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Statistic used Meaning in plain english Reduction ratio
T (X) = [X1, . . . , Xn]T , entire data sample RR = 1
T (X) = [X(1), . . . , X(n)]T , rank ordered sample RR = 1/2
T (X) = X, sample mean RR = 1/(2n)
T (X) = [X, s2]T , sample mean and variance RR = 1/n

A natural question is: what is the maximal reduction ratio one can get away with without loss
of information about θ? The answer is: the ratio obtained by compression to a quantity called a
minimal sufficient statistic. But we are getting ahead of ourselves. We first need to define a plain
old sufficient statistic.

3.5.2 DEFINITION OF SUFFICIENCY

Here is a warm up before making a precise definition of sufficiency. T = T (X) is a sufficient
statistic (SS) for a parameter θ if it captures all the information in the data sample useful for
inferring the value of θ. To put it another way: once you have computed a sufficient statistic you
can store it and throw away the original sample since keeping it around would not add any useful
information.

More concretely, let X have a cumulative distribution function (CDF) FX(x; θ) depending on θ.
A statistic T = T (X) is said to be sufficient for θ if the conditional CDF of X given T = t is not
a function of θ, i.e.,

FX|T (x|T = t, θ) = G(x, t), (16)

where G is a function that does not depend on θ.

Specializing to a discrete valued X with probability mass function pθ(x) = Pθ(X = x), a statistic
T = T (X) is sufficient for θ if

Pθ(X = x|T = t) = G(x, t). (17)

For a continuous r.v. X with pdf f(x; θ), the condition (16) for T to be a sufficient statistic (SS)
becomes:

fX|T (x|t; θ) = G(x, t). (18)

Sometimes the only sufficient statistics are vector statistics, e.g. T (X) = T (X) = [T1(X), . . . , TK(X)]T .
In this case we say that the Tk’s are jointly sufficient for θ

The definition (16) is often difficult to use since it involves derivation of the conditional distribution
of X given T . When the random variable X is discrete or continuous a simpler way to verify
sufficiency is through the Fisher factorization (FF) property [33]

Fisher factorization (FF): T = T (X) is a sufficient statistic for θ if the probability density
fX(x; θ) of X has the representation

fX(x; θ) = g(T, θ) h(x), (19)

for some non-negative functions g and h. The FF can be taken as the operational definition of
a sufficient statistic T . An important implication of the Fisher Factorization is that when the
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density function of a sample X satisfies (19) then the density fT (t; θ) of the sufficient statistic T
is equal to g(t, θ) up to a θ-independent constant q(t) (see exercises at end of this chapter):

fT (t; θ) = g(t, θ)q(t).

Examples of sufficient statistics:

Example 1 Entire sample

X = [X1, . . . , Xn]T is sufficient but not very interesting

Example 2 Rank ordered sample

X(1), . . . , X(n) is sufficient when Xi’s i.i.d.

Proof: Since Xi’s are i.i.d., the joint pdf is

fθ(x1, . . . , xn) =
n∏

i=1

fθ(xi) =
n∏

i=1

fθ(x(i)).

Hence sufficiency of the rank ordered sample X(1), . . . , X(n) follows from Fisher factorization. ¦

Example 3 Binary likelihood ratios

Let θ take on only two possible values θ0 and θ1. Then, as f(x; θ) can only be f(x; θ0) or f(x; θ1),
we can reindex the pdf as f(x; θ) with the scalar parameter θ ∈ Θ = {0, 1}. This gives the binary
decision problem: “decide between θ = 0 versus θ = 1.” If it exists, i.e. it is finite for all values

of X, the “likelihood ratio” Λ(X) = f1(X)/f0(X) is sufficient for θ, where f1(x) def= f(x; 1) and

f0(x) def= f(x; 0).

Proof: Express fθ(X) as function of θ, f0, f1, factor out f0, identify Λ, and invoke FF

fθ(X) = θf1(X) + (1− θ)f0(X)

=


θΛ(X) + (1− θ)︸ ︷︷ ︸

g(T,θ)


 f0(X)︸ ︷︷ ︸

h(X)

.

¦
Therefore to discriminate between two values θ1 and θ2 of a parameter vector θ we can throw away
all data except for the scalar sufficient statistic T = Λ(X)

Example 4 Discrete likelihood ratios
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Let Θ = {θ1, . . . , θp} and assume that the vector of p− 1 likelihood ratios

T (X) =
[
fθ1(X)
fθp(X)

, . . . ,
fθp−1(X)
fθp(X)

]
= [Λ1(X), . . . , Λp−1(X)]

is finite for all X. Then this vector is sufficient for θ. An equivalent way to express this vector
is as the sequence {Λθ(X)}θ∈Θ = Λ1(X), . . . ,Λp−1(X), and this is called the likelihood trajectory
over θ.

