22]: For any summable sequence {a(k)}k and any probability
distribution {p(k)}k

min
k
a(k) ≤

∑
k

a(k)p(k) ≤ max
k

a(k)

with equality when p(k) = delta function concentrated on argminka(k) and argmaxka(k). There-
fore

min
k
a(k) = min

{p(k)}

∑
k

a(k)p(k), max
k

a(k) = max
{p(k)}

∑
k

a(k)p(k)

* Let {p0(θ)} be an arbitrary probability distribution on Θ0

* Let {p1(θ)} be an arbitrary probability distribution on Θ1

Then the worst case PF (θ) and PM (θ) can be expressed as worst case average PF and PM

max
θ∈Θ0

Eθ[φ] = max
p0

∑
θ∈Θ0

Eθ[φ]p0(θ) =
∑
θ∈Θ0

Eθ[φ]p∗0(θ)

min
θ∈Θ1

Eθ[φ] = min
p1

∑
θ∈Θ1

Eθ[φ]p1(θ) =
∑
θ∈Θ1

Eθ[φ]p∗1(θ)
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where

* p∗0 maximizes the false alarm probability

* p∗1 minimizes the detection probability (power)

Define “least favorable pair” of densities

f∗0 (x) =
∑
θ∈Θ0

f(x; θ)p∗0(θ)

f∗1 (x) =
∑
θ∈Θ1

f(x; θ)p∗1(θ)

Then the minimax objective reduces to

Constraint:
E∗

0 [φ] =
∫
X
φ(x) f∗0 (x)dx ≤ α

Maximize:
E∗

1 [φ] =
∫
X
φ(x) f∗1 (x)dx

Which, corresponds to finding a MP test of level α for the derived simple hypotheses

H∗
0 : X ∼ f∗0

H∗
1 : X ∼ f∗1

Hence minimax NP test is the LRT
f∗1 (x)
f∗0 (x)

H1

>
<
H0

η

where threshold η is chosen to satisfy:∫
X
φ∗(x)f∗0 (x)dx = α

Observations

* Minimax NP test is an optimal Bayes test for random θ over Θ1 and Θ0 but without prior
probabilities on H0 and H1.

* Performance of minimax NP test can be overly conservative, especially if least favorable priors
concentrate on atypical values of θ.

* Least favorable priors p∗1, p
∗
0 may be difficult to find in practice

⇒ Helpful facts concerning f∗1 , f∗0 [16]:

* p∗0 and p∗1 make H∗
0 and H∗

1 the most difficult to discriminate

* p∗1 and p∗0 can each assume at most two values over Θ1 and Θ0
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Figure 111: Least favorable density p∗1(θ) is piecewise constant over Θ1.

Specifically, there exists a subset Θ+
0 of Θ0 such that

p∗0(θ) =
{
q, θ ∈ Θ+

0

0, θ ∈ Θ0 −Θ+
0

where q is equal to the volume of Θ+
0

q =

{ ∫
Θ+

0
dθ, Θ0 cts.∑

θ∈Θ+
0
, Θ0 discrete

and similarly for p∗1.

Examples of minimax tests will be explored in the exercises.

8.5 LOCALLY MOST POWERFUL (LMP) SINGLE SIDED TEST

Main idea: if we can’t find a UMP over the entire set θ > θ0 then perhaps we can find a test that
remains MP over small perturbations, e.g., θ ∈ (θ0, θ0 + Δ] with (0 < Δ� 1), from H0 . First we
consider single sided case and 1D parameter θ

H0 : θ = θ0

H1 : θ > θ0

The idea is simple. Referring to Fig. 112, we recall that the power curve of a good test increases
as a function of θ. Therefore, it makes sense to try and find a test that will maximize the rate of
increase near θ0. This leads to the definition:

Definition 2 A locally most powerful (LMP) test φ of level α has power curve that maximizes
slope of β(θ) at θ = θ0
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Figure 112: Typical power curve β(θ). LMP test of H1 : θ > θo seeks to maximize the slope of the power curve
at point θ = θo.

We can formulate the LMP testing strategy φ by posing it as the following optimization:

Constrain: Eθ0[φ] ≤ α
Maximize: d

dθ0
Eθ0[φ]

Similarly to the derivation of NPL in the previous chapter, we obtain the solution φ to this
optimization as the test

φLMP (x) =

⎧⎨⎩
1, df(x; θ0)/dθ0 > ηf(x; θ0)
q, df(x; θ0)/dθ0 = ηf(x; θ0)
0, df(x; θ0)/dθ0 < ηf(x; θ0)

Or for short

ΛLMP(x) =
df(x; θ0)/dθ0
f(x; θ0)

H1

>
<
H0

η

where η is selected to satisfy constraint (possibly with randomization)

Eθ0 [φ] ≤ α

To prove this is quite simple if we follow the Lagrange multiplier approach that was used to
derive the MP test of Lemma 1. First, note that we can express d

dθ0
Eθ0 [φ] using the ”Girsanov

representation” and a relation for the derivative of the logarithm function

d

dθ0
Eθ0 [φ] =

d

dθ0

∫
φ(x)fθ0(x)dx

=
d

dθ0

∫
φ(x)fθ0(x)dx
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=
∫
φ(x)

d

dθ0
fθ0(x)dx

=
∫
φ(x)

(
d

dθ0
ln fθ0(x)

)
fθ0(x)dx

= Eθ0

[
φ

(
d

dθ0
ln fθ0

)]
.

Therefore, the Lagrangian associated with our constrained maximization problem is simply written
as:

d

dθ0
Eθ0 [φ] + η(α− Eθ0 [φ]) = Eθ0

[
φ

(
d

dθ0
ln fθ0 − η

)]
+ ηα,

which is obviously maximized by selecting φ = φLMP given above.

There is a close connection between the LMP and maximum likelihood estimation. Assuming that
we have set η = 0 we can write the LMP test in an equivalent form

ΛLMP =
d

dθo
ln f(x; θ0)

H1

>
<
H0

0.

Thus we decide H1 if the slope of the likelihood function is positive at θ = θ0. Such a situation
occurs when the log-likelihood function is strictly concave and the MLE θ̂ is greater than θ0, i.e.
the MLE provides good evidence that H1 is true! If η > 0 then the slope at θo has to be both
large and positive, providing even stronger evidence that θ > θ0.

θ0 θ

ΛLMP = �(θ)

Figure 113: LMP test H1 : θ > θo decides H0 if θ0 is near stationary point of log likelihood function l(θ).

Example 40 Gaussian one sided test against zero mean

Find: differential LR has the form
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df(x; θ)/dθ
f(x; θ)

=
d

dθ
ln f(x; θ)

=
∑n

i=1(Xi − θ)
σ2

LMP for testing θ = θ0 = 0 vs. θ > 0 is therefore:

n∑
i=1

Xi

H1

>
<
H0

γ

or level α LMP is the linear UMP test obtained before

√
n Xi

σ

H1

>
<
H0

γ

Example 41 Cauchy one sided test against zero median (ctd)

Find: differential LR has the form

df(x; θ)/dθ
f(x; θ)

= 2
n∑
i=1

Xi − θ
1 + (Xi − θ)2

For θ = θ0 = 0 LMP test is therefore:

T (X) =
n∑
i=1

Xi

1 +X2
i

H1

>
<
H0

γ

Test statistic T (X) is sum of i.i.d. r.v.s with mean 0 and variance 1/8 under H0. Therefore
threshold γ can be found via CLT for large n:

γ =
√
n/8 N−1(1− α)

Example 42 Testing for positive mean of Laplace distribution

* X = [X1, . . . ,Xn] i.i.d,

Xi ∼ f(x; θ) =
a

2
e−a|x−θ|, a > 0

Log-likelihood function takes the form:
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x

y=g(x)

Figure 114: Memoryless non-linearity g(x) = x/(1+x2) input-output characteristic for LMP test of one sided
test against zero median for a Cauchy r.v.

Ho

H1

  >  <

 xk

Σ

Figure 115: Optimal detector for positive Cauchy median is a memoryless non-linearity followed by a summer
and decision mechanism.



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 239

x

f(x)

Figure 116: Laplace density f(x) = ae−a|x−θ|/2. Width, as measured by where f(x) falls to 1/e of its peak, is
2/a.

ln f(x; θ) = −a
n∑
i=1

|Xi − θ|+ n ln
a

2

= −a
∑
Xi>θ

(Xi − θ) + a
∑
Xi<θ

(Xi − θ) + c

= aθ (n+ − n−) + b(θ)

where

n+ = # Xi > θ, n− = # Xi < θ = n− n+

Note: b(θ) is piecewise constant function

Find: differential LR has the form

df(x; θo)/dθo
f(x; θo)

= a(n+ − n−)

LMP is therefore:

T (X) = n+ − n−
H1

>
<
H0

η
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or equivalently, in a form more comparable to the Cauchy and Gaussian examples (41) and (37)
having θo = 0:

T (X) =
n∑
i=1

sgn(Xi)
H1
>
<
H0

η

Ho

H1

  >  <

 xk

Σ

Figure 117: LMP detector for testing positive mean θ > 0 for a Laplace r.v. is composed of a summer and
memoryless non-linearity.

PERFORMANCE:

T (X) is a discrete shifted Binomial r.v.

T (X) =
n∑
i=1

(2bi − 1) = 2B(n, p)− n

where bi are i.i.d. Bernoulli r.v.’s with parameter

p = Pθ(bi = 1) = Pθ(Xi > 0)

⇒ Randomized test is necessary to set false alarm.

α = P0(T (X) > γ−) + q(α+ − α−)

where α− and γ− are related by

α− = P0( T (X)︸ ︷︷ ︸
2B(n, 12 )−n

> γ−) = 1−Bn,p
(
γ− + n

2

)
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T(x)

FT

γ1 γ- γ3

1- α
1- α−

Figure 118: The CDF of test statistic is staircase function (value of FT over γ1 ≤ T (X) < γ− is 1 − α+).
Randomization is necessary for meeting FA constraint.

and the randomization parameter q is as usual

q =
α− α−
α+ − α−

8.6 MOST POWERFUL UNBIASED (MPU) TESTS

Recall: a test φ of level α is an unbiased test if

Eθ[φ] ≥ α, all θ ∈ Θ1.

A test φ of level α is uniformly MPU (UMPU) if for all θ ∈ Θ1 its power function dominates that
of all other unbiased tests of level α. By restricting the class of competing tests there is hope that
a MP test may emerge among them. Unfortunately this is not much more frequent than in the
unrestricted case. For more details on the theory and practice of unbiased testing see Lehmann
[39].

8.7 LOCALLY MOST POWERFUL UNBIASED DOUBLE SIDED TEST

Consider double sided hypotheses:

H0 : θ = θ0

H1 : θ �= θ0

Observe: The power function of a good unbiased level α test φ should have global minimum at
θ = θ0.

Locally unbiased test optimization for 1D parameter θ
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Figure 119: ROC curve of LMP detector for testing positive mean θ > 0 for a Laplace r.v.

β(θ)

β∗(θ)

θ

α

Figure 120: Power curve of most powerful unbiased test (MPU) dominates that of all other unbiased tests of
the same FA level.
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α
d

PD

Figure 121: Power curve of a good locally unbiased test has minimum at α with maximum curvature.

Constraints:

Eθ0 [φ] ≤ α, d

dθ0
Eθ0 [φ] = 0. (109)

Subject to these constraints want to maximize curvature at θ0

d2

dθ2
0

Eθ0[φ].

Using Lagrange multipliers it is easily shown that the test function φ which solves this constrained
maximization problem has the form:

φ(x) =

⎧⎨⎩
1, d2f(x; θ0)/dθ2

0 > η(f(x; θ0) + ρ df(x; θ0)/dθ0)
q d2f(x; θ0)/dθ2

0 = η(f(x; θ0) + ρ df(x; θ0)/dθ0)
0 d2f(x; θ0)/dθ2

0 < η(f(x; θ0) + ρ df(x; θ0)/dθ0)
(110)

where ρ, η, q are selected to satisfy the two constraints.

In some cases, one can meet the constraints by selecting ρ = 0 and varying only q ∈ [0, 1] and
η ∈ [0,∞). In this situation, the locally optimal test (110) reduces to the simpler (randomized)
LRT form

d2f(x; θ0)/dθ2
0

f(x; θ0)

H1
>
<
H0

η.

Example 43 Double sided test against zero mean of Gaussian sample with known variance
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Step 1: Find derivatives of p.d.f. of sufficient statistic X (Here for clarity we define its pdf as
fX(v;μ) for v ∈ IR).

fX(v;μ) =
1√

2πσ2/n
e
− (v−μ)2

2σ2/n

dfX(v;μ)/dμ =
(
n/σ2

)
(v − μ)fX(v;μ)

d2fX(v;μ)dμ2 =
(
n/σ2

)
[n/σ2(v − μ)2 − 1]fX(v;μ)

Thus LMPU LRT is

X
2 − σ2/n

σ2/n+ ρX

H1
>
<
H0

η

Step 2: Select ρ, η to satisfy constraints

First we attempt to satisfy constraints with ρ = 0 and η a free variable.

For this case LMPU LRT reduces to

|X |
H1

>
<
H0

γ (111)

Since

X ∼ N (0, σ2/n), under H0

we have

α = 1− P0(−γ < X ≤ γ) = 2(1−N (γ
√
n/σ))

Or

γ =
σ√
n
N−1(1− α/2)

Success! We can set threshold γ to achieve arbitrary PF = α with ρ = 0 and without randomiza-
tion. Of course it still must be verified that the test (111) satisfies the second constraint in (109)
which is that d/dμPD(μ)|μ=0 = 0. This can be shown by establishing symmetry of the power
function about μ = 0. The details are left as an exercise.

Equivalent form of locally-unbiased test

1
n
|
n∑
i=1

Xi|
H1

>
<
H0

γ
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 xk
γΣ | . |

Figure 122: Locally best unbiased double-sided test for non-zero Gaussian mean is a memoryless non-linearity
followed by a summer and decision device.

Power:

Since

X ∼ N (μ, σ2/n), under H1

PD = 1− Pμ(−γ < X ≤ γ)

= 1− [N (
√
n (γ − μ)/σ)−N (

√
n (−γ − μ)/σ)]

= 1−N (N−1(1− α/2) − d)−N (N−1(1− α/2) + d)

where as usual:

* d =
√
n μ/σ is detectability index

Remark:

* It can be shown that in the Gaussian example above the LMPU test is actually UMPU. See
Ferguson [16].

The LMPU strategy can in principle be extended to multiple parameters as follows. Assume

θ = [θ1, . . . , θp]T

and let’s test the hypotheses:
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βUMP (μ > 0)βUMP (μ < 0)

βLMP

d

PD

Figure 123: Power curve of LMPU test for for non-zero Gaussian mean with known variance as a function
of values of d.

H0 : θ = θ0

H1 : θ �= θ0

Constraints:

Eθ0 [φ] ≤ α, ∇θ0Eθ0 [φ] = 0) (112)

Maximize:

trace
{
∇2
θ0
Eθ0 [φ]

}
where trace {A} denotes trace of matrix A.

This is a similar optimization as we encountered in proving the Neyman Pearson Lemma. However,
now there are p+1 constraints as indicated in (112). One of them is due to the false alarm constraint
and p of them are due to constraining the gradient vector to zero. The optimal test can be found
by applying Lagrange multipliers and has the form

trace
{
∇2
θ0
f(x; θ0)

}
f(x; θ0) +

∑p
i=1 ρi∂f(x; θ0)/∂θ0i

H1

>
<
H0

η,

where ρ1, . . . , ρp, η are selected to satisfy the constraints (possibly with randomization).
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8.8 CFAR DETECTION

A sometimes reasonable condition is to require that tests have constant false alarm rate (CFAR),
i.e. constant PF (θ) over θ ∈ Θ0. Then one attemps to find a UMP CFAR test. The setup is as
follows:

Constraint:
Eθ[φ] = α, θ ∈ Θ0

Maximize:
Eθ[φ], θ ∈ Θ1

A effective methodology for finding CFAR tests is by the use of invariance principles [33]. CFAR
tests are also known as similar tests and for more information see [39].

8.9 INVARIANT TESTS

Consider the general case where we have partition of θ

θ = [ϕ1, . . . , ϕp, ξ1, . . . , ξq︸ ︷︷ ︸
nuisance parameters

]T

and X ∼ f(x;ϕ, ξ)

It is desired to test single sided hypotheses

H0 : ϕ = 0, ξ = ξ
o

H1 : ϕ > 0, ξ = ξ
o

where ξ
o
∈ IRq is unknown ⇒ UMP does not usually exist.

Invariant tests seek to find a transformation (compression) of the data

Z = Z(X)

which satisfies:

Property 1. Z contains (almost) as much information concerning ϕ as X

Property 2. Distribution of Z is not a function of ξ.

Due to Property 2, if we throw away x and retain only

Z ∼ f(z;ϕ)

then we are back to testing simpler hypotheses for which an UMP may exist

H0 : ϕ = 0
H1 : ϕ > 0

The theory of optimal invariant tests is treated in detail in [33] in which invariance is referred to
as exact robustness.

For now we concentrate on a particular suboptimal “invariant” approach
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8.10 GENERALIZED LIKELIHOOD RATIO TEST

We now turn to one of the most prevalent methods of dealing with detection for composite hy-
potheses. Unlike the previous methods, which were all motivated by solving a performance driven
optimization problem, the generalized likelihood ratio test (GLRT) is better looked at as a heuris-
tic principle than as a test strategy having assured optimality properties. However, as will be
discussed below, the GLRT is a straightforward procedure and it does have asymptotic (large n)
optimality properties that are major attractions.

We consider the general composite hypotheses

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

The GLRT can be defined as an “estimate-and-plug” procedure to test H0 vs. H1:

Step 1: Find good estimates θ̂0 and θ̂1 of θ under H0 and H1

Step 2: substitute these estimates into the LR statistic

Using this procedure we obtain the GLRT

Λ =
f(x; θ̂1)
f(x; θ̂0)

H1

>
<
H0

η

where η is selected to give FA level α

Any consistent estimators will ensure that the GLRT has favorable asymptotic properties. How-
ever, the most common case of the GLRT is when the estimators θ̂1 and θ̂0 are MLEs:

ΛGLR =
maxθ∈Θ1 f(x; θ)
maxθ∈Θ0 f(x; θ)

H1

>
<
H0

η

Note: these MLE’s are constrained to θ ∈ Θ0 and θ ∈ Θ1, respectively.

For a simple hypothesis H0 the GLRT reduces to

ΛGLR =
supθ∈Θ1

f(x; θ)
f(x; θ0)

= sup
θ∈Θ1

Λ(θ) = Λ(θ̂1).

where
Λ(θ) =

f(x; θ)
f(x; θ0)

8.10.1 PROPERTIES OF GLRT

The following properties are stated simply and without proof but can be expected to hold for
smooth likelihood functions and a simple null hypothesis. For proofs of these properties the reader
is referred to [40] or [7].

1. If an UMP test exists then the GLRT will be identical to it.
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2. Let observations X = [X1, . . . ,Xn]T be i.i.d. Then, since the MLE θ̂ is a consistent estimator,
as n→∞ the GLRT is asymptotically UMP.

3. The GLR test statistic for testing a double sided alternative hypothesis has a Chi-square
limiting distribution under H0 as n →∞. Specifically, assume that the unknown parameters are
partitioned as

θ = [ϕ1, . . . , ϕp, ξ1, . . . , ξq︸ ︷︷ ︸
nuisance parameters

]T

and consider the GLRT for the simple null and double-sided alternative hypotheses

H0 : ϕ = ϕ
0
, ξ = ξ

o

H1 : ϕ �= ϕ
0
, ξ = ξ

o

where ξ
o

is unknown. Then for large n

2 ln ΛGLR(X) ∼ χp, under H0. (113)

Note that p is the number of parameters that are unknown under H1 but are fixed under H0.

