STATISTICAL METHODS FOR SIGNAL PROCESSING

Alfred O. Hero

January 12, 2005

This set of notes is the primary source material for the course “Estimation, filtering and detection” taught by Prof. Alfred Hero over the period 1998-2004 at the University of Michigan Ann Arbor. The course pack is the property of Alfred O. Hero III and is copyright protected. Author can be reached at Dept. EECS, University of Michigan, Ann Arbor, MI 48109-2122
Tel: 734-763-0564.
email hero@eecs.umich.edu;
http://www.eecs.umich.edu/~hero/.
Contents

1 INTRODUCTION 9
 1.1 STATISTICAL SIGNAL PROCESSING 9
 1.2 PERSPECTIVE ADOPTED IN THIS BOOK 9
 1.2.1 PREREQUISITES 11

2 BACKGROUND 12
 2.1 NOTATION ... 12
 2.2 VECTOR AND MATRIX BACKGROUND 13
 2.2.1 ROW AND COLUMN VECTORS 13
 2.2.2 VECTOR/VECTOR MULTIPLICATION 13
 2.2.3 VECTOR/MATRIX MULTIPLICATION 14
 2.2.4 RANK OF A MATRIX 14
 2.2.5 MATRIX INVERSION 14
 2.2.6 EIGENVALUES OF A SYMMETRIC MATRIX 15
 2.2.7 MATRIX DIAGONALIZATION AND EIGENDECOMPOSITION 15
 2.2.8 QUADRATIC FORMS AND NON-NEGATIVE DEFINITE MATRICES 16
 2.3 POSITIVE DEFINITENESS OF SYMMETRIC PARTITIONED MATRICES . 16
 2.3.1 DETERMINANT OF A MATRIX 16
 2.3.2 TRACE OF A MATRIX 17
 2.4 SIGNALS AND SYSTEMS BACKGROUND 17
 2.4.1 GEOMETRIC SERIES 17
 2.4.2 LAPLACE AND FOURIER TRANSFORMS OF FUNCTIONS OF A CONTINUOUS VARIABLE 17
 2.4.3 Z-TRANSFORM AND DISCRETE-TIME FOURIER TRANSFORM (DTFT) 18
 2.4.4 CONVOLUTION: CONTINUOUS TIME 18
 2.4.5 CONVOLUTION: DISCRETE TIME 19
 2.4.6 CORRELATION: DISCRETE TIME 19
 2.4.7 RELATION BETWEEN CORRELATION AND CONVOLUTION 19
 2.4.8 CONVOLUTION AS A MATRIX OPERATION 19
 2.5 EXERCISES ... 20

3 STATISTICAL MODELS 22
 3.1 THE GAUSSIAN DISTRIBUTION AND ITS RELATIVES 22
 3.1.1 CHI-SQUARE 24
 3.1.2 GAMMA ... 25
 3.1.3 NON-CENTRAL CHI SQUARE 25
3.1.4 CHI-SQUARE MIXTURE ... 26
3.1.5 STUDENT-T ... 26
3.1.6 FISHER-F .. 27
3.1.7 CAUCHY .. 27
3.1.8 BETA ... 27
3.2 REPRODUCING DISTRIBUTIONS 28
3.3 FISHER-COCHRAN THEOREM 28
3.4 SAMPLE MEAN AND SAMPLE VARIANCE 29
3.5 SUFFICIENT STATISTICS .. 30
 3.5.1 SUFFICIENT STATISTICS AND THE REDUCTION RATIO 31
 3.5.2 DEFINITION OF SUFFICIENCY 32
 3.5.3 MINIMAL SUFFICIENCY ... 34
 3.5.4 EXPONENTIAL FAMILY OF DISTRIBUTIONS 38
 3.5.5 CHECKING IF A DENSITY IS IN THE EXPONENTIAL FAMILY .. 39
3.6 EXERCISES ... 39

4 FUNDAMENTALS OF PARAMETER ESTIMATION 42
 4.1 ESTIMATION INGREDIENTS .. 42
 4.2 ESTIMATION OF RANDOM SCALAR PARAMETERS 43
 4.2.1 MINIMUM MEAN SQUARED ERROR ESTIMATION 45
 4.2.2 MINIMUM MEAN ABSOLUTE ERROR ESTIMATOR 46
 4.2.3 MINIMUM MEAN UNIFORM ERROR ESTIMATION 48
 4.2.4 BAYES ESTIMATOR EXAMPLES 49
 4.3 ESTIMATION OF RANDOM VECTOR VALUED PARAMETERS 60
 4.3.1 VECTOR SQUARED ERROR 62
 4.3.2 VECTOR UNIFORM ERROR 62
 4.4 ESTIMATION OF NON-RANDOM PARAMETERS 62
 4.4.1 SCALAR ESTIMATION CRITERIA FOR NON-RANDOM PARAME-
 TERS .. 64
 4.4.2 METHOD OF MOMENTS (MOM) SCALAR ESTIMATORS 67
 4.4.3 MAXIMUM LIKELIHOOD (ML) SCALAR ESTIMATORS 70
 4.4.4 SCALAR CRAMÈRE-RAO BOUND (CRB) ON ESTIMATOR VARIANCE 73
 4.5 ESTIMATION OF MULTIPLE NON-RANDOM PARAMETERS 79
 4.5.1 MATRIX CRAMÈRE-RAO BOUND (CRB) ON COVARIANCE MATRIX 80
 4.5.2 METHODS OF MOMENTS (MOM) VECTOR ESTIMATION 84
 4.5.3 MAXIMUM LIKELIHOOD (ML) VECTOR ESTIMATION 84
 4.6 HANDLING NUISANCE PARAMETERS 88
 4.7 EXERCISES .. 90
5 **LINEAR LEAST SQUARES ESTIMATION**

5.1 MIN MSE SCALAR, LINEAR, AND AFFINE ESTIMATION 99

5.1.1 BEST CONSTANT ESTIMATOR OF RANDOM PARAMETERS ... 99

5.2 BEST LINEAR ESTIMATOR OF A SCALAR R.V. θ 100

5.3 BEST AFFINE ESTIMATOR OF A SCALAR R.V. θ 101

5.3.1 SUPERPOSITION PROPERTY OF LINEAR/AFFINE ESTIMATORS 102

5.4 ORTHOGONALITY CONDITION AND PROJECTION THEOREM 102

5.4.1 LINEAR MINIMUM MSE ESTIMATION REVISITED 106

5.4.2 AFFINE MINIMUM MSE ESTIMATION 107

5.4.3 OPTIMALITY OF AFFINE ESTIMATOR FOR LINEAR GAUSSIAN MODEL .. 108

5.5 BEST AFFINE ESTIMATION OF A VECTOR .. 108

5.6 NONSTATISTICAL LEAST SQUARES (LINEAR REGRESSION) 113

5.7 WEIGHTED LINEAR LEAST SQUARES .. 119

5.7.1 PROJECTION OPERATOR FORM OF WLS PREDICTOR 120

5.8 OPTIMALITY OF WLLS IN THE GAUSSIAN MODEL 123

5.9 EXERCISES .. 124

6 **OPTIMAL LINEAR FILTERING AND PREDICTION** 130

6.1 WIENER-HOPF EQUATIONS OF OPTIMAL FILTERING 130

6.2 NON-CAUSAL ESTIMATION .. 131

6.3 CAUSAL ESTIMATION .. 133

6.3.1 SPECIAL CASE OF WHITE NOISE MEASUREMENTS 134

6.3.2 GENERAL CASE OF NON-WHITE MEASUREMENTS 135

6.4 CAUSAL PREWHITENING VIA SPECTRAL FACTORIZATION 136

6.5 CAUSAL WIENER FILTERING .. 138

6.6 CAUSAL FINITE MEMORY TIME VARYING ESTIMATION 143

6.6.1 SPECIAL CASE OF UNCORRELATED MEASUREMENTS 143

6.6.2 CORRELATED MEASUREMENTS: THE INNOVATIONS FILTER 144

6.6.3 INNOVATIONS AND CHOLESKY DECOMPOSITION 145

6.7 TIME VARYING ESTIMATION/PREDICTION VIA THE KALMAN FILTER 147

6.7.1 DYNAMICAL MODEL .. 147

6.7.2 KALMAN RECURSIONS FOR INNOVATIONS AND STATE PREDICTION 148

6.7.3 KALMAN FILTER DERIVATION 149

6.8 KALMAN FILTERING: SPECIAL CASES 152

6.8.1 KALMAN PREDICTION 152
6.8.2 KALMAN FILTERING .. 153
6.9 KALMAN FILTER FOR SPECIAL CASE OF GAUSSIAN STATE AND NOISE 153
6.10 STEADY STATE KALMAN FILTER AND WIENER FILTER 153
6.11 SUMMARY OF STATISTICAL PROPERTIES OF THE INNOVATIONS ... 155
6.12 EXERCISES ... 156

7 FUNDAMENTALS OF DETECTION .. 164
7.1 THE GENERAL DETECTION PROBLEM 168
7.1.1 SIMPLE VS COMPOSITE HYPOTHESES 170
7.1.2 THE DECISION FUNCTION ... 170
7.2 BAYES APPROACH TO DETECTION 172
7.2.1 ASSIGNING PRIOR PROBABILITIES 172
7.2.2 MINIMIZATION OF AVERAGE RISK 173
7.2.3 OPTIMAL BAYES TEST MINIMIZES $E[C]$ 173
7.2.4 MINIMUM PROBABILITY OF ERROR TEST 174
7.2.5 PERFORMANCE OF BAYES LIKELIHOOD RATIO TEST 174
7.2.6 MIN-MAX BAYES DETECTOR 175
7.2.7 EXAMPLES .. 176
7.3 TESTING MULTIPLE HYPOTHESES 178
7.3.1 PRIOR PROBABILITIES ... 180
7.3.2 MINIMIZE AVERAGE RISK 181
7.3.3 DEFICIENCIES OF BAYES APPROACH 184
7.4 FREQUENTIST APPROACH TO DETECTION 184
7.4.1 CASE OF SIMPLE HYPOTHESES: $\theta \in \{\theta_0, \theta_1\}$ 185
7.5 ROC CURVES FOR THRESHOLD TESTS 188
7.6 EXERCISES ... 198

8 UNIFORMLY MOST POWERFUL TESTS AND ALTERNATIVES FOR COMPPOSITE HYPOTHESES 201
8.1 UNIFORMLY MOST POWERFUL (UMP) TESTS 201
8.2 GENERAL CONDITIONS FOR EXISTENCE OF UMP TESTS 215
8.3 COMPOSITE HYPOTHESIS DETECTION STRATEGIES 216
8.4 MINIMAX NEYMAN PEARSON DETECTION 217
8.5 LOCALLY MOST POWERFUL (LMP) SINGLE SIDED TEST 220
8.6 MOST POWERFUL UNBIASED (MPU) TESTS 226
8.7 LOCALLY MOST POWERFUL UNBIASED DOUBLE SIDED TEST 227
8.8 CFAR DETECTION .. 232
9

GLRT FOR THE I.I.D. GAUSSIAN MODEL

9.1 TESTS ON THE MEAN: σ^2 KNOWN 239

9.1.1 CASE III: $H_0 : \mu = \mu_o$, $H_1 : \mu \neq \mu_o$ 239

9.2 TESTS ON THE MEAN: σ^2 UNKNOWN 241

9.2.1 CASE I: $H_0 : \mu = \mu_o$, $\sigma^2 > 0$, $H_1 : \mu > \mu_o$, $\sigma^2 > 0$ 242

9.2.2 CASE II: $H_0 : \mu \leq \mu_o$, $\sigma^2 > 0$, $H_1 : \mu > \mu_o$, $\sigma^2 > 0$ 244

9.2.3 CASE III: $H_0 : \mu = \mu_o$, $\sigma^2 > 0$, $H_1 : \mu \neq \mu_o$, $\sigma^2 > 0$ 244

9.3 TESTS ON VARIANCE: KNOWN MEAN 245

9.3.1 CASE I: $H_0 : \sigma^2 = \sigma_o^2$, $H_1 : \sigma^2 > \sigma_o^2$ 245

9.3.2 CASE II: $H_0 : \sigma^2 \leq \sigma_o^2$, $H_1 : \sigma^2 > \sigma_o^2$ 247

9.3.3 CASE III: $H_0 : \sigma^2 = \sigma_o^2$, $H_1 : \sigma^2 \neq \sigma_o^2$ 248

9.4 TESTS ON VARIANCE: UNKNOWN MEAN 250

9.4.1 CASE I: $H_0 : \sigma^2 = \sigma_o^2$, $H_1 : \sigma^2 > \sigma_o^2$ 250

9.4.2 CASE II: $H_0 : \sigma^2 < \sigma_o^2$, $\mu \in \mathbb{R}$, $H_1 : \sigma^2 > \sigma_o^2$, $\mu \in \mathbb{R}$ 251

9.4.3 CASE III: $H_0 : \sigma^2 = \sigma_o^2$, $\mu \in \mathbb{R}$, $H_1 : \sigma^2 \neq \sigma_o^2$, $\mu \in \mathbb{R}$ 251

9.5 TESTS ON EQUALITY OF MEANS: UNKNOWN VARIANCE 252

9.5.1 CASE I: $H_0 : \mu_x \leq \mu_y$, $\sigma^2 > 0$, $H_1 : \mu_x > \mu_y$, $\sigma^2 > 0$ 252

9.5.2 CASE II: $H_0 : \mu_y \leq \mu_x$, $\sigma^2 > 0$, $H_1 : \mu_y > \mu_x$, $\sigma^2 > 0$ 254

9.6 TESTS ON EQUALITY OF VARIANCES 255

9.6.1 CASE I: $H_0 : \sigma_x^2 = \sigma_y^2$, $H_1 : \sigma_x^2 \neq \sigma_y^2$ 255

9.6.2 CASE II: $H_0 : \sigma_x^2 = \sigma_y^2$, $H_1 : \sigma_x^2 > \sigma_y^2$ 257

9.7 TESTS ON CORRELATION ... 258

9.7.1 CASE I: $H_0 : \rho = \rho_o$, $H_1 : \rho \neq \rho_o$ 258

9.7.2 CASE II: $H_0 : \rho = 0$, $H_1 : \rho > 0$ 260

9.8 EXERCISES ... 260

10

CONFIDENCE INTERVALS .. 262

10.1 DEFINITION OF CONFIDENCE INTERVAL 262

10.2 CONFIDENCE ON MEAN: KNOWN VAR 264

10.3 CONFIDENCE ON MEAN: UNKNOWN VAR 267

10.4 CONFIDENCE ON VARIANCE ... 268

10.5 CONFIDENCE ON DIFFERENCE OF TWO MEANS 269
10.6 CONFIDENCE ON DIFFERENCE OF TWO VARIANCES 269
10.7 CONFIDENCE ON CORRELATION COEFFICIENT 270
10.8 EXERCISES ... 272

11 DETECTION FOR SAMPLED GAUSSIAN WAVEFORMS 274
11.1 OFFLINE METHODS ... 274
 11.1.1 GENERAL CHARACTERIZATION OF LRT DECISION REGIONS .. 276
 11.1.2 CASE OF EQUAL COVARIANCES 279
 11.1.3 CASE OF EQUAL MEANS, UNEQUAL COVARIANCES 295
11.2 APPLICATION: DETECTION OF RANDOM SIGNALS 299
11.3 DETECTION OF NON-ZERO MEAN NON-STATIONARY SIGNAL IN WHITE
 NOISE .. 308
11.4 ONLINE IMPLEMENTATIONS OF OPTIMAL DETECTORS 310
 11.4.1 ONLINE DETECTION FOR NON-STATIONARY SIGNALS 310
 11.4.2 ONLINE DUAL KALMAN SIGNAL SELECTOR 311
 11.4.3 ONLINE SIGNAL DETECTOR VIA CHOLESKY 314
11.5 STEADY-STATE STATE-SPACE SIGNAL DETECTOR 316
11.6 EXERCISES ... 318

12 MULTI-CHANNEL GAUSSIAN GLRT 321
12.1 THE MULTIVARIATE GAUSSIAN MODEL 321
12.2 DOUBLE SIDED TEST OF VECTOR MEAN 322
12.3 TEST OF EQUALITY OF TWO MEAN VECTORS 327
12.4 TEST OF INDEPENDENCE ... 327
12.5 TEST OF WHITENESS .. 328
12.6 CONFIDENCE REGIONS ON VECTOR MEAN 330
12.7 EXAMPLES .. 330
12.8 EXERCISES ... 334

13 TESTING DISTRIBUTION OF A RANDOM SAMPLE 336
13.1 EMPIRICAL DISTRIBUTIONS .. 336
 13.1.1 DISTRIBUTION OF EMPIRICAL CDF 336
13.2 KOLMOGOROV-SMIRNOV TEST 337
 13.2.1 CONFIDENCE BAND FOR CDF 339
13.3 GLRT USING HISTOGRAM ... 341
 13.3.1 DISTRIBUTION OF HISTOGRAM 342
 13.3.2 GLRT AND KL DISTANCE 343
 13.3.3 GLRT FOR CLOSE ALTERNATIVES 344
13.4 CONFIDENCE BAND FOR CDF .. 344
13.5 TESTING FOR GAUSSIAN DISTRIBUTION 346

14 BIBLIOGRAPHY 348
1 INTRODUCTION

1.1 STATISTICAL SIGNAL PROCESSING

Many engineering applications require extraction of a signal or parameter of interest from degraded measurements. To accomplish this it is often useful to deploy fine-grained statistical models; diverse sensors which acquire extra spatial, temporal, or polarization information; or multi-dimensional signal representations, e.g. time-frequency or time-scale. When applied in combination these approaches can be used to develop highly sensitive signal estimation, detection, or tracking algorithms which can exploit small but persistent differences between signals, interferences, and noise. Conversely, these approaches can be used to develop algorithms to identify a channel or system producing a signal in additive noise and interference, even when the channel input is unknown but has known statistical properties.