Proof

Define the p − 1 element selector vector u(θ) = ek when θ = θk, k = 1, . . . , p − 1 (recall that
ek = [0, . . . , 0, 1, 0, . . . 0]T is the k-th column of the (p− 1)× (p− 1) identity matrix). Now for any
θ ∈ Θ we can represent the j.p.d.f. as

fθ(x) = T T u(θ)︸ ︷︷ ︸
g(T ,θ)

fθp(x)︸ ︷︷ ︸
h(x)

,

which establishes sufficiency by the FF. ¦

Example 5 Likelihood ratio trajectory

When Θ is a set of scalar parameters θ the likelihood ratio trajectory over Θ

Λ(X) =
{

fθ(X)
fθ0(X)

}

θ∈Θ

, (20)

is sufficient for θ. Here θ0 is an arbitrary reference point in Θ for which the trajectory is finite for
all X. When θ is not a scalar (20) becomes a likelihood ratio surface, which is also a sufficient
statistic.

3.5.3 MINIMAL SUFFICIENCY

What is the maximum possible amount of reduction one can apply to the data sample without
losing information concerning how the model depends on θ? The answer to this question lies in the
notion of a minimal sufficient statistic. Such statistics cannot be reduced any further without loss
in information. In other words, any other sufficient statistic can be reduced down to a minimal
sufficient statistic without information loss. Since reduction of a statistic is accomplished by
applying a functional transformation we have the formal definition.

Definition: Tmin is a minimal sufficient statistic if it can be obtained from any other sufficient
statistic T by applying a functional transformation to T . Equivalently, if T is any sufficient statistic
there exists a function q such that Tmin = q(T ).

Note that minimal sufficient statistics are not unique: if Tmin is minimal sufficient h(Tmin) is also
minimally sufficient for h any invertible function. Minimal sufficient statistics can be found in a
variety of ways [26, 3, 22]. One way is to find a complete sufficient statistic; under broad conditions
this statistic will also be minimal [22]. A sufficient statistic T is complete if

Eθ[g(T )] = 0, for all θ ∈ Θ



STATISTICAL METHODS FOR SIGNAL PROCESSING c©Alfred Hero 1999 35

implies that the function g is identically zero, i.e., g(t) = 0 for all values of t. However, in some
cases there are minimal sufficient statistics that are not complete so this is not a failsafe procedure.
Another way to find a minimal sufficient statistic is through reduction of the data to the likelihood
ratio surface.

As in Example 5, assume that there exists a reference point θo ∈ Θ such that the following
likelihood-ratio function is finite for all x ∈ X and all θ ∈ Θ

Λθ(x) =
fθ(x)
fθo

(x)
.

For given x let Λ(x) denote the set of likelihood ratios (a likelihood ratio trajectory or surface)

Λ(x) = {Λθ(x)}θ∈Θ.

Definition 1 We say that a (θ-independent) function of x, denoted τ = τ(x), indexes the likeli-
hood ratios Λ when both

1. Λ(x) = Λ(τ), i.e., Λ only depends on x through τ = τ(x).

2. Λ(τ) = Λ(τ ′) implies τ = τ ′, i.e., the mapping τ → Λ(τ) is invertible.

Condition 1 is an equivalent way of stating that τ(X) is a sufficient statistic for θ.

Theorem:If τ = τ(x) indexes the likelihood ratios Λ(x) then Tmin = τ(X) is minimally sufficient
for θ.

Proof:

We prove this only for the case that X is a continuous r.v. First, condition 1 in Definition 1 implies
that τ = τ(X) is a sufficient statistic. To see this use FF and the definition of the likelihood ratios
to see that Λ(x) = Λ(τ) implies: fθ(X) = Λθ(τ)fθo

(X) = g(τ ; θ)h(x). Second, let T be any
sufficient statistic. Then, again by FF, fθ(x) = g(T, θ) h(x) and thus

Λ(τ) =
{

fθ(X)
fθo

(X)

}

θ∈Θ

=
{

g(T, θ)
g(T, θo)

}

θ∈Θ

.

so we conclude that Λ(τ) is a function of T . But by condition 2 in Definition 1 the mapping
τ → Λ(τ) is invertible and thus τ is itself a function of T . ¦
Another important concept in practical applications is that of finite dimensionality of a sufficient
statistic.

Definition: a sufficient statistic T (X) is said to be finite dimensional if its dimension is not a
function of the number of data samples n.