8.11 BACKGROUND REFERENCES

Any of the references cited in the last chapter will have some discussion of the problem of testing
composite hypotheses. Lehmann [39] has comprehensive coverage of minimax, similarity (CFAR),
unbiased tests, and other methods. Invariance principles have been applied to many problems in
signal processing and communications [37],[10], [9], [61]. The book by Kariya and Sinha [33] is a
comprehensive, advanced level, reference on invariance principles, robustness and GLR’s (therein
referred to as likelihood principles) relevant to these studies. Application of invariance principles
can be viewed as one way to figure out a transformation of the data that makes the resultant
transformed measurements have more tractable density functions under H0 or H1. Viewed in
this way these principles can be interpreted as a special application of the transformation method,
discussed in the context of robust exploratory data analysis in the book by Hoaglin, Mosteller and
Tukey [27]. Another approach, that we did not discuss here, is the application of non-parametric
techniques, also called ”distribution-free inference,” to handle unknown parameters in testing of
composite hypotheses. The book by Hollander and Wolfe [28] covers this topic from a general
statistical point of view and the edited book by Kassam and Thomas [35] covers nonparametric
detection theory for applications in signal processing, communications and control.

8.12 EXERCISES

8.1 The observations {xi}ni=1 are i.i.d. exponential xi ∼ fθ(x) = βe−βx, where x, β ≥ 0. Consider
testing the following single sided hypotheses

H0 : β = β0

H1 : β > β0

(a) First find the MP test of level α for the simple alternative H1 : β = β1 where β1 >
β0. Express the threshold in terms of the Gamma distribution (distribution of n i.i.d.
exponential r.v.s). Next establish that your test is UMP for the single sided composite
H1 above.
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(b) Specialize the results of (a) to the case of a single observation n = 1 and derive the ROC
curve. Plot your curve for β1/β0 = 1, 5, 10.

(c) Derive the locally most powerful test (LMPT) for the single sided hypotheses (maximize
slope of power subject to FA constraint) and verify that it is identical to the UMP test.

(d) Now consider testing the double sided hypotheses

H0 : β = β0

H1 : β �= β0

Derive the LMPT (maximize curvature of power subject to FA constraint and zero slope
condition). Derive the ROC for n = 1 and compare to the ROC of part (b) over the
region β > β0.

(e) Derive the GLRT for the double sided hypotheses of part (d). Compare to your answer
obtained in part (d).

8.2 Let Z be a single observation having density function

pθ(z) = (2θz + 1− θ), 0 ≤ z ≤ 1

where −1 ≤ θ ≤ 1.

(a) Is there a uniformly most powerful test between the composite hypotheses

H0 : θ = 0
H1 : θ �= 0

and, if so, what is it?
(b) Find the generalized likelihood ratio test for these hypotheses.
(c) Now assume that under H1 the parameter θ has prior density p(θ) = |θ|I[−1,1](θ) so that

under H1 the density of Z is f1(z) =
∫
f(z|θ)pθ(θ)dθ, where f(z|θ) = pθ(z). Find the

MP test between hypotheses H0 and this new H1. What if the prior density were the
assymetric p(θ) = 1

2 (θ + 1)I[−1,1](θ)?

8.3 A random variable X has density

f(x; θ) =
1 + θx

2
, −1 ≤ x ≤ 1

where θ ∈ [−1, 1].

(a) Find the MP test of level α for testing the simple hypotheses

H0 : θ = θ0

H1 : θ = θ1

based on a single sample x, where θ0 ∈ [−1, 0] and θ1 ∈ (0, 1] are known. Derive and plot
the ROC when θ0 = 0.

(b) Is there a UMP test of level α, and if so what is it, for the following hypotheses?

H0 : θ = 0
H1 : θ > 0
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(c) Now consider testing the doubly composite hypotheses

H0 : θ ≤ 0
H1 : θ > 0

Find the GLRT for the above hypotheses. Derive the threshold of the GLRT that ensures
the level α condition maxθ∈[−1,0] PFA(θ) ≤ α.

8.4 Available is an i.i.d. sample of a Poisson r.v. with distribution pθ(k) = Pθ(xi = k) = θk

k! e
−θ,

k = 0, 1, 2, . . ..
(a) Find the GLRT for testing the hypotheses

H0 : θ = θ0

H1 : θ �= θ0

Do not attempt to set the exact threshold for level α.
In the following parts of this exercise you will show how to set the GLRT threshold under
the large n Chi-square approximation to the GLRT test statistic Λ = maxθ �=θopθ(x)/pθo(x).

(b) Directly show that under H0 the statistic 2 log Λ is asymptotically Chi-square with 1 d.f.
by expanding Λ = Λ(xi) about the sample mean xi = θo, neglecting all terms of order
(xi − θo)3 and higher, and recalling that (N (0, 1))2 is Chi-square with 1 d.f.

(c) Using the result of part (b) set the threshold of your GLRT in part (a).
(d) Using the asymptotic results of part (b) find the GLRT between

H0 : θ ≤ θ0
H1 : θ > θ0

with threshold.
8.5 Let X1,X2, . . . ,Xn be i.i.d. random variables with the marginal density Xi ∼ f(x) = εg(x)+

(1 − ε)h(x), where ε ∈ [0, 1] is a non-random constant and g(x) and h(x) are known density
functions. It is desired to test the composite hypotheses

H0 : ε = 1/2 (114)
H1 : ε > 1/2 (115)

(a) Find the most powerful (MP) test between H0 and the simple hypothesis H1 : ε = ε1,
where ε1 > 1/2 (you needn’t solve for the threshold). Is your MP test a UMP test of the
composite hypotheses (115)?

(b) Find the locally most powerful (LMP) test for (115). Show how you can use the CLT to
set the threshold for large n.

(c) Find the generalized LRT (GLRT) test for (115) in the case of n = 1. Compare to your
answer in part (b).

8.6 Let {Xi}ni=1 be i.i.d. following an exponential distribution

f(x; θ) = θe−θx, x ≥ 0

with θ > 0. You are to design a test of the hypotheses

H0 : θ = θ0

H1 : θ �= θ0

Here we explore various testing strategies.
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(a) Show that the GLRT reduces to a test on the sum of the Xi’s and derive the threshold to
attain FA level α (Hint: the sum of n standard (mean = 1) exponential r.v.s is standard
Gamma with parameter n).

(b) Now assume that H0 and H1 have equal prior probabilities p = 1/2 and that, conditioned
on H1, θ itself follows an exponential distribution of the form f(θ) = βe−βθ, θ ≥ 0, where
β > 0 is known. Find the form of the Bayes LRT (with threshold) which attains minimum
probability of decision error. What happens as β →∞?.

8.7 As in Exercise 4.24, let n i.i.d. realizations be available from the geometric mixture fG
specified by (57) and (58). Assume that φ1, φ2 are known and φ1 �= φ2.

(a) Consider the hypothesis testing problem on fG

H0 : ε = 0
H1 : ε > 0.

Does a level α UMP test for these hypotheses exist? If so what is it? If not derive a
GLRT test. You must specify a threshold of level α (you can assume large n).

(b) Consider the hypothesis testing problem on fG

H0 : ε = 1/2 (116)
H1 : ε �= 1/2. (117)

Does a level α UMP test for these hypotheses exist? If so what is it? If not derive a
GLRT test. You must specify a threshold of level α (you can assume large n).

(c) Under the identical assumptions as in part (h) find a locally most powerful unbiased test
of (117) based on n i.i.d. observations from fG and compare to the GLRT.

8.8 Let X be a random variable with density f(x; θ) = (θ+1)xθ, x ∈ [0, 1] and θ > −1. Consider
testing the hypotheses

H0 : θ = 0
(118)

H1 : θ = θ1

(a) Find the most powerful (MP) test of level α for testing these hypotheses and derive
expressions for the power function and ROC curve. Does the decision region of the MP
test of level α depend on the value of θ1?. Does there exist a UMP test of level α for
testing H0 vs. H1 : θ > 0? How about for testing H0 against H1 : θ �= 0?

(b) Assuming priors on the hypotheses p = P (H0), 1−p = P (H1) find the optimal Bayes test
of (118) under the assumption that c00 = c11 = 0 and c01 = c10 = 1 (minimal probability
of error test). Find and plot the minimum risk (probability of error) c∗(p) as a function
of p for θ1 = 1. Using these results find the mini-max Bayes detector and its threshold
for this value of θ.

(c) Find the locally most powerful test for testing H0 vs. H1 : θ > 0 and derive an expression
for the ROC curve.

(d) Find the GLRT for testing H0 against H1 : θ �= 0 and derive expressions for PF and PD
in terms of the threshold and plot the ROC curve.
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8.9 In this exercise you will explore the problem of detecting an anomaly in an image solely on
the basis of filtered measurements, e.g. a blurred version of the image. This type of problem
is related to “non-destructive testing” and arises in many situations that we encounter in our
daily lives, e.g., when we pass our suitcases through a security scanner at the airport. When
there is no noise and no anomaly the scanner outputs an image that lies in a known subspace,
the span of the columns of a known n × p matrix H, denoted colspan{H}. You might just
think of the columns of H as blurry images of all the possible “benign” objects that one could
pack into a suitcase. An anomaly occurs when the image has components lying outside of
this subsapce of benign objects. Of course, there is also additive noise that complicates our
ability to detect such anomalies.
Now we can state the anomaly detection problem as testing the hypotheses

H0 : X = Hθ +W

(119)
H1 : X = ψ + Hθ +W,

where we have defined the observed image as a vector X = [X1, . . . ,Xn]T , the parameter
vector θ = [θ1, . . . , θp]T describes the specific linear combination of benign objects present in
the suitcase, ψ = [ψ1, . . . , ψn]T describes the anomalous component of the image, and W is a
Gaussian noise vector with zero mean and covariance matrix cov(W ) = σ2I. We will assume
throughout this exercise that we know the matrix H and σ2. We also assume that H is full
rank: rank(H) = p ≤ n.

(a) Assume that θ is known. For known ψ what is the most powerful (MP) test of level
α for testing H0 vs. H1? Is the test you derived in part (a) UMP for testing H0 vs.
H1 : X = cψ + Hθ + W , where c > 0 is an unknown constant? Is the test UMP for
totally unknown ψ?

(b) Find an expression for and plot the ROC curve (hand drawn is fine) for the test derived in
(a). What function of ψ, θ, H, and σ determines the shape of the ROC, i.e., detectibility
index?

(c) Now assume that θ is unknown but that ψ is known. Find the GLRT of level α for testing
(119) and find its ROC curve. What function of ψ, θ, H, and σ determines the shape of
the ROC, i.e., detectibility index? What happens to the detectibility when p = n?

(d) Now assume that θ and ψ are both unknown. Find the GLRT for testing (119).
(e) Assume that ψ is known but θ is unknown. Also assume that the anomaly vector satisfies

the constraint ψTψ ≤ ε, ε > 0. Using the results you derived in (c) find the least
detectable (giving lowest power) and the most detectable (giving highest power) anomaly
vectors.

8.10 Assume X is a Cauchy distributed random variable with density

f(x; θ) =
1
π

1
1 + (x− θ)2 .

You are to test the hypotheses H0 : θ = 0 vs. H1 : θ > 0 based on a single realization of X.

(a) Derive the MP test of level α for testing H0 : θ = 0 vs. H1 : θ = θ1 for a fixed value
θ1 > 0.

(b) Find the decision region X1 specifying outcomes X that will result in deciding H1.
(c) Show that this decision region depends on θ1 and therefore establish that no UMP exists.
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8.11 In many applications it is of interest to detect deviations of a random sample from a nominal
probability model. Such deviations are called anomalies and the general problem can be
formulated as a hypothesis testing problem. One popular test uses ”minimum volume sets,”
and is explored in this exercise. In the following X is a single realization of a measurement
vector in IRd to be tested for anomaly.
Assume that a nominal density f0(x) for X is known, e.g., learned from a lot of (non-
anomalous) training samples. We assume that

∫
[0,1]d f0(x)dx = 1, that is, f0 is supported

on the d-dimensional unit cube [0, 1]d. We hypothesize that an anomalous observation has a
density f1 that corresponds to a broadening of f0. Arguably, the simplest model is that f1 is
the superposition of f0 and a uniform density over [0, 1]d:

f1(x) = (1− ε)f0(x) + εU(x)

where

U(x) =
{

1, x ∈ [0, 1]d

0, o.w.

and ε is a mixture parameter 0 < ε ≤ 1. With this model we can define the pdf of X as
f(x) = (1− ε)f0(x) + εU(x) and say that a nominal measurement corresponds to ε = 0 while
an anomaly corresponds to ε > 0.

(a) First we consider the case that the anomalous density is known, i.e., ε = ε1, ε > 0. Show
that the most powerful (MP) test of level α of the ”simple anomaly hypothesis”

H0 : ε = 0
H1 : ε = ε1

is of the form ”decide H1” if
f0(X) ≤ η

where η is a suitably selected threshold.
(b) Show that the MP test of part (a) is a minimum-volume-set in the sense that the H0-

decision region Ω∗ = {x : f0(x) ≥ η} is a set having minimum volume over all sets Ω
satisfying

∫
Ω f0(x)dx = 1− α. (Hint: express the volume of Ω as |Ω| =

∫
φ(x)dx, where

φ(x) is the indicator function of the set Ω).
(c) Derive the power function of the minimum-volume-set test and show that it is propor-

tional to the volume of Ω.
(d) Next we consider the case that the anomalous density is unknown. Is the minimum-

volume-set test of part (b) uniformly most powerful (UMP) for the ”composite anomaly
hypothesis”

H0 : ε = 0
H1 : ε > 0

If it is not UMP derive the locally most powerful test (LMP) of level α.
(e) Now specialize to the case of a scalar observation X, i.e., d = 1, where f0(x) is the

triangular density

f0(x) =

⎧⎨⎩
4x, 0 ≤ x ≤ 1/2

4(1− x), 1/2 < x ≤ 1
0, o.w.
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Find mathematical expressions for the set Ω∗ in terms of the false alarm level α, derive
the power function (as a function of ε), and the ROC curve. Plot the power function
for several representative values of α and plot the ROC curve for several representative
values of ε.

End of chapter
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9 COMPOSITE HYPOTHESES IN THE UNIVARIATE GAUS-

SIAN MODEL

In this chapter we illustrate the generalized likelihood ratio testing strategy discussed in Chapter
8 to hypotheses on the mean and variance of the univariate Gaussian distribution based on i.i.d
measurements. We will deal with the following scenarios:

* Tests on mean of a single population: σ2 known

* Tests on mean of a single population: σ2 unknown

* Tests on variance of a single population: μ known

* Tests on variance of a single population: μ unknown

* Tests on equality of means in two populations

* Tests on equality of variances in two populations

* Tests on correlation between two populations

Recall the form of the density of an i.i.d. Gaussian vector X = [X1, . . . ,Xn]T with mean μ and
variance σ2.

f(x; μ, σ) =
(

1
2πσ2

)n/2
exp

(
− 1

2σ2

n∑
i=1

(xi − μ)2
)

9.1 TESTS ON THE MEAN: σ2 KNOWN

Case I: H0 : μ = μo, H1 : μ > μo

Case II: H0 : μ ≤ μo, H1 : μ > μo

Case III: H0 : μ = μo, H1 : μ �= μo

We have already established that UMP test exists for Case I. You can show that same test is UMP
for case II by checking the monotone likelihood condition [39] discussed in Sec. 8.2.

9.1.1 CASE III: H0 : μ = μo, H1 : μ �= μo

X = [X1, . . . ,Xn]T i.i.d., Xi ∼ N (μ, σ2)

Here θ = μ, Θ = IR and we want to test the double sided hypothesis that the mean equals a known
parameter μ0

H0 : μ = μo

H1 : μ �= μo.

The GLRT is of the form:

ΛGLR = max
μ�=μo

Λ(μ) =
maxμ�=μo exp

(
− 1

2σ2

∑n
i=1(Xi − μ)2

)
exp
(
− 1

2σ2

∑n
i=1(Xi − μo)2

)
We must consider two cases
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1. μ̂ml �= μo

2. μ̂ml = μo

Case 1. μ̂ml �= μo:

In this case it is obvious that

max
μ�=μo

Λ(μ) = Λ(μ̂ml)

Case 2. μ̂ml = μo:

Since Λ(μ) is a continuous function with maximum at μ = μ̂ml we have again

max
μ�=μo

Λ(μ) = lim
ε→0

Λ(μ̂ml + ε) = Λ(μ̂ml)

μ

Λ(μ)

μ0 ml�̂

Figure 124: For a continuous LR density f(x;μ) the maximum of the likelihood ratio test statistic λ(μ) occurs
at the MLE μ = μ̂ml

Thus, since we know μ̂ml is the sample mean under the Gaussian model

ΛGLR =
exp
(
− 1

2σ2

∑n
j=1(Xj −X)2

)
exp
(
− 1

2σ2

∑n
j=1(Xj − μo)2

)
Next use the fact that

∑n
i=1(Xi −X) = 0 (recall that X is the LLS estimator over all estimator

functions that are independent of the data) to obtain

n∑
j=1

(Xj − μo)2 =
n∑
j=1

(Xj −X)2 + n(x− μo)2.
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Hence,

ΛGLR = exp
( n

2σ2
(X − μo)2

)
and the GLRT is simply

√
n
∣∣X − μo∣∣
σ

H1

>
<
H0

γ = N−1(1− α/2), (120)

which is identical to the LMPU (UMPU) test derived in Sec. 8.6!

Note: as predicted by our results on the asymptotic distribution of GLRTs of double sided hy-
potheses (Sec. 8.10.1)

2 ln ΛGLR = 2 ln
{

exp
( n

2σ2
(X − μo)2

)}

=

⎛⎜⎜⎜⎝X − μoσ/
√
n︸ ︷︷ ︸

N (0,1)

⎞⎟⎟⎟⎠
2

which is distributed as a central Chi-square with 1 d.f.

A general lesson learned for GLRT’s:

⇒ for testing double sided hypotheses of form

H0 : θ = θo

H1 : θ �= θo

if LR Λ(θ) is a continous function of θ then

max
θ �=θo

Λ(θ) = max
θ

Λ(θ) = Λ(θ̂ml)

9.2 TESTS ON THE MEAN: σ2 UNKNOWN

Case I: H0 : μ = μo, σ
2 > 0, H1 : μ > μo, σ

2 > 0

Case II: H0 : μ ≤ μo, σ2 > 0, H1 : μ > μo, σ
2 > 0

Case III: H0 : μ = μo, σ
2 > 0, H1 : μ �= μo, σ

2 > 0

9.2.1 CASE I: H0 : μ = μo, σ
2 > 0, H1 : μ > μo, σ

2 > 0

From properties of the MLE for Gaussian mean and variance parameters we can easily show that
for a realization x of X

ΛGLR =
maxμ>μo,σ2>0 f(x;μ, σ2)

maxσ2>0 f(x;μo, σ2)

=

{
f(x; x, (xi−x)2)

f(x; μo, (xi−μo)2)
, x > μo

1, x ≤ μo
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where f(x;μ, σ2) is the N (μ, σ2) density and (as usual)

x = n−1
n∑
i=1

xi

(xi − t)2 = n−1
n∑
i=1

(xi − t)2 = σ̂2
t .

Here t is an arbitrary constant.