Broadly stated, statistical signal processing is concerned with the reliable estimation, detection and classification of signals which are subject to random fluctuations. Statistical signal processing has its roots in probability theory, mathematical statistics and, more recently, systems theory and statistical communications theory. The practice of statistical signal processing involves: (1) description of a mathematical and statistical model for measured data, including models for sensor, signal, and noise; (2) careful statistical analysis of the fundamental limitations of the data including deriving benchmarks on performance, e.g. the Cramèr-Rao, Ziv-Zakai, Barankin, Rate Distortion, Chernov, or other lower bounds on average estimator/detector error; (3) development of mathematically optimal or suboptimal estimation/detection algorithms; (4) asymptotic analysis of error performance establishing that the proposed algorithm comes close to reaching a benchmark derived in (2); (5) simulations or experiments which compare algorithm performance to the lower bound and to other competing algorithms. Depending on the specific application, the algorithm may also have to be adaptive to changing signal and noise environments. This requires incorporating flexible statistical models, implementing low-complexity real-time estimation and filtering algorithms, and on-line performance monitoring.

1.2 PERSPECTIVE ADOPTED IN THIS BOOK

This book is at the interface between mathematical statistics and signal processing. The idea for the book arose in 1986 when I was preparing notes for the engineering course on detection, estimation and filtering at the University of Michigan. There were then no textbooks available which provided a firm background on relevant aspects of mathematical statistics and multivariate analysis. These fields of statistics formed the backbone of this engineering field in the 1940’s 50’s and 60’s when statistical communication theory was first being developed. However, more recent textbooks have downplayed the important role of statistics in signal processing in order to accommodate coverage of technological issues of implementation and data acquisition for specific engineering applications such as radar, sonar, and communications. The result is that students finishing the course would have a good notion of how to solve focussed problems in these applications but would find it difficult either to extend the theory to a moderately different problem or to apply the considerable power and generality of mathematical statistics to other applications areas.

The technological viewpoint currently in vogue is certainly a useful one; it provides an essential engineering backdrop to the subject which helps motivate the engineering students. However, the disadvantage is that such a viewpoint can produce a disjointed presentation of the component
parts of statistical signal processing making it difficult to appreciate the commonalities between detection, classification, estimation, filtering, pattern recognition, confidence intervals and other useful tools. These commonalities are difficult to appreciate without adopting a proper statistical perspective. This book strives to provide this perspective by more thoroughly covering elements of mathematical statistics than other statistical signal processing textbooks. In particular we cover point estimation, interval estimation, hypothesis testing, time series, and multivariate analysis. In adopting a strong statistical perspective the book provides a unique viewpoint on the subject which permits unification of many areas of statistical signal processing which are otherwise difficult to treat in a single textbook.

The book is organized into chapters listed in the attached table of contents. After a quick review of matrix algebra, systems theory, and probability, the book opens with chapters on fundamentals of mathematical statistics, point estimation, hypothesis testing, and interval estimation in the standard context of independent identically distributed observations. Specific topics in these chapters include: least squares techniques; likelihood ratio tests of hypotheses; e.g. testing for whiteness, independence, in single and multi-channel populations of measurements. These chapters provide the conceptual backbone for the rest of the book. Each subtopic is introduced with a set of one or two examples for illustration. Many of the topics here can be found in other graduate textbooks on the subject, e.g. those by Van Trees, Kay, and Srinath et al. However, the coverage here is broader with more depth and mathematical detail which is necessary for the sequel of the textbook. For example in the section on hypothesis testing and interval estimation the full theory of sampling distributions is used to derive the form and null distribution of the standard statistical tests of shift in mean, variance and correlation in a Normal sample.

The second part of the text extends the theory in the previous chapters to non i.i.d. sampled Gaussian waveforms. This group contains applications of detection and estimation theory to single and multiple channels. As before, special emphasis is placed on the sampling distributions of the decision statistics. This group starts with offline methods; least squares and Wiener filtering; and culminates in a compact introduction of on-line Kalman filtering methods. A feature not found in other treatments is the separation principle of detection and estimation which is made explicit via Kalman and Wiener filter implementations of the generalized likelihood ratio test for model selection, reducing to a whiteness test of each the innovations produced by a bank of Kalman filters. The book then turns to a set of concrete applications areas arising in radar, communications, acoustic and radar signal processing, imaging, and other areas of signal processing. Topics include: testing for independence; parametric and non-parametric testing of a sample distribution; extensions to complex valued and continuous time observations; optimal coherent and incoherent receivers for digital and analog communications.

A future revision will contain chapters on performance analysis, including asymptotic analysis and upper/lower bounds on estimators and detector performance; non-parametric and semiparametric methods of estimation; iterative implementation of estimators and detectors via steepest ascent, Monte Carlo Markov Chain simulation, and the EM algorithm; and sequential design of experiments. It will also have chapters on applications areas including: testing of binary Markov sequences and applications to internet traffic monitoring; spatio-temporal signal processing with multi-sensor sensor arrays; CFAR (constant false alarm rate) detection strategies for Electro-optical (EO) and Synthetic Aperture Radar (SAR) imaging; and channel equalization.
1.2.1 PREREQUISITES

Readers are expected to possess a background in basic probability and random processes at the level of Stark&Woods [41], Ross [34] or Papoulis [30], exposure to undergraduate vector and matrix algebra at the level of Noble and Daniel [28] or Shilov [38], and basic undergraduate course on signals and systems at the level of Oppenheim and Willsky [29]. These notes have been used to teach a first year graduate level course (42 hours) in the Department of Electrical Engineering and Computer Science at the University of Michigan from 1997 to 2004 and a one week long short course (40 hours) given at EG&G in Las Vegas in 1998.

The author would like to thank Hyung Soo Kim, Robby Gupta, and Mustafa Demirci for their help with drafting the figures for these notes. He would also like to thank the numerous students at UM whose comments led to an improvement of the presentation. Special thanks goes to Raviv Raich and Aaron Lanterman of Georgia Tech who provided detailed comments and suggestions for improvement of earlier versions of these notes. \textbf{End of chapter}
2 BACKGROUND

Keywords: vector and matrix operations, matrix inverse identities, linear systems, transforms, convolution, correlation.

Before launching into statistical signal processing we need to set the stage by defining our notation. We then briefly review some elementary concepts in linear algebra and signals and systems. The following are some useful references for this review material.

REFERENCES

* Noble and Daniel [28]: an elementary linear algebra textbook.
* Golub and Van Loan [8]: a numerical linear algebra textbook with lots of algorithms useful for signal processing.
* Graybill [10]: a matrix algebra textbook which has statistical application focus. Lots of useful identities for multivariate Gaussian models.
* Oppenheim and Willsky [29]: an elementary textbook on signals and systems.
* Proakis and Manolakis [32]: another elementary textbook on signals and systems.

2.1 NOTATION

We attempt to stick with widespread notational conventions in this text. However inevitably exceptions must sometimes be made for clarity.

In general upper case letters, e.g. X, Y, Z, from the end of the alphabet denote random variables, i.e. functions on a sample space, and their lower case versions, e.g. x, denote realizations, i.e. evaluations of these functions at a sample point, of these random variables. We reserve lower case letters from the beginning of the alphabet, e.g. a, b, c, for constants and lower case letters in the middle of the alphabet, e.g. i, j, k, l, m, n, for integer variables. Script and caligraphic characters, e.g. \mathcal{S}, \mathcal{I}, Θ, and \mathcal{X}, are used to denote sets of values. Exceptions are caligraphic upper case letters which denote standard probability distributions, e.g. Gaussian, Cauchy, and Student-t distributions $\mathcal{N}(x), \mathcal{C}(v), \mathcal{T}(t)$, respectively, and script notation for power spectral density \mathcal{P}_x.

Vector valued quantities, e.g. \mathbf{x}, X, are denoted with an underscore and matrices, e.g. A, are bold upper case letters from the beginning of the alphabet. An exception is the matrix R which we use for the covariance matrix of a random vector. The elements of an $m \times n$ matrix A are denoted generically $\{a_{ij}\}_{i,j=1}^{m,n}$ and we also write $A = (a_{ij})_{i,j=1}^{m,n}$ when we need to spell out the entries explicitly.

The letter f is reserved for a probability density function and p is reserved for a probability mass function. Finally in many cases we deal with functions of two or more variables, e.g. the density function $f(x; \theta)$ of a random variable X parameterized by a parameter θ. We use subscripts to emphasize that we are fixing one of the variables, e.g. $f_\theta(x)$ denotes the density function over x in a sample space $\mathcal{X} \subset \mathbb{R}$ for a fixed θ in a parameter space Θ. However, when dealing with multivariate densities for clarity we will prefer to explicitly subscript with the appropriate ordering of the random variables, e.g. $f_{X,Y}(x, y; \theta)$ or $f_{X|Y}(x|y; \theta)$.
2.2 VECTOR AND MATRIX BACKGROUND

2.2.1 ROW AND COLUMN VECTORS

A vector is an ordered list of \(n \) values:

\[
\mathbf{x} = \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
\]

which resides in \(\mathbb{R}^n \).

Convention: in this course \(\mathbf{x} \) is (almost) always a column vector. Its transpose is the row vector

\[
\mathbf{x}^T = \begin{bmatrix}
x_1 & \cdots & x_n
\end{bmatrix}
\]

When the elements \(x_i = u + jv \) are complex (\(u, v \) real valued, \(j = \sqrt{-1} \)) the Hermitian transpose is defined as

\[
\mathbf{x}^H = \begin{bmatrix}
x_1^* & \cdots & x_n^*
\end{bmatrix}
\]

where \(x_i^* = u - jv \) is the complex conjugate of \(x_i \).

Some common vectors we will see are the vector of all ones and the \(j \)-th elementary vector, which is the \(j \)-th column of the identity matrix:

\[
\mathbf{1}^T = [1, \ldots, 1]^T, \quad e_j = [0, \ldots, 0, \underbrace{1}_{j\text{-th}}, 0, \ldots 0]^T
\]

2.2.2 VECTOR/Vektor MULTIPLICATION

For 2 vectors \(\mathbf{x} \) and \(\mathbf{y} \) of the same length \(n \) their “inner product” is the scalar

\[
\mathbf{x}^T \mathbf{y} = \sum_{i=1}^{n} x_i y_i
\]

For 2 vectors \(\mathbf{x} \) and \(\mathbf{y} \) of possibly different lengths \(n, m \) their “outer product” is the \(n \times m \) matrix

\[
\mathbf{x} \mathbf{y}^T = \begin{bmatrix}
x_1 y_1 & \cdots & x_1 y_m \\
\vdots & \ddots & \vdots \\
x_n y_1 & \cdots & x_n y_m
\end{bmatrix}
\]
2.2.3 VECTOR/MATRIX MULTIPLICATION

Let A be an $m \times n$ matrix with columns a_1, \ldots, a_n and x be any n-element vector.

The (compatible) product Ax is a (column) vector composed of linear combinations of the columns of A

$$Ax = \sum_{j=1}^{n} x_j a_j$$

For y an m-element vector the product $y^T A$ is a (row) vector composed of linear combinations of the rows of A

$$y^T A = \sum_{i=1}^{m} y_i a_{i*}$$

2.2.4 RANK OF A MATRIX

The (column) rank of a matrix A is equal to the number its columns which are linearly independent.

If A has full rank then

$$0 = Ax = \sum_{i} x_i a_{i*} \Leftrightarrow x = 0.$$

If in addition A is square then it is said to be non-singular.

2.2.5 MATRIX INVERSION

If A is non-singular square matrix then it has an inverse A^{-1} which satisfies the relation $AA^{-1} = I$.

In the special case of a 2×2 matrix the matrix inverse is given by (Cramér’s formula)

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \quad \text{if} \quad ad \neq bc$$

Sometimes when a matrix has special structure its inverse has a simple form. The books by Graybill [10] and Golub and VanLoan [8] give many interesting and useful examples. Some results which we will need in this text are: the Woodbury-Sherman-Morisse identity

$$[A + UV^T]^{-1} = A^{-1} - A^{-1} U [I + V^T A^{-1} U]^{-1} V^T A^{-1},$$

where A, U, V are compatible matrices, $[A + UV^T]^{-1}$ and A^{-1} exist; and the partitioned matrix inverse identity

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^{-1} = \begin{pmatrix} A_{11}^{-1} - A_{11} A_{12} A_{22}^{-1} A_{21}^{-1} & -A_{11}^{-1} A_{12} [A_{22} - A_{21} A_{11}^{-1} A_{12}^{-1}]^{-1} \\ -A_{22}^{-1} A_{21} [A_{11} - A_{12} A_{22}^{-1} A_{21}]^{-1} & A_{22}^{-1} - A_{22}^{-1} A_{21} A_{11}^{-1} A_{12}^{-1} \end{pmatrix},$$

assuming that all the indicated inverses exist.
2.2.6 EIGENVALUES OF A SYMMETRIC MATRIX

If \(R \) is arbitrary \(n \times n \) symmetric matrix, that is, \(R^T = R \), then there exist a set of \(n \) orthonormal eigenvectors \(\nu_i \),

\[
\nu_i^T \nu_j = \Delta_{ij} = \begin{cases}
1, & i = j \\
0, & i \neq j
\end{cases}
\]

and a set of associated eigenvectors \(\lambda_i \) such that:

\[R \nu_i = \lambda_i \nu_i, \quad i = 1, \ldots, n. \]

These eigenvalues and eigenvectors satisfy:

\[
\nu_i^T R \nu_j = \lambda_i, \quad i = 1, \ldots, n. \\
\nu_i^T R \nu_j = 0, \quad i \neq j.
\]

2.2.7 MATRIX DIAGONALIZATION AND EIGENDECOMPOSITION

Let \(U = [\nu_1, \ldots, \nu_n] \) be the \(n \times n \) matrix formed from the eigenvectors of a symmetric matrix \(R \). If \(R \) is real symmetric \(U \) is a real orthogonal matrix while if \(R \) is complex Hermitian symmetric \(U \) is a complex unitary matrix:

\[
U^T U = I, \quad (U \text{ an orthogonal matrix}) \\
U^H U = I, \quad (U \text{ a unitary matrix}).
\]

where as before \(H \) denotes Hermitian transpose. As the Hermitian transpose of a real matrix is equal to its ordinary transpose, we will use the more general notation \(A^H \) for any (real or complex) matrix \(A \).

The matrix \(U \) can be used to diagonalize \(R \)

\[
U^H R U = \Lambda, \quad (3)
\]

In cases of both real and Hermitian symmetric \(R \) the matrix \(\Lambda \) is diagonal and real valued

\[
\Lambda = \text{diag}(\lambda_i) = \begin{bmatrix}
\lambda_1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_n
\end{bmatrix},
\]

where \(\lambda_i \)'s are the eigenvalues of \(R \).

The expression (3) implies that

\[
R = U \Lambda U^H,
\]

which is called the eigendecomposition of \(R \). As \(\Lambda \) is diagonal, an equivalent summation form for this eigendecomposition is

\[
R = \sum_{i=1}^{n} \lambda_i \nu_i \nu_i^H. \quad (4)
\]
2.2.8 QUADRATIC FORMS AND NON-NEGATIVE DEFINITE MATRICES

For a square symmetric matrix \mathbf{R} and a compatible vector \mathbf{x}, a quadratic form is the scalar defined by $\mathbf{x}^T \mathbf{R} \mathbf{x}$. The matrix \mathbf{R} is non-negative definite (nnd) if for any \mathbf{x}

$$
\mathbf{x}^T \mathbf{R} \mathbf{x} \geq 0.
$$

(5)

\mathbf{R} is positive definite (pd) if it is nnd and "=" in (5) implies that $\mathbf{x} = 0$, or more explicitly \mathbf{R} is pd if

$$
\mathbf{x}^T \mathbf{R} \mathbf{x} > 0, \quad \mathbf{x} \neq 0.
$$

(6)

Examples of nnd (pd) matrices:

* $\mathbf{R} = \mathbf{B}^T \mathbf{B}$ for arbitrary (pd) matrix \mathbf{B}

* \mathbf{R} symmetric with only non-negative (positive) eigenvalues

Rayleigh Theorem: If \mathbf{A} is a nnd $n \times n$ matrix with eigenvalues $\{\lambda_i\}_{i=1}^n$ the quadratic form

$$
\min(\lambda_i) \leq \frac{\mathbf{u}^T \mathbf{A} \mathbf{u}}{\mathbf{u}^T \mathbf{u}} \leq \max(\lambda_i)
$$

where the lower bound is attained when \mathbf{u} is the eigenvector of \mathbf{A} associated with the minimum eigenvalue of \mathbf{A} and the upper bound is attained by the eigenvector associated with the maximum eigenvalue of \mathbf{A}.

2.3 POSITIVE DEFINITENESS OF SYMMETRIC PARTITIONED MATRICES

If \mathbf{A} is a symmetric matrix with partition representation (2) then it is easily shown that

$$
\mathbf{A} = \begin{bmatrix}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{bmatrix} = \begin{bmatrix}
\mathbf{I} & -\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{bmatrix}^{-1} \begin{bmatrix}
\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{O}^T \\
\mathbf{O} & \mathbf{A}_{22}
\end{bmatrix} \begin{bmatrix}
\mathbf{I} & \mathbf{O}^T \\
-\mathbf{A}_{22}^{-1} \mathbf{A}_{21} & \mathbf{I}
\end{bmatrix}^{-1},
$$

(7)

as long as \mathbf{A}_{22}^{-1} exists. Here \mathbf{O} denotes a block of zeros. This implies: if \mathbf{A} is positive definite the matrices $\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}$ and \mathbf{A}_{22} are pd. By using an analogous identity we can conclude that $\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$ and \mathbf{A}_{11} are also pd.

2.3.1 DETERMINANT OF A MATRIX

If \mathbf{A} is any square matrix its determinant is

$$
|\mathbf{A}| = \prod_i \lambda_i
$$

Note: a square matrix is non-singular iff its determinant is non-zero.