Frequently, but not always (see Cauchy example below), minimal sufficient statistics are finite
dimensional.

Example 6 Minimal sufficient statistic for mean of Gaussian density.

Assume X ∼ N (µ, σ2) where σ2 is known. Find a minimal sufficient statistic for θ = µ given the
iid sample X = [X1, . . . , Xn]T .

Solution: the j.p.d.f. is
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fθ(x) =
(

1√
2πσ2

)n

e−
1

2σ2

Pn
i=1(xi−µ)2

=
(

1√
2πσ2

)n

e−
1

2σ2 (
Pn

i=1 x2
i−2µ

Pn
i=1 xi+nµ2)

= e−
nµ2

2σ2 e

µ/σ2

T (x)︷ ︸︸ ︷
n∑

i=1

xi

︸ ︷︷ ︸
g(T ,θ)

(
1√

2πσ2

)n

e−1/(2σ2)
Pn

i=1 x2
i

︸ ︷︷ ︸
h(x)

Thus by FF

T =
n∑

i=1

Xi

is a sufficient statistic for µ. Furthermore, as q(T ) = n−1T is a 1-1 function of T

S = X

is an equivalent sufficient statistic.

Next we show that the sample mean is in fact minimal sufficient by showing that it indexes the
likelihood ratio trajectory Λ(x) = {Λθ(x)}θ∈Θ, with θ = µ, Θ = IR. Select the reference point
θo = µo = 0 to obtain:

Λµ(x) =
fµ(x)
f0(x)

= exp

(
µ/σ2

n∑

i=1

xi − 1
2nµ2/σ2

)
.

Identifying τ =
∑n

i=1 xi, condition 1 in Definition 1 is obviously satisfied since Λµ(x) = Λµ(
∑

xi)
(we already knew this since we showed that

∑n
i=1 Xi was a sufficient statistic). Condition 2 in

Definition 1 follows since Λµ(
∑

xi) is an invertible function of
∑

xi for any non-zero value of µ
(summation limits omitted for clarity). Therefore the sample mean indexes the trajectories, and
is minimal sufficient.

Example 7 Minimal sufficient statistics for mean and variance of Gaussian density.

Assume X ∼ N (µ, σ2) where both µ and σ2 are unknown. Find a minimal sufficient statistic for
θ = [µ, σ2]T given the iid sample X = [X1, . . . , Xn]T .

Solution:

fθ(x) =
(

1√
2πσ2

)n

e−
1

2σ2

Pn
i=1(xi−µ)2

=
(

1√
2πσ2

)n

e−
1

2σ2 (
Pn

i=1 x2
i−2µ

Pn
i=1 xi+nµ2)
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=
(

1√
2πσ2

)n

e−
nµ2

2σ2 e

[µ/σ2, −1/(2σ2)]

T (x)︷ ︸︸ ︷[
n∑

i=1

xi,

n∑

i=1

x2
i

]T

︸ ︷︷ ︸
g(T ,θ)

1︸︷︷︸
h(x)

Thus

T =




n∑

i=1

Xi

︸ ︷︷ ︸
T1

,
n∑

i=1

X2
i

︸ ︷︷ ︸
T2




is a (jointly) sufficient statistic for µ, σ2. Furthermore, as q(T ) = [n−1T1, (n− 1)−1(T2 − T 2
1 )] is a

1-1 function of T (T = [T1, T2]T )
S =

[
X, s2

]

is an equivalent sufficient statistic.

Similarly to Example 6, we can show minimal sufficiency of this statistic by showing that it indexes
the likelihood ratio surface {Λθ(X)}θ∈Θ, with θ = [µ, σ2], Θ = IR × IR+. Arbitrarily select the
reference point θo = [µo, σ

2
o ] = [0, 1] to obtain:

Λθ(x) =
fθ(x)
fθo(x)

=
(σo

σ

)n
e−nµ2/(2σ2) e[µ/σ2, −δ/2][

Pn
i=1 xi,

Pn
i=1 x2

i ]
T

,

where δ = σ2
o−σ2

σ2σ2
o

. Identifying τ =
[∑n

i=1 xi,
∑n

i=1 x2
i

]
, again condition 1 in Definition 1 is obviously

satisfied. Condition 2 in Definition 1 requires a bit more work. While Λθ(τ) is no longer an
invertible function of τ for for any single value of θ = [µ, σ2], we can find two values θ ∈ {θ1, θ2} in
Θ for which the vector function [Λθ1

(τ), Λθ2
(τ)] of τ is invertible in τ . Since this vector is specified

by Λ(x), this will imply that τ indexes the likelihood ratios.