Next observe that

f(x; x, (xi − x)2)
f(x; μo, (xi − μo)2)

=

(
(xi − μo)2

(xi − x)2

)n/2

=

(
1 +

(x− μo)2

(xi − x)2

)n/2
=
(
1 + T 2(x)

)n/2
,

where

T (x) =
x− μo√
(xi − x)2

Since T 2(x) is monotone in T (x) for x > μo the GLRT based on X is

T (X) =
X − μo√
(Xi −X)2

H1
>
<
H0

γ

which is equivalent to the one sided t-test:

(X − μo)
s/
√
n

H1
>
<
H0

γ
′

where recall that s2 is the unbiased variance estimate for unknown mean

s2 = (n− 1)−1
n∑
i=1

(Xi −X)2

PERFORMANCE:

Under H0 we have

T (X) =

N (0,1)·σ︷ ︸︸ ︷√
n (Xi − μo)√√√√√√

n∑
i=1

(Xi −Xi)2︸ ︷︷ ︸
χn−1·σ2

/(n− 1)

=
N (0, 1)√

χn−1/(n− 1)
= Tn−1
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Ho

H1

  >  <
 xk

−μ0

∑n
1

sample 
variance

S

Figure 125: The one sided t-test for detection of mean exceeding μo when variance is unknown

where Tn−1 is Student-t r.v. with n− 1 d.f. Thus

α = P0(T (X) > γ) = 1− Tn−1(γ),

so that
γ = T −1

n−1(1− α).

Under H1 we have:

* Xi − μo has mean μ− μo which is no longer zero.

⇒ T (X) follows the non-central Student-t distribution

Tn,d with n− 1 d.f. and non-centrality parameter

d =
√
n(μ1 − μ0)

σ
.

Hence, the power of the one sided t-test is

β = 1− Tn−1,d(T −1
n−1(1− α)),

which is plotted in Fig. 126.

Note: for large n, Tn−1,d → N1(d, 1) and therefore the power function approaches the power
function of the GLRT for single sided hypothesis on the mean with σ2 known.

9.2.2 CASE II: H0 : μ ≤ μo, σ2 > 0, H1 : μ > μo, σ
2 > 0

We can show that the GLRT has identical one-sided t-test form as in Case I. (Exercise)

√
n (x− μo)

s

H1

>
<
H0

T −1
n−1(1− α)
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α = 0.1

d

βMP (σ known)

βGLRT (σ unknown)

β

1

n = 8

0 2

Figure 126: Power curve for one sided t-test

9.2.3 CASE III: H0 : μ = μo, σ
2 > 0, H1 : μ �= μo, σ

2 > 0

This case is very similar to the double sided GLRT on the mean for known σ2. We obtain GLRT
as double sided t-test

√
n|x− μo|

s

H1

>
<
H0

T −1
n−1(1− α/2)

with power curve

β = 1− Tn−1,d(T −1
n−1(1− α/2)) + Tn−1,−d(T −1

n−1(1− α/2)).

For large n this converges to the power curve derived in the case of known variance.

9.3 TESTS ON VARIANCE: KNOWN MEAN

CASE I: H0 : σ2 = σ2
o , H1 : σ2 > σ2

o

CASE II: H0 : σ2 ≤ σ2
o , H1 : σ2 > σ2

o

CASE III: H0 : σ2 = σ2
o , H1 : σ2 �= σ2

o

9.3.1 CASE I: H0 : σ2 = σ2
o , H1 : σ2 > σ2

o

Similarly to the derivation of the GLRT for the case of one sided tests of the mean (120), the
continuity of the Gaussian p.d.f. f(x;μ, σ2) as a function of σ2 gives:

ΛGLR =
maxσ2>σ2

o
f(x;μ, σ2)

f(x;μ, σ2
o)

=

{
f(x;μ, σ̂2

μ)

f(x; μ,σ2
o)
, σ̂2

μ > σ2
o

1, σ̂2
μ ≤ σ2

o
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where σ̂2
μ is the unbiased estimate of the variance for known mean

σ̂2
μ = n−1

n∑
i=1

(xi − μ)2

After some simple manipulation the GLRT takes the form

ΛGLR =

⎛⎜⎜⎜⎝ 1
max{σ̂2

μ/σ
2
o , 1}︸ ︷︷ ︸

u

emax{σ̂2
μ/σ

2
o , 1}−1

⎞⎟⎟⎟⎠
n/2

H1

>
<
H0

η

u1

uue

Figure 127: The function eu/u is monotone increasing over u ≥ 1.

As the function eu/u is monotone increasing over u ≥ 1, the GLRT reduces to

max{σ̂2
μ/σ

2
o , 1}

H1
>
<
H0

γ

Now if γ ≤ 1 then false alarm α = 1.

Hence we can select γ > 1 and GLRT reduces to the single sided Chi-square test

T (x) =
nσ̂2

μ

σ2
o

H1

>
<
H0

χ−1
n (1− α)

which we know from previous work is actually an UMP test.



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 263

1

γ

1} ,��̂max{ 22
oμ

σo

Figure 128: The GLRT always chooses H1 for γ < 1.

An alternative form of the UMP test is a single sided energy detector

n∑
i=1

(xi − μ)2
H1
>
<
H0

γ

9.3.2 CASE II: H0 : σ2 ≤ σ2
o , H1 : σ2 > σ2

o

Now we have

ΛGLR =
maxσ2>σ2

o
f(x; μ, σ2)

maxσ2≤σ2
o
f(x; μ, σ2)

=

⎧⎪⎪⎨⎪⎪⎩
f(x; μ, σ̂2

μ)

f(x; μ, σ2
o)
, σ̂2

μ > σ2
o

f(x; μ, σ2
0)

f(x; μ, σ̂2
μ)
, σ̂2

μ ≤ σ2
o

or

ΛGLR =

⎧⎪⎨⎪⎩
(

1
σ̂2

μ/σ
2
o
eσ̂

2
μ/σ

2
o−1
)n/2

, σ̂2
μ > σ2

o(
σ̂2
μ/σ

2
o e

1−σ̂2
μ/σ

2
o

)n/2
, σ̂2

μ ≤ σ2
o

As eu/u is monotone increasing over u > 1 and ue−u is monotone increasing over 0 ≤ u ≤ 1, the
GLRT reduces to the same form as derived for Case I:
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Ho

H1

  >  <

 xk
Σ

−μ

(   )2+

Figure 129: GLRT for one sided test of positive shift in variance is an energy detector.

u
10

uue−

Figure 130: The function ue−u is monotone increasing over 0 ≤ u ≤ 1.
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n σ̂2
μ

σ2
o

H1

>
<
H0

γ

and the rest of the analysis is identical to before.

9.3.3 CASE III: H0 : σ2 = σ2
o , H1 : σ2 �= σ2

o

Now, we have

ΛGLR =
maxσ2 �=σ2

o
f(x;μ, σ2)

f(x;μ, σ2
o)

=
f(x;μ, σ̂2

μ)
f(x; μ, σ2

o)

=
(

1
σ̂2
μ/σ

2
o

eσ̂
2
μ/σ

2
o−1

)n/2

1

uue

0 22
0

��̂μ=uγ− γ+

η

Figure 131: As eu/u is convex the decision H0 region of double sided Chi-square test is an interval [γ−, γ+].

As the function eu/u is convex over u ≥ 0 the H0 decision region can be written in the form

γ− ≤
σ̂2
μ

σ2
o

≤ γ+,

where γ− and γ+ are selected to give PF = α.

A common choice of thresholds is (α ≤ 1
2):
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γ− = 1/n χ−1
n (α/2)

γ+ = 1/n χ−1
n (1− α/2)

which gives equal area (α/2) to the upper and lower tails of the χn distribution corresponding to
a total FA probability PF = α (see Fig. 132).

χn

χn
-1 (α/2) χn

-1 (1-α/2)

 α/2
 α/2

Figure 132: Quantiles of Chi-square specify the thresholds γ− and γ+ for double sided test of variance.

Power of double sided GLRT of variance:

Assume that the true value of σ2 > σ2
o under H1 is σ2 = σ2

1 . Then

β = 1− P (nγ− ≤
nσ̂2

μ

σ2
o

≤ nγ+|H1)

= 1− P (nγ− ≤
nσ̂2

μ

σ2
1︸︷︷︸

χn under H1

(
σ2

1

σ2
o

)
≤ nγ+|H1)

= 1− χn
(
nγ+

σ2
o

σ2
1

)
+ χn

(
nγ−

σ2
o

σ2
1

)
.

9.4 TESTS ON VARIANCE: UNKNOWN MEAN

CASE I: H0 : σ2 = σ2
o , μ ∈ IR, H1 : σ2 > σ2

o , μ ∈ IR

CASE II: H0 : σ2 < σ2
o , μ ∈ IR, H1 : σ2 > σ2

o , μ ∈ IR

CASE III: H0 : σ2 = σ2
o , μ ∈ IR, H1 : σ2 �= σ2

o μ ∈ IR
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9.4.1 CASE I: H0 : σ2 = σ2
o , H1 : σ2 > σ2

o

We now have

ΛGLR =
maxσ2>σ2

o , μ
f(x;μ, σ2)

maxμ f(x;μ, σ2
o)

=

⎧⎪⎨⎪⎩
f(x; x, σ̂2)
f(x; x,σ2

o)
, σ̂2 > σ2

o

1, σ̂2 ≤ σ2
o

where now

σ̂2 = n−1
n∑
i=1

(xi − x)2

This is identical to the case of known μ with μ replaced by x.

Hence, referring to work done for that case, we immediately obtain the single sided GLRT

T (x) =
nσ̂2

σ2
o

=
(n− 1)s2

σ2
o

H1

>
<
H0

γ

PERFORMANCE

Under H0,

* T (X) is a Chi-square r.v. with n− 1 d.f. and thus

γ = χ−1
n−1(1− α)

Under H1,

* T (X) is Chi-square with n− 1 d.f. (scaled by σ2/σo) so

β = 1− χ−1
n−1(γ σ

2
o/σ

2)

= 1− χn−1(χ−1
n−1(1− α) σ2

o/σ
2)

9.4.2 CASE II: H0 : σ2 < σ2
o , μ ∈ IR, H1 : σ2 > σ2

o , μ ∈ IR

GLRT is dentical to Case I.
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9.4.3 CASE III: H0 : σ2 = σ2
o , μ ∈ IR, H1 : σ2 �= σ2

o μ ∈ IR

The derivation of the GLRT is completely analogous to Case III for known mean.

The H0 decision region is identical to before except that sample variance replaces σ̂2
μ, and the test

statistic now has only n− 1 d.f.

χn−1(α/2) ≤
(n− 1)s2

σ2
o

≤ χn−1(1− α/2)

The power function is identical to previous Case III for known μ except that χn CDF is replaced
by χn−1 CDF.

9.5 TESTS ON EQUALITY OF MEANS: UNKNOWN COMMON VARI-
ANCE

Two i.i.d. independent samples

X = [X1, . . . ,Xn1 ]
T , Xi ∼ N (μx, σ2)

Y = [Y1, . . . , Yn2]
T , Yi ∼ N (μy, σ2)

Case I: H0 : μx = μy, σ
2 > 0, H1 : μx �= μy, σ

2 > 0

Case II: H0 : μx ≤ μy, σ2 > 0, H1 : μx > μy, σ
2 > 0

X,Y have the joint density

f(x, y; μx, μy, σx, σy) =
(

1
2πσ2

x

)n1/2( 1
2πσ2

y

)n2/2

· exp

(
− 1

2σ2
x

n∑
i=1

(yi − μx)2 −
1

2σ2
y

n∑
i=1

(yi − μy)2
)

where n = n1 + n2.

9.5.1 CASE I: H0 : μx = μy, σ
2 > 0, H1 : μx �= μy, σ

2 > 0

This is the case where X and Y have identical variances but possibly different means. The GLR
statistic is given by

ΛGLR =
maxμx �=μy ,σ2>0 f(x, y;μx, μy, σ2)

maxμ,σ2>0 f(x, y;μ, μ, σ2)
(121)

=
maxμx,μy ,σ2>0 f(x, y;μx, μy, σ2)

maxμ,σ2>0 f(x, y;μ, μ, σ2)
. (122)

This can be simplified. To do this note that the MLE for the case μx �= μy is

μ̂x = x = n−1
1

n1∑
i=1

xi
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μ̂y = x = n−1
2

n2∑
i=1

yi

σ̂2
1 = n−1

n1∑
i=1

(xi − x)2 + n−1
n2∑
i=1

(yi − y)2

=
n1

n
σ̂2
x +

n2

n
σ̂2
y ,

while the MLE for case μx = μy = μ is

μ̂ = n−1
n1∑
i=1

xi + n−1
n2∑
i=1

yi =
n1

n
μ̂x +

n2

n
μ̂y

σ̂2
0 = n−1

n1∑
i=1

(xi − μ̂)2 + n−1
n2∑
i=1

(yi − μ̂)2

= σ̂2
1 +

n1

n
(μ̂− x)2 +

n2

n
(μ̂− y)2

Plugging these two MLE’s into the numerator and denominator of the LR statistic (122), we obtain
after some simple algebra

ΛGLR =
(
σ̂2

0

σ̂2
1

)n/2
c

=
(
σ̂2

1 + n1
n (μ̂− x)2 + n2

n (μ̂− y)2
σ̂2

1

)n/2
c.

Thus one form of GLRT test is

n1
n (μ̂− x)2 + n2

n (μ̂− y)2
n1
n σ̂

2
x + n2

n σ̂
2
y

H1

>
<
H0

γ.

To reduce this to a well known test statistic we use the identities

μ̂− x =
n1

n
(y − x),

and
μ̂− y = −n2

n
(y − x),

to obtain final form of GLRT (shown in Fig. 133)

T (x, y) =
|(y − x)|
s2
√

n1n2
n

H1

>
<
H0

γ, (123)

where we have defined the pooled sample variance

s22 =
1

n− 2

(
n1∑
i=1

(xi − μ̂)2 +
n2∑
i=1

(yi − μ̂)2
)

The test (123) is the well known unpaired t-test.

PERFORMANCE OF UNPAIRED T-TEST
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∑n
1

H0

H1

  >  <

 xk

−μX

+

 yk

+

+

(   )2

(   )2

×

×

+

−μY

n1/n

n2/n

T(X)

 sample 
variance

+

n1/n

+

 sample 
variance

+

n2/n

 xk

 yk

Figure 133: Block diagram of test of equality of means of two populations.

Under H0:
Yi −Xi = N (0, σ2) ·

√
(1/n1 + 1/n2),

and the test statistic is of the form of the magnitude of a Student-t random variable with n1 +
n2 − 2 = n− 2 d.f:

T (X,Y ) =

∣∣∣∣∣ N (0, 1)√
χn−2/(n − 2)

∣∣∣∣∣ .
Setting the GLRT threshold is now straightforward

α = P0(−γ < Tn−2 ≤ γ)

and we conclude that γ = T −1
n−2(1− α/2). This yields the level α unpaired-t test∣∣√n1n2

n (y − x)
∣∣

s2

H1
>
<
H0

T −1
n−2(1− α/2).

Under H1 the test statistic equivalent to the magnitude of a non-central Student-t random variable
with n− 2 d.f and non-centrality d =

√
n1n2/n|μy − μx|/σ.

9.5.2 CASE II: H0 : μy ≤ μx, σ2 > 0, H1 : μy > μx, σ
2 > 0

In an analogous manner to before we find that the GLRT reduces to the one sided t-test
√
n1n2

n (y − x)
s2

H1
>
<
H0

γ = T −1
n−2(1− α).
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9.6 TESTS ON EQUALITY OF VARIANCES

Two i.i.d. independent samples

* X = [X1, . . . ,Xn1 ]
T , Xi ∼ N (μx, σ2

x)

* Y = [Y1, . . . , Yn2 ]
T , Yi ∼ N (μy, σ2

x)

* μx, μy unknown

Case I: H0 : σ2
x = σ2

y , H1 : σ2
x �= σ2

y

Case II: H0 : σ2
x = σ2

y , H1 : σ2
x > σ2

y

9.6.1 CASE I: H0 : σ2
x = σ2

y, H1 : σ2
x �= σ2

y

The GLRT for testing equality of variances against the double sided alternative is

ΛGLR =
maxσ2

x �=σ2
y,μx,μy

f(x, y;μx, μy, σ2
x, σ

2
y)

maxσ2
x=σ2

y ,μx,μy
f(x, y;μ, μ, σ2

x, σ
2
y)

(124)

=
f(x, y;x, y, σ̂2

x, σ̂
2
y)

f(x, y;x, y, σ̂2, σ̂2)
, (125)

where we have defined the pooled variance estimate σ̂2 as

σ̂2 =
n1

n
σ̂2
x +

n2

n
σ̂2
y .

The expression (125) is easily shown to reduce to

ΛGLR =

√
(σ̂2)n1+n2

(σ̂2
x)n1 (σ̂2

y)n2

H1

>
<
H0

η′.

Thus we obtain the equivalent GLRT test of equality of variances:√√√√√√√√√√√

⎛⎜⎜⎜⎝1 +

u︷ ︸︸ ︷
n2σ̂

2
y

n1σ̂2
x

⎞⎟⎟⎟⎠
n1

·

⎛⎜⎜⎜⎝1 +

1/u︷ ︸︸ ︷
n1σ̂

2
x

n2σ̂2
y

⎞⎟⎟⎟⎠
n2

︸ ︷︷ ︸
g(u)

H1

>
<
H0

η. (126)

By investigating stationary points of the function g(u) = (1+u)n1(1+1/u)n2 it is easily established
that g(u) is convex and has a single minimum over the range u ≥ 0. Specifically, note that (see
Fig. 134)

g
′
(u) =

n1

u2
(1 + u)n1−1(1 + 1/u)n2−1

(
u2 + (1− n2/n1)u− n2/n1

)
has only one positive root which occurs at u = n2/n1. Hence the H0 decision region for the GLRT
is of the form

γ− ≤
n2σ̂

2
y

n1σ̂2
x

≤ γ+,
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n2/n1

η

γ− γ+
u

 g(u)

Figure 134: The double sided test statistic is of the form g(u) which is convex over u ≥ 0 with minimum at
u = n2/n1.

which is equivalent to a Fisher F-test (see Fig. 135)

γ
′
− ≤

s2y
s2x
≤ γ′

+.

The thresholds γ− and γ+ can be set according to

γ
′
− = F−1

n1−1,n2−1(α/2)

γ
′
+ = F−1

n1−1,n2−1(1− α/2).

9.6.2 CASE II: H0 : σ2
x = σ2

y, H1 : σ2
y > σ2

x

The GLRT for testing equality of variances against the single sided alternative is

ΛGLR =
maxσ2

y>σ
2
x,μx,μy

f(x, y;μx, μy, σ2
x, σ

2
y)

maxσ2
y=σ2

x,μx,μy
f(x, y;μ, μ, σ2

x, σ
2
y)

=

⎧⎨⎩
√

(σ̂2)n1+n2

(σ̂2
x)n1 (σ̂2

y)n2
, σ̂2

y > σ̂2
x

1, σ̂2
y = σ̂2

x

.

From our study of the double sided case in Sec. 9.6.1 we know that the function g(u) defined in
(126) is convex with minimum at n2/n1. This implies that ΛGLR is monotone increasing in σ̂2

y/σ̂
2
x

over the range σ̂2
y > σ̂2

x. Thus we obtain the GLRT as a single sided F-test

s2y
s2x

H1

>
<
H0

γ,
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Ho

H1xk sample 
variance

∈
∉

yk sample 
variance

sx
2

sy
2

[γ−, γ+]

Figure 135: Block diagram of test of equality of two variances.

where
γ = F−1

n2−1,n1−1(1− α).

9.7 TESTS ON CORRELATION

Assume that one has n i.i.d. pairs Zi = [Xi, Yi], i = 1, . . . , n, of samples from a bivariate Gaussian
density with unknown mean mu = [μx, μy] and unknown covariance

R =
[
σ2
x σxy

σyx σ2
y

]
.