If \mathbf{A} is partitioned as in (2) and \mathbf{A}_{11}^{-1} and \mathbf{A}_{22}^{-1} exist then

$$
|\mathbf{A}| = |\mathbf{A}_{11}| |\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}| = |\mathbf{A}_{22}| |\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}|
$$

(8)

This follows from the decomposition (7).
2.3.2 TRACE OF A MATRIX

For any square matrix $A = ((a_{ij}))$ the trace of A is defined as

$$\text{trace}\{A\} = \sum_i a_{ii} = \sum_i \lambda_i$$

One has an important identity: for compatible matrices A and B

$$\text{trace}\{AB\} = \text{trace}\{BA\}.$$

This has the following implication for quadratic forms:

$$x^T R x = \text{trace}\{xx^T R\}.$$

2.4 SIGNALS AND SYSTEMS BACKGROUND

Here we review some of the principal results that will be useful for dealing with signals and systems encountered in this book.

2.4.1 GEOMETRIC SERIES

One of the most useful formulas in discrete time signal and systems engineering is:

$$\sum_{i=0}^{n} a^n = \frac{1 - a^{n+1}}{1 - a}, \quad \text{if } a \neq 1; \quad \sum_{i=0}^{\infty} a^n = \frac{1}{1 - a}, \quad \text{if } |a| < 1.$$

2.4.2 LAPLACE AND FOURIER TRANSFORMS OF FUNCTIONS OF A CONTINUOUS VARIABLE

If $h(t), -\infty < t < \infty$, a square integrable function of a continuous variable t (usually time) then its Laplace and Fourier transforms are defined as follows.

The Laplace transform of h is

$$\mathcal{L}\{h\} = H(s) = \int_{-\infty}^{\infty} h(t)e^{-st} \, dt$$

where $s = \sigma + j\omega \in \mathbb{C}$ is a complex variable.

The Fourier transform of h is

$$\mathcal{F}\{h\} = H(\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} \, dt$$

Note: $\mathcal{F}\{h\} = \mathcal{L}\{h\}|_{s=j\omega}$.

Example: if $h(t) = e^{-at}u(t)$, for $a > 0$, then the Laplace transform is

$$H(s) = \int_{0}^{\infty} e^{-at} e^{-st} \, dt = \int_{0}^{\infty} e^{-(a+s)t} \, dt = \frac{-1}{a+s} e^{-(a+s)t} \bigg|_{t=0}^{\infty} = \frac{1}{a+s}.$$
2.4.3 Z-TRANSFORM AND DISCRETE-TIME FOURIER TRANSFORM (DTFT)

If \(h_k, k = \ldots, -1, 0, 1, \ldots \), is a square summable function of a discrete variable then its Z-transform and discrete-time Fourier transform (DTFT) are defined as follows.

The Z-transform is

\[
Z\{h\} = H(z) = \sum_{k=-\infty}^{\infty} h_k z^{-k}
\]

The DTFT is

\[
F\{h\} = H(\omega) = \sum_{k=-\infty}^{\infty} h_k e^{-j\omega k}
\]

Note: \(H(\omega) \) really means \(H(e^{j\omega}) \) and is an abuse of notation

- \(F\{h\} = Z\{h\}|_{z=e^{j\omega}} \)
- the DTFT is always periodic in \(\omega \) with period \(2\pi \).

Example: if \(h_k = a^{|k|} \), then for \(|az^{-1}| < 1 \), the Z-transform is

\[
H(z) = \sum_{k=-\infty}^{\infty} a^{|k|} z^{-k} = \sum_{k=-\infty}^{-1} a^{-k} z^{-k} + \sum_{k=0}^{\infty} a^k z^{-k} = (az)^k + \sum_{k=0}^{\infty} (az^{-1})^k = \frac{az^{-1}}{1-az^{-1}} + \frac{1}{1-az^{-1}}
\]

Likewise the DTFT is (for \(|a| < 1 \)):

\[
H(\omega) = H(z)|_{z=e^{j\omega}} = \frac{1-a^2}{1-2a \cos \omega + a^2}
\]

2.4.4 CONVOLUTION: CONTINUOUS TIME

If \(h(t) \) and \(x(t) \) are square integrable functions of a continuous variable \(t \) then the convolution of \(x \) and \(h \) is defined as

\[
(h \ast x)(t) = \int_{-\infty}^{\infty} h(t-\tau) x(\tau) \, d\tau
\]

Note: The convolution of \(h \) and \(x \) is a waveform indexed by time \(t \). \((h \ast x)(t) \) is this waveform evaluated at time \(t \) and is frequently denoted \(h(t) \ast x(t) \).

Example: \(h(t) = e^{-at}u(t) \), for \(a > 0 \), (the filter) and \(x(t) = e^{-bt}u(t) \), for \(b > 0 \), (the filter input) then

\[
(h \ast x)(t) = \int_{-\infty}^{\infty} e^{-a(t-\tau)} e^{-b\tau} u(t-\tau) u(\tau) \, d\tau = \left(\int_{0}^{t} e^{-a(t-\tau)} e^{-b\tau} \, d\tau \right) u(t) = e^{-at} \left(\int_{0}^{t} e^{-a(t-\tau)} e^{\tau} \, d\tau \right) u(t) = \frac{e^{-at} - e^{-bt}}{b-a} u(t)
\]
2.4.5 CONVOLUTION: DISCRETE TIME

If \(h_k \) and \(x_k \) are square integrable sequences then

\[
\begin{align*}
& h_n \ast x_n = \sum_{j=-\infty}^{\infty} h_j x_{n-j} = \sum_{j=-\infty}^{\infty} h_{n-j} x_j \\
\end{align*}
\]

\(h_k \) is called a “causal” filter if it is zero for negative indices:

\[
h_k = 0, \quad k < 0
\]

2.4.6 CORRELATION: DISCRETE TIME

For time sequences \(\{x_k\}_{k=1}^{n} \) and \(\{y_k\}_{k=1}^{n} \) their temporal correlation is

\[
z_n = \sum_{j=1}^{n} x_k y_k^*
\]

2.4.7 RELATION BETWEEN CORRELATION AND CONVOLUTION

\[
z_n = \sum_{j=1}^{n} x_k y_k^* = \sum_{j=-\infty}^{\infty} x_k h_{n-k} = h_n \ast x_n
\]

where

\[
h_k = \begin{cases}
 y_{n-k}^*, & k = 1, \ldots, n \\
 0, & \text{o.w.}
\end{cases}
\]

2.4.8 CONVOLUTION AS A MATRIX OPERATION

Let \(h_k \) be a causal filter and let \(x_k \) be an input starting at time \(k = 1 \). Arranging \(n \) outputs \(z_k \) in a vector \(z \) it is easy to see that

\[
z = \begin{bmatrix}
z_n \\
z_{n-1} \\
\vdots \\
z_1
\end{bmatrix} = \begin{bmatrix}
\sum_{j=1}^{n} h_{n-j} x_j \\
\vdots \\
\sum_{j=1}^{n} h_{1-j} x_j
\end{bmatrix} = \begin{bmatrix}
h_0 & h_1 & \cdots & h_{n-1} \\
0 & h_0 & \cdots & h_{n-2} \\
\vdots & \ddots & \ddots & \ddots \\
0 & \cdots & h_0 & h_1 \\
0 & \cdots & 0 & h_0
\end{bmatrix} \begin{bmatrix}
x_n \\
x_{n-1} \\
\vdots \\
x_1
\end{bmatrix}
\]
2.5 **EXERCISES**

2.1 Let \(\mathbf{a}, \mathbf{b} \) be \(n \times 1 \) vectors and let \(\mathbf{C} \) be an invertible \(n \times n \) matrix. Assuming \(\alpha \) is not equal to \(-1/(\mathbf{a}^T \mathbf{C}^{-1} \mathbf{b})\) show the following identity

\[
[\mathbf{C} + \alpha \mathbf{a} \mathbf{b}^T]^{-1} = \mathbf{C}^{-1} - \mathbf{C}^{-1} \mathbf{a} \mathbf{b}^T \mathbf{C}^{-1}/(1 + \alpha \mathbf{a}^T \mathbf{C}^{-1} \mathbf{b}).
\]

2.2 A discrete time LTI filter \(h(k) \) is causal when \(h(k) = 0, \ k < 0 \) and anticausal when \(h(k) = 0, \ k > 0 \). Show that if \(|h(k)| < \infty \) for all \(k \), the transfer function \(H(z) = \sum_{k=-\infty}^{\infty} h(k)z^{-k} \) of a causal LTI has no singularities outside the unit circle, i.e. \(|H(z)| < \infty, \ |z| > 1 \) while an anticausal LTI has no singularities inside the unit circle, i.e. \(|H(z)| < \infty, \ |z| < 1 \). (Hint: generalized triangle inequality \(|\sum_i a_i| \leq \sum |a_i| \))

2.3 A discrete time LTI filter \(h(k) \) is said to be BIBO stable when \(\sum_{k=-\infty}^{\infty} |h(k)| < \infty \). Define the transfer function (Z-transform) \(H(z) = \sum_{k=-\infty}^{\infty} h(k)z^{-k} \), for \(z \) a complex variable.

(a) Show that \(H(z) \) has no singularities on the unit circle, i.e \(|H(z)| < \infty, \ |z| = 1 \).

(b) Show that if a BIBO stable \(h(k) \) is causal then \(H(z) \) has all its singularities (poles) strictly inside the unit circle, i.e \(|H(z)| < \infty, \ |z| > 1 \).

(c) Show that if a BIBO stable \(h(k) \) is anticausal, i.e. \(h(k) = 0, \ k > 0 \), then \(H(z) \) has all its singularities (poles) strictly outside the unit circle, i.e \(|H(z)| < \infty, \ |z| < 1 \).

2.4 If you are only given the mathematical form of the transfer function \(H(z) \) of an LTI, and not told whether it corresponds to an LTI which is causal, anticausal, or stable, then it is not possible to uniquely specify the impulse response \(\{h_k\}_k \). This simple example illustrate this fact. The regions \(\{z : |z| > a\} \) and \(\{z : |z| \leq a\} \), specified in (a) and (b) are called the regions of convergence of the filter and specify whether the filter is stable, causal or anticausal.

Let \(H(z) \) be

\[
H(z) = \frac{1}{1 - az^{-1}}
\]

(a) Show that if the LTI is causal, then for \(|z| > |a| \) you can write \(H(z) \) as the convergent series

\[
H(z) = \sum_{k=0}^{\infty} a^k z^{-k}, \quad |z| > |a|
\]

which corresponds to \(h_k = a^k, \ k = 0, 1, \ldots \) and \(h_k = 0, \ k < 0 \).

(b) Show that if the LTI is anticausal, then for \(|z| < |a| \) you can write \(H(z) \) as the convergent series

\[
H(z) = -\sum_{k=0}^{\infty} a^{-k} z^{k+1}, \quad |z| < |a|
\]

which corresponds to \(h_k = -a^{-k}, \ k = 1, 2, \ldots \) and \(h_k = 0, \ k \geq 0 \).

(c) Show that if \(|a| < 1 \) then the causal LTI is BIBO stable while the anti-causal LTI is BIBO unstable while if \(|a| > 1 \) then the reverse is true. What happens to stability when \(|a| = 1 \)?

2.5 An LTI has transfer function

\[
H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}
\]
(a) If you are told that the LTI is stable specify the region of convergence (ROC) in the z-plane, i.e. specify the range of values of $|z|$ for which $|H(z)| < \infty$, and specify the impulse response.

(b) If you are told that the LTI is causal specify the region of convergence (ROC) in the z-plane, and specify the impulse response.

(c) If you are told that the LTI is anticausal specify the region of convergence (ROC) in the z-plane, and specify the impulse response.

End of chapter
3 STATISTICAL MODELS

Keywords: sampling distributions, sufficient statistics, exponential families.

Estimation, detection and classification can be grouped under the broad heading of statistical inference which is the process of inferring properties about the distribution of a random variable X given a realization x, which is also called a data sample, a measurement, or an observation. A key concept is that of the statistical model which is simply a hypothesized probability distribution or density function $f(x)$ for X. Broadly stated statistical inference explores the possibility of fitting a given model to the data x. To simplify this task it is common to restrict $f(x)$ to a class of parameteric models $\{f(x; \theta)\}_{\theta \in \Theta}$, where $f(x; \cdot)$ is a known function and θ is a vector of unknown parameters taking values in a parameter space Θ. In this special case statistical inference boils down to inferring properties of the true value of θ parameterizing $f(x; \theta)$ that generated the data sample x.

In this chapter we discuss several models that are related to the ubiquitous Gaussian distribution, the more general class of exponential families of distributions, and the important concept of a sufficient statistic for inferring properties about θ.

REFERENCES:
* Rao [33], a comprehensive introduction to linear multivariate analysis at the graduate level.
* Manoukian [25], a concise compilation of principal results in sampling distributions and statistics. More a reference than a textbook.
* Mood, Graybill and Boes [26], an undergraduate introduction to mathematical statistics with lots of fun exercises and examples.
* Johnson et al [17], the first of a set of several volumes of a comprehensive encyclopedia of probability distributions and their properties.

3.1 THE GAUSSIAN DISTRIBUTION AND ITS RELATIVES

The Gaussian distribution and its close relatives play a major role in parameteric statistical inference due to the relative simplicity of the Gaussian model and its broad applicability (recall the Central Limit Theorem!). Indeed, in engineering and science the Gaussian distribution is probably the most commonly invoked distribution for random measurements. The Gaussian distribution is also called the Normal distribution. The probability density function (pdf) of a Gaussian random variable (rv) X is parameterized by two parameters, θ_1 and θ_2, which are the location parameter, denoted μ ($\mu \in \mathbb{R}$), and the (squared) scale parameter, denoted σ^2 ($\sigma^2 > 0$). The pdf of this Gaussian rv has the form

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

When $\mu = 0$ and $\sigma^2 = 1$, X is said to be a standard Gaussian (Normal) rv. A Gaussian random variable with location parameter μ and scale parameter $\sigma > 0$ can be represented by

$$X = \sigma Z + \mu,$$

where Z is a standard Gaussian rv.
The cumulative density function (cdf) of a standard Gaussian random variable \(Z \) is denoted \(\mathcal{N}(z) \) and is defined in the conventional manner
\[
\mathcal{N}(z) = P(Z \leq z).
\]

Equivalently,
\[
\mathcal{N}(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{v^2}{2}} dv.
\]

Using (9) the cdf of a non-standard Gaussian rv \(X \) with parameters \(\mu \) and \(\sigma^2 \) can be expressed in terms of the cdf \(\mathcal{N}(z) \) of a standard Gaussian rv \(Z \):
\[
P(X \leq x) = P\left(\frac{(X - \mu)/\sigma}{Z} \leq \frac{(x - \mu)/\sigma}{z} \right) = \mathcal{N}\left(\frac{x - \mu}{\sigma} \right)
\]

The standard Normal cdf \(\mathcal{N}(x) \) can be related to the error function or error integral \([1]\): \(\text{erf}(u) = \frac{2}{\sqrt{\pi}} \int_{0}^{u} e^{-t^2} dt, \ x \geq 0 \), through the relation
\[
\mathcal{N}(x) = \left\{ \begin{array}{ll}
\frac{1}{2}[1 + \text{erf}(|x|/\sqrt{2})] & x \geq 0 \\
\frac{1}{2}[1 - \text{erf}(|x|/\sqrt{2})], & x < 0
\end{array} \right.
\]

For positive integer order \(\nu \), the moments of a standard Gaussian random variable \(Z \) are \([17, 13.3]\)
\[
E[Z^\nu] = \left\{ \begin{array}{ll}
(\nu - 1)(\nu - 3) \cdots 3 \cdot 1, & \nu \text{ even} \\
0, & \nu \text{ odd}
\end{array} \right.
\]

where \(E[g(Z)] = \int_{-\infty}^{\infty} g(z)f(z)dz \) denotes statistical expectation of the rv \(g(Z) \) under the pdf \(f(z) \) for rv \(Z \). These moment relations can easily be derived by looking at the coefficients of \((ju)^k/k! \), \(k = 1, 2, \ldots \) in the power series expansion about \(ju = 0 \) of the characteristic function \(\Phi_Z(u) = E[e^{juZ}] = e^{-u^2/2} \).

In particular, using (9), this implies that the first and second moments of a non-standard Gaussian rv \(X \) are \(E[X] = \mu \) and \(E[X^2] = \mu^2 + \sigma^2 \), respectively. Thus for a Gaussian rv \(X \) we can identify the (ensemble) mean \(E[X] = \mu \) and variance \(\text{var}(X) = E[(X - E[X])^2] = E[X^2] - E^2[X] = \sigma^2 \) as the location and (squared) scale parameters, respectively, of the pdf \(f(x; \mu, \sigma^2) \) of \(X \). In the sequel we will need the following expression for the (non-central) mean deviation \(E[|X + a|] \) for Gaussian \(X \) \([18, 29.6]\):
\[
E[|X + a|] = \sqrt{\frac{2}{\pi}} e^{-a^2/2} + a(1 - 2\mathcal{N}(-a)). \tag{10}
\]

In referring to rv’s and operations on rv’s in this book the following compact notations are sometimes used:

* “\(X \) is distributed as a Gaussian random variable with mean \(\mu \) and variance \(\sigma^2 \)”

\[
X \sim \mathcal{N}(\mu, \sigma^2) \tag{11}
\]

* “\(X \) is equal to a scaled and shifted standard Gaussian random variable”
\[X = a \begin{bmatrix} Z \end{bmatrix}_{N(0,1)} + b \iff X \sim \mathcal{N}(b, a^2) \]

or, in shorthand notation,

\[X = a \mathcal{N}(0,1) + b \iff X \sim \mathcal{N}(b, a^2). \tag{12} \]

For example, in the following shorthand notation \(X_1, \ldots, X_n \) are independent identically distributed (iid) \(\mathcal{N}(0,1) \) rv’s

\[\sum_{i=1}^{n} \mathcal{N}(0,1) = \sum_{i=1}^{n} X_i. \]

Note that the above is an abuse of notation since \(\mathcal{N}(0,1) \) is being used to denote both a Gaussian probability distribution in (11) and a Gaussian random variable in (12). As in all abuses of this type the ambiguity is resolved from the context: we will never write \(\mathcal{N}(0,1) \) into an algebraic or other type of equation like the one in (12) when \(\mathcal{N}(0,1) \) is meant to denote a Gaussian distribution function as opposed to a Gaussian random variable.