To construct this invertible relation denote by λ = [λ1, λ2]T an observed pair of samples [Λθ1
(τ), Λθ2

(τ)]T

of the surface Λ(x). Now consider the problem of determining τ from the equation λ = [Λθ1
(τ), Λθ2

(τ)]T .
Taking the log of both sides and rearranging some terms, we see that this is equivalent to a 2× 2
linear system of equations of the form λ′ = Aτ , where A is a matrix involving θo, θ1, θ2 and λ′ is a
linear function of lnλ. You can verify that with the selection of θo = [0, 1], θ1 = [1, 1], θ2 = [0, 1/2]
we obtain δ = 0 or 1 for θ = θ1 or θ2, respectively, and A = diag(1,−1/2), an invertible matrix.
We therefore conclude that the vector [sample mean, sample variance] indexes the trajectories,
and this vector is therefore minimal sufficient.

Example 8 Sufficient statistic for the location of a Cauchy distribution

Assume that Xi ∼ f(x; θ) = 1
π

1
1+(x−θ)2

and, as usual, X = [X1, . . . , Xn]T is an i.i.d. sample.
Then

f(x; θ) =
n∏

i=1

1
π

1
1 + (xi − θ)2

=
1
πn

1∏n
i=1(1 + (xi − θ)2)

.

Here we encounter a difficulty: the denominator is a 2n-degree polynomial in θ whose roots depend
on all cross products xi1 . . . xip , p = 1, 2, . . . , n, of x′is. Thus no sufficient statistic exists having
dimension less than that (n) of the entire sample. Therefore, the minimal sufficient statistic is the
ordered statistic [X(1), . . . , X(n)]T and no finite dimensional sufficient statistic exists.
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3.5.4 EXPONENTIAL FAMILY OF DISTRIBUTIONS

Let θ = [θ1, . . . , θp]T take values in some parameter space Θ. The distribution fθ of a r.v. X is a
member of the p-parameter exponential family if for all θ ∈ Θ

fθ(x) = a(θ)b(x)e−cT (θ)t(x), −∞ < x < ∞ (21)

for some scalar functions a, b and some p-element vector functions c, t. Note that for any fθ in the
exponential family its support set {x : fθ(x) > 0} does not depend on θ. Note that, according to
our definition, for fθ to be a member of the p-parameter exponential family the dimension of the
vectors c(θ) and t(x) must be exactly p. This is to guarantee that the sufficient statistic has the
same dimension as the parameter vector θ. While our definition is the most standard [23, 26, 3],
some other books, e.g., [31], allow the dimension of the sufficient statistic to be different from p.
However, by allowing this we lose some important properties of exponential families [3].

The parameterization of an exponential family of distributions is not unique. In other words,
the exponential family is invariant to changes in parameterization. For example, let fθ, θ > 0,
be an the exponential family of densities with θ a positive scalar. If one defines α = 1/θ and
gα = f1/θ then gα, α > 0, is also in the exponential family, but possibly with a different definition
of the functions a(·), b(·), c(·) and t(·). More generally, if fθ(x) is a member of the p-dimensional
exponential family then transformation of the parameters by any invertible function of θ preserves
membership in the exponential family.

There exists a special parameterization of distributions in the exponential family, called the natural
parameterization, that has important advantages in terms of ease of estimation of these parameters.

Definition: Let the random variable X have distribution fθ(x) and assume that fθ is in the expo-
nential family, i.e., it can be expressed in the form (21). fθ is said to have a natural parameterization
if for all θ ∈ Θ: Eθ[t(X)] = θ.

In particular, as we will see in the next chapter, this means that having a natural parameterization
makes the statistic T = t(X) an unbiased estimator of θ.

Examples of distributions in the exponential family include: Gaussian with unknown mean or
variance, Poisson with unknown mean, exponential with unknown mean, gamma, Bernoulli with
unknown success probability, binomial with unknown success probability, multinomial with un-
known cell probabilities.

Distributions which are not from the exponential family include: Cauchy with unknown median,
uniform with unknown support, Fisher-F with unknown degrees of freedom.

When the statistical model is in the exponential family, sufficient statistics for the model param-
eters have a particularly simple form:

fθ(x) =
n∏

i=1

a(θ)b(xi)e−cT (θ)t(xi)

= an(θ) e

−cT (θ)

T︷ ︸︸ ︷
n∑

i=1

t(xi)

︸ ︷︷ ︸
g(T ,θ)

n∏

i=1

b(xi)

︸ ︷︷ ︸
h(x)