The objective is to test whether or not the correlation between Xi and Yi is zero. The sequence
of i.i.d. vectors {Zi}ni=1 has the bivariate density

f(z; μ,R) =(
1

2π
√
|detR|

)n
exp

(
−1

2

n∑
i=1

(zi − μ)TR−1(zi − μ)

)
.

Define the correlation coefficient ρ
ρ =

σxy
σx σy

.

As usual we consider testing the double sided and single sided hypotheses: Case I: H0 : ρ = 0,
H1 : ρ �= 0.

Case II: H0 : ρ = 0, H1 : ρ > 0.
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9.7.1 CASE I: H0 : ρ = ρo, H1 : ρ �= ρo

We will show in Sec. 12 that the maximum of the bivariate Gaussian p.d.f. f(x, y; μx, μy,R) over
μx, μy and R is equal to

max
R,μx,μy

f(x, y; μx, μy,R) =

(
1

(2π)2|det R̂|

)n/2
e−n/2

and that the maximum is attained by the joint ML estimates

μ̂x = X

μ̂y = Y

R̂ =
1
n

n∑
i=1

[
xi
yi

]
[xi, yi] =

[
σ̂2
x σ̂xy

σ̂yx σ̂2
y

]
where

σ̂xy = n−1
n∑
i=1

(XiYi −XY ),

and XY = n−1
∑n

i=1XiYi.

Using this we can easily find GLR statistic

ΛGLR =
maxR,μx,μy f(x, y;μx, μy,R)

maxdiagonal R,μx,μy
f(x, y;μx, μy,R)

=

(
σ̂2
xσ̂

2
y

σ̂2
xσ̂

2
y − σ̂2

xy

)n/2

=
(

1
1− ρ̂2

)n/2
,

where we have defined sample correlation coefficient

ρ̂ =
σ̂xy
σ̂x σ̂y

.

As ΛGLR is monotonic increasing in |ρ̂| we have one simple form of the GLRT

|ρ̂|
H1

>
<
H0

γ. (127)

An expression for the distribution under H0 of ρ̂(X) can be derived [57] but it is not a standard
well tabulated distribution.

A different form of the test is obtained by making a transformation on ρ̂

g(u) = u2/(1 − u2),

which is monotone increasing in |u|. Therefore, the GLRT (127) is equivalent to

|ρ̂|√
1− ρ̂2

√
(n− 2)

H1

>
<
H0

γ.
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The statistic ρ̂/
√

1− ρ̂2
√

(n− 2) can be shown to follow the student-t distribution with n− 2 d.f.
[7]. Thus the level α threshold for this GLRT is

γ = T −1
n−2(1− α/2).

 xk

 yk

+

 sample 
mean

 sample 
mean

+
× Σ

-

-

 sample 
variance

ρ

 sample 
variance

•

1

•

1

Ho

H1

  >  <

Figure 136: Block diagram of double sided test of nonzero correlation between two populations.

9.7.2 CASE II: H0 : ρ = 0, H1 : ρ > 0

By analogous methods as used to obtain the GLRT for one-sided tests on the variance in Sec.
sec:GLRTscalarvar1, it can be shown that the GLRT for the one sided test of the correlation is of
the form

ρ̂
H1

>
<
H0

γ,

or alternatively

(n− 2) ρ̂√
1− ρ̂2

H1
>
<
H0

T −1
n−2(1− α).

9.8 BACKGROUND REFERENCES

The GLRT for i.i.d. scalar Gaussian measurements is well described in the statistics books by
Mood, Graybill and Boes [48] and by Bickel and Docksum [7]. Coverage from a more applied
engineering perspective is in [75].
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9.9 EXERCISES

1. n i.i.d. realizations of a bivariate Gaussian random vector z = [z1, z2]T are observed where
the mean of z is s and the covariance is of the form:

Rz =
[

1 ρ
ρ 1

]
σ2, Note :R−1

z =
[

1 −ρ
−ρ 1

]
1

σ2(1− ρ2)

where the component variances σ2 and the correlation coefficient ρ ∈ [−1, 1] are known.

(a) Derive the MP LRT (with threshold) of the simple hypotheses

H0 : s = s0

H1 : s = s1.

For s0 = 0 is your test UMP for H1 : s �= 0? when |ρ| > 0? How about for ρ = 0?.
(b) Find the ROC of the MP LRT of part (a) and show that it is specified by the detectability

index

d2 =
|E[T |H1]− E[T |H0]|2

var(T |H0)
= n(s1 − s0)TR−1

z (s1 − s0)

where T is a test statistic linear in z.
(c) Now assume that s0 and s1 satisfy the “power” constraints sT0 s0 = sT1 s1 = 1. For fixed ρ

show that the optimal signal pair s1, s0 which maximizes d2 must satisfy s1− s0 = c[1, 1]
when ρ < 0 while it must satisfy s1 − s0 = c[1,−1] when ρ > 0, where c is a constant
ensuring the power constraint.

(d) Assuming the optimal signal pair derived in part (b), for what value of ρ is the de-
tectability index the worst (smallest) and for what value is it the best? Does this make
sense?

2. The test on equality of a pair of means in Sec. 9.5 required equal variances and led to the
unpaired t-test of (123). Extend this to the case where the variances on each population may
be unequal. This is a challenging problem.

End of chapter
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10 STATISTICAL CONFIDENCE INTERVALS

In many cases an estimate of an unknown parameter does not suffice; one would also like to know
something about the precision of the estimate. The estimation strategies discussed in Chapter 4
do not provide any help here. If one knew the true parameter θ, the detection strategies discussed
in Chapter 7 could be used to specify precision of a parameter estimate θ̂ by testing the hypothesis
that ‖θ̂− θ‖ is small. What one needs here is a different approach. Here we discuss the framework
of statistical confidence intervals. In this framework, instead of seeking an estimate of the true
parameter, called a point estimate, one seeks a tight interval that covers the true parameter with
specified confidence level. It turns out that confidence intervals are closely related to tests of
composite double sided hypotheses and we will exploit this connection in the presentation.

The specific topics in this chapter are:

OUTLINE

* Confidence intervals via pivots

* Confidence intervals and double sided tests

* Confidence interval for mean, variance, correlation

10.1 DEFINITION OF A CONFIDENCE INTERVAL

Let θ ∈ Θ be an unknown scalar parameter and let X ∼ f(x; θ) be an observed random variable,
random vector or random process. As opposed to a point estimator θ̂(X) which is a (random)
point in the parameter space Θ, a confidence interval [T1(X), T2(X)] is a (random) interval in
parameter space. Confidence intervals are also called set or interval estimators.

OBJECTIVE: find two statistics T1 = T1(X) and T2 = T2(X), T1 < T2, which specify endpoints
of a random interval

[T1, T2]

that contains θ with high probability.

CONSTRUCTION OF CONFIDENCE INTERVALS

1. Fix α ∈ [0, 1]

2. For all θ ∈ Θ we require

Pθ(T1 ≤ θ ≤ T2) ≥ 1− α

The interval [T1, T2] is called a 100(1 − α)% confidence interval

Equivalently:

⇒ 1− α is confidence level of statement “θ ∈ [T1, T2]”

⇒ [T1, T2] is a set estimate of θ

* Pθ(T1 ≤ θ ≤ T2) is coverage probability of the confidence interval

* 1− α is lower bound on coverage probability of a 100(1− α)% conf. interval

* T2 − T1 is the length of the confidence interval and, everything else being equal, we would like
this to be as small as possible.
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θ

T1 T2

Figure 137: Confidence interval covers θ with probability at least 1− α.

* Sometimes a level α GLRT or LMPT of double sided hypotheses can be useful for finding
confidence intervals.

10.2 CONFIDENCE ON MEAN: KNOWN VAR

Objective: find confidence interval on the mean μ based on i.i.d. Gaussian sampleX = [X1, . . . ,Xn]
with known variance σ2.

APPROACH 1: Use Tchebychev inequality:

Pμ(|Xi − μ| ≥ ε) ≤

σ2/n︷ ︸︸ ︷
Eμ[(Xi − μ)2]

ε2

or, setting ε = c σ/
√
n

Pμ(|Xi − μ| ≥ c σ/
√
n) ≤ 1

c2

or equivalently

Pμ(|Xi − μ| ≤ c σ/
√
n) ≥ 1− 1

c2

i.e.

Pμ(Xi − c σ/
√
n ≤ μ ≤ Xi + c σ/

√
n) ≥ 1− 1

c2

Finally take c = 1/
√
α to obtain 100(1 − α)% confidence interval for μ
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θ

Figure 138: In n-trials a (1−α)% confidence interval [T1, T2] covers θ approximately (1−α)n times (or more)
for n large. Here shown is an 85% confidence interval.

μ area < α

∈

f(y;μ,σ)

y

Figure 139: Tchebychev inequality specifies an interval containing the mean with at least probability 1−σ2/nε2.
In figure f(y;μ, σ) denotes the density of the sample mean Y = Xi.
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[
Xi −

σ√
αn

, Xi +
σ√
αn

]
OBSERVATIONS:

* Tchebychev interval is symmetric about sample mean

* Size 2 σ√
αn

of interval increases in σ2/n

* There is a tradeoff between coverage probability ≥ 1− α and small size

Coverage 
probability

size1

n = 4
σ = 1

1-α

��

2�4.5

0.95

Figure 140: Coverage vs. size of Tchebychev confidence interval for mean for a Gaussian sample having known
variance.

* Tchebychev interval is “distribution free”

* Actual coverage probability may be � desired confidence 1− α
* Tchebychev intervals are usually excessively large

APPROACH 2: Find exact confidence interval by finding a pivot

Recall problem of testing double sided hypotheses for i.i.d. Gaussian r.v.s having known variance

H0 : μ = μo

H1 : μ �= μo

we found level α GLRT

|Q(x, μo)| =
√
n|xi − μo|

σ

H1
>
<
H0

γ = N−1(1− α/2)
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where we have defined the function

Q(x, μo) =
√
n(μo − xi)

σ
.

Note when μ = μo:

1) Q(X,μo) satisfies the following proeprties

– it is a monotone function of μo
– it has a probability distribution independent of μo (and σ):

⇒ such a function Q(X,μo) is called a PIVOT. it has also been called a “root” [6].

2) By design of the threshold γ = N−1(1− α/2) the false alarm probability of the test is

Pμo (|Q(X,μo)| > γ) = α

for arbitrary μo.

α/2

fN (x)

α/2

N-1(α/2) N-1(1-α/2)

Figure 141: The false alarm level setting for double sided test mean gives an exact 1− α confidence interval.

As PF is independent of μo, μo is just a dummy variable which can be replaced by the generic μ
and

Pμ (−γ ≤ Q(X,μ) ≤ γ) = 1− α.

As Q(X,μ) =
√
n(xi−μ)/σ is monotone in μ the following inequalities on Q: −γ ≤ Q(X,μ) ≤ γ,

are equivalent to the following inequalities on μ: Xi− σ√
n
γ ≤ μ ≤ Xi+ σ√

n
γ. Thus we have found

the following EXACT 100(1 − α)% conf. interval for μ[
Xi −

σ√
n
N−1(1 − α/2), Xi +

σ√
n
N−1(1− α/2)

]
OBSERVATIONS
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1. By the central limit theorem this interval is accurate for large n even for non-Gaussian case

√
n(Xi − μ)/σ → N (0, 1), (i.d.)

2. Exact interval is symmetric about Xi

3. Exact interval is significantly smaller than Tchebychev

[T2 − T1]Tchby = 2
σ√
αn

> 2
σ√
n
N−1(1− α/2) = [T2 − T1]Exact

N-1(1-α/2)

�

1

α

σ/
2
1 nsize⋅

1

1

Figure 142: Size vs. (1-confidence level) for exact and Tchebychev intervals.

10.3 CONFIDENCE ON MEAN: UNKNOWN VAR

Objective: find conf. inerval on the mean μ based on i.i.d. Gaussian sample X = [X1, . . . ,Xn]
with unknown variance σ2.

APPROACH: Exact confidence interval via pivot

Solution: Motivated by previous example we go back to the double sided hypothesis GLRT for
unknown variance

H0 : μ = μo, σ2 > 0
H1 : μ �= μo, σ2 > 0

we found level α t-test for Gaussian xi’s:

|Q(x, μo)| =
√
n|xi − μo|

s

H1

>
<
H0

γ = T −1
n−1(1− α/2)
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Therefore, an exact (1− α)% confidence interval for μ is[
Xi −

s√
n
T −1
n (1− α/2), Xi +

s√
n
T −1
n−1(1− α/2)

]

f n-1 (x)

)2/(1-
1-n

)2/1(1-
1-n

x

Figure 143: Exact confidence interval for mean for unknown variance in a Gaussian sample is given by
quantiles of student-t distribution with n− 1 d.f.

10.4 CONFIDENCE ON VARIANCE

Objective: find conf. interval on variance σ2 based on i.i.d. Gaussian sample X = [X1, . . . ,Xn]
with unknown mean μ.

Solution: Recall the double sided hypothesis GLRT for variance

H0 : σ2 = σ2
o ,

H1 : σ2 �= σ2
o ,

In a previous chapter we found a level α Chi-square test for Gaussian Xi’s in terms of the sample
variance s2:

χ−1
n−1(α/2) ≤

(n− 1)s2

σ2
o

≤ χ−1
n−1(1− α/2)

Therefore, an exact 100(1 − α)% confidence interval for σ2 is[
(n− 1)s2

χ−1
n−1(1− α/2)

,
(n− 1)s2

χ−1
n−1(α/2)

]
Note: confidence interval for variance is not symmetric about s2
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10.5 CONFIDENCE ON DIFFERENCE OF TWO MEANS

Objective: find conf. interval on the difference Δ = μx − μy of means in two i.i.d. Gaussian
samples X = [X1, . . . ,Xn1 ], Y = [Y1, . . . , Yn2 ]

Solution: consider the hypotheses

H0 : Δ = Δo

H1 : Δ �= Δo

A GLRT of level α would give a confidence interval for Δ similiarly to before.

Recall: the t test √
n1n2
n |xi − yi|

s2

H1

>
<
H0

T −1
n−2(1− α/2)

was previously derived for the double sided hypotheses

H
′
0 : μx = μy

H
′
1 : μx �= μy

There is a difficulty, however, since Δ does not appear any where in the test statistic. In particular

* Xi − Yi has mean Δ under H0 : Δ = Δo

* therefore distribution of t-test statistic above depends on Δ and is not a pivot

However, as Xi−Yi−Δ has mean zero under H0 and same variance as Xi−Yi, we can immediately
identify the following pivot

√
n1n2
n (Xi − Yi −Δ)

s2
∼ Tn−2

Thus, the left and right endpoints of a 100(1 − α)% conf. interval on Δ are given by

Xi − Yi ∓
√

n

n1n2
s2 T −1

n−2(1− α/2)

10.6 CONFIDENCE ON RATIO OF TWO VARIANCES

Objective: find conf. interval on the ratio

c = σ2
x/σ

2
y

of variances in two i.i.d. Gaussian samples

* X = [X1, . . . ,Xn1 ] , Y = [Y1, . . . , Yn2 ]

Solution: Recall that the GLRT for double sided H1 : σ2
x �= σ2

y was F-test
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F−1
n1−1,n2−1(α/2) ≤

s2x
s2y
≤ F−1

n1−1,n2−1(1 − α/2)

Difficulty: distribution of test statistic depends on c = σ2
x/σ

2
y

However, as

1
c

s2X
s2Y

=
s2X/σ

2
X

s2Y /σ
2
Y

∼ Fn1−1,n2−1

we have identified a pivot.

Therefore, a (1− α)% conf. interval on variance ratio c = σ2
x/σ

2
y is given by

[T1, T2] =

[
s2X

s2Y F
−1
n1−1,n2−1(1− α/2)

,
s2X

s2Y F
−1
n1−1,n2−1(α/2)

]

)2/1(1-
1-n1,-n 21

F)2/(1-
1-n1,-n 21

F

fF(z)

z

Figure 144: Confidence interval on variance ratio in a pair of Gaussian samples depends on quantiles of
F-distribution Fn1−1,n2−1

10.7 CONFIDENCE ON CORRELATION COEFFICIENT

Objective: find conf. interval on correlation coefficient ρ between two i.i.d. Gaussian samples
X = [X1, . . . ,Xn], Y = [Y1, . . . , Yn] with unknown means and variances.

NOTE: not obvious how to obtain pivot from previously derived GLRT test statistic for testing
H1 : ρ �= 0.

Solution: Fisher Transformation.

Let ρ̂ be sample correlation coefficient. Then
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υ = 1
2 ln
(

1 + ρ̂

1− ρ̂

)
= tanh−1(ρ̂)

has an asymptotic normal dsn with

Eθ[υ] = tanh−1(ρ)

varθ(υ) =
1

n− 3

tanh-1(x)

x

Figure 145: Inverse tanh function is monotone increasing.

Hence we have a pivot

Q(X, ρ) =
tanh−1(ρ̂)− tanh−1(ρ)

1/
√
n− 3

∼ N (0, 1)

This gives 100(1 − α)% conf. interval on tanh−1(ρ)[
υ − 1√

n− 3
N−1(1 − α/2), υ +

1√
n− 3

N−1(1− α/2)
]

Since tanh−1(·) is monotone, the left and right endpoints T1, T2 of (1−α)% conf. interval [T1, T2]
on ρ are

tanh
(
υ ∓ 1√

n− 3
N−1(1− α/2)

)
OBSERVATIONS:

1. Conf. interval is not symmetric



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 287

2. Conf. interval prescribes a level α test of double sided hypotheses

H0 : ρ = ρo,

H1 : ρ �= ρo

which is

φ(x) =

⎧⎨⎩
1, ρo �∈ [T1, T2]

0, ρo ∈ [T1, T2]

Indeed:

E0[φ] = 1− Pρo(T1 ≤ ρo ≤ T2)

= 1− (1− α) = α

10.8 BACKGROUND REFERENCES

There are other ways to construct confidence intervals besides exploiting the double sided GLRT
relationship. As in previous chapters we refer the reader to the two excellent books by Mood,
Graybill and Boes [48] and by Bickel and Docksum [7] for more general discussion of confidence
intervals. The book by Hjorth [26] covers the theory and practice of bootstrap confidence inter-
vals, a powerful nonparametric but computationally intensive approach to the interval estimation
problem. A generalization of the theory of confidence intervals is the theory of confidence regions,
which is briefly presented in Sec. 12.6 after we discuss the GLRT of multivariate double sided
hypotheses.

10.9 EXERCISES

10.1 Let {Xi}ni=1 be an i.i.d. sample with marginal p.d.f. f(x; θ) = θe−θx, x > 0.
(a) Show that the maximum likelihood estimator (MLE) for θ is 1

X̄
, where X̄ is the sample

mean (you should have previously derived this in hwk 2).
(b) Show that the CR bound I−1(θ) for θ given {Xi}ni=1 is of the form: I−1(θ) = θ2

n .
(c) Now, using the fact that for large n the MLE is distributed as approximatelyN (θ, I−1(θ)),

show that
(

1/X̄
1+Z(1−α

2
)/
√
n
, 1/X̄

1−Z(1−α
2
)/
√
n

)
is a (1−α)·100% confidence interval for θ, where

Z(p) = N−1(p) =
{
x :
∫ x
−∞ e− 1

2x
2
dx/
√

2π = p
}

is the p− th quantile of N (0, 1).