Other notational shortcuts are the following. When we write

\[\mathcal{N}(v) = \alpha \]

we mean that “the cdf of a \(\mathcal{N}(0,1) \) rv equals \(\alpha \) when evaluated at a point \(v \in \mathbb{R} \).” Likewise

\[\mathcal{N}^{-1}(\alpha) = v \]

is to be read as “the inverse cdf of a \(\mathcal{N}(0,1) \) rv equals \(v \) when evaluated at a point \(\alpha \in [0,1] \).”

Finally, by

\[X \sim \mathcal{N}_n(\mu, R) \]

we mean “\(X \) is distributed as an \(n \)-dimensional Gaussian random vector with mean \(\mu \) and covariance matrix \(R \)”

3.1.1 CHI-SQUARE

The (central) **Chi-square** density with \(k \) degrees of freedom (df) is of the form:

\[f_\theta(x) = \frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}, \quad x > 0, \tag{13} \]

where \(\theta = k \), a positive integer. Here \(\Gamma(u) \) denotes the Gamma function,

\[\Gamma(u) = \int_0^\infty x^{u-1}e^{-x}dx, \]

For \(n \) integer valued \(\Gamma(n+1) = n! = n(n-1)\ldots1 \) and \(\Gamma(n + 1/2) = \frac{(2n-1)(2n-3)\ldots5\cdot3\cdot1}{2^n}\sqrt{\pi} \).

If \(Z_i \sim \mathcal{N}(0,1) \) are i.i.d., \(i = 1, \ldots, n \), then \(X = \sum_{i=1}^{n} Z_i^2 \) is distributed as Chi-square with \(n \) degrees of freedom (df). Our shorthand notation for this is

\[\sum_{i=1}^{n} [\mathcal{N}(0,1)]^2 = \chi_n. \tag{14} \]
This characterization of a Chi square r.v. is sometimes called a stochastic representation since it is defined via operations on other r.v.s. The fact that (13) is the density of a sum of squares of independent \(N(0, 1) \)'s is easily derived. Start with the density function \(f(z) = e^{-z^2/2}/\sqrt{2\pi} \) of a standard Gaussian random variable \(Z \). Using the relation \((\sqrt{2\pi})^{-1} \int_{-\infty}^{\infty} e^{-u^2/(2\sigma^2)} du = 1 \), the characteristic function of \(Z^2 \) is simply found as \(\Phi_{Z^2}(u) = E[e^{juZ^2}] = (1 + j2u)^{-1/2} \). Applying the summation-convolution theorem for independent r.v.s \(Y_i \), \(\Phi_{\sum_i Y_i}(u) = \prod \Phi_{Y_i}(u) \), we obtain
\[
\Phi_{\sum_i Z_i^2}(u) = (1 + j2u)^{-n/2}.
\]
Finally, using a table of Fourier transform relations, identify (13) as the inverse fourier transform of \(\Phi_{\sum_i Z_i^2}(u) \).

Some useful properties of the Chi-square random variable are as follows:

* \(E[\chi_n] = n \), \(\text{var}(\chi_n) = 2n \)
* Asymptotic relation for large \(n \):
 \[
 \chi_n = \sqrt{2n}N(0, 1) + n
 \]
* \(\chi_2 \) an exponential r.v. with mean 2, i.e. \(X = \chi_2 \) is a non-negative r.v. with probability density \(f(x) = \frac{1}{2}e^{-x/2} \).
* \(\sqrt{\chi_2} \) is a Rayleigh distributed random variable.

3.1.2 GAMMA

The Gamma density function is
\[
f_\theta(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}, \quad x > 0,
\]
where \(\theta \) denotes the pair of parameters \((\lambda, r) \), \(\lambda, r > 0 \). Let \(\{Y_i\}_{i=1}^n \) be i.i.d. exponentially distributed random variables with mean \(1/\lambda \), specifically \(Y_i \) has density
\[
f_\lambda(y) = \lambda e^{-\lambda y}, \quad y > 0.
\]
Then the sum \(X = \sum_{i=1}^n Y_i \) has a Gamma density \(f_{(\lambda, n)} \). Other useful properties of a Gamma distributed random variable \(X \) with parameters \(\theta = (\lambda, r) \) include:

* \(E_\theta[X] = r/\lambda \)
* \(\text{var}_\theta(X) = r/\lambda^2 \)

* The Chi-square distribution with \(k \) df is a special case of the Gamma distribution obtained by setting Gamma parameters as follows: \(\lambda = 1/2 \) and \(r = k/2 \).

3.1.3 NON-CENTRAL CHI SQUARE

The sum of squares of independent Gaussian r.v.s with unit variances but non-zero means is called a non-central Chi-square r.v. Specifically, if \(Z_i \sim N(\mu_i, 1) \) are independent, \(i = 1, \ldots, n \), then \(X = \sum_{i=1}^n Z_i^2 \) is distributed as non-central Chi-square with \(n \) df and non-centrality parameter \(\delta = \sum_{i=1}^n \mu_i^2 \). In our shorthand we write
\[
\sum_{i=1}^n [N(0, 1) + \mu_i]^2 = \sum_{i=1}^n [N(\mu_i, 1)]^2 = \chi_{n, \delta}.
\]
The non-central Chi-square density has no simple expression of closed form. There are some useful asymptotic relations, however:
* $E[\chi_{n,\delta}] = n + \delta$, $\text{var}(\chi_{n,\delta}) = 2(n + 2\delta)$
* $\sqrt{\chi_2/\mu_1 + \mu_2^2}$ is a Rician r.v.

3.1.4 CHI-SQUARE MIXTURE

The distribution of the sum of squares of independent Gaussian r.v.s with zero mean but different variances is not closed form either. However, many statisticians have studied and tabulated the distribution of a weighted sum of squares of i.i.d. standard Gaussian r.v.s Z_1, \ldots, Z_n, $Z_i \sim N(0, 1)$. Specifically, the following has a (central) Chi-square mixture (also known as the Chi-bar square [17]) with n degrees of freedom and mixture parameter $c = [c_1, \ldots, c_n]^T$, $c_i \geq 0$:

$$
\sum_{i=1}^{n} \frac{c_i}{\sum c_j} Z_i^2 = \chi_{n,c}
$$

An asymptotic relation of interest to us will be:
* $E[\chi_{n,c}] = 1$, $\text{var}(\chi_{n,c}) = 2\sum_{i=1}^{n} \left(\frac{c_i}{\sum c_j c_i}\right)^2$

Furthermore, there is an obvious a special case where the Chi square mixture reduces to a scaled (central) Chi square: $\chi_{n,c_1} = \frac{1}{c_1} \chi_n$ for any $c \neq 0$.

3.1.5 STUDENT-T

For $Z \sim N(0, 1)$ and $Y \sim \chi_n$ independent r.v.s the ratio $X = Z/\sqrt{Y/n}$ is called a Student-t r.v. with n degrees of freedom, denoted T_n. Or in our shorthand notation:

$$
\frac{N(0,1)}{\sqrt{\chi_n/n}} = T_n.
$$

The density of T_n is the Student-t density with n df and has the form

$$
f_{T_n}(x) = \frac{\Gamma([n + 1]/2)}{\Gamma(n/2)} \frac{1}{n\sqrt{\pi}} \frac{1}{(1 + x^2)^{(n+1)/2}}, \quad x \in \mathbb{R},
$$

where $\theta = n$ is a positive integer. The Student-t is probably the second most common distribution in science and engineering. Properties of interest to us are:
* $E[T_n] = 0$ ($n > 1$), $\text{var}(T_n) = \frac{n}{n-2}$ ($n > 2$)
* Asymptotic relation for large n:

$$
T_n \approx N(0, 1).
$$

For $n = 1$ the mean of T_n does not exist and for $n \leq 2$ its variance is infinite.
3.1.6 FISHER-F

For \(U \sim \chi^m \) and \(V \sim \chi^n \) independent r.v.s the ratio \(X = (U/m)/(V/n) \) is called a Fisher-F r.v. with \(m, n \) degrees of freedom, or in shorthand:

\[
\frac{\chi_m/m}{\chi_n/n} = \mathcal{F}_{m,n}.
\]

The Fisher-F density with \(m \) and \(n \) df is defined as

\[
f_{\theta}(x) = \frac{\Gamma((m + n)/2)}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{m}{n} \right)^{m/2} \frac{x^{(m-2)/2}}{1 + (m/n)x^{(m+n)/2}}, \quad x > 0
\]

where \(\theta = [m, n] \) is a pair of positive integers. It should be noted that moments \(E[X^k] \) of order greater than \(k = n/2 \) do not exist. A useful asymptotic relation for \(n \) large and \(n \gg m \) is

\[
\mathcal{F}_{m,n} \approx \chi_m.
\]

3.1.7 CAUCHY

The ratio of independent \(N(0, 1) \) r.v.’s \(U \) and \(V \) is called a standard Cauchy r.v.

\[
X = U/V \sim \mathcal{C}(0, 1).
\]

It’s density has the form

\[
f(x) = \frac{1}{\pi} \frac{1}{1 + x^2} \quad x \in \mathbb{R}
\]

If \(\theta = [\mu, \sigma] \) are location and scale parameters (\(\sigma > 0 \)) \(f_{\theta}(x) = f((x - \mu)/\sigma) \) is a translated and scaled version of the standard Cauchy density denoted \(\mathcal{C}(\mu, \sigma^2) \). Some properties of note:

1. the Cauchy distribution has no moments of any (positive) integer order; and
2. the Cauchy distribution is the same as a Student-t distribution with 1 d.f.

3.1.8 BETA

For \(U \sim \chi^m \) and \(V \sim \chi^n \) independent Chi-square r.v.s with \(m \) and \(n \) df, respectively, the ratio \(X = U/(U + V) \) has a Beta distribution, or in shorthand

\[
\frac{\chi_m}{\chi_m + \chi_n} = \mathcal{B}(m/2, n/2)
\]

where \(\mathcal{B}(p, q) \) is a r.v. with Beta density having parameters \(\theta = [p, q] \). The Beta density has the form

\[
f_{\theta}(x) = \frac{1}{\beta_{r,t}} x^{r-1}(1-x)^{t-1}, \quad x \in [0, 1]
\]

where \(\theta = [r, t] \) and \(r, t > 0 \). Here \(\beta_{r,t} \) is the Beta function:

\[
\beta_{r,t} = \int_0^1 x^{r-1}(1-x)^{t-1}dx = \frac{\Gamma(r)\Gamma(t)}{\Gamma(r+t)}.
\]

Some useful properties:

* The special case of \(m = n = 1 \) gives rise to \(X \) an arcsin distributed r.v.
* \(E[\mathcal{B}(p, q)] = p/(p + q) \)
* \(\text{var}(\mathcal{B}(p, q)) = pq/((p + q + 1)(p + q)^2) \)
3.2 REPRODUCING DISTRIBUTIONS

A random variable X is said to have a reproducing distribution if the sum of two independent realizations, say X_1 and X_2, of X have the same distribution, possibly with different parameter values, as X. A Gaussian r.v. has a reproducing distribution:

$$\mathcal{N}(\mu_1, \sigma_1^2) + \mathcal{N}(\mu_2, \sigma_2^2) = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2),$$

which follows from the fact that the convolution of two Gaussian density functions is a Gaussian density function [26]. Noting the stochastic representations (14) and (15) of the Chi square and non-central Chi square distributions, respectively, it is obvious that they are reproducing distributions:

* $\chi_n + \chi_m = \chi_{m+n}$, if χ_m, χ_n are independent.
* $\chi_{m,\delta_1} + \chi_{n,\delta_2} = \chi_{m+n,\delta_1+\delta_2}$, if χ_{m,δ_1}, χ_{n,δ_2} are independent.

The Chi square mixture, Fisher-F, and Student-t are not reproducing densities.

3.3 FISHER-COCHRAN THEOREM

This result gives a very useful tool for finding the distribution of quadratic forms of Gaussian random variables. A more general result that covers the joint distribution of quadratic forms is given in [33].

Theorem 1 Let

* $\underline{X} = [X_1, \ldots, X_n]^T$ be a vector of iid. $\mathcal{N}(0,1)$ r.v’s
* A be a symmetric idempotent matrix ($AA = A$) of rank p

Then

$$\underline{X}^T A \underline{X} = \chi_p$$

A simple proof is given below.

Proof: Let $A = U\Lambda U^T$ be the eigendecomposition of A. Then

* All eigenvalues λ_i of A are either 0 or 1

$$AA = U\Lambda U^T U\Lambda U^T = U\Lambda^2 U^T = U\Lambda U^T$$

and therefore

$$\underline{X}^T A \underline{X} = \underline{X}^T U\Lambda \underbrace{U^T \underline{X}}_{Z = \mathcal{N}_n(0,1)}$$

$$= \sum_{i=1}^n \lambda_i Z_i^2 = \sum_{i=1}^p [\mathcal{N}(0,1)]^2$$
3.4 SAMPLE MEAN AND SAMPLE VARIANCE

Let \(X_i \)'s be i.i.d. \(\mathcal{N}(\mu, \sigma) \) r.v.'s. The sample mean and sample variance respectively approximate the location \(\mu \) and spread \(\sigma \) of the population.

* Sample mean: \(\bar{X} = n^{-1} \sum_{i=1}^{n} X_i \)

* Sample variance: \(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \)

In the Gaussian case the joint distribution of the sample mean and variance can be specified.

1. \(\bar{X} = \mathcal{N}(\mu, \sigma/n) \)
2. \(s^2 = \frac{\sigma^2}{n-1} \chi_{n-1} \)
3. \(\bar{X} \) and \(s^2 \) are independent r.v.'s.

These results imply that a weighted ratio of sample mean and sample variance is distributed as Student t.

\[
\frac{\bar{X} - \mu}{s/\sqrt{n}} = T_{n-1}.
\]

The assertions (1), (2), and (3) can be proven easily by using the reproducing property of the Gaussian distribution and the Fisher Cochran Theorem, Thm. 1.

Proof: It will be sufficient to treat the case of a standard Gaussian sample: \(\mu = 0\) and \(\sigma = 1\). The general case will follow easily since any \(\mathcal{N}(\mu, \sigma) \) r.v. \(X \) has the representation (12).

Express \(\bar{X} \) and \(s^2 \) in vector form

\[
\begin{align*}
\bar{X} &= \frac{1}{n} \mathbf{1}^T \mathbf{X} \\
s^2 &= \frac{1}{n-1} [\mathbf{X} - \mathbf{1}\bar{X}]^T [\mathbf{X} - \mathbf{1}\bar{X}] \\
\mathbf{X} - \mathbf{1}\bar{X} &= [X_1 - \bar{X}, \ldots, X_n - \bar{X}]^T \\
\mathbf{1} &= [1, \ldots, 1]^T
\end{align*}
\]

Now we make three observations.

Observation 1: \(\bar{X} \) is uncorrelated with \(X_i - \bar{X}, i = 1, \ldots, n \).

\[
E[(X_i - \bar{X})\bar{X}] = \text{var}(X_i)/n - \text{var}(\bar{X}) = 1/n - 1/n = 0
\]

\(\Rightarrow \) Since \(\bar{X} \) and \(X_i - \bar{X} \) are Gaussian r.v.s, \(X_1 - \bar{X}, \ldots, X_n - \bar{X} \) and \(\bar{X} \) are actually independent r.v.s!

Observation 2: Since independence is preserved under arbitrary transformations

\(\Rightarrow \sum_{j=1}^{n} (X_j - \bar{X})^2 \) and \(\bar{X} \) are also independent r.v.s!
Observation 3: using $X = n^{-1} \mathbf{1}^T \mathbf{X}$

$$[X - \mathbf{1} \mathbf{X}]^T [X - \mathbf{1} \mathbf{X}] = X^T [I - \mathbf{1} 1^T n^{-1}] [I - \mathbf{1} 1^T n^{-1}] X^T$$

idempotent

$$= X^T [I - \mathbf{1} 1^T n^{-1}] X$$

orth. proj.

This is in now in a form to which the Fisher-Cochran theorem applies (Thm. 1). Indeed, since $\text{rank}[I - \mathbf{1} 1^T n^{-1}] = n - 1$ we have that $[X - \mathbf{1} \mathbf{X}]^T [X - \mathbf{1} \mathbf{X}] = (n - 1) s^2$ is χ_{n-1}.

Finally to extend the proof to the general case of a $\mathcal{N}(\mu, \sigma)$ random variable X_i, we recall the representation

$$X_i = \sigma Z_i + \mu,$$

where the Z_i’s are i.i.d. standard Gaussian variates. Then the sample mean is

$$\bar{X} = \sigma \bar{Z} + \mu,$$

and the sample variance is

$$s^2 = \frac{\sigma^2}{n-1} \sum_{i=1}^{n} (Z_i - \bar{Z})^2.$$

3.5 SUFFICIENT STATISTICS

Many detection/estimation/classification problems have the following common structure. A continuous time waveform $\{x(t) : t \in \mathbb{R}\}$ is measured at n time instants t_1, \ldots, t_n producing the vector

$$x = [x_1, \ldots, x_n]^T,$$

where $x_i = x(t_i)$. The vector x is modelled as a realization of a random vector \mathbf{X} with a joint distribution which is of known form but depends on a handful (p) of unknown parameters $\theta = [\theta_1, \ldots, \theta_p]^T$.