10.2 Let X = [X1, . . . ,Xn]T be a Gaussian random vector with mean μ = [μ1, . . . , μn]T and
covariance matrix RX .

(a) Show that the distribution of W def= (X− μ)TR−1
X (X− μ) is Chi-Square with n degrees

of freedom (Hint: use square root factor R
1
2
X to represent (X− μ) in terms of a vector of

uncorrelated standard Gaussian variates).
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(b) Since W has a distribution which is independent of μ and RX , W is similar to a pivot
for scalar μ which can be used to generate confidence regions on μ. Assume n = 2 and
let RX be a fixed and known diagonal matrix with eigenvalues λ1 and λ2. Show that

R def= {μ : (X − μ)TR−1
X (X − μ) ≤ −2 lnα} is a 100(1 − α)% confidence region for the

vector μ in the sense that: P (μ ∈ R) = P (W ≤ −2 lnα) = 1−α. Draw a concise picture
of this confidence region for the case μ ∈ IR2. Label and identify all quantities in your
picture. What happens to the confidence region as λ1 → 0? Does this make sense?

10.3 This exercise establishes that a pivot always exists when the marginal CDF is strictly increas-
ing. Let {Xi}ni=1 be an i.i.d. sample with marginal p.d.f. f(x; θ) and a CDF F (x; θ) which is
strictly increasing: F (x+ Δ; θ + δ) > F (x; θ), Δ, δ > 0 .

(a) Show that the random variable F (Xi; θ) has a uniform distribution over the interval [0, 1],
and that therefore − logF (Xi; θ) has an exponential distribution f(u) = e−u, u > 0.

(b) Show that the CDF of the entire sample,
∏n
i=1 F (Xi; θ) is a pivot for θ. (Hint: the

product of monotone functions is monotone).
(c) Show that a (1 − α) · 100% confidence interval for θ can be constructed since F (x; θ) is

monotone in θ using the result of part (b). (Hint: the sum of n i.i.d. exponential r.v.s
with distribution f(u) = e−u, u > 0 has a Gamma density).

10.4 Use the approach of the previous problem to construct (1 − α)100% confidence intervals for
the following parameters.

(a) θ is the parameter in the density f(x; θ) = 2θx + 1 − θ, 0 ≤ x ≤ 1, −1 ≤ θ ≤ 1. Verify
your results by numerical simulation for n = 10 using Matlab. Note it may be helpful to
use Matlab’s polynomial rooting procedure roots.m to find the interval endpoints. Note
for this example you cannot use double sided GLRT since the GLRT is degenerate.

(b) θ is the median of the Cauchy distribution f(xi, θ) = (1+(x−θ)2)/π. Note that numerical
integration may be required. Verify your results by numerical simulation for n = 10 using
Matlab.

10.5 Let {x1, . . . , xn} be an i.i.d. sample of a Poisson r.v. with distribution pθ(k) = Pθ(xi = k) =
θk

k! e
−θ, k = 0, 1, 2, . . .. Use the GLRT derived in Exercise 8.4 to specify a (1−α)% confidence

interval on θ.

10.6 Let {Xi}ni=1 be i.i.d. following an exponential distribution

f(x; θ) = θe−θx, x ≥ 0

with θ > 0.

(a) Derive the GLRT for the test of the hypotheses

H0 : θ = θ0

H1 : θ �= θ0

with FA level α (Hint: the sum of n standard (mean = 1) exponential r.v.s is standard
Gamma with parameter n).

(b) Using the results of (a) find a (1− α)% confidence interval on θ.

End of chapter



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 289

11 SIGNAL DETECTION IN THE MULTIVARIATE GAUS-

SIAN MODEL

In this chapter we cover LR tests of simple hypotheses on the mean and covariance in the general
multivariate Gaussian model. We will start with offline detection strategies when the measurement
is a small dimensional vector of possibly correlated Gaussian observations. We then turn to online
detection for change in mean and covariance of sampled Gaussian waveforms and this will bring
the Kalman filter into the picture. This arises, for example, when we wish to decide on the mean or
variance of Gaussian random process based on its time samples, a very common problem in signal
processing, control and communications. While the focus is on simple hypotheses some discussion
of unknown parameters is given.

Specifically, we will cover the following:

1. Offline methods:

* General vector Gaussian problem

* Detection of non-random signals in noise: matched-filter

* Detection of random signals in noise: filter-squarer and estimator-correlator

2. Online methods

* On line detection of non-random signals: causal matched-filter

* On-line detection for nonstationary signals: Kalman filter detector

11.1 OFFLINE METHODS

We have the following setup.

Observation: X = [X1, . . . ,Xn]T ∼ Nn(μ,R)

mean: μ = E[X ] = [μ1, . . . , μn]T

covariance: R = ((cov(xi, xj)))i,j=1,...,n

R =

⎡⎢⎣ σ2
1 · · · σ1,n
...

. . .
...

σn,1 . . . σ2
n

⎤⎥⎦
Joint density

f(x; μ,R) =
1

(2π)n/2
√
|R|

exp
(
− 1

2 (x− μ)TR−1(x− μ)
)

Consider simple detection problem

H0 : μ = μ
0
, R = R0

H1 : μ = μ
1
, R = R1

Likelihood ratio is
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Λ(x) =

√
|R0| exp

(
− 1

2(x− μ1
)TR−1

1 (x− μ
1
)
)

√
|R1| exp

(
− 1

2(x− μ0
)TR−1

0 (x− μ
0
)
)

Giving LRT

T (x) =

1
2 (x− μ0

)TR−1
0 (x− μ

0
)− 1

2(x− μ1
)TR−1

1 (x− μ
1
)

H1
>
<
H0

γ

where

γ = log η + 1
2 log

|R1|
|R0|

Interpretation of LRT as distorted “Mahalanobis” distance test:

Define two norms in IRn

‖z‖R0 = zTR−1
0 z, ‖z‖R1 = zTR−1

1 z,

Norm ‖z‖R emphasizes components of z which are colinear to eigenvectors of R associated with
small eigenvalues

Then MP-LRT takes form of a comparison between weighted distances of x to μ
0

vs. μ
1

‖x− μ
0
‖2R0
− ‖x− μ

1
‖2R1

H1

>
<
H0

γ
′

An alternative form of LRT is the quadratic test

T
′
(x) = 1

2x
T [R−1

0 −R−1
1 ]x+ (μT

1
R−1

1 − μT0 R−1
0 )x

H1

>
<
H0

γ
′

γ
′
= log η + 1

2 log
|R1|
|R0|

+ μT
1
R−1

1 μ
1
− μT

0
R−1

0 μ
0
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x(μ0)2

(μ1)2

(μ0)1 (μ1)1

 x is “closer” to μ1 than it is to μ0

.

Figure 146: LRT for general Gaussian problem compares “closeness” of x to distorted neighborhoods of the
means μ0 and μ1.

11.1.1 GENERAL CHARACTERIZATION OF LRT DECISION REGIONS

Divide treatement into four cases:

1. R0 = R1,

2. R0 −R1 > 0,

3. R0 −R1 < 0,

4. R0 −R1 non-singular

Case 1. R0 = R1 = R:

In this case T
′
(x) = aTx is linear function

a = R−1(μ
1
− μ

0
),

and decision regions are separated by a hyperplane.

Case 2. R0 −R1 > 0: (p.d.)

In this case, as R0 > R1 implies R−1
0 < R−1

1 ,

R−1
1 −R−1

0 = Δ10R−1 > 0 (p.d.):

and

T
′
(x) = − 1

2(x− b)TΔ10R−1(x− b) + c

b = (Δ10R−1)−1[R−1
1 μ

1
−R−1

0 μ
0
]
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a

μo

μ1

decide H1

decide Ho

x1

x2

Figure 147: For equal covariances of a multivariate Gaussian sample the decision regions are separated by a
hyperplane (here shown for γ

′
= 0 for which a is orthogonal to separating hyperplane).

Hence the H1 decision region is an ellipsoid

X1 = { 1
2 (x− b)T [Δ10R−1](x− b) < γ

′′}

Case 3. R0 < R1

In this case

R−1
0 −R−1

1 = Δ01R−1 > 0 (p.d.):

and

T
′
(x) = 1

2 (x− b)T [Δ01R−1] (x− b) + c

b = (Δ01R−1)−1[R−1
0 μ

0
−R−1

1 μ
1
]

So now the H0 decision region is an ellipsoid

X0 = { 1
2(x− b)TΔ01R−1(x− b) < γ

′′}

4. R0 −R1 not p.d, n.d., or singular

Let Δ01R−1 be defined as above

R−1
0 −R−1

1 =: Δ01R−1

Let {λi}ni=1 denote the eigenvalues of this matrix
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χ1

χo

x2

x1

b

Figure 148: For R0 > R1 the H1 decision region is the interior of an ellipsoid for testing covariance of a
multivariate Gaussian sample.

χ1

χo

x1

b

x2

Figure 149: For R0 < R1 the H1 decision region for testing the covariance of a multivariate Gaussian sample
is the exterior of an ellipsoid.
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Let the signature of Δ01R−1 be the binary vector

b = [b1, . . . , bn]T

Definition: The signature of a non-singular symmetric matrix B are the signs of its eigenvalues
arranged in decreasing order of magnitude.

⇒ If the signature [b1, . . . , bn]T equals [1, . . . , 1] then all eigenvalues are positive and B is positive
definite.

⇒ If [b1, . . . , bn]T equals [−1, . . . ,−1] then −B is positive definite.

General representation:

[b1, . . . , bn] = [sgn(λ1), . . . , sgn(λn)]

where

sgn(u) :=

⎧⎨⎩
1, u > 0
0, u = 0
−1 u < 0

We can rewrite the LRT test statistic as

T
′
(x) = 1

2 (x− b)T [Δ01R−1](x− b) + c

= b1 z
2
1 + . . .+ bn z

2
n + c

where

zi = λi(x− b)T νi

and νi’s are eigenvectors of Δ01R−1.

Thus each decision region is hyperbolic.

11.1.2 CASE OF EQUAL COVARIANCES

Here R0 = R1 = R and LRT collapses to linear test

T (x) = ΔμTR−1x
H1

>
<
H0

γ1

where Δμ = (μ
1
− μ

0
)

and

γ1 = log η + μT
0
R−1μ

0
− μT

1
R−1μ

1
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χ1

x1

b

x2

Figure 150: For R0 − R1 non-singular but neither p.d. nor n.d. the H1 decision region for testing the
covariance of a multivariate Gaussian sample is a hyperboloid.

DETECTOR PERFORMANCE

As the test statistic T (X) is Gaussian suffices to find means

E0[T ] = ΔμTR−1μ
0

E1[T ] = ΔμTR−1μ
1

and variances

var0(T ) = var0
(
ΔμTR−1X

)
= ΔμTR−1 cov0(X)︸ ︷︷ ︸

R

R−1Δμ

= ΔμTR−1Δμ

var1(T ) = var0(T )

Thus we find

PF = α = 1−N
(
γ1 − E0[T ]√

var0(T )

)
so that the NP MP-LRT test is
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ΔμTR−1x
H1

>
<
H0

√
ΔμTR−1Δμ N−1(1− α) + ΔμTR−1μ

0

or equivalently

ΔμTR−1(x− μ
0
)√

ΔμTR−1Δμ

H1

>
<
H0

N−1(1− α)

NOTES:

1. For μ
0
�= 0: MP test is not UMP w.r.t unknown parameter variations

2. For μ
0

= 0: MP test is UMP w.r.t. constant positive scaling of μ
1

Next find power:

PD = β = 1−N
(
γ1 − E1[T ]√

var1(T )

)

giving ROC curve:

β = 1−N
(
N−1 (1− α)− d

)
where d is detectability index

d =
E1[T ]− E0[T ]√

var0(T )

=
√

ΔμTR−1Δμ

Example 44 Detection of known signal in white noise

H0 : xk = wk

k = 1, . . . , n
H1 : xk = sk + wk

* w ∼ Nn(0, σ2I),

* s and σ2 known

Identify:

μ
0

= 0, Δμ = s, R = σ2I

so that the LRT takes the form of a matched filter
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T (x) = sTx =
n∑
k=1

skxk

H1

>
<
H0

γ

γ = σ2 log η − ‖s‖2

GEOMETRIC INTERPRETATION

The LRT can be expressed geometrically as a signal ”projection” detector

Projection of x onto s is

x̂ =
[
s sT

‖s‖2
]

︸ ︷︷ ︸
Πs

x

= s
sTx

‖s‖2

= s
< s, x >

‖s‖2︸ ︷︷ ︸
Proj. coef.

Length of this projection is

‖x̂‖ = ‖s‖
∣∣∣∣ sTx‖s‖2

∣∣∣∣
= |T (x)| 1

‖s‖

Conclude:

* LRT is a threshold test on the projection coefficient of the orthogonal projection of x onto s

* LRT is threshold test on ”signed length” of x̂

* LRT is related to LLS estimator x̂ of x given s

PERFORMANCE

Equivalently, for MP test of level α we have

sT x

‖s‖ σ

H1
>
<
H0

N−1(1− α)

This test is UMP relative to signal energy ‖s‖2

Now compute detectability index:

d2 = ‖s‖2/σ2 =
∑n

k=1 s
2
k

σ2
=: SNR (128)
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x

s

x̂

Figure 151: MP detector applies a threshold to projection coefficient < x, s > /‖s‖2 of orthogonal projection
of x onto s, shown here for the case of n = 2.

Compute 
LLS projection 

coefficient

Ho

H1

  >  <
x

s

< s, x>

|| s || 2

Figure 152: MP detector block diagram implemented with a LLS estimator of x.
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NOTE:

* detection index is invariant to shape of waveform s.

* detector power only depends on total signal-to-noise ratio (SNR).

Note: two ways to implement optimal detector

Cross-correlator:

Matched Filter:

Example 45 Detection of known signal in non-white noise:

H0 : xk = wk

k = 1, . . . , n
H1 : xk = sk + wk

* w ∼ Nn(0,R), R not scaled identity.

Optimal detector

T (x) =
sTR−1x√
sTR−1s

H1

>
<
H0

N−1(1− α)

Q. How to modularize detector?

A. transform to the white noise case via preprocessing with matrix H

Produces white noise measurements

x̃ = H · x

We will require matrix filter H to have properties:

1. cov0(x̃) = cov1(x̃) = I: ⇒ whitening property

2. H is invertible matrix: ⇒ output remains sufficient statistic

MATRIX FACTORIZATION

For any symmetric positive definite covariance matrix R there exists a positive definite square
root factor R 1

2 and a positive definite inverse factor R− 1
2 which satisfy:

R = R
1
2 R

1
2 , and R−1 = R− 1

2 R− 1
2 .

There are many possible factorizations of this type. We have already seen the Cholesky factoriza-
tion in Chapter 6 which yields upper and lower triangular factors. Here we focus on a symmetric
factorization given by the eigendecomposition of R = UDUT , where

* D = diag(λi) are (positive) eigenvalues of R

* U = [ν1, . . . , νp] are (orthogonal) eigenvectors of R



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 300

x1x1

x2
x2

Figure 153: Matrix prewhitener H applied to x renders the transforms contours of the multivariate Gaussian
density to concentric circles (spherically symmetric).

As UTU = I

R = UDUT = UD
1
2 D

1
2 UT = UD

1
2 UT UD

1
2 UT

Therefore we can identify
R

1
2 = UD

1
2 UT .

Furthermore, since U−1 = UT we have

R− 1
2 = UD− 1

2 UT

which satisfy the desired properties of square root factors and are in addition symmetric.

Using square root factors the test statistic can be rewritten as

T (x) =
sTR− 1

2 R− 1
2x√

sTR− 1
2 R− 1

2 s

=
s̃T x̃

‖s̃‖

Where x, s are transformed vectors

x̃ = R− 1
2x, s̃ = R− 1

2 s

Now we see that

E0[X̃ ] = 0, E1[X̃ ] = s̃, cov0(X̃) = cov1(X̃) = I

so that problem is equivalent to testing for a signal in white noise of unit variance.
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 R-½

Ho

H1

  >  <
 xk

Σ

 R-½

s

Figure 154: Matrix prewhitener H = R− 1
2 is applied prior to optimal matched filter detection.

Detectability index for non-white noise:

Note: d2 = ‖s̃‖2 = sTR−1s.

Remark

No longer is detection performance independent of shape of s

OPTIMAL SIGNAL DESIGN FOR NON-WHITE NOISE:

Constraint: ‖s‖2 = 1

Maximize: d2 = sTR−1s

Solution: Rayleigh quotient theorem specifies:

sTR−1s

sT s
≤ 1

mini λRi

λRi = an eigenvalue of R.

Furthermore

sTR−1s

sT s
=

1
mini λRi

when s is (any) minimizing eigenvector of R (there will be multiple minimizing eigenvectors if
more than one eigenvalue {λk} equals mini λRi ). The intuition here is that the best signal vector
points in the direction of signal space that has the lowest noise power; hence maximizing the SNR
over the set of fixed energy signals.

Example 46 Application: (Real) Signal detection in a sensor array
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λmin
λmax

Figure 155: The optimal signal which maximizes detectability is the eigenvector of noise covariance R with
minimum eigenvalue.

Figure 156: Sensor array receiving signal wavefront generates spatio-temporal measurement.
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k-th snapshot of p-sensor array output is a multi-channel measurement:

xk = a s+ vk, k = 1, . . . , n

or equivalently we have p× n measurement matrix

X = [x1, . . . , xn]

* a: array response vector

* vk: Gaussian Np(0,R), known spatial covariance R

* s: deterministic signal amplitude

Three cases of interest:

1. Detection of known signal amplitude

2. Detection of positive signal amplitude

3. Detection of non-zero signal amplitude

Case 1: Known signal amplitude

H0 : s = 0, k = 1, . . . , n
H1 : s = s1, k = 1, . . . , n

Approach: reduce to single-channel problem via coordinate rotation

As a, R are known, we can transform the array to one with

* spatially uncorrelated noise (R diagonal)

* signal energy present only in first channel.

Define the p× p matrix H:

H =
[
1
ã

R− 1
2a, ν2, . . . , νp

]
where

* ã =
√
aTR−1a

* νi orthonormal vectors orthogonal to R− 1
2a (found via Gramm-Schmidt)

Then

HTR− 1
2︸ ︷︷ ︸

W

a =

⎡⎢⎢⎢⎣
ã
0
...
0

⎤⎥⎥⎥⎦ = ã e1

Now as W = HTR− 1
2 is invertible, the following is equivalent measurement
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1x

2
x

1
x~

2
x~

2x~

1
x~

original 
coordinates

whiten rotate

a s

Figure 157: Transformation of Gaussian multichannel problem to a Gaussian single channel problem is a two
step procedure. First a whitening coordinate transformation R− 1

2 is applied to measurements x = as+n (joint
density in original coordinates is shown in left panel) which makes noise component n i.i.d. (transformed
measurements have joint density with spherically symmetric constant contours shown in middle panel). Then
a pure rotation (unitary matrix) H is applied to the transformed measurements x̃ which aligns its signal
component R− 1

2 as with the first coordinate axis (right panel).

X̃k = WXk,

= sWa+ WV k,

= s1ã e1 + Ṽ k

where Ṽ k’s are i.i.d. zero mean Gaussian with identity covariance

cov(Ṽ k) = WRWT = HT R− 1
2 RR− 1

2 H = HTH = I

Matrix representation

X̃ = s1 ã1T + V

where V is a p× n matrix of i.i.d. N (0, 1)’s

Note properties:

* all rows of X̃ = WX are independent

* only first row X̃1∗ = eT1 X̃ depends on s1
Therefore LR only depends on the first row X̃
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Λ(X̃) =
f(X̃1∗ , X̃2∗, . . . , X̃n∗; s = s1)
f(X̃1∗ , X̃2∗, . . . , X̃n∗; s = 0)

=
f(X̃1∗; s = s1)
f(X̃1∗; s = 0)

p∏
i=2

f(X̃i∗; s = s1)
f(X̃i∗; s = 0)︸ ︷︷ ︸

=1

=
f(X̃1∗; s = s1)
f(X̃1∗; s = 0)

= Λ(X̃1∗)

Thus we have reduced the problem to equivalent hypotheses that a (row) vector measurement
zT = X̃1∗ contains a constant signal in i.i.d. Gaussian noise of variance 1

H0 : z = ṽ H0 : zk = ṽk
⇔

H1 : z = s1 ã 1 + ṽ H1 : zk = s1 ã+ ṽk

The LRT follows immediately from our previous work in detection of constant signal μ = s1ã

s1ã zi

H1
>
<
H0

γ

Or, as ã is positive, the final form of the LRT is

T (z) =
√
n zi

H1

>
<
H0

N−1(1− α) s1 > 0,

√
n zi

H0
>
<
H1

−N−1(1− α) s1 < 0,

The power of the test is determined by the detectibility index

d =
|E[Zi|H1]|√
var(Zi|H0)

=
√
n |s1ã| =

√
n |s1|

√
aTR−1a

We can express LRT in original coordinates by identifying

zT = X̃1∗ = eT1 X̃ = eT1 W︸︷︷︸
HT R− 1

2

X

=
1√

aTR−1a
aTR− 1

2︸ ︷︷ ︸
eT
1 HT

R− 1
2 X

=
1√

aTR−1a
aTR−1X
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kx~ xk

 R-½

Ho

H1

  >  <n
1H ∑

k 

Figure 158: LRT for detecting presence of a spatio-temporal signal implemented with whitening and coordinate
rotation preprocessing.

and the identity

zi = (zT 1)
1
n

to obtain (s1 > 0)

T (z) =
1√

naTR−1a
aTR−1X1

H1

>
<
H0

N−1(1− α),

OBSERVATIONS

1. The LRT above is UMP w.r.t. any positive amplitude s1
2. A modified LRT is UMP w.r.t. any negative amplitude s1
3. The detectibility index

d =
√
n|s1|

√
aTR−1a︸ ︷︷ ︸
ASNR

depends on normalized array SNR = ASNR

⇒ ASNR depends only on ‖a‖ when noise vk is spatially white (R = σ2I).

4. Coherent interferers can severely degrade performance

Case 2: Unknown signal amplitude
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H1

Ho

  >  <

 x1k

∑ n
1 ×

Σ xpk

∑ n
1 ×

R-1a

Temporal 
Averaging

Spatial 
Averaging

• 
• 
 • 

Figure 159: LRT for detecting presence of a spatio-temporal signal implemented without coordinate transfor-
mation preprocessing.

H0 : s = 0, k = 1, . . . , n

H1 : s �= 0, k = 1, . . . , n

No UMP exists!

Solution: double sided GLRT

|T (z)| =
√
n|zi| =

H1
>
<
H0

N−1(1− α/2)

1. Implementation of GLRT via signal subspace projection:

Projection of z onto s = n−1 1 is

ẑ =
[
s sT

‖s‖2

]
︸ ︷︷ ︸

Πs

z

= s

zi︷︸︸︷
sT z

‖s‖2

* Πs = signal subspace projection operator

Length of ẑ is
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‖ẑ‖ = ‖s‖
∣∣∣∣ sT z‖s‖2

∣∣∣∣
= |zi|

1
‖s‖

= |zi|

Conclude:

* GLRT is a threshold test on the length of the orthogonal projection of z onto span(s)

1

-1

z
s

Figure 160: GLRT detector thresholds length of orthogonal projection of z onto s, shown here for the case of
n = 2.

2. Implementation of GLRT via ”noise subspace” projection:

Recall orthogonal decomposition

z = Πsz + [I−Πs]z

* Πs = signal subspace projection operator

* I−Πs = noise subspace projection operator

With this we can express GLRT as

|zi|2 = ‖Πsz‖ = ‖z‖2 − ‖ [I −Πs]z︸ ︷︷ ︸
z−ẑ

‖2
H1

>
<
H0

γ
′
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Ho

H1

  >  <
 z

|| • ||2∏S

Figure 161: GLRT detector block diagram implemented via signal subspace projection.

Ho

H1

  >  <

 

|| • ||2

 z
|| • ||21-∏S

+
-

Figure 162: GLRT detector block diagram implemented via noise subspace projection.
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11.1.3 CASE OF EQUAL MEANS, UNEQUAL COVARIANCES

Here μ
0

= μ
1

= μ and LRT collapses to purely quadratic test

T (x) = (x− μ)T [R−1
0 −R−1

1 ](x− μ)
H1

>
<
H0

γ

where γ = 2 ln η. Note that for convenience we have chosen to absorb the factor 1/2 in the log
likelihood ratio into the threshold γ.

Analysis will be simplified by prefiltering to diagonalize R−1
0 −R−1

1

⇒ Require prefilter to perform simultaneous diagonalization

        R 1-
o

        R 1/2-
o→ χχ

I
        Uo→ χχ

U   U  R- RR - T
o

T
ooo

1/2
1

1/2 = C

Figure 163: Illustration of simultaneous whitening of two Gaussian data sets, or equivalently simultaneous
diagonalization of two p.d. matrices as a two stage procedure. First one of the matrices is diagonalized
and scaled to have identical diagonal elements via appropriate coordinate transformation (superposition of
the constant contours of the two densities is shown on left panel along with the result of the coordinate
transformation in middle panel). Then a unitary transformation is applied to diagonalize the other matrix
without affecting the transformed first matrix (constant contours of the two densities shown on right panel).

PERFORMANCE ANALYSIS

Under H0 reexpress (x− μ)T [R−1
0 −R−1

1 ](x− μ) as

T (X) = (X − μ)TR− 1
2

0︸ ︷︷ ︸
=ZT ∼Nn(0,I)

[I−R
1
2
0 R−1

1 R
1
2
0 ]R− 1

2
0 (X − μ)︸ ︷︷ ︸

=Z∼Nn(0,I)

Now let R
1
2
0 R−1

1 R
1
2
0 have eigendecomposition

R
1
2
0 R−1

1 R
1
2
0 = UT

0 CU0
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* U0 orthogonal matrix of eigenvectors

* C = diag(c1, . . . , cn) diagonal matrix of eigenvalues.

T (X) = (U0Z)T︸ ︷︷ ︸
Nn(0,I)

[I−C] (U0Z)︸ ︷︷ ︸
Nn(0,I)

= n(1− c)
∑
i

Z2
i (1− ci)∑
j(1− cj)︸ ︷︷ ︸

Chi−sq.−mixture

where

(1− c) = n−1
∑
i

(1− ci)

There are two cases to consider: 0 < ci < 1 vs ci > 1. Note that consideration of ci = 0 is not
required since we have assumed that R1 and R0 are positive definite matrices.

CASE 1: 0 < ci < 1 for all i

Here

(1− c) > 0

so we can absorb it into into threshold γ

This gives MP level α test in terms of orthogonalized measurements zi∑
i

z2
i (1− ci)∑
j(1− cj)

H1
>
<
H0

χ−1
n,1−c(1− α)

Finally, retracing our steps to the original observables we have the implementable level α LRT test

(x− μ)T (R−1
0 −R−1

1 )(x− μ)
H1

>
<
H0

aχ−1
n,1−c(1− α).

Here a =
∑n

i=1(1−ci) and χn,1−c is the CDF of Chi-square-mixture r.v. with n degrees of freedom
and mixture parameter vector

1− c = [1− c1, . . . , 1− cn]T

(Johnson, Kotz and Balakrishnan [30, Sec. 18.8]).

It remains to find the power:

In a similar manner, under H1 we can express

T (X) = (X − μ)TR− 1
2

1 [R
1
2
1 R−1

0 R
1
2
1 − I]R− 1

2
1 (X − μ)

= (U1Z)T [C−1 − I](U1Z)
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)(f )-c(1-n,1
y

y
1

)-c(1-n,1

Figure 164: For c ≤ ci < 1, threshold of test between two multivariate Gaussian models with identical means
but unequal covariances is determined by quantile of Chi-square-mixture p.d.f.
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  >  <
x

R
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j
∑ jc−1

Figure 165: An implementation of the MP-LRT for equal means unequal covariances using orthogonal prefilter
U0 obtained from eigendecomposition: R

1
2
0 R−1

1 R
1
2
0 = UT

0 CU0, where C is diagonal.
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= n(1/c − 1)
∑
i

Z2
i (1/ci − 1)∑
j(1/cj − 1)︸ ︷︷ ︸

Chi−sq.−mixture

where U1 in the above is an orthogonal matrix.

As (1/c− 1) > 0, we easily obtain power as:

β = 1− χn,1/c−1(ρ χ
−1
n,1−c(1− α))

where

ρ = (1− c)/(1/c − 1)

)(f � c-n,1
y

)(f � 1-n,1/c
y

c = 0.3
n = 3

�
1

)-c(1-n,1
−

� PFA

y

Figure 166: For c ≤ ci < 1 ROC of test between two multivariate Gaussian models with identical means but
unequal covariances is determined by upper quantiles of pair of Chi-square-mixture p.d.f.’s

CASE 2: ci > 1 for all i

Here we have (1− c) < 0 and the constant in the test can be absorbed into threshold only with
change of the inequalities.

Obtain the MP level α test in zi coordinates

∑
i

z2
i (1− ci)∑
j(1− cj)

H0

>
<
H1

χ−1
n,1−c(α)

and, using similar arguments as before, we obtain power curve

β = χn,1/c−1(ρ χ
−1
n,1−c(α))
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β

α

1

1

c=0.2

c=0.3

c=0.4

c=0.6 n=3

0

Figure 167: ROC curve corresponding to Fig. 166 with various parameters c1, c2, c3 for n = 3.

Case 3, where some ci’s satsify the condition in Case 1 and others satisfy that of case 2 is more
complicated as we end up with a Chi-squared difference in our test statistic.

11.2 APPLICATION: DETECTION OF RANDOM SIGNALS

Example 47 Detection of shift in variance of white noise

H0 : xk = wk

H1 : xk = sk + wk

wk ∼ N (0, σ2
w): zero mean white noise

sk ∼ N (0, σ2
s ): zero mean white noise

wk, sk uncorrelated

Now

R0 = σ2
wI, R1 = (σ2

s + σ2
w)I

and

R−1
0 −R−1

1 =
σ2
s

σ2
s + σ2

w

1
σ2
w

I

Hence, defining
SNR = σ2

s/σ
2
w
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ci is the constant

ci = σ2
w/(σ

2
w + σ2

s) = 1/(1 + SNR)
1− ci = SNR/(1 + SNR)

1/ci − 1 = 1/SNR
ρ = (1− c)/(1/c − 1) = 1/(1 + SNR)

Note the SNR is defined differently in the case of a zero mean stochastic signal and a non-zero
mean deterministic signal (128).

INTERPRETATION: 1 − ci is the temporal “coherency function” (SNR normalized to interval
[0, 1])) of the signal w.r.t. the measurement

κ := σ2
s/(σ

2
w + σ2

s) = SNR/(1 + SNR)

Thus LRT reduces to

T (x) =
κ

σ2
w

n∑
k=1

x2
k

H1

>
<
H0

γ

Which reduces to the Chi-squared test (“energy detector”)

T
′
(x) =

n∑
k=1

x2
k/σ

2
w

H1
>
<
H0

χ−1
n (1− α)

NOTE: relation between Chi-square-mixture and Chi-square CDF’s when 1− ci = constant

χ
n,(1−c) = n−1χn

Power curve reduces to

β = 1− χn
(

1
1 + SNR

χ−1
n (1− α)

)
Example 48 Detection of uncorrelated non-stationary signal in noise

H0 : xk = wk

H1 : xk = sk + wk

wk ∼ N (0, σ2
w(k)): uncorrelated noise samples

sk ∼ N (0, σ2
s (k)): uncorrelated signal samples
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wk, sk uncorrelated

In this case

R0 = diag(σ2
w(i)), R1 = diag(σ2

s(i) + σ2
w(i))

and

R−1
0 −R−1

1 = diag
(

σ2
s(i)

σ2
s(i) + σ2

w(i)
1

σ2
w(i)

)
= diag

(
κi/σ

2
w(i)
)

where κi is time varying coherency function

κi =
σ2
s(i)

σ2
s(i) + σ2

w(i)

is

Hence, MP-LRT of level α reduces to

1
κ

n∑
k=1

κk
x2
k

σ2
w(k)

H1

>
<
H0

= χ−1
n,κ(1− α)

or equivalently in terms of the original T (x)

T (x) =
n∑
k=1

κk
x2
k

σ2
w(k)

H1
>
<
H0

γ = κ χ−1
n,κ(1− α)

Special case of white noise: σ2
w(k) = No/2

n∑
k=1

κk x
2
k

H1

>
<
H0

γ =
No

2
κ χ−1

n,κ(1− α)

TWO USEFUL INTERPRETATIONS

Assume white noise for simplicity (we know that we can simply prewhiten by 1/σw(k) if non-white
wk).

1. “MEMORYLESS” ESTIMATOR CORRELATOR IMPLEMENTATION

Rewrite test statistic as

n∑
k=1

ŝk xk

H1
>
<
H0

γ

where ŝk is LLMSE estimator of sk given xk
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Ho

H1

><
xk

Σ

σw(k)

×

κk

( )
2

Figure 168: LRT for detecting independent zero mean non-stationary Gaussian signal in non-stationary Gaus-
sian noise.

Ho

H1

><
xk

Σ×

22
 2

ws

s
��

�

  (k)
(k)
+

kŜ

w�

Figure 169: Memoryless estimator correlator implementation of LRT for non-stationary uncorrelated signal
in white noise. Note prewhitening operation 1/σ2

w preceeds the estimator correlator.
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ŝk =
σ2
s(k)

σ2
s(k) + σ2

w

xk = κk xk

2. “MEMORYLESS” FILTER-SQUARER IMPLEMENTATION

Rewrite test statistic as

n∑
k=1

y2
k

H1

>
<
H0

γ

where yk is defined as

yk =

√
σ2
s(k)

σ2
s(k) + σ2

w

xk =
√
κi xk

Ho

H1

><Σ22
 2

ws

s
��

�

  (k)
(k)
+ (  )2

w�

xk

Figure 170: Memoryless filter squarer implementation of LRT for non-stationary uncorrelated signal in white
noise.

POWER OF MEMORYLESS ESTIMATOR CORRELATOR:

as above

β = 1− χn,1/c−1(ρχ
−1
n,1−c(1− α))

where

ci =
σ2
w

(σ2
s(i) + σ2

w)
= 1− κi

ρ =
∑

i κi∑
i κi/(1 − κi)
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To a good approximation, at high SNR it can be shown that ROC depends on n, No, σ2
s(i) only

through the following three SNR moments

SNR(1) =
1
σ2
w

n∑
i=1

σ2
s(i)

SNR(2) =
(

1
σ2
w

)2 n∑
i,j=1

σ2
s(i)σ

2
s(j)

SNR(3) =
(

1
σ2
w

)3 n∑
i,j,k=1

σ2
s(i)σ

2
s(j)σ

2
s (k)

Example 49 Offline detection of w.s.s. signal in white noise

Assume a window of n samples of a zero mean w.s.s. process xk are available to test

H0 : xk = wk, k = 0, . . . , n− 1
H1 : xk = sk + wk k = 0, . . . , n− 1

where

* wk: Gaussian white noise with PSD Pw(ω) = No/2

* sk: zero mean w.s.s. Gaussian signal with known autocorrelation function rs(k) = E[slsl−k]

* wk, sk uncorrelated

The n× n covariance matrices under H0 and H1 are

R0 = Rw = σ2
wI, R1 = Rs + σ2

wI

where Rs = (( rs(l −m) ))nl,m=1 is an n× n p.d. Toeplitz matrix and σ2
w = No/2.

We know that MP-LRT is of form

T (x) = xT (R−1
0 −R−1

1 )x
H1

>
<
H0

η

However, in this form, the detector is not implementable for large n due to the need for to perform
the Rs matrix inversion. An alternative, for large n, is to invoke a “spectral decomposition” of
the Toeplitz matrix Rs, sometimes known as the Grenander representation, pursued below.

Define E the n× n unitary “DFT matrix” with n columns ek given by

ek = [1, ejωk , . . . , ejωk(n−1)]T /
√
n

j =
√
−1, and ωk = k

n2π ∈ [0, 2π), k = 0, . . . , n − 1, is the k-th radian frequency. Let
x̃ = [x̃1, . . . , x̃n]T denote the vector of (

√
n-normalized) DFT coefficients associated with x =

[x1, . . . , xn]T :
x̃ = EHx.
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Then as EEH = I, we can represent the LRT statistic as

xT (R−1
0 −R−1

1 )x = [EHx]H(EHR−1
0 E−EHR−1

1 E)[EHx]

= x̃H(
1
σ2
w

I−EHR−1
1 E)x̃ (129)

Now, remarkably, for large n the matrix EHR−1
1 E is approximately diagonal, i.e. the DFT operator

E diagonalizes the covariance matrix. To show this we first state a theorem:

Spectral approximation Theorem [11]: For any positive definite Toeplitz matrix R = ((ri−j))ni,j=1

EHRE = diagk(DFTr(ωk)) +O(1/n)

where DFTr(ωk) =
∑n−1

k=−n+1 rke
−jωk is the k-th coefficient of the discrete fourier transform (DFT)

of the sequence r = {r−n+1, . . . , r0, . . . , rn−1}, and O(1/n) is a term that goes to zero at rate 1/n.
This implies that for large n the eigenvectors of R are the DFT vectors and the eigenvalues are
the DFT coefficients of the distinct elements of R.

Proof of spectral approximation theorem:

It suffices to show that as n→∞ the DFT matrix E asymptotically diagonalizes R, i.e.,

eHk Rel →
{

DFTr(ωk), k = l
0, o.w.

So let’s write out the quadratic form explicitly

eHk Rel = n−1
n−1∑
p=0

n−1∑
m=0

e−jωkpeωlmrp−m

Next we rearrange the summation a bit

eHk Rel = n−1
n−1∑
m=0

ej(ωl−ωk)m
n−1∑
p=0

e−jωk(p−m)rp−m

Now we make a change of indices in the summations m → t ∈ {1, . . . , n} and m − p → τ ∈
{−n, . . . , n} to obtain

eHk Rel =
n−1∑

τ=−n+1

rτe
−jωk(τ) n−1

n−1∑
t=0

ej(ωl−ωk)t

︸ ︷︷ ︸
gn(ωl−ωk)

where gn(u) = n−1(ejun/2 sin(u(n + 1)/2)/ sin(u/2) − 1). Now, as n → ∞, the term gn(ωl − ωk)
converges to a discrete delta function:

lim
n→∞ gn(ωl − ωk) = δk−l

and so, assuming appropriate conditions allowing us to bring the limit under the summation, we
have the large n approximation

eHk Rel =
n−1∑

τ=−n+1

rτe
−jωkτ δk−l = DFTr(ωk)δk−l
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which establishes the spectral approximation. �
Applying the spectral decomposition theorem to the Toeplitz matrix R−1

1 = [Rs + σ2
wI]−1 (the

inverse of a Toeplitz matrix is Toeplitz) we obtain

EHR−1
1 E = diagk

{
1

Ps(ωk) + σ2
w

}
+O(1/n)

where Ps(ωk) is the power spectral density associated with sk, i.e., the DFT of {rs(−n+1), . . . , rs(n−
1)}. We have from (129) the following form of the MP-LRT test statistic (recall that σ2

w = No/2)

T (x) = x̃H(
1
σ2
w

I−EHR−1
1 E)x̃ (130)

=
2
No

x̃H diag (κ(ωk)) x̃ (131)

where κ(ω) is the spectral coherency function

κ(ω) =
Ps(ω)

Ps(ω) +No/2

Expressing the quadratic form as a sum we obtain the equivalent large n form for the MP-LRT

T (x) =
2
No

n−1∑
k=0

Ps(ωk)
Ps(ωk) +No/2

|x̃k|2 1/n
H1
>
<
H0

γ

where, as before, γ is the level α threshold

γ = κ χn,κ(1− α)

and {√nx̃k} are the DFT coefficients of the observations. The quantity |x̃k|2 1/n is known as the
Periodogram estimate of the PSD of xk.