More concisely:

* $\mathcal{X} = [X_1, \ldots, X_n]^T$, $X_i = X(t_i)$, is a vector of random measurements or observations taken over the course of the experiment

* \mathcal{X} is sample or measurement space of realizations x of \mathbf{X}

* \mathcal{B} is the event space induced by \mathcal{X}, e.g., the Borel subsets of \mathbb{R}^n

* $\theta \in \Theta$ is an unknown parameter vector of interest

* Θ is parameter space for the experiment

* P_θ is a probability measure on \mathcal{B} for given θ. $\{P_\theta\}_{\theta \in \Theta}$ is called the statistical model for the experiment.
The probability model induces the joint cumulative distribution function j.c.d.f. associated with \(X \)

\[
F_X(x; \theta) = P(\theta_1 \leq x_1, \ldots, \theta_n \leq x_n),
\]

which is assumed to be known for any \(\theta \in \Theta \). When \(X \) is a continuous random variable the j.c.d.f. is specified by the joint probability density function (j.p.d.f.) that we will write in several different ways, depending on the context: \(f_\theta(x) \) or \(f(x; \theta) \), or, when we need to explicitly call out the r.v. \(X \), \(f_X(x; \theta) \). We will denote by \(E_\theta[Z] \) the statistical expectation of a random variable \(Z \) with respect to the j.p.d.f. \(f_Z(z; \theta) \)

\[
E_\theta[Z] = \int z f_Z(z; \theta) dz.
\]

The family of functions \(\{f(x; \theta)\}_{\theta \in \Theta} \) then defines the statistical model for the experiment.

The general objective of statistical inference can now be stated. Given a realization \(x \) of \(X \) infer properties of \(\theta \) knowing only the parametric form of the statistical model. Thus we will want to come up with a function, called an inference function, which maps \(X \) to subsets of the parameter space, e.g., an estimator, classifier, or detector for \(\theta \). As we will see later there are many ways to design inference functions but a more fundamental question is: are there any general properties that good inference functions should have? One such property is that the inference function only need depend on the \(n \)-dimensional data vector \(X \) through a lower dimensional version of the data called a sufficient statistic.

3.5.1 SUFFICIENT STATISTICS AND THE REDUCTION RATIO

First we define a statistic as any function \(T = T(X) \) of the data (actually, for \(T \) to be a valid random variable derived from \(X \) it must be a measurable function, but this theoretical technicality is beyond our scope here).

There is a nice interpretation of a statistic in terms of its memory storage requirements. Assume that you have a special computer that can store any one of the time samples in \(X = [X_1, \ldots, X_n] \), \(X_k = X(t_k) \) say, in a "byte" of storage space and the time stamp \(t_k \) in another "byte" of storage space. Any non-invertible function \(T \), e.g., which maps \(\mathbb{R}^n \) to a lower dimensional space \(\mathbb{R}^m \), can be viewed as a dimensionality reduction on the data sample. We can quantify the amount of reduction achieved by \(T \) by defining the reduction ratio (RR):

\[
RR = \frac{\# \text{ bytes of storage required for } T(X)}{\# \text{ bytes of storage required for } X}
\]

This ratio is a measure of the amount of data compression induced by a specific transformation \(T \). The number of bytes required to store \(X \) with its time stamps is:

\[
\# \text{ bytes}\{X\} = \# \text{ bytes}[X_1, \ldots, X_n]^T = \# \text{ bytes}\{\text{timestamps}\} + \# \text{ bytes}\{\text{values}\} = 2n
\]

Consider the following examples:

Define \(X_{(i)} = \) as the \(i \)-th largest element of \(X \). The \(X_{(i)} \)'s satisfy: \(X_{(1)} \geq X_{(2)} \geq \ldots \geq X_{(n)} \) and are nothing more than a convenient reordering of the data sample \(X_1, \ldots, X_n \). The \(X_{(i)} \)'s are called the rank ordered statistics and do not carry time stamp information. The following table illustrates the reduction ratio for some interesting cases.
A natural question is: what is the maximal reduction ratio one can get away with without loss of information about \(\theta \)? The answer is: the ratio obtained by compression to a quantity called a \textit{minimal sufficient statistic}. But we are getting ahead of ourselves. We first need to define a plain old sufficient statistic.

3.5.2 Definition of Sufficiency

Here is a warm up before making a precise definition of sufficiency. \(T = T(X) \) is a \textbf{sufficient statistic} (SS) for a parameter \(\theta \) if it captures all the information in the data sample useful for inferring the value of \(\theta \). To put it another way: once you have computed a sufficient statistic you can store it and throw away the original sample since keeping it around would not add any useful information.

More concretely, let \(X \) have a cumulative distribution function (CDF) \(F_X(x; \theta) \) depending on \(\theta \). A statistic \(T = T(X) \) is said to be sufficient for \(\theta \) if the conditional CDF of \(X \) given \(T = t \) is not a function of \(\theta \), i.e.,

\[
F_{X|T}(x|T = t, \theta) = G(x, t),
\]

(16)

where \(G \) is a function that does not depend on \(\theta \).

Specializing to a discrete valued \(X \) with probability mass function \(p_\theta(x) = P_\theta(X = x) \), a statistic \(T = T(X) \) is sufficient for \(\theta \) if

\[
P_\theta(X = x|T = t) = G(x, t).
\]

(17)

For a continuous r.v. \(X \) with pdf \(f(x; \theta) \), the condition (16) for \(T \) to be a sufficient statistic (SS) becomes:

\[
f_{X|T}(x|T; \theta) = G(x, t).
\]

(18)

Sometimes the only sufficient statistics are vector statistics, e.g. \(T(X) = T(X) = [T_1(X), \ldots, T_K(X)]^T \). In this case we say that the \(T_k \)’s are \textit{jointly sufficient} for \(\theta \).

The definition (16) is often difficult to use since it involves derivation of the conditional distribution of \(X \) given \(T \). When the random variable \(X \) is discrete or continuous a simpler way to verify sufficiency is through the Fisher factorization (FF) property [33]

\textbf{Fisher factorization (FF)}: \(T = T(X) \) is a sufficient statistic for \(\theta \) if the probability density \(f_X(x; \theta) \) of \(X \) has the representation

\[
f_X(x; \theta) = g(T, \theta) h(x),
\]

(19)

for some non-negative functions \(g \) and \(h \). The FF can be taken as the operational definition of a sufficient statistic \(T \). An important implication of the Fisher Factorization is that when the
density function of a sample \(\mathbf{X} \) satisfies (19) then the density \(f_T(t; \theta) \) of the sufficient statistic \(T \) is equal to \(g(t, \theta) \) up to a \(\theta \)-independent constant \(q(t) \) (see exercises at end of this chapter):

\[
f_T(t; \theta) = g(t, \theta)q(t).
\]

Examples of sufficient statistics:

Example 1 *Entire sample*

\(\mathbf{X} = [X_1, \ldots, X_n]^T \) is sufficient but not very interesting

Example 2 *Rank ordered sample*

\(X_{(1)}, \ldots, X_{(n)} \) is sufficient when \(X_i \)'s i.i.d.

Proof: Since \(X_i \)'s are i.i.d., the joint pdf is

\[
f_\theta(x_1, \ldots, x_n) = \prod_{i=1}^{n} f_\theta(x_i) = \prod_{i=1}^{n} f_\theta(x_{(i)}).
\]

Hence sufficiency of the rank ordered sample \(X_{(1)}, \ldots, X_{(n)} \) follows from Fisher factorization.

Example 3 *Binary likelihood ratios*

Let \(\theta \) take on only two possible values \(\theta_0 \) and \(\theta_1 \). Then, as \(f(x; \theta) \) can only be \(f(x; \theta_0) \) or \(f(x; \theta_1) \), we can reindex the pdf as \(f(x; \theta) \) with the scalar parameter \(\theta \in \Theta = \{0, 1\} \). This gives the binary decision problem: “decide between \(\theta = 0 \) versus \(\theta = 1 \).” If it exists, i.e. it is finite for all values of \(X \), the “likelihood ratio” \(\Lambda(X) = f_1(X)/f_0(X) \) is sufficient for \(\theta \), where \(f_1(X) \eqdef f(x; 1) \) and \(f_0(X) \eqdef f(x; 0) \).

Proof: Express \(f_\theta(X) \) as function of \(\theta, f_0, f_1 \), factor out \(f_0 \), identify \(\Lambda \), and invoke FF

\[
f_\theta(X) = \theta f_1(X) + (1 - \theta) f_0(X)
\]

\[
= \left(\frac{\Theta \Lambda(X) + (1 - \theta)}{g(T, \theta)} \right) \frac{f_0(X)}{h(X)}.
\]

Therefore to discriminate between two values \(\theta_1 \) and \(\theta_2 \) of a parameter vector \(\theta \) we can throw away all data except for the scalar sufficient statistic \(T = \Lambda(X) \)

Example 4 *Discrete likelihood ratios*
Let $\Theta = \{\theta_1, \ldots, \theta_p\}$ and assume that the vector of $p - 1$ likelihood ratios

$$T(X) = \left[\frac{f_{\theta_1}(X)}{f_{\theta_p}(X)}, \ldots, \frac{f_{\theta_{p-1}}(X)}{f_{\theta_p}(X)} \right] = [\Lambda_1(X), \ldots, \Lambda_{p-1}(X)]$$

is finite for all X. Then this vector is sufficient for θ. An equivalent way to express this vector is as the sequence $\{\Lambda_{\theta}(X)\}_{\theta \in \Theta} = \Lambda_1(X), \ldots, \Lambda_{p-1}(X)$, and this is called the likelihood trajectory over θ.

Proof

Define the $p - 1$ element selector vector $u(\theta) = e_k$ when $\theta = \theta_k$, $k = 1, \ldots, p - 1$ (recall that $e_k = [0, \ldots, 0, 1, 0, \ldots 0]^T$ is the k-th column of the $(p - 1) \times (p - 1)$ identity matrix). Now for any $\theta \in \Theta$ we can represent the j.p.d.f. as

$$f_{\theta}(x) = \underbrace{T_{\theta}^T u(\theta)}_{\theta(\xi, \theta)} \underbrace{f_{\theta_\theta}(x)}_{h(\xi)},$$

which establishes sufficiency by the FF.

Example 5 Likelihood ratio trajectory

When Θ is a set of scalar parameters θ the likelihood ratio trajectory over Θ

$$\Lambda(X) = \left\{ \frac{f_{\theta}(X)}{f_{\theta_0}(X)} \right\}_{\theta \in \Theta}, \quad (20)$$

is sufficient for θ. Here θ_0 is an arbitrary reference point in Θ for which the trajectory is finite for all X. When θ is not a scalar (20) becomes a likelihood ratio surface, which is also a sufficient statistic.

3.5.3 MINIMAL SUFFICIENCY

What is the maximum possible amount of reduction one can apply to the data sample without losing information concerning how the model depends on θ? The answer to this question lies in the notion of a minimal sufficient statistic. Such statistics cannot be reduced any further without loss in information. In other words, any other sufficient statistic can be reduced down to a minimal sufficient statistic without information loss. Since reduction of a statistic is accomplished by applying a functional transformation we have the formal definition.

Definition: T_{min} is a minimal sufficient statistic if it can be obtained from any other sufficient statistic T by applying a functional transformation to T. Equivalently, if T is any sufficient statistic there exists a function q such that $T_{\text{min}} = q(T)$.

Note that minimal sufficient statistics are not unique: if T_{min} is minimal sufficient $h(T_{\text{min}})$ is also minimally sufficient for h any invertible function. Minimal sufficient statistics can be found in a variety of ways [26, 3, 22]. One way is to find a complete sufficient statistic; under broad conditions this statistic will also be minimal [22]. A sufficient statistic T is complete if

$$E_{\theta}[g(T)] = 0, \quad \text{for all } \theta \in \Theta$$
implies that the function \(g \) is identically zero, i.e., \(g(t) = 0 \) for all values of \(t \). However, in some cases there are minimal sufficient statistics that are not complete so this is not a failsafe procedure. Another way to find a minimal sufficient statistic is through reduction of the data to the likelihood ratio surface.

As in Example 5, assume that there exists a reference point \(\theta_o \in \Theta \) such that the following likelihood-ratio function is finite for all \(x \in X \) and all \(\theta \in \Theta \):

\[
\Lambda_{\theta}(x) = \frac{f_{\theta}(x)}{f_{\theta_o}(x)}.
\]

For given \(x \) let \(\Lambda(x) \) denote the set of likelihood ratios (a likelihood ratio trajectory or surface):

\[
\Lambda(x) = \{ \Lambda_{\theta}(x) \}_{\theta \in \Theta}.
\]

Definition 1 We say that a (\(\theta \)-independent) function of \(x \), denoted \(\tau = \tau(x) \), indexes the likelihood ratios \(\Lambda \) when both

1. \(\Lambda(x) = \Lambda(\tau) \), i.e., \(\Lambda \) only depends on \(x \) through \(\tau = \tau(x) \).
2. \(\Lambda(\tau) = \Lambda(\tau') \) implies \(\tau = \tau' \), i.e., the mapping \(\tau \rightarrow \Lambda(\tau) \) is invertible.

Condition 1 is an equivalent way of stating that \(\tau(X) \) is a sufficient statistic for \(\theta \).

Theorem: If \(\tau = \tau(x) \) indexes the likelihood ratios \(\Lambda(x) \) then \(T_{min} = \tau(X) \) is minimally sufficient for \(\theta \).

Proof:

We prove this only for the case that \(X \) is a continuous r.v. First, condition 1 in Definition 1 implies that \(\tau = \tau(X) \) is a sufficient statistic. To see this use FF and the definition of the likelihood ratios to see that \(\Lambda(x) = \Lambda(\tau) \) implies: \(f_{\theta}(X) = \Lambda_{\theta}(\tau)f_{\theta}(X) = g(\tau; \theta)h(x) \). Second, let \(T \) be any sufficient statistic. Then, again by FF, \(f_{\theta}(x) = g(T; \theta)h(x) \) and thus

\[
\Lambda(\tau) = \left\{ \frac{f_{\theta}(X)}{f_{\theta_o}(X)} \right\}_{\theta \in \Theta} = \left\{ \frac{g(T; \theta)}{g(T; \theta_o)} \right\}_{\theta \in \Theta}.
\]

so we conclude that \(\Lambda(\tau) \) is a function of \(T \). But by condition 2 in Definition 1 the mapping \(\tau \rightarrow \Lambda(\tau) \) is invertible and thus \(\tau \) is itself a function of \(T \).

Another important concept in practical applications is that of finite dimensionality of a sufficient statistic.

Definition: a sufficient statistic \(T(X) \) is said to be **finite dimensional** if its dimension is not a function of the number of data samples \(n \).

Frequently, but not always (see Cauchy example below), minimal sufficient statistics are finite dimensional.

Example 6 Minimal sufficient statistic for mean of Gaussian density.

Assume \(X \sim \mathcal{N}(\mu, \sigma^2) \) where \(\sigma^2 \) is known. Find a minimal sufficient statistic for \(\theta = \mu \) given the iid sample \(X = [X_1, \ldots, X_n]^T \).

Solution: the j.p.d.f. is
\[f_\theta(x) = \left(\frac{1}{\sqrt{2\pi \sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n}(x_i-\mu)^2} \]

Thus by FF
\[T = \sum_{i=1}^{n} X_i \]
is a sufficient statistic for \(\mu \). Furthermore, as \(q(T) = n^{-1}T \) is a 1-1 function of \(T \)
\[\bar{S} = \overline{X} \]
is an equivalent sufficient statistic.

Next we show that the sample mean is in fact minimal sufficient by showing that it indexes the likelihood ratio trajectory \(\Lambda(\overline{x}) = \{\Lambda_\theta(\overline{x})\}_{\theta \in \Theta} \), with \(\theta = \mu, \Theta = \mathbb{R} \). Select the reference point \(\theta_0 = \mu_0 = 0 \) to obtain:

\[\Lambda_{\mu}(\overline{x}) = \frac{f_\mu(\overline{x})}{f_0(\overline{x})} = \exp \left(\frac{\mu}{\sigma^2} \sum_{i=1}^{n} x_i - \frac{n\mu^2}{\sigma^2} \right). \]

Identifying \(\tau = \sum_{i=1}^{n} x_i \), condition 1 in Definition 1 is obviously satisfied since \(\Lambda_{\mu}(\overline{x}) = \Lambda_{\mu}(\sum x_i) \) (we already knew this since we showed that \(\sum_{i=1}^{n} X_i \) was a sufficient statistic). Condition 2 in Definition 1 follows since \(\Lambda_{\mu}(\sum x_i) \) is an invertible function of \(\sum x_i \) for any non-zero value of \(\mu \) (summation limits omitted for clarity). Therefore the sample mean indexes the trajectories, and is minimal sufficient.

Example 7 Minimal sufficient statistics for mean and variance of Gaussian density.

Assume \(X \sim \mathcal{N}(\mu, \sigma^2) \) where both \(\mu \) and \(\sigma^2 \) are unknown. Find a minimal sufficient statistic for \(\theta = [\mu, \sigma^2]^{T} \) given the iid sample \(\overline{X} = [X_1, \ldots, X_n]^{T} \).

Solution:

\[f_\theta(\overline{x}) = \left(\frac{1}{\sqrt{2\pi \sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n}(x_i-\mu)^2} \]

\[= \left(\frac{1}{\sqrt{2\pi \sigma^2}}\right)^n e^{-\frac{1}{2\sigma^2} \left(\sum_{i=1}^{n} x_i^2 - 2\mu \sum_{i=1}^{n} x_i + n\mu^2\right)} \]
is invertible in \(\mathbb{R}^2 \) from the equation

\[
g(\mathbf{z}, \mathbf{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} \left[\frac{\mu}{\sigma^2}, -1/(2\sigma^2) \right]^T \left[\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i^2 \right]^T} \]

Thus

\[
T = \left[\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2 \right]_{T_1} \left[\sum_{i=1}^{n} X_i^2 \right]_{T_2}
\]

is a (jointly) sufficient statistic for \(\mu, \sigma^2 \). Furthermore, as \(q(T) = [n^{-1}T_1, (n-1)^{-1}(T_2 - T_2^2)] \) is a 1-1 function of \(T \) \((T = [T_1, T_2]^T)\) \(S = [\overline{X}, s^2] \) is an equivalent sufficient statistic.

Similarly to Example 6, we can show minimal sufficiency of this statistic by showing that it indexes the likelihood ratio surface \(\{ \Lambda_\theta(X) \}_{\theta \in \Theta} \), with \(\Theta = \mathbb{R} \times \mathbb{R}^+ \). Arbitrarily select the reference point \(\theta_o = [\mu_o, \sigma_o^2] = [0, 1] \) to obtain:

\[
\Lambda_\theta(x) = \frac{f_\theta(x)}{f_{\theta_0}(x)} = \left(\frac{\sigma_o}{\sigma} \right)^n e^{-n\mu_o^2/(2\sigma_o^2)} e^{[\mu/\sigma^2, -\delta/2][\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i^2]^T},
\]

where \(\delta = \frac{\sigma_o^2 - \sigma^2}{\sigma^2 \sigma_o^2} \). Identifying \(\tau = [\sum_{i=1}^{n} x_i, \sum_{i=1}^{n} x_i^2] \), again condition 1 in Definition 1 is obviously satisfied. Condition 2 in Definition 1 requires a bit more work. While \(\Lambda_\theta(\tau) \) is no longer an invertible function of \(\tau \) for for any single value of \(\theta = [\mu, \sigma^2] \), we can find two values \(\theta \in \{ \theta_1, \theta_2 \} \) in \(\Theta \) for which the vector function \([\Lambda_{\theta_1}(\tau), \Lambda_{\theta_2}(\tau)] \) of \(\tau \) is invertible in \(\tau \). Since this vector is specified by \(\Lambda(\tau) \), this will imply that \(\tau \) indexes the likelihood ratios.

To construct this invertible relation denote by \(\lambda = [\lambda_1, \lambda_2]^T \) an observed pair of samples \([\Lambda_{\theta_1}(\tau), \Lambda_{\theta_2}(\tau)] \) of the surface \(\Lambda(\tau) \). Now consider the problem of determining \(\tau \) from the equation \(\lambda = [\Lambda_{\theta_1}(\tau), \Lambda_{\theta_2}(\tau)] \)\(^T \). Taking the log of both sides and rearranging some terms, we see that this is equivalent to a \(2 \times 2 \) linear system of equations of the form \(\lambda' = A_\tau \), where \(A \) is a matrix involving \(\theta_o, \theta_1, \theta_2 \) and \(\lambda' \) is a linear function of \(\ln \lambda \). You can verify that with the selection of \(\theta_o = [0, 1], \theta_1 = [1, 1], \theta_2 = [0, 1/2] \) we obtain \(\delta = 0 \) or \(1 \) for \(\theta = \theta_1 \) or \(\theta_2 \), respectively, and \(A = \text{diag}(1, -1/2) \), an invertible matrix. We therefore conclude that the vector \([\text{sample mean, sample variance}] \) indexes the trajectories, and this vector is therefore minimal sufficient.

Example 8 Sufficient statistic for the location of a Cauchy distribution

Assume that \(X_i \sim f(x; \theta) = \frac{1}{\pi} \frac{1}{1+(x-\theta)^2} \) and, as usual, \(X = [X_1, \ldots, X_n]^T \) is an i.i.d. sample. Then

\[
f(x; \theta) = \prod_{i=1}^{n} \frac{1}{\pi} \frac{1}{1 + (x_i - \theta)^2} = \frac{1}{\pi^n} \prod_{i=1}^{n} \frac{1}{1 + (x_i - \theta)^2}.
\]

Here we encounter a difficulty: the denominator is a \(2n \)-degree polynomial in \(\theta \) whose roots depend on all cross products \(x_{i_1} \ldots x_{i_p} \), \(p = 1, 2, \ldots, n \), of \(x_i \)'s. Thus no sufficient statistic exists having dimension less than that \((n) \) of the entire sample. Therefore, the minimal sufficient statistic is the ordered statistic \([X_{(1)}, \ldots, X_{(n)}]^T \) and no finite dimensional sufficient statistic exists.
3.5.4 EXPONENTIAL FAMILY OF DISTRIBUTIONS

Let \(\theta = [\theta_1, \ldots, \theta_p]^T \) take values in some parameter space \(\Theta \). The distribution \(f_\theta \) of a r.v. \(X \) is a member of the \(p \)-parameter exponential family if for all \(\theta \in \Theta \)
\[
f_\theta(x) = a(\theta)b(x)e^{-c^T(\theta)t(x)}, \quad -\infty < x < \infty
\]
for some scalar functions \(a, b \) and some \(p \)-element vector functions \(c, t \). Note that for any \(f_\theta \) in the exponential family its support set \(\{ x : f_\theta(x) > 0 \} \) does not depend on \(\theta \). Note that, according to our definition, for \(f_\theta \) to be a member of the \(p \)-parameter exponential family the dimension of the vectors \(c(\theta) \) and \(t(x) \) must be exactly \(p \). This is to guarantee that the sufficient statistic has the same dimension as the parameter vector \(\theta \). While our definition is the most standard [23, 26, 3], some other books, e.g., [31], allow the dimension of the sufficient statistic to be different from \(p \). However, by allowing this we lose some important properties of exponential families [3].

The parameterization of an exponential family of distributions is not unique. In other words, the exponential family is invariant to changes in parameterization. For example, let \(f_\theta, \theta > 0 \), be an the exponential family of densities with \(\theta \) a positive scalar. If one defines \(\alpha = 1/\theta \) and \(g_{\alpha} = f_{1/\theta} \) then \(g_{\alpha}, \alpha > 0 \), is also in the exponential family, but possibly with a different definition of the functions \(a(\cdot), b(\cdot), c(\cdot) \) and \(t(\cdot) \). More generally, if \(f_\theta(x) \) is a member of the \(p \)-dimensional exponential family then transformation of the parameters by any invertible function of \(\theta \) preserves membership in the exponential family.

There exists a special parameterization of distributions in the exponential family, called the natural parameterization, that has important advantages in terms of ease of estimation of these parameters.

Definition: Let the random variable \(X \) have distribution \(f_\theta(x) \) and assume that \(f_\theta \) is in the exponential family, i.e., it can be expressed in the form (21). \(f_\theta \) is said to have a natural parameterization if for all \(\theta \in \Theta \): \(E_\theta[t(X)] = \theta \).

In particular, as we will see in the next chapter, this means that having a natural parameterization makes the statistic \(T = t(X) \) an unbiased estimator of \(\theta \).

Examples of distributions in the exponential family include: Gaussian with unknown mean or variance, Poisson with unknown mean, exponential with unknown mean, gamma, Bernoulli with unknown success probability, binomial with unknown success probability, multinomial with unknown cell probabilities.

Distributions which *are not* from the exponential family include: Cauchy with unknown median, uniform with unknown support, Fisher-F with unknown degrees of freedom.

When the statistical model is in the exponential family, sufficient statistics for the model parameters have a particularly simple form:

\[
f_\theta(x) = \prod_{i=1}^{n} a(\theta)b(x_i)e^{-c^T(\theta)t(x_i)}
\]

\[
= a^n(\theta) e^{-\sum_{i=1}^{n} t(x_i)} \prod_{i=1}^{n} b(x_i)
\]
Therefore, the following is a \(p \)-dimensional sufficient statistic for \(\theta \)
\[
\sum_{i=1}^{n} t(X_i) = \left[\sum_{i=1}^{n} t_1(X_i), \ldots, \sum_{i=1}^{n} t_p(X_i) \right]^T
\]

In fact this is a finite dimensional suff. statistic which is complete and minimal \([3]\).

3.5.5 CHECKING IF A DENSITY IS IN THE EXPONENTIAL FAMILY

Due to the many attractive properties of exponential families, in many situations the first question to be answered is: is the density of my data \(X \) a member of this exclusive club? This question might arise, for example, if the input to a known filter or other system has a known density and one can compute a mathematical representation of the density of the output of the filter. To check if the output density is exponential one has to try and manipulate the density into exponential form, as illustrated in the examples. If this is difficult the next step is to try and show that the density is not in the exponential family. Some properties can be checked immediately, e.g. that the parameters space \(\Theta \) does not depend on the range of \(X \), e.g. as in a uniform density with unknown region of support boundaries. Another simple test is to compute \(\partial^2 / \partial \theta \partial x \ln f_\theta(x) \) and verify that it is not of separable form \(c'(\theta) t'(x) \) for some functions \(c \) and \(t \). This type of question is explored in the exercises.

3.6 EXERCISES

3.1 Show that the matrix \(\Pi = I_n - 11^T / n \) is symmetric and idempotent, where \(I_n \) is the \(n \times n \) identity matrix and \(1 = [1, \ldots, 1]^T \) is an \(n \)-element column vector of 1’s. Show that for \(x \in \mathbb{R}^n \), \(\Pi x \) is the vector of residuals \([x_1 - \bar{x}, \ldots, x_n - \bar{x}]^T \) where \(\bar{x} \) is the sample mean of elements of \(x \). Finally show that if \(x \) has the decomposition \(y + c1 \) where \(y \) has zero (sample) mean and \(c \) is an arbitrary scalar, then \(\Pi x = y \), i.e. the matrix \(\Pi \) extracts the zero (sample) mean component of \(x \). It is in this sense that \(\Pi \) is an orthogonal projection onto the space of zero (sample) mean vectors in \(\mathbb{R}^n \).

3.2 Assume that a random vector \(X = [X_1, \ldots, X_n]^T \) has a density \(p_\theta(x) \) which depends on an unknown parameter vector \(\theta \). In this exercise you will show that if a statistic \(S = S(X) = [S_1(X), \ldots, S_k(X)]^T \) satisfies the Fisher Factorization theorem then the conditional density \(p_\theta(X|S) \) is not a function of \(\theta \) and thus \(S \) is a sufficient statistic for \(\theta \). In the following you should assume that \(X \) is a discrete random vector and that its joint density \(p_\theta(x) = P_\theta(X = x) \) is a probability mass function (i.e. \(p_\theta(x) = 0 \) except for a countable number of points \(x \in \{x_1, x_2, \ldots\} \) where \(p_\theta(x_i) > 0 \), and \(\sum_{x_i} p_\theta(x_i) = 1 \)).

(a) Use Bayes rule to establish that
\[
p_\theta(x|s) \overset{\text{def}}{=} P_\theta(X = x|S = s) = \frac{P_\theta(S = s|X = x)p_\theta(x)}{\sum_{x_i} p_\theta(x_i)},
\]
where the summation of \(p_\theta(x) \) is over all possible realizations \(\{x_i\} \) of the vector \(X \) such that \(S(x_i) = s \).

(b) Show that \(P_\theta(S = s|X = x) \) is equal to one or zero depending on whether \(S(x) = s \) or \(S(x) \neq s \), respectively. (Hint: express the conditional probability as a ratio and use the definition \(S = S(X) \) to evaluate the intersection of the events \(S = s \) and \(X = x \).)
3.3 Show that the Poisson distribution \(p_\lambda(x) = P_\lambda(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} \), \(x = 0, 1, 2, \ldots \) is a member of the one-parameter exponential family. For an i.i.d. sample \(X = [X_1, \ldots, X_n]^T \) of these Poisson r.v.s find a one dimensional sufficient statistic for \(\lambda \). Define \(\alpha = 1/\lambda \) and show that the reparameterized Poisson distribution \(p_\alpha(x) \) is also in the exponential family. Which of these two parameterizations (\(\alpha \) or \(\lambda \)) is the natural parameterization?

3.4 Let \(X = [X_1, \ldots, X_n]^T \) be a vector of i.i.d. r.v.s \(X_i \) which are uniformly distributed over the interval \((\theta_1, \theta_2) \), \(\theta_1 < \theta_2 \). Show that \(S(X) = [\min_i \{X_i\}, \max_i \{X_i\}]^T \) is a sufficient statistic for \(\theta = [\theta_1, \theta_2]^T \).

3.5 Let \(Z_i, i = 1, \ldots, n \), be a set of i.i.d. random variables each with the alpha density

\[
p_\theta(z) = \frac{\beta}{\sqrt{2\pi}} \Phi(\alpha z^2) \exp \left(-\frac{1}{2} [\alpha - \beta / z]^2 \right),
\]

where \(\beta > 0 \) is unknown, \(\alpha \) is known and \(\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du \) is the standard normal CDF. The alpha distribution is often used to model tool wear for rotating machinery.

(a) Is \(p_\theta(\widehat{z}) \) a member of the exponential family of densities?

(b) using the Fisher Factorization find a two dimensional sufficient statistic for estimating the parameter \(\beta \) based on the observation \(\widehat{Z} = [Z_1, \ldots, Z_n]^T \). Show that this reduces to a one dimensional (scalar) statistic when \(\alpha = 0 \).

3.6 Let \(X = [X_1, \ldots, X_n]^T \) be a vector of i.i.d. Gaussian r.v.s with mean \(\mu \) and variance \(\sigma^2 = \mu^2 \) \((X_i \sim \mathcal{N}(\mu, \sigma^2)) \).

(a) Show that the sample mean \(\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \) is not a sufficient statistic for \(\mu \) by demonstrating that the conditional jpdf of \(\overline{X} \) given \(X \) is a function of \(\mu \).

(b) Find a two dimensional sufficient statistic.

3.7 Let \(T = T(x) \) be a sufficient statistic for \(\theta \), where \(x \sim f(x; \theta) = g(T(x), \theta) h(x) \) is a discrete random variable. Show that \(T \) has probability mass function

\[
f(t; \theta) = g(t, \theta) q(t),
\]

where

\[
q(t) = \sum_{\{x : T(x) = t\}} h(x).
\]

3.8 Consider the case that \(X = [X_1, \ldots, X_n]^T \) are drawn from a Bernoulli distribution, \(X_i \in \{0, 1\} \), \(P(X_i = 1) = 1 - P(X_i = 0) = p, p \in [0, 1] \), and \(X_i \)'s are i.i.d. Show that the Binomial r.v. \(T = \sum_{i=1}^{n} X_i \) is a sufficient statistic for \(p \). Show that \(T \) is minimal. Also show that \(T \) is a complete sufficient statistic (Hint: for any function \(g \) express \(E_\theta[g(T)] \) as a polynomial in \(\theta = p \) and compute \(n \)-th order derivative wrt \(p \)).

3.9 Let \(X = [X_1, \ldots, X_n]^T \) be i.i.d. uniform r.v.s having common density \(f_{X_i}(x; \theta) = \frac{1}{\theta} I_{[0, \theta]}(x) \), where \(I_A(x) \) denotes the indicator function of the set \(A \). Show that \(T = \max(X_1, \ldots, X_n) \) is a complete sufficient statistic for \(\theta \) by the following steps: 1) show sufficiency of \(T \); 2) derive the density function of \(T \); 3) show that \(E_\theta[g(T)] = 0 \), for all \(\theta \in \Theta \) implies \(g \) is identically zero.
End of chapter
4 FUNDAMENTALS OF PARAMETER ESTIMATION

In the last chapter we explored the foundation of statistical inference: the formulation of a statistical model and sufficient statistics for model parameters. In this chapter we go on to develop explicit methods to estimate the parameters from random samples from the model, paying close attention to how well the accuracy of these estimates hold up over different sample realizations.

We will start off with the basic mathematical formulation of estimation and then, specializing to the case of scalar one-dimensional parameters, consider two different models: random parameters and non-random parameters. It turns out, perhaps surprisingly, that estimation of random parameters has a cleaner theory. This is because for random parameters one can more straightforwardly assess the estimator’s mean accuracy and specify procedures for finding optimal estimators, called Bayes estimators, having highest possible accuracy. In particular we define three different optimality criteria mean squared error (MSE), mean absolute error (MAE), and mean uniform error, also called probability of large error (P_e). We then turn to deterministic scalar parameters for which we focus on bias and variance as measures of estimator accuracy. This leads to the concept of Fisher information and the Cramér-Rao lower bound on variance of unbiased estimators. Finally we generalize the treatment to multiple (vector) parameters.

REFERENCES:
INTRODUCTORY TEXTS:
Mood, Graybill and Boes [26]
Van Trees [43]
Srinath, Rajasekaran and Viswanathan [40]
Scharf [35]

MORE ADVANCED:
Bickel and Doksum [3]
Lehmann [23]
Ibragimov and Has’minskii [16]
Poor [31]

4.1 ESTIMATION INGREDIENTS

We follow the notation defined earlier.
\(\mathbf{X} \in \mathcal{X} \) is a random measurement or observation
\(\mathcal{X} \) is the sample or measurement space of realizations \(\mathbf{x} \)
\(\theta \in \Theta \) is an unknown parameter vector of interest
\(\Theta \subset \mathbb{R}^p \) is the parameter space
\(f(\mathbf{x}; \theta) \) is the pdf of \(\mathbf{X} \) for given \(\theta \) (a known function)

The objective of parameter estimation is to design an estimator function

\[
\hat{\theta} = \hat{\theta}(x)
\]

which maps \(\mathcal{X} \) to \(\mathbb{R}^p \supset \Theta \). The concept is illustrated in Fig. 1.
It is important to distinguish between an estimator, which is a function of the sample \(X \), and an estimate, which is an evaluation of the function at a particular realization \(x \) of \(X \), i.e.:

* the function \(\hat{\theta} \) is an estimator.

* the point \(\hat{\theta}(x) \) is an estimate.

A natural question arises. What is an appropriate design criterion for constructing an estimator? There are many possible approaches to this. In this chapter we will describe two of the principal approaches. The first assumes that \(\theta \) is random and the second assumes it is deterministic. Common to both approaches is the specification of a cost function, also called a risk function, associated with an estimator that measures the estimation error as a function of both the sample and the parameter values.

Define \(c(\hat{\theta}(x); \theta) \) a cost function associated with \(\hat{\theta} \) for given \(\theta \) and \(X = x \). The optimum estimator, should it exist, might be found by minimizing average cost \(E[C] \), where as usual, the capitalization \(C \) denotes the random variable \(c(\hat{\theta}(X), \theta) \).