IMPLEMENTATION ISSUES

Using the duality between convolution in the time domain and multiplication in the frequency
domain, identify the test statistic as:

T (x) =
2
No

n−1∑
k=0

Ps(ωk)
Ps(ωk) +No/2

x̃∗k︸ ︷︷ ︸
(Ŝ(ωk))∗

x̃k =
2
No

n−1∑
k=0

ŝkxk,

where ŝk is the inverse DFT of Ŝ(ωk).

Implementation 1: Estimator correlator:

Absorbing No/2 into the threshold, the MP-LRT can be written as

n−1∑
k=0

ŝkxk

H1

>
<
H0

γ =
No

2
κ χn,κ(1− α)

where
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ŝk = hMMSE(k) ∗ xk

and hMMSE(k) is the Wiener filter with transfer function

HMMSE(ω) =
Ps(ω)

Ps(ω) +No/2

Ho

H1

  >  <
 xk Σ×

k
Ŝ

HMMSE

Figure 171: Estimator correlator implementation of LRT for w.s.s. signal in white noise.

Alternatively use

Parseval’s theorem: if f(k) ⇔ F (ωk) are DFT pair then

n−1
∞∑

k=−∞
|F (ωk)|2 =

n−1∑
k=0

|f(k)|2

Implementation 2: filter-squarer

n−1∑
k=0

y2
k

H1

>
<
H0

γ =
No

2
κ χn,κ(1− α)

where

yk = hk ∗ xk

and hk has transfer function

H(ω) =

√
Ps(ω)

Ps(ω) +No/2
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Ho

H1

  >  <
 xk Σ(  )2H(w)

yk

Figure 172: Filter squarer implementation of LRT for w.s.s. signal in white noise.

ROC: identically to previous example

β = 1− χn,1/c−1(ρχ
−1
n,1−c(1− α))

except now c = [c1, . . . , cn] is

ci = (No/2)/(Ps(ωi) +No/2)

11.3 DETECTION OF NON-ZERO MEAN NON-STATIONARY SIGNAL
IN WHITE NOISE

Now consider

H0 : xk = wk

H1 : xk = sk + wk

* wk ∼ N (0, σ2
w): white noise

* sk ∼ N (μk, σ2
s(k)): uncorrelated signal samples

* wk, sk uncorrelated

Recall general formula for nonequal means and covariances for LRT

T (x) = 1
2x
T [R−1

0 −R−1
1 ]x+ (μT

1
R−1

1 − μT0 R−1
0 )x

H1

>
<
H0

γ
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For present case μ
0

= 0, R1 and R0 are diagonal and LRT statistic reduces to

T (x) =
1

2σ2
w

n∑
k=1

σ2
s(k)

σ2
s(k) + σ2

w

x2
k +

n∑
k=1

1
σ2
s(k) + σ2

w

μkxk

=
1

2σ2
w

(
n∑
k=1

κkx
2
k + 2

n∑
k=1

(1− κk)μkxk

)

It is easily shown (see exercises) that this LRT is equivalent to the test

n∑
k=1

σ2
s(k)

σ2
s(k) + σ2

w

(xk − μk)2 + 2
n∑
k=1

μkxk

H1

>
<
H0

γ
′

(132)

This test can be implemented by a combination of estimator-correlator and matched filter.

xk

Ho

H1

k
Ŝ

HMMSE

+
-

+

2

k

k

Figure 173: Estimator correlator plus matched filter implementation of LRT for non-zero mean w.s.s. signal
in white noise.

PERFORMANCE:

The test statistic is now distributed as a noncentral Chi-square-mixture under H0 and H1 and
analysis is somewhat more complicated (Johnson, Kotz and Balakrishnan [30, Sec. 18.8]).

11.4 ONLINE IMPLEMENTATIONS OF OPTIMAL DETECTORS

Objective: perform optimal detection at each sampling time n = 1, 2, . . . based only on past
observations 0 < k ≤ n
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H0 : xk = vk

H1 : xk = sk + vk

Ho

H1

  >  < CAUSAL
DEVICE

xk

Figure 174: Online detection seeks to develop optimal detector for each time instant n based only on past
measurements.

11.4.1 ONLINE DETECTION FOR NON-STATIONARY SIGNALS

Objective: decide between the presence of either of two random signals based on finite past
0 < k ≤ n

H0 : xk = s0(k) + wk

H1 : xk = s1(k) + wk

where

vk: non-stationary zero mean Gaussian noise

s0(k), s1(k): non-stationary zero mean Gaussian signals with known state space representations
as in Sec. 6.7.1.

Recall: general MP-LRT is of form

T (x) = xT [R−1
0 −R−1

1 ]x
H1

>
<
H0

γ
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Difficulty: growing memory in n makes computation of T (x) impractical

Solution 1: Online dual Kalman signal selector

Solution 2: Online signal detector via Cholesky

11.4.2 ONLINE DUAL KALMAN SIGNAL SELECTOR

Let η
0

and η
1

denote vectors of innovations generated by Kalman filters matched to H0 and H1,
respectively (See Sec. 6.8.2 to brush up on Kalman filters).

xk

KF 1

η1(k)

ηο(k)KF 0

KF 1

Figure 175: Dual Kalman filters generate innovations processes η1 and η0

We know that

η
0

= A0x, η
1

= A1x

R0 = A−1
0 Rη0A−T

0 , R1 = A−1
1 Rη1A−T

1

where

* A0,A1 are lower triangular matrices of prediction coefficients

* Rη0 ,Rη1 are diagonal matrices of prediction error variances

Recall important property of innovations:

η(k) = x(k)− x̂(k|k − 1) = x(k)− ŝ(k|k − 1)

* E[η(k)] = 0
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* var(η(k)) = cTRξ̃(k, k − 1)c︸ ︷︷ ︸
σ2

s̃(k)

+σ2
v is minimum prediction error variance

*
{

η(k)√
var(η(k))

}
is white

* [η1, . . . , ηn]T ∼ Nn(0,diag(var(η(k)))I)

Using innovations representation we can re-express LR statistic

T (x) = xT [R−1
0 −R−1

1 ]x

= xT [ AT0 R−1
η0 A0 − AT1 R−1

η1 A1 ]x

= [A0x]T R−1
η0 [A0x]︸ ︷︷ ︸

η
0

− [A1x]T R−1
η1 [A1x]︸ ︷︷ ︸

η
1

Or, LRT reduces to

T (x) =
n∑
i=1

η2
0(i)

var(η0(i))
−

n∑
i=1

η2
1(i)

var(η1(i))

H1

>
<
H0

γ

where, level α threshold is time varying. For example if R−1
0 > R−1

1

γ = n(1− c) χ−1
n,1−c(1− α)

Special Case: SIGNAL DETECTION IN WHITE NOISE

Here s0(k) is zero and vk is white

H0 : xk = vk

H1 : xk = s1(k) + vk

and

* ŝ0(k|k − 1) = 0

* η0(k) = xk

* var0(η0(k)) = σ2
v

Thus MP-LRT simplifies to a “measured energy” vs. “Kalman residual” detector

T (x) =
1
σ2
v

n∑
i=1

x2
i −

n∑
i=1

η2
1(i)

var(η1(i))

H1

>
<
H0

γ



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 328

 xk

KF 1

+var(η1(k))

(  )2 Σ

Ho

H1

  >  <

KF 0 (  )2 Σ
var(η0(k))

η1(k)

η0(k)

-

Figure 176: Dual Kalman filter implementation of state space signal selector.

T(x)

γn

decide H1

n
n

×

Figure 177: Trajectory of dual Kalman filter implementation of state space signal selector. Note that the
threshold is a function of time. If the number of samples n is random then the threshold of the test must be
set by the method of repeated tests of significance.
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+
σ2

(  )2 Σ

Ho

H1

  >  <

KF (  )2 Σ
ση

2(k)

-

xk

Figure 178: The optimal detector of a single state space signal in noise.

11.4.3 ONLINE SIGNAL DETECTOR VIA CHOLESKY

Again assume s0(k) is zero so that

H0 : xk = vk

H1 : xk = s1(k) + vk

Solution: apply Cholesky decomposition to R−1
0 −R−1

1

Note

R−1
0 −R−1

1 = R−1
v − [Rs + Rv]−1

= [Rs + Rv]−
1
2 R

1
2
sR−1

v R
1
2
s [Rs + Rv ]−

1
2

> 0

Hence we can apply the Cholesky decomposition

R−1
0 −R−1

1 = LT P L

* L is lower triangular matrix of “backward predictor coefficients”
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* P is diagonal matrix of “backward predictor error variances”

Now apply Cholesky decomposition to T (x)

T (x) = 1
2x
T [R−1

0 −R−1
1 ]x

= 1
2x
T [LT P L]x

= 1
2 [Lx]

T P [Lx]︸︷︷︸
y

or we have representation

T (x) = 1
2

n∑
i=1

σ2
i y

2
i

Ho

H1

  >  <
 xk Σ(  )2L

yk ×

σk
2

Figure 179: On-line implementation of non-stationary signal detector via using Cholesky factor L.

The MP level α test is simply

n∑
i=1

σ2
i y

2
i

H1

>
<
H0

γn = n(1− c) χ−1
n,κ(1− α)

where σ2
i and κ = n(1− c) are computed offline. Note that while we can generate a recursion for

the test statistic, a recursion for the threshold γn is not available.
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In many cases yi can be generated by a “lumped” Kalman filter matched to a state observation
model

x
′
k = s

′
k + v

′
k

s
′
k = cTk νk

νk+1 = Dkνk + Ekw
′
k

synthesized such that the measurement covariance satisfies

Rx′ = R−1
0 −R−1

1

11.5 STEADY-STATE STATE-SPACE SIGNAL DETECTOR

Assume:

* State model for s1 is LTI

* measurement noise vk is w.s.s.

* limiting state error covariance matrix Rξ̃(∞) is non-singular

* Kalman filter is in steady state (n large)

Then, as innovations are w.s.s., the MP-LRT statistic can be written

T (x) =
1

2σ2

n∑
i=1

x2
i −

1
2var(η1)

n∑
i=1

η2
1(i)

H1

>
<
H0

γ

Or, using asymptotic innovations variance, we have MP test

n∑
i=1

x2
i −

σ2
v

σ2
s̃ + σ2

v

n∑
i=1

η2
1(i)

H1
>
<
H0

γ

APPROXIMATE GLRT FOR UNKNOWN MEASUREMENT NOISE VARIANCE

We can implement an approximate GLRT to handle the case where the variance of the observation
noise σ2

v is unknown. For this case the GLR statistic is

ΛGLR =

maxσ2
v>0 (σ2

s̃ + σ2
v)

−n/2 exp
(
− 1

2(σ2
s̃+σ2

v)

∑n
i=1 η

2
1(i)
)

maxσ2
v>0 (σ2

v)−n/2 exp
(
− 1

2σ2
v

∑n
i=1 x

2
i

)
Of course the denominator is maximized for
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σ2
v = n−1

n∑
i=1

x2
i

and, as for the numerator, we proceed by an iterative approximation. First neglect the dependence
of of η1 on σ2

v . Then the numerator is maximized for

σ̂v
2(n) = n−1

n∑
i=1

η2
1(i)− σ2

s

Now generate η1(n + 1) from the Kalman Filter having parameters A, b, c and σ̂v
2. In this way

we obtain an approximate GLRT which is implemented by comparing the ratio of two variance
estimators to a threshold. Note that the numerator and denominator of the test statistic are
dependent so this is not an F-test.

σ̂2
v

σ̂2
η1

=
∑n

i=1 x
2(i)∑n

i=1 η
2
1(i)

H1

>
<
H0

γ

(  )2 Σ

Ho

H1

  >  <

KF (  )2 Σηi(k)

xk

Figure 180: Approximate steady-state GLRT signal detector for unknown measurement noise

In analogous manner, for the GLRT signal selector we obtain

∑n
i=1 η

2
0(i)∑n

i=1 η
2
1(i)

H1

>
<
H0

γ
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Ho

H1

  >  <

KF1 (  )2 Ση1(k)

xk

KF0 (  )2 Ση0(k)

Figure 181: GLRT signal selector for unknown measurement noise

11.6 BACKGROUND REFERENCES

A concise mathematical statistics development of binary hypothesis testing for multivariate Gaus-
sian observations can be found in Morrison [50]. For a signal detection perspective the books by
Van Trees volume I [73] and volume III [74], and Whalen [76] are classics in the field. Other
more recent signal processing oriented textbooks with coverage of this topic are [25], Poor [55],
and Srinath, Rajasekaran and Viswanath [67]. A discussion of online implementations of optimal
detection for random processes is treated in the context of change detection in the edited book by
Basseville and Benveniste [3].

11.7 EXERCISES

11.1 Let x = [x1, . . . , xn]T be n samples of a waveform. It is of interest to test the two hypotheses

H0 : x = ay + w

H1 : x = s+ ay + w

where w is zero mean Gaussian white noise, cov(w) = σ2I, s and y are known waveforms,
and the scalar constant a is unknown.

(a) Assuming that a is a Gaussian r.v. with zero mean and variance σ2
a derive the MP LRT

(with threshold) to test H0 vs. H1. Assume that a is independent of w. Is this a UMP
test for the case that the signal shape s/‖s‖ is known but its energy ‖s‖2 is unknown?
How about when signal shape y/‖y‖ is known but ‖y‖2 is unknown?

(b) Under the assumption on a of part (a) find the detectibility index d which controls the
ROC curve. Assume that ‖s‖ ≤ 1. Show that the ROC curve is optimized (maximum d)
when the signal s is orthogonal to the interferer y but is otherwise arbitrary (Hint: you
might want to use the Woodbury matrix identity).
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(c) Assuming that a is a deterministic unknown constant, repeat parts (a) and (b) for the
GLRT of H0 vs. H1.

11.2 Let xk, k = 1, . . . , n be a segment of a discrete time random process. It is desired to test
whether xk contains a harmonic component (sinusoidal signal) or not

H0 : xk = wk

H1 : xk = A cos(ωok + ψ) + wk

where wk is zero mean Gaussian white noise with acf rw(k) = N0/2δk, ωo = 2πl/n for some
integer l, A is a deterministic amplitude, and ψ is a uniform phase over [0, 2π]. The random
phase of the sinusoid and the noise samples are independent of each other.

(a) Show that underH1 the auto-correlation function of xk is E[xixi−k] = rx(k) = A2/2 cos(ωok)+
N0/2δk and derive the PSD Px.

(b) Derive the MP LRT with threshold and implement the MP LRT as an estimator correlator
and a filter squarer. (Hint: as ψ is uniform and f1(x|ψ) is a Gaussian p.d.f. f1(x) =
(2π)−1

∫ 2π
0 f1(x|ψ)dψ is a Bessel function of the form B0(r) = 1

2π

∫ π
−π e

r cosψdψ which is
monotone in a test statistic which under H0 is distributed as a Chi-square with 2 df, i.e
exponential.)

(c) Show that the MP LRT can also be implemented as a test on the periodogram spectral es-
timator Pper(ωo) = 1

n |DFT{xk}ω=ωo |2 where DFT{xk}ω =
∑n

k=1 xke
−jωk is the DTFT

of {xk}nk=1, ω ∈ {2πl/n}nl=1.

11.3 Find the GLRT for the previous problem under the assumption that both A and ωo are
unknown (Hint: as no closed form solution exists for the MLE’s of A and ωo you can leave
your answer in the form of a “peak detector” block diagram).

11.4 Derive the “completion of the square” result (Eq. (132) in section 11.3.

11.5 A sensor is placed on a North Atlantic oil derick at a particular spatial location to monitor
the mechanical state of the structure. When the mechanical state is “normal” the sensor
produces a measurement which follows the state space model:

xk = sk + vk

sk+1 = ask +wk

k = 0, 1, . . .. A model for impending failure of the mechanical structure is that a shift
in the damping constant a occurs. Assuming the standard Gaussian assumptions on the
dynamical model under both normal and failure modes, the detection of impending failure
can be formulated as testing between

H0 : a = ao

H1 : a �= ao

where ao ∈ (−1, 1) is known.

(a) Implement the MP test of level α for the simple alternative H1 : a = a1, where a1 �= a0,
with a pair of Kalman filters. If you solved Exercise 6.14 give explicit forms for your
filters using the results of that exercise.

(b) Now treat the general composite case above with your favorite method, e.g. LMP or
GLRT. Take this problem as far as you can by making simplifying assumptions starting
with assuming steady state operation of the Kalman filters.
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11.6 Available for observation are n time samples X(k),

X(k) =
p∑
i=1

αigi(k − τi) +W (k), k = 1, . . . , n

where W (k) is a zero mean Gaussian white noise with variance var(W (k)) = σ2
w, αi, i =

1, . . . , p, are p i.i.d. zero mean Gaussian random variables with variance σ2
a, and gi(u),

i = 1, . . . , p, are p known time functions over u ∈ (−∞,∞). The αi andW (k) are uncorrelated
and p is known. Define K as the p× p matrix of inner products of the gi’s, i.e. K has entries
κij =

∑n
k=1 gi(k − τi)gj(k − τj).

(a) Show that the ML estimator of the τi’s involves maximizing a quadratic form yT [I +
ρK]−1y−b where y = [y1, . . . , yp]T is a vector of p correlator outputs yi(τi) =

∑n
k=1 x(k)gi(k−

τi), i = 1, . . . , p, b = b(τ) is an observation independent bias term, and ρ = σ2
a/σ

2
w is

the SNR (Hint: express log-likelihood function in vector-matrix form and use a matrix
inverse (Woodbury) identity). Draw a block diagram of your ML estimator implemented
as a peak picker, i.e. a variable filter applied to the data over which you seek to maximize
the output.

(b) Now consider the detection problem

H0 : X(k) = W (k)

H1 : X(k) =
p∑
i=1

αigi(k − τi) +W (k)

For known τi’s derive the LRT and draw a block diagrom of the detector. Is the LRT
UMP for unknown τi’s? How about for known τi’s but unknown SNR σ2

a/σ
2
w?

(c) Now assume that the τi’s are unknown and that the αi’s are also unknown and non-
random. Show that in the GLRT the maximization over the αi’s can be performed
explicitly. Draw a block diagram of the GLRT implemented with a thresholded peak
picker over the τi’s.

11.7 Observed is a random process {xi}ni=1 consisting of Gaussian random variables. Assume that

xk = sk + wk

where sk and wk are uncorrelated Gaussian variables with variances σ2
s(k) and σ2

w, re-
spectively. The noise wk is white and sk is uncorrelated over time but non-stationary,
i.e., it has time varying variance. In this problem we assume that the instantaneous SNR
γ(k) = σ2

s(k)/σ
2
w is known for all time but that the noise power level σ2

w is unknown.

(a) For known σ2
w and zero mean wk and sk derive the MP test of the hypotheses (no need

to set the threshold)

H0 : xk = wk

k = 1, . . . , n
H1 : xk = sk + wk

Does there exist a UMP test for unknown σ2
w? If so what is it?

(b) Find the GLRT for the above hypotheses for unknown σ2
w (no need to set the threshold).
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(c) Now assume that sk has non-zero but constant mean μ = E[sk]. Find the GLRT for
unknown μ and σ2

w (no need to set the threshold).

11.8 Observed is a random process {xi}ni=1 consisting of Gaussian random variables. Assume that

xk = sk + wk

where sk and wk are zero mean uncorrelated Gaussian variables with variances a2σ2
s(k) and

σ2
w, respectively. The noise wk is white and sk is uncorrelated over time but non-stationary,

i.e., it has time varying variance.