4.2 ESTIMATION OF RANDOM SCALAR PARAMETERS

For the case that \(\theta \) is a random scalar parameter \(\theta \) we have access to the following information:

* \(f(\theta) \): a prior p.d.f. for \(\theta \).
* \(f(x|\theta) \): a conditional p.d.f.
* \(f(\theta|x) \): the posterior p.d.f. for \(\theta \) that is determined by Bayes rule:

\[
f(\theta|x) = \frac{f(x|\theta)f(\theta)}{f(x)}.
\]

* \(f(x) \): the marginal p.d.f. determined by marginalization over \(\theta \)
With the above we can compute the average cost, also called Bayes risk, as

\[E[C] = \int_{\Theta} \int_{X} c(\hat{\theta}(x), \theta) f(x|\theta) f(\theta) \, dx \, d\theta. \]

We now can naturally define an optimal estimator. A scalar estimator \(\hat{\theta} \) which minimizes the average cost is called a \textit{Bayes estimator}. Some reasonable cost functions for this estimation problem are

- \(c(\hat{\theta}; \theta) = |\hat{\theta} - \theta|^2 \): squared error
- \(c(\hat{\theta}; \theta) = |\hat{\theta} - \theta| \): absolute error
- \(c(\hat{\theta}; \theta) = I(|\hat{\theta} - \theta| > \epsilon) \): uniform error

Figure 2 illustrates these three cost functions as a function of the estimator error difference \(\hat{\theta} - \theta \).

For each of the three cost functions we can compute the mean cost and obtain the Bayes risk functions (functions of \(f(\theta), f(x|\theta) \) and \(\hat{\theta} \)):

\textbf{Estimator MSE:}

\[\text{MSE}(\hat{\theta}) = E[|\hat{\theta} - \theta|^2] \]

\textbf{Estimator MAE:}

\[\text{MAE}(\hat{\theta}) = E[|\hat{\theta} - \theta|] \]

\textbf{Error Probability:}

\[P_e(\hat{\theta}) = P(|\hat{\theta} - \theta| > \epsilon) \]

It remains to find the estimators \(\hat{\theta} \), called \textit{optimal estimators}, which minimize each of these criteria.
4.2.1 MINIMUM MEAN SQUARED ERROR ESTIMATION

The MSE is the most widespread estimation criterion and arguably the one with the longest history. The optimal minimum mean squared error estimator (MMSEE) is the conditional mean estimator (CME) defined as

\[\hat{\theta}(\mathbf{X}) = E[\theta|\mathbf{X}] = \text{mean}_{\theta \in \Theta}\{f(\theta|\mathbf{X})\}, \]

where

\[\text{mean}_{\theta \in \Theta}\{f(\theta|\mathbf{X})\} = \int_{-\infty}^{\infty} \theta f(\theta|\mathbf{X}) d\theta. \]

The CME has an intuitive mechanical interpretation as the center of mass (1st moment of inertia) of the mass density \(f(\theta|\mathbf{x}) \) (Fig. 3). The CME corresponds to the posterior average value of the parameter after you have observed the data sample.

The CME satisfies an orthogonality condition: the Bayes estimator error is orthogonal to any (linear or non-linear) function of the data. This condition is mathematically expressed below for the general case of complex rv’s,

\[E[(\theta - \hat{\theta}(\mathbf{X}))g(\mathbf{X})^*] = 0, \]

for any function \(g \) of \(x \). Here \(u^* \) denotes complex conjugate of \(u \).

Figure 3: Conditional mean estimator minimizes MSE

Proof: Write the MSE as

\[E[|\hat{\theta} - \theta|^2] = E[|(|\hat{\theta} - E[\theta|\mathbf{X}]) - (\theta - E[\theta|\mathbf{X}]|^2] \]

\[= E[|\hat{\theta} - E[\theta|\mathbf{X}]|^2] + E[|\theta - E[\theta|\mathbf{X}]|^2] \]

\[-E[g(\mathbf{X})^*(\theta - E[\theta|\mathbf{X}])] - E[g(\mathbf{X})(\theta - E[\theta|\mathbf{X}])^*] \]
where \(g(X) = \hat{\theta} - E[\theta|X] \) is a function of \(X \) only.

Step 1: show orthogonality condition

\[
E[g(X)(\theta - E[\theta|X])] = E \left[E[g(X)(\theta - E[\theta|X])^*|X] \right]
\]

\[
= E \left[g(X) \right. \left. \frac{E[\theta - E[\theta|X]|X]}{\theta - E[\theta|X]} \right] = 0
\]

Step 2: Next show \(E[\theta|X] \) minimizes MSE

\[
E[|\hat{\theta} - \theta|^2] = E[|\hat{\theta} - E[\theta|X]|^2] + E[|\theta - E[\theta|X]|^2] \geq E[|\theta - E[\theta|X]|^2]
\]

where “=” occurs iff \(\hat{\theta} = E[\theta|X] \)

\[\diamond\]

4.2.2 MINIMUM MEAN ABSOLUTE ERROR ESTIMATOR

For convenience we assume \(\theta \) is a real valued scalar and \(F(\theta|x) = \int^{\theta} f(\theta'|x)d\theta' \) is a continuous function of \(\theta \). The minimal mean absolute error estimator (MMAEE) is the conditional median estimator (CmE)

\[
\hat{\theta}(X) = \text{median}_{\theta \in \Theta} \{ f(\theta|X) \},
\]

where

\[
\text{median}_{\theta \in \Theta} \{ f(\theta|X) \} = \min \left\{ u : \int_{-\infty}^{u} f(\theta|X)d\theta = 1/2 \right\} = \min \left\{ u : \int_{-\infty}^{u} f(X|\theta)f(\theta)d\theta = \int_{u}^{\infty} f(X|\theta)f(\theta)d\theta \right\}.
\]

The median of a density separates the density into two halves of equal mass (Fig. 4). When \(F(\theta|x) \) is strictly increasing over \(\Theta \) the ”min” in the definition of the median is not necessary - but it may be required when there are regions of \(\Theta \) where the density \(f(\theta|x) \) is equal to zero. If \(f(\theta|X) \) is continuous in \(\theta \) the CmE also satisfies an orthogonality condition:

\[
E[\text{sgn}(\theta - \hat{\theta}(X))g(X)] = 0,
\]

and thus for minimum MAE estimation it is the sign of the optimum estimation error that is orthogonal to any function of the data sample.

Proof: Let \(\hat{\theta}_m = \text{median of } f(\theta|X) \).

Then by definition of median for continuous densities
Figure 4: Conditional median estimator minimizes MAE

\[E[\text{sgn}(\theta - \hat{\theta}_m) \mid X] = \int_{\Theta} \text{sgn}(\theta - \hat{\theta}_m(X)) \, f(\theta \mid X)d\theta \]

\[= \int_{\theta > \hat{\theta}_m(X)} f(\theta \mid X)d\theta - \int_{\theta \leq \hat{\theta}_m(X)} f(\theta \mid X)d\theta \]

\[= 0 \]

Step 1: show orthogonality condition:

\[E[\text{sgn}(\theta - \hat{\theta}_m)g(X)] = E[E[\text{sgn}(\theta - \hat{\theta}_m) \mid X] \, g(X)] \]

Step 2: for \(\hat{\theta} \) arbitrary we have (apply “useful formula” below)

\[\text{MAE}(\hat{\theta}) = E[|\theta - \hat{\theta}_m + \hat{\theta}_m - \hat{\theta}|] \]

\[= E[|\theta - \hat{\theta}_m|] + E[\text{sgn}(\theta - \hat{\theta}) \Delta] \]

\[= 0 \]

\[+ E[\text{sgn}(a + \Delta) - \text{sgn}(a)](a + \Delta) \]

\[\geq |\text{sgn}(a + \Delta) - \text{sgn}(a)(a + \Delta) \]

Useful formula: \(|a + \Delta| = |a| + \text{sgn}(a)\Delta + [\text{sgn}(a + \Delta) - \text{sgn}(a)](a + \Delta)\)
4.2.3 MINIMUM MEAN UNIFORM ERROR ESTIMATION

Unlike the MSE or MAE, the MUE penalizes only those errors that exceed a tolerance level $\epsilon > 0$ and this penalty is uniform. For small ϵ the optimal estimator is the maximum a posteriori (MAP) estimator, which is also called the posterior mode estimator (Fig. 5)

\[
\hat{\theta}(X) = \arg\max_{\theta \in \Theta} \{f(\theta|X)\} = \arg\max_{\theta \in \Theta} \left\{ \frac{f(X|\theta)f(\theta)}{f(X)} \right\} = \arg\max_{\theta \in \Theta} \left\{ f(X|\theta)f(\theta) \right\}. \tag{26}
\]

Notice that the third line of (26) is best suited to computation of the MAP estimator since it does not require the marginal $f(\theta|x)$, which can be difficult to compute.

\[\hat{\theta}_{\text{MAP}}\]

Figure 5: Maximum a posteriori estimator minimizes P_e

Proof.

Assume that ϵ is a small and positive number. The probability that the magnitude estimator error exceeds ϵ is simply expressed

\[
P_e(\hat{\theta}) = 1 - P(|\theta - \hat{\theta}| \leq \epsilon)
= 1 - \int_X dx f(x) \int_{\{\theta:|\theta-\hat{\theta}(x)| \leq \epsilon\}} f(\theta|x) d\theta.
\]

Consider the inner integral (over θ) in the above expression. This is an integral over θ within a window, which we call the length 2ϵ window, centered at $\hat{\theta}$. Referring to Fig. 6, it should be evident to the reader that, if ϵ is sufficiently small, this integral will be minimized by centering the length 2ϵ window at the value of θ that maximizes the integrand $f(\theta|x)$. This value is of course the definition of the MAP estimate $\hat{\theta}$. \hfill \blacktriangledown
Now that we have seen three different estimator criteria, and their associated optimal estimators, we make several general remarks.

- The CmE may not exist for discrete Θ since the median may not be well defined.
- Only the CME requires (often difficult) computation of $f(x)$.
- Each of these estimators depends on x only through posterior $f(\theta|x)$.
- When the posterior is continuous, unimodal, and symmetric then each of the above estimators are identical (VanTrees [43])! See Fig. 7 for illustration.
- If $T = T(X)$ is a sufficient statistic the posterior depends on X only through T. Indeed, if $f(X|\theta) = g(T; \theta)h(X)$, then by Bayes rule
 \[f(\theta|X) = \frac{f(X|\theta)f(\theta)}{\int_{\Theta} f(X|\theta)f(\theta)d\theta} = \frac{g(T; \theta)f(\theta)}{\int_{\Theta} g(T; \theta)f(\theta)d\theta} \]
 which is only a function of X through T. Thus, in terms of optimal estimation performance, one loses nothing by compressing X to a sufficient statistic.
- The CME has the following linearity property. For any random parameter variables θ_1 and θ_2: $E[\theta_1 + \theta_2|X] = E[\theta_1|X] + E[\theta_2|X]$. This property is not shared by the CmE or the MAP estimator.

4.2.4 BAYES ESTIMATOR EXAMPLES

Here we give four examples of statistical models, priors, and derive their optimal estimators under various criteria.

These are the examples we will cover (hotlinks on the web version)

* Estimation of width of uniform density
Figure 7: Symmetric and continuous posterior density

* Estimation of a Gaussian signal
* Estimation of magnitude of Gaussian signal
* Estimation of a binary signal in Gaussian noise

Example 9 ESTIMATION OF WIDTH OF UNIFORM PDF

Consider the following motivating problem. A networked computer terminal takes a random amount of time to connect to another terminal after sending a connection request at time $t = 0$. You, the user, wish to schedule a transaction with a potential client as soon as possible after sending the request. However, if your machine does not connect within the scheduled time then your client will go elsewhere. If one assumes that the connection delay is a random variable X that is uniformly distributed over the time interval $[0, \theta]$ you can ensure your client that the delay will not exceed θ. The problem is that you do not know θ so it must be estimated from past experience, e.g., the sequence of previously observed connection delays X_1, \ldots, X_n. By assuming a prior distribution on θ an optimal estimate can be obtained using the theory developed above.

So now let’s formulate this in our language of estimation theory.

We assume that X_1, \ldots, X_n are conditionally i.i.d. uniform samples each with conditional density

$$f(x_1|\theta) = \frac{1}{\theta} I_{[0,\theta]}(x_1).$$

Let’s say that based on your experience with lots of different clients you determine that a reasonable prior on θ is

$$f(\theta) = \theta e^{-\theta}, \quad \theta > 0.$$

Figure 8 illustrates these two densities.

We will derive the CME, CmE, and MAP estimators of θ. There are two steps.
Step 1: Find the posterior $f(\theta | x) = f(x | \theta) f(\theta) / f(x)$

\[
f(x | \theta) f(\theta) = \left(\prod_{i=1}^{n} \frac{1}{\theta} I_{[x_i, \infty)}(\theta) \right) \left(\theta e^{-\theta} \right)
\]

\[
= \frac{e^{-\theta}}{\theta^{n-1}} \prod_{i=1}^{n} I_{[x_i, \infty)}(\theta) \prod_{i=1}^{n} I_{[x^{(1)}, \infty)}(\theta)
\]

\[
= \frac{e^{-\theta}}{\theta^{n-1}} I_{[x^{(1)}, \infty)}(\theta).
\]

where $x^{(1)} = \max \{ x_i \}$. Observe that the function $\frac{e^{-\theta}}{\theta^{n-1}}$ is monotone decreasing over $\theta > 0$ (verify that the derivative of its logarithm is negative).

Furthermore,

\[
f(x) = \int_{0}^{\infty} f(x | \theta) f(\theta) d\theta
\]

\[
= q_{-n+1}(x^{(1)})
\]

where q_n is the monotone decreasing function

\[
q_n(x) \overset{\text{def}}{=} \int_{x}^{\infty} \theta^n e^{-\theta} d\theta
\]

Recursive formula: $q_{n-1}(x) = \frac{1}{n} \left(\frac{1}{x^n} e^{-x} - q_n(x) \right)$, $n = 0, -1, -2, \ldots$

Step 2: find optimal estimator functions:
\hat{\theta}_{\text{MAP}} = X_{(1)}

\hat{\theta}_{\text{CME}} = \frac{q_{-n+2}(X_{(1)})}{q_{-n+1}(X_{(1)})}

\hat{\theta}_{\text{CmE}} = \frac{1}{q_{-n+1}^{-1} \left(\frac{1}{2} q_{-n+1}(X_{(1)}) \right)}.

Note that only the MAP estimator is a simple function of \(X \) while the two others require more difficult computation of integrals \(q_n \) and/or an inverse function \(q_n^{-1} \). These estimators are illustrated in Fig. 9 along with the posterior density \(f(\theta|x) \).

Figure 9: The estimators CME, CmE and MAP for the width parameter \(\theta \) of the underlying uniform density with prior given by Fig. 8.b.

Example 10 ESTIMATION OF GAUSSIAN AMPLITUDE

A very common assumption arising in many signal extraction problems is the assumption of a Gaussian distributed signal observed in additive Gaussian noise. For example, a radar target acquisition system might transmit a pulse to probe for possible targets in a cell located at a particular point in space. If a strong reflecting target is present at that point then it reflects some of the energy in the radar pulse back to the radar, resulting in a high energy signal, called a radar return, at the radar receiver. The amplitude of this signal might contain useful information about the identity of the target. Estimation of the radar return is complicated by the presence of ambient noise generated in the radar receiver (thermal noise) or by interference from other sources (clutter) in the cell. Based on field trials of the radar system prior mean and variances of the received signal and the noise might be available.

To set this up more formally as an estimation problem we define two jointly Gaussian r.v.s: \(S, X \) with known means, variances, and covariance

\[E[S] = \mu_S, \ E[X] = \mu_X, \]
\[\text{var}(S) = \sigma_S^2, \quad \text{var}(X) = \sigma_X^2 \]
\[\text{cov}(S, X) = \rho \sigma_S \sigma_X. \]

\(S \) will play the role of the signal and \(X \) will be the measurement. Of course the specific form of the covariance function will depend on the receiver structure, e.g., it reduces to a simple function of \(\sigma_S \) and \(\sigma_X \) for an additive noise model.

The objective is to find an optimal estimator of \(S \) given measured \(X \). As in the previous example the derivation of CME, CmE and MAP estimators is divided into two parts.

Step 1: find the posterior density.

A fundamental fact about jointly Gaussian random variables is that if you condition on one of the variables then the other variable is also Gaussian, but with different mean and variance equal to its conditional mean and variance (see Fig. 10 and Exercise 4.25 at the end of chapter). In particular, the conditional density of \(S \) given \(X = x \) is Gaussian with mean parameter

\[\mu_{S|X}(x) = E[S|X = x] = \mu_S + \rho \frac{\sigma_S}{\sigma_X} (X - \mu_X), \]

and variance parameter

\[\sigma_{S|X}^2 = E[(S - E[S|X])^2|X = x] = (1 - \rho^2) \sigma_S^2, \]

so that the conditional density takes the form

\[f_{S|X}(s|x) = \frac{f_{X|S}(x|s)f_S(s)}{f_X(x)} = \frac{1}{\sqrt{2\pi \sigma_{S|X}^2}} \exp \left\{ -\frac{(s - \mu_{S|X}(x))^2}{2\sigma_{S|X}^2} \right\}. \]

\[f(s|x) \]

Figure 10: The posterior \(f(s|x) \) is of the form of a Gaussian density.
Step 2: find the form of the optimal estimators

We immediately note that, as the posterior is continuous, symmetric and unimodal, the MAP, CME, and CmE estimators are of identical form. Bringing out the explicit dependency of the estimator \hat{S} on the observed realization x we have:

$$\hat{S}(x) = \mu_{S|X}(x) = \text{linear in } x.$$

An interesting special case, relevant to the radar example discussed above, is the independent additive noise model where $X = S + V$. For this case $\sigma^2_X = \sigma^2_S + \sigma^2_V$, $\rho^2 = \sigma^2_S/\left(\sigma^2_S + \sigma^2_V\right)$ and therefore

$$\hat{S}(x) = \mu_S + \frac{\sigma^2_S}{\sigma^2_S + \sigma^2_V} (x - \mu_X).$$

We can easily derive the performance of the optimal estimator under the MSE criterion

Minimum MSE: $E[(S - \hat{S})^2] = (1 - \rho^2)\sigma^2_S$.