(a) For known a2, σ2
s and σ2

w derive the MP test of the hypotheses

H0 : xk = wk

k = 1, . . . , n
H1 : xk = sk + wk

You do not need to derive an expression for the threshold. Is your test UMP for unknown
a2? If not is there a condition on σ2

s(k) that would make your test UMP?
(b) Find the locally most powerful test for unknown a2 > 0 for the above hypotheses. How

does your test compare to the matched filter detector for detection of non-random signals?
(c) Now assume that sk has non-zero but constant mean μ = E[sk]. Find the MP test. Is

your test UMP for unknown μ �= 0 when all other parameters are known? If not find the
GLRT for this case.

End of chapter
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12 COMPOSITE HYPOTHESES IN THE MULTIVARIATE

GAUSSIAN MODEL

In Chapter 9 we covered testing of composite hypotheses on the mean and variance for univariate
i.i.d. Gaussian measurements. In Chapter 11 we covered simple hypotheses on the mean and
covariance in the multivariate Gaussian distribution. In this chapter we extend the techniques
developed in Chapters 9 and 11 to multivariate Gaussian measurements with composite hypotheses
on mean and covariance. In signal processing this is often called the Gaussian multi-channel model
as i.i.d. measurements are made of a Gaussian random vector, and each element of the vector
corresponds to a separate measurement channel (see Fig. 182).

Ho

  >  <GLR

H1
xi1

xip
• 
• 
 • 

Figure 182: GLR detector from multi-channel Gaussian measurements.

Specifically, we will cover the following

* Double sided GLRT for equality of vector mean

* Double sided GLRT for equality two vector means

* Double sided GLRT for independence of samples

* Double sided GLRT for whiteness of samples

* Confidence regions for vector mean

Here the measurements are a set of n i.i.d. p-dimensional Gaussian vectors, each having mean
vector μ and p× p covariance R:

X i =

⎡⎢⎣ Xi1
...
Xip

⎤⎥⎦ , i = 1, . . . n

For notational convenience we denote the measurements by a random p× n measurement matrix
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X = [X1, . . . ,Xn]

This matrix has the following properties:

* {X i}ni=1: independent Gaussian columns (n ≥ p)

* μ = Eθ[X i]: mean vector

* R = covθ(X i): covariance matrix (p × p)

12.1 MULTIVARIATE GAUSSIAN MATRICES

In Section 3.1.1 of Chapter 3 we introduced the multivariate Gaussian density for random vectors.
This is easily extended to the present case of random matrices X composed of i.i.d. columns of
Gaussian random vectors. The jpdf of such a Gaussian matrix X has the form

f(X; μ,R)

=
(

1
(2π)p |R|

)n/2
exp

(
−1

2

n∑
i=1

(X i − μ)TR−1(X i − μ)

)

=
(

1
(2π)p |R|

)n/2
exp

(
−1

2

n∑
i=1

trace
{
(X i − μ)(X i − μ)TR−1

})

This density can also be represented in more compact form as:

f(X; μ,R) =
(

1
(2π)p |R|

)n/2
exp
(
−n

2
trace{R̂μ R}

)
where we have defined the p× p covariance estimator

R̂μ = n−1
n∑
i=1

(X i − μ)(X i − μ)T

=
1
n

(X− μ1T )(X− μ1T )T .

12.2 DOUBLE SIDED TEST OF VECTOR MEAN

We pose the two hypotheses:

H0 : μ = μ
o
, R > 0 (133)

H1 : μ �= μ
o
, R > 0. (134)

the GLRT of these hypotheses is

ΛGLR =
maxμ,R>0 f(X;μ,R)

maxR>0 f(X;μ
o
,R)

.
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Now, it is easily seen that

max
μ,R>0

f(X;μ,R) = max
R>0

f(X; X,R)

where the column sample mean is defined as

X = n−1
n∑
i=1

X i = X1
1
n
.

Therefore, we can rewrite the GLRT as

ΛGLR =
maxμ,R>0 f(X;μ,R)

maxR>0 f(X;μ
o
,R)

=
maxR>0 |R|−n/2 exp

(
−1

2 trace
{
R̂XR−1

})
maxR>0 |R|−n/2 exp

(
−n

2 trace
{
R̂μR−1

})
FACT: for any vector t = [t1, . . . , p]T

max
R>0

{
|R|−n/2 exp

(
−n

2
trace

{
R̂tR−1

})}
= |R̂t|−n/2 e−n

2/2

and the maximum is attained by

R = R̂t = n−1
n∑
i=1

(X i − t)(X i − t)T

Proof:

The maximizing R also maximizes

l(R) = ln f(X; t,R) =
n

2
ln |R| − n

2
trace

{
R̂tR−1

}
Define the transformed covariance R̃

R̃ = R̂−1/2
t R R̂−1/2

t .

Then, since the trace and the determinant satisfy

trace{AB} = trace{BA}, |AB| = |BA| = |B| |A|,

we have

l(R) = −n
2

(
ln |R̂1/2

t R̃R̂1/2
t | + trace

{
R̂1/2
t R̃−1R̂−1/2

t

})
= −n

2

(
ln |R̂tR̃| + trace

{
R̃−1

})
= −n

2

(
ln |R̂t|+ ln |R̃| + trace

{
R̃−1

})
= −n

2

⎛⎝ln |R̂t|+
p∑
j=1

ln λ̃j +
p∑
j=1

1
λ̃j

⎞⎠



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 340

where {λ̃j} are the eigenvalues of R̃

Hence the maximizing R satisfies for j = 1, . . . , p

0 =
d

dλ̃j
l(R)

= −n
2

(
1
λ̃j
− 1
λ̃2
j

)

so that the maximizing R̃ has identical eigenvalues

λ̃j = 1, j = 1, . . . , p.

This implies that the maximizing R̃ is an orthogonal (unitary) matrix U. But, since R̃ is also
symmetric, R̃ is in fact the p× p identityo

Therefore
I = R̃ = R̂−1/2

t RR̂−1/2
t

giving the maximizing R as
R = R̂t,

as claimed. �

Note: We have just shown that

1. The MLE of R for known μ = μ
o

is

R̂μ = n−1
n∑
i=1

(X i − μo)(X i − μo)
T .

2. The MLE of R for unknown μ is

R̂X = R̂ = n−1
n∑
i=1

(X i −X)(X i −X)T .

Plugging the above MLE solutions back into GLRT statistic for testing (134)

ΛGLR =

(
|R̂μ

o
|

|R̂|

)n/2
=
(∣∣∣R̂μ

o
R̂−1

∣∣∣)n/2 .
Using

R̂μ
o

= R̂ + (X − μ
o
)(X − μ

o
)T ,

0If U is orthogonal then UH = U−1 matrix I. If in addition U is symmetric then U = UT = U−1 so that U = I.
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we have the equivalent GLRT (ΛGLR = (T (X))n/2)

T (X) =
∣∣∣I + (X − μ

o
)(X − μ

o
)T R̂−1

∣∣∣
=

∣∣∣∣∣∣∣∣I + R̂− 1
2 (X − μ

o
)︸ ︷︷ ︸

u

(X − μ
o
)T R̂− 1

2︸ ︷︷ ︸
uT

∣∣∣∣∣∣∣∣
H1

>
<
H0

γ

SIMPLIFICATION OF GLRT

Observe: T (X) is the determinant of the sum of a rank 1 matrix and the identity matrix:

T (X) =

∣∣∣∣∣∣∣I + u uT︸︷︷︸
rank = 1

∣∣∣∣∣∣∣
=

p∏
j=1

λj

where λj are the eigenvalues of the matrix I + uuT .

IMPORTANT FACTS:

1. Eigenvectors of I + A are identical to eigenvectors of A

2. Eigenvectors of A = u uT are

ν1 = u
1
‖u‖ = R̂−1/2(X − μ

o
)

1√
(X − μ

o
)T R̂−1(X − μ

o
)

ν2, . . . , νp = determined via Gramm-Schmidt.

3. Eigenvalues of I + A are

λ1 = νT1 (I + A)ν1 = 1 + (X − μ
o
)T R̂−1(X − μ

o
)

λ2 = . . . = λp = 1

Putting all of this together we obtain an equivalent expression for the GLRT of (134):

T (X) =
p∏
j=1

λj = 1 + (X − μ
o
)T R̂−1(X − μ

o
)

H1

>
<
H0

γ

Or, equivalently, the GLRT has form of Hotelling’s T 2 test

T 2 := n(X − μ
o
)TS−1(X − μ

o
)

H1

>
<
H0

γ,

where S is the (unbiased) sample covariance

S =
1

n− 1

n∑
k=1

(Xk −X)(Xk −X)T .
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We use the following result to set the threshold of the GLRT

FACT: Under H0, Hotelling’s T 2 is distributed as a T 2 distributed r.v. with (p, n−p) d.f. [50, 57].

Thus the level α GLRT of (134) is

T 2 := n(X − μ
o
)TS−1(X − μ

o
)

H1
>
<
H0

T −2
p,n−p(1− α)

REMARKS

1. The Hotelling T 2 test is CFAR since under H0 its distribution is independent of R

2. The T 2 statistic is equal to a F-statistic within a scale factor

T 2 =
p(n− 1)
n− p Fp,n−p

3. An equivalent test is therefore

T 2 := n(X − μ
o
)TS−1(X − μ

o
)

H1

>
<
H0

p(n− 1)
n− p F−1

p,n−p(1− α).

12.3 TEST OF EQUALITY OF TWO MEAN VECTORS

Assume that we are given two i.i.d. vector samples

X = [X1, . . . ,Xn1
], Xi ∼ Np(μx,R)

Y = [Y 1, . . . , Y n2
], Y i ∼ Np(μy,R)

where n1 + n2 = n. Assume that these samples have the same covariance matrix R but possibly
different means μ

x
and my, respectively. It is frequently of interest to test equality of these two

means

H0 : μ
x
− μ

y
= Δ, R > 0

H1 : μ
x
− μ

y
�= Δ, R > 0.

The derivation of the GLRT for these hypotheses is simple when inspired by elements of our
previous derivation of the GLRT for double sided tests on means of two scalar populations (Sec.
9.5). The GLRT is√

n1n2

n
(Y −X −Δ)TS−1

2 (Y −X −Δ)
H1
>
<
H0

T −2
p,n−p−1(1− α) (135)

where we have defined the pooled sample covariance

S2 =
1

n− 2

(
n1∑
i=1

(Xi − μ̂)(X i − μ̂)T +
n2∑
i=1

(Y i − μ̂)(Y i − μ̂)T
)
,

and μ̂ = 1
2n

∑n
i=1(X i + Y i). In analogy to the paired t-test of Sec. 9.5, the test (135) is called the

multivariate paired t-test.
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12.4 TEST OF INDEPENDENCE

n i.i.d. vector samples

X = [X1, . . . ,Xn], Xi ∼ Np(μ,R)

To test

H0 : R = diag(σ2
j )

H1 : R �= diag(σ2
j )

with mean vector μ unknown

ΛGLR =
maxR �=diag,μ f(X;μ,R)

maxR=diag,μ f(X;μ,R)
=

maxR>0 |R|−n/2 exp
(
−1

2

∑n
k=1(Xk −X)TR−1(Xk −X)

)
maxσ2

j>0

(∏p
k=1 σ

2
k

)−n/2 exp
(
−1

2

∑n
k=1

1
σ2

k
‖Xk −X)‖2

)
Using previous results

ΛGLR =

(∏p
j=1 σ̂

2
j

|R̂|

)n/2 H1

>
<
H0

γ

where we have the variance estimate for each channel (row) of X

σ̂2
j :=

1
n

n∑
k=1

(Xk −X)2j

For n sufficiently large we can set the threshold γ using the usual Chi-square asymptotics described
in Eq. (113) and discussed in Chapter 8. For this analysis we need calculate the number of degrees
of freedom ν of the test statistic under H0. Recall from that discussion that the degrees of freedom
ν is the number of parameters that are unknown under H1 but are fixed under H0. We count
these parameters as follows For n large we can set γ by using Chi-square asymptotics.

1. p2 − p = p(p− 1) off diagonals in R

2. 1/2 of these off diagonals elements are identical due to symmetry of R

⇒ ν = p(p− 1)/2

Thus we obtain the approximate level α GLRT:

2 ln ΛGLR

H1

>
<
H0

γ
′
= χ−1

p(p−1)/2(1− α).
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12.5 TEST OF WHITENESS

n i.i.d. vector samples

X = [X1, . . . ,Xn], Xi ∼ Np(μ,R)

To test

H0 : R = σ2I

H1 : R �= σ2I

with mean vector μ unknown

ΛGLR =
maxR �=σ2I,μ f(X;μ,R)

maxR=σ2I,μ f(X;μ,R)

=
maxR>0 |R|−n/2 exp

(
−1

2

∑n
k=1(Xk −X)TR−1(Xk −X)

)
maxσ2>0 (σ2p)−n/2 exp

(
− 1

2σ2

∑n
k=1 ‖Xk −X‖2

)
Or we have (similarly to before)

ΛGLR =

(
σ̂2p

|R̂|

)n/2 H1

>
<
H0

γ (136)

where

σ̂2 :=
1
np

n∑
k=1

‖Xk −X‖2︸ ︷︷ ︸
ntrace{R̂}

=
1
p
trace

{
R̂
}

and we have defined the covariance estimate

R̂ :=
1
n

(X−X1T )(X−X1T )T

The GLRT (136) can be represented as a test of the ratio of arithmetic mean to geometric mean
of the eigenvalues of the covariance estimate:

(ΛGLR)2/(np) =
σ̂2

|R̂|1/p
(137)
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=
p−1
∑p

i=1 λ
R̂
i∏p

i=1

(
λR̂
i

)1/p

H1

>
<
H0

γ. (138)

With this form we have the interpretation that the GLRT compares the elliptical contour of the
level set of the sample’s density under H1 to the spherical contour of the level sets of the sample’s
density under H0. The GLRTs (136) and (138) are CFAR tests since the test statistics do not
depend on the mean μ or the variance σ2 of the sample.

PERFORMANCE OF GLRT

For n sufficiently large we again set the threshold γ using the usual Chi-square asymptotics de-
scribed in Eq. (113) of Chapter 8. We must calculate the number of degrees of freedom ν of the
test statistic under H0: ν being the number of parameters that are unknown under H1 but that
are fixed under H0. We count these parameters as follows

1. p(p − 1)/2 elements in the triangle above the diagonal of R are unknown under H1 but zero
under H0

2. p−1 parameters on the diagonal of R are unknown under H1 but known (equal to the common
parameter σ2)under H0.

We therefore conclude that ν = p(p− 1)/2 + p− 1 = p(p+ 1)/2 − 1 and therefore the Chi square
approximation specifies the GLRT with approximate level α as

2 ln ΛGLR

H1

>
<
H0

γ
′
= χ−1

p(p+1)/2−1(1− α)

12.6 CONFIDENCE REGIONS ON VECTOR MEAN

Recall: from the level α double sided test of vector mean we know

Pθ

(
n(X − μ

o
)TS−1(X − μ

o
) > T −2

p,n−p(1− α)
)

= α

where θ = [μ,R].

Equivalently

Pθ

(
n(X − μ

o
)TS−1(X − μ

o
) ≤ T −2

p,n−p(1− α)
)

= 1− α

This is a “simultaneous confidence statement” on all elements of mean vector μ for unknown
covariance R given measurement X

⇒ (1− α)% confidence region on μ is the ellipsoid

{
μ : n(X − μ)TS−1(X − μ) ≤ T −2

p,n−p(1− α)
}

.
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x

(1-α)%  confidence 
region

μ1

μ2

Figure 183: Confidence region for all elements of mean vector μ is an ellipsoid

μ1

μ2

x .

Figure 184: Confidence ellipsoid gives “marginal” confidence intervals on each element of μ = [μ1, . . . , μp]T
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12.7 EXAMPLES

Example 50 Confidence band on a periodic signal in noise

k

k

xk+np
...

xk

Figure 185: Multiple uncorrelated measurements of a segment of a periodic signal.

xk = sk + vk

* sk = sk+nTp: unknown periodic signal with known period Tp

* vk: zero mean w.s.s. noise of bandwidth 1/(MTp) Hz

Step 1: construct measurement matrix

Xi = [x1+(i−1)MTp
, . . . , xTp+(i−1)MTp

]T

Step 2: find conf. intervals on each sk from ellipsoid

[(X)k − lk ≤ sk ≤ (X)k + uk]

Example 51 CFAR signal detection in narrowband uncalibrated array

k-th snapshot of p-sensor array output:

xk = a s+ vk, k = 1, . . . , n. (139)

* a: unknown array response (steering) vector
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k

xk

Figure 186: Confidence band on signal over one signal period.

Figure 187: Sensor array generates spatio-temporal measurement.
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* vk: Gaussian Np(0,R) array noise vector with unknown spatial covariance R

* s: unknown deterministic signal amplitude

Objective: detect presence of any non-zero signal amplitude at level α

H0 : s = 0, k = 1, . . . , n

H1 : s �= 0, k = 1, . . . , n

This is equivalent to

H0 : E[X i] = μ = 0, R > 0

H1 : E[X i] = μ �= 0, R > 0

For which we know:

* level α GLRT is the Hotelling T 2 test

* confidence region for μ = as is an ellipsoid.

x
Direction of max 
uncertainty in response

Direction of min uncertainty
given by min eigenvalue of S

Figure 188: Confidence region for array response vector as is an ellipse in 2D.

12.8 BACKGROUND REFERENCES

Many of the GLRT results in this chapter can be found in the books by Morrison [50] and Anderson
[2]. Some applications of these results to signal and array processing problems are discussed
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in Van Trees [73]. More applications of detection theory to multi-channel problems arising in
array processing and spectral estimation can be found in Haykin [24] and Stoica and Moses [69].
The books by Eaton [15], Mardia, Kent and Bibby [44], and Muirhead [51] give more advanced
treatments of general multivariate analysis techniques and testing of composite hypotheses. The
problem of constructing confidence regions for vector parameter is closely related to the problem
of simultaneous confidence intervals and this topic is covered in detail by Miller [47]. Miller’s book
does not cover the popular and more flexible False Discovery Rate (FDR) as an alternative to
confidence level, for which the reader is referred to Benjamini and Yekutieli’s paper [5] and its
hypothesis testing homolog by Benjamini and Hochberg [4].

12.9 EXERCISES

12.1 Extend the multivariate paired-t test derived in Sec. 12.3 to the case where xi ∼ N (μ
x
, Rx) and

y
i
∼ N (μ

y
, Ry) for the case that the two covariance matrices Rx and Ry may be unequal and

are unknown. How many degrees of freedom does the the asymptotic Chi-square distribution
have?

12.2 In Example 51 the optimal CFAR detector for a scalar signal s viewed from a p-sensor array
output with array response a and noise vk. In this problem we extend this to CFAR detection
of multiple (m) scalar signals s = [s1, . . . , sm] following the observation model:

xk = As+ vk, k = 1, . . . , n (140)

where A = [a1, . . . , ap] is an unknown p×m matrix and vk are i.i.d. N (0, R) random vectors
with unknown covariance R. Derive the GLRT for this problem. How many degrees of freedom
does the the asymptotic Chi-square distribution have?

12.3 Consider the same model as (139) but assume that s is a Gaussian distributed random variable
and a and R are unknown. Derive the GLRT.

12.4 Consider the same scalar model as (139) but now assume that a is known while the noise
covariance R is unknown. Derive the GLRT.

12.5 Extend the analysis of the previous problem to the multiple signal case (140) when A has
columns of sinusoidal form:

ak = [1, cos(2πfk), . . . , cos(2πfk(p− 1))]T , k = 1, . . . ,m

while the noise covariance R is unknown. Derive the GLRT (you may assume that the ak’s
are orthogonal if you wish).

End of chapter
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