A little more work produces expressions for the performances of this optimal estimator under the MAE and Pe (MUE) criteria:

Minimum MAE: $E[|S - \hat{S}|] = \sqrt{(1 - \rho^2)\sigma^2_S} \sqrt{\frac{2}{\pi}}$

Minimum Pe: $P(|S - \hat{S}| > \epsilon) = 1 - 2\text{erf}\left(\epsilon/\sqrt{(1 - \rho^2)\sigma^2_S}\right)$

Example 11 Estimation of magnitude of Gaussian signal

Now we change the motivating example a little. What if the radar operator was only interested in the energy of the received signal and not its sign (phase)? Then the proper objective would be to estimate the magnitude $|S|$ instead of the magnitude and phase S. Of course, an ad hoc estimation procedure would be to simply take the previously derived estimator \hat{S} and use its magnitude $|\hat{S}|$ to estimate $|S|$ but is this the best we can do?

Let’s see what the form of the best estimators of $|S|$ are.

Again we define two jointly Gaussian r.v.s: S, X with means, variances, and covariance

$$E[S] = \mu_S, \ E[X] = \mu_X,$$
$$\text{var}(S) = \sigma^2_S, \ \text{var}(X) = \sigma^2_X,$$
$$\text{cov}(S, X) = \rho \sigma_S \sigma_X.$$

Now the objective is to estimate the random variable $Y = |S|$ based on X. Note: the pair Y, X no longer obeys a jointly Gaussian model. But, using first principles, we can easily derive the optimal estimators. The first step is to compute the posterior density $f_{Y|X}$.

Since we know $f_{S|X}$ from the previous example this is a simple transformation of variables problem of elementary probability. We use the method of differentials (see Fig. 11) to obtain the following relation, valid for small Δ

$$f_{Y|X}(y|x)\Delta = f_{S|X}(y|x)\Delta + f_{S|X}(-y|x)\Delta, \quad y \geq 0,$$
or more explicitly
\[
f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}\sigma_{S|X}^2} \left(\exp \left\{ -\frac{(y - \mu_{S|X}(x))^2}{2\sigma_{S|X}^2} \right\} + \exp \left\{ -\frac{(y + \mu_{S|X}(x))^2}{2\sigma_{S|X}^2} \right\} \right) I_{[0,\infty)}(y). \tag{27}
\]

Unlike Example 10 this posterior density, shown in Fig. 12 is no longer symmetric in \(y \). Hence we expect the CME, CmE, and MAP estimators to be different.

The CME can be derived in explicit closed form by integration over \(y \in [0,\infty) \) of the function \(yf_{Y|X}(y|x) \) specified in (27)

\[
\hat{Y}_{\text{CME}}(x) = E[Y|X = x] = |\mu_{S|X}(x)| \text{ erf} \left(\frac{\mu_{S|X}(x)}{\sigma_{S|X} \sqrt{2}} \right) + \sqrt{\frac{2}{\pi}} \sigma_{S|X} e^{-\mu_{S|X}^2/2\sigma_{S|X}^2}.
\]

On the other hand, by investigating the MMAE equation \(\int_{-\infty}^{\hat{Y}} f_{Y|X}(y|x)dy = \int_{0}^{\hat{Y}} f_{Y|X}(y|x)dy \) it is easily seen that the CmE can only be implicitly given as the solution \(\hat{Y} = \hat{Y}_{\text{CmE}} \) of the following

\[
\text{erf} \left(\frac{\hat{Y} - \mu_{S|X}(x)}{\sigma_{S|X} \sqrt{2}} \right) + \text{erf} \left(\frac{\hat{Y} + \mu_{S|X}(x)}{\sigma_{S|X} \sqrt{2}} \right) = \frac{1}{2}.
\]

Finally, as \(f_{Y|X}(y|x) \) is concave and smooth in \(y \), the MAP estimator \(\hat{Y} = \hat{Y}_{\text{MAP}} \) occurs at a stationary point in \(y \) of the so called “MAP equation”

\[
0 = \frac{\partial f(y|x)}{\partial y}.
\]
Using (27) this yields

\[
\frac{\mu_{S|X}(x)}{\hat{Y}(x)} \exp \left\{ -\frac{(\hat{Y} - \mu_{S|X}(x))^2}{2\sigma_{\hat{S}|X}^2} \right\} - \exp \left\{ -\frac{(\hat{Y} + \mu_{S|X}(x))^2}{2\sigma_{\hat{S}|X}^2} \right\} = 1.
\]

The above optimal estimators are illustrated in Fig. 13. It can be verified that as \(\mu_{S|X}/\sigma_{S|X} \to \infty\) all three estimators converge to an identical limit:

\[
\hat{Y}(x) \to |\mu_{S|Y}(x)|.
\]

This limiting case occurs since the posterior density becomes a dirac delta function at \(y = \mu_{S|Y}(x)\).

Observe that none of these estimators of \(|S|\) are given by \(|\hat{S}|\) where \(\hat{S}\) is the corresponding MAP/CME/CmE estimate of \(S\) derived in Example 10. This illustrates an important fact: estimation of random parameters is not invariant to functional transformation.

Example 12 Estimation of sign of Gaussian signal

Above we derived optimal estimators for magnitude of a Gaussian random variable based on Gaussian observations. Well, how about the opposite situation, e.g., when the radar operator wants to estimate the sign as opposed to the magnitude of the signal? We treat a simplified version of this problem in this example.

Assume that the model for the observation is

\[X = \theta + W\]
Figure 13: Three optimal estimators of $Y = |S|$ when S, X are jointly Gaussian.

where W is a zero mean Gaussian noise with variance σ^2 and θ is an equally likely binary random variable: $P(\theta = 1) = P(\theta = -1) = \frac{1}{2}$, $\Theta = \{-1, 1\}$. This corresponds to our radar problem when the prior mean μ_S is zero (why?) and an additive noise model is assumed.

Here the posterior density is a probability mass function since the signal θ is discrete valued:

$$p(\theta|x) = \frac{f(x|\theta)p(\theta)}{f(x)},$$

where $p(\theta) = 1/2$. For convenience we have eliminated subscripts on densities. Furthermore, as illustrated in Fig. 14,

$$f(x|\theta) = \begin{cases}
\frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(\frac{(x-1)^2}{2\sigma^2}\right), & \theta = 1 \\
\frac{1}{\sqrt{2\pi}\sigma^2} \exp\left(\frac{(x+1)^2}{2\sigma^2}\right), & \theta = -1
\end{cases}.$$

Hence

$$f(x) = f(x|\theta = 1)\frac{1}{2} + f(x|\theta = -1)\frac{1}{2}.$$

From the following steps we discover that the MAP estimator is a minimum distance decision rule, i.e., it selects the value $\hat{\theta}$ as that value of θ which is closest to the measured value X:

$$\hat{\theta}_{\text{MAP}} = \arg\max_{\theta = 1, -1} f(X|\theta)$$

$$= \arg\min_{\theta = 1, -1} \{(X - \theta)^2\}$$

$$= \begin{cases}
1, & X \geq 0 \\
-1, & X < 0
\end{cases}.$$
Figure 14: The posterior density $f(\theta|x)$ concentrates mass on the pair of points $\theta = \pm 1$.

On the other hand, the CME estimator is

$$\hat{\theta}_{CME} = (1)P(\theta = 1|X) + (-1)P(\theta = -1|X)$$

$$= \frac{\exp\left(-\frac{(X-1)^2}{2\sigma^2}\right) - \exp\left(-\frac{(X+1)^2}{2\sigma^2}\right)}{\exp\left(-\frac{(X-1)^2}{2\sigma^2}\right) + \exp\left(-\frac{(X+1)^2}{2\sigma^2}\right)}.$$

The MAP and CME estimators are illustrated in Fig. 15. Unfortunately, we cannot derive the CmE since it is not well defined for discrete valued parameters θ (why?).

Based on these above examples we make the summary remarks:

1. Different error criteria usually give different optimal estimators.
2. Optimal estimators of random parameters are not invariant to functional transformations. Specifically, if $\hat{g}(\theta)$ is an optimal estimator of $g(\theta)$ and $\hat{\theta}$ is an optimal estimator of θ:

$$\hat{g}(\theta) \neq g(\hat{\theta})$$

in general.
3. When they exist, the CmE and MAP estimators always take values in the parameter space Θ. The values taken by CME may fall outside of Θ, e.g., if it is discrete or if it is not a convex set.
4. The “MAP equation” stationary point condition $\partial f(\theta|x)/\partial \theta = 0$ at $\theta = \hat{\theta}_{MAP}$ is only useful for continuous densities that are differentiable and concave in continuous valued parameters θ (Fig. 16).
Figure 15: MAP (light font sign function) and CME (heavy font “S” curve) as function of measurement x.

Figure 16: Use of the stationary point MAP equation can fail to find the MAO estimator. In general there may exist no stationary points of the posterior density (f_1, f_3), or there may be multiple stationary points of the posterior density (f_2).
4.3 ESTIMATION OF RANDOM VECTOR VALUED PARAMETERS

Define a vector parameter \(\theta \in \Theta \subset \mathbb{R}^p \), \(\theta = [\theta_1, \ldots, \theta_p]^T \), and define the norm squared on \(\Theta \)

\[
\|\theta\|^2 = \sum_{i=1}^{p} |\theta_i|^2
\]

The previously introduced scalar estimation criterion \(E[c(\hat{\theta}, \theta)] \) needs to be generalized to handle vector parameter estimation. This turns out to be quite easy, at least for two of our proposed estimation criteria. Some possible generalizations of the previous three scalar criteria are (Figs. 17-20)

Estimator MSE:

\[
\text{MSE}(\hat{\theta}) = E[\|\hat{\theta} - \theta\|^2] = \sum_{i=1}^{p} E[(\hat{\theta}_i - \theta_i)^2].
\]

Estimator MAE:

\[
\text{MAE}(\hat{\theta}) = E[\|\hat{\theta} - \theta\|_1] = \sum_{i=1}^{p} E[|\hat{\theta}_i - \theta_i|].
\]

Error Probability (MUE):

\[
P_e(\hat{\theta}) = P(\|\hat{\theta} - \theta\| > \epsilon).
\]

The MAE criterion, also known as total variation norm, does not often lead to unique optimal vector-valued estimators. Although the total variation norm has been of substantial recent interest, in our introductory treatment only MSE and \(P_e \) will be discussed.
Figure 18: Absolute error criterion

Figure 19: Uniform error criterion
4.3.1 VECTOR SQUARED ERROR

As MSE(\(\hat{\theta}\)) = \(\sum_{i=1}^{p} MSE(\hat{\theta}_i)\) is an additive function, the minimum MSE vector estimator attains the minimum of each component MSE(\(\hat{\theta}_i\)), \(i = 1, \ldots, p\). Hence, we have the nice result that the vector minimum MSE estimator is simply the vector of scalar CME's for each component:

\[
\hat{\theta}_{\text{CME}} = E[\theta|X] = \begin{bmatrix} E[\theta_1|X] \\ \vdots \\ E[\theta_p|X] \end{bmatrix}
\]

As in the case of scalar estimation the minimum MSE estimator is the center of mass of the multivariate posterior density (Figs. 21-22).

4.3.2 VECTOR UNIFORM ERROR

For small \(\epsilon\) the minimum mean uniform error (\(P_{\epsilon}\)) is attained by the vector MAP estimator which has form similar to the scalar MAP estimator

\[
\hat{\theta}_{\text{MAP}} = \arg\max_{\theta \in \Theta} f(\theta|x).
\]

4.4 ESTIMATION OF NON-RANDOM PARAMETERS

To estimate random parameters one has a prior distribution and we can define a global estimation error criterion, the Bayes risk, which depends on the prior but not on any particular value of the parameter. In non-random parameter estimation there is no prior distribution. One can of course look at the problem of estimation of non-random parameters as estimation of random parameters conditioned on the value of the parameter, which we could call the true value. However, the
Figure 21: Bivariate posterior density of two unknown parameters. Optimal estimates shown in Fig. 22.

Figure 22: Vector MAP estimate and CME for bivariate posterior illustrated in Fig. 23. The MAP estimate occurs at the global maximum of the posterior while the CME occurs at the center of mass.
formulation of optimal non-random parameter estimation requires a completely different approach. This is because if we do not have a prior distribution on the parameter virtually any reasonable estimation error criterion will be local, i.e., it will depend on the true parameter value. Thus we will need to define weaker properties than minimum risk, such as unbiasedness, that a good estimator of non-random parameters should have.

As before we first consider estimation of scalar non-random parameters θ. In this case it does not make sense to use the conditional density notation $f(x|\theta)$ and we revert to the alternative notation for the model $f_\theta(x) = f(x; \theta)$.

So, what are some possible design criteria for estimators of scalar real θ? One could try to minimize MSE, defined as

$$\text{MSE}_\theta = E_\theta[(\hat{\theta} - \theta)^2].$$

Here we encounter a difficulty: if the true value θ is θ_0, the trivial estimator $\hat{\theta} = \theta_0$ attains 0 MSE (Fig. 23).

4.4.1 SCALAR ESTIMATION CRITERIA FOR NON-RANDOM PARAMETERS

Some possible scalar criteria for designing good estimators are the minimax criteria.

1. Minimize worst case MSE. Choose $\hat{\theta}$ to minimize

$$\max_{\theta} \text{MSE}_\theta(\hat{\theta}) = \max_{\theta} E_\theta[(\hat{\theta} - \theta)^2].$$

2. Minimize worst case estimator error probability:

$$\max_{\theta} P_e = \max_{\theta} P_\theta(|\hat{\theta} - \theta| > \epsilon)$$
If we would be satisfied by minimizing an upper bound on $\max P_\epsilon$, then we could invoke Tchebychev inequality

$$P_\theta(|\hat{\theta} - \theta| \geq \epsilon) \leq \frac{E_\theta[|\hat{\theta} - \theta|^2]}{\epsilon^2}$$

and focus on minimizing the worst case MSE. There is a large literature on minimax MSE estimation, see for example [23], but the mathematical level necessary to develop this theory is too advanced for an introductory treatment. We will not consider minimax estimation further in this book.

We next give several weaker conditions that a good estimator should satisfy, namely consistency and unbiasedness.

Definition: $\hat{\theta}_n = \hat{\theta}(X_1, \ldots, X_n)$ is said to be (weakly) consistent if for all θ and all $\epsilon > 0$

$$\lim_{n \to \infty} P_\theta(|\hat{\theta}_n - \theta| > \epsilon) = 0$$

This means that $\hat{\theta}_n$ converges in probability to the true parameter θ. It also means that the pdf of the estimator concentrates about θ (Fig. 24). Furthermore, by the Tchebychev inequality (28), if MSE goes to zero as $n \to \infty$ then $\hat{\theta}_n$ is consistent. As the MSE is usually easier to derive than P_ϵ, showing that MSE converges to zero is the typical way that one shows that an estimator is consistent.

For an estimator $\hat{\theta}$ define the estimator bias at a point θ to be

$$b_\theta(\hat{\theta}) = E_\theta[\hat{\theta}] - \theta.$$

Likewise the estimator variance is

$$\text{var}_\theta(\hat{\theta}) = E_\theta[(\hat{\theta} - E_\theta[\hat{\theta}])^2].$$
Here the reader should recall the definition of the expectation operator \(E_\theta \):
\[
E_\theta [g(X)] = \int_X g(x) f(x; \theta) \, dx,
\]
where \(X \) is a r.v. with density \(f(x; \theta) \). As compared to the Bayes expectation \(E[g(X)] \) used for random parameters, this expectation acts like a conditional expectation given a specific value of \(\theta \).

It is natural to require that a good estimator be \textit{unbiased}, i.e., \(b_\theta(\hat{\theta}) = 0 \) for all \(\theta \in \Theta \). This suggests a reasonable design approach: constrain the class of admissible estimators to be unbiased and try to find one that minimizes variance over this class. In some cases such an approach leads to a really good, in fact optimal, unbiased estimator called a UMVU estimator (Fig. 25).

Definition: \(\hat{\theta} \) is said to be a uniform minimum variance unbiased (UMVU) estimator if for all \(\theta \in \Theta \) it has less variance than any other unbiased estimator \(\hat{\theta} \). Thus a UMVU estimator satisfies
\[
\text{var}_\theta(\hat{\theta}) \leq \text{var}_\theta(\hat{\theta}), \quad \theta \in \Theta
\]

Unfortunately, UMVU estimators only rarely exist for finite number \(n \) of samples \(X_1, \ldots, X_n \). Thus one is usually forced to sacrifice the unbiasedness constraint in order to develop good tractable estimation procedures. For such estimators there exists an important relation between MSE, variance and bias:
\[
\text{MSE}_\theta(\hat{\theta}) = E_\theta[(\hat{\theta} - \theta)^2] = E_\theta[\left((\hat{\theta} - E_\theta[\hat{\theta}]) + (E_\theta[\hat{\theta}] - \theta) \right)^2] \\
= E_\theta[(\hat{\theta} - E_\theta[\hat{\theta}])^2] + \left(E_\theta[\hat{\theta}] - \theta \right)^2 + 2 E_\theta[\hat{\theta} - E_\theta[\hat{\theta}]] b_\theta(\hat{\theta}) \\
= \text{var}_\theta(\hat{\theta}) + b_\theta^2(\hat{\theta})
\]

The above relation implies that in general, for specified MSE, there always exists a “bias-variance tradeoff,” at least for good estimators: any reduction in bias comes at the expense of an increase in variance.
We now get down to the business of defining some general procedures for designing good estimators of non-random parameters. Two important classes of estimation procedures we will consider are:

* method of moments
* maximum likelihood

4.4.2 METHOD OF MOMENTS (MOM) SCALAR ESTIMATORS

The method of moments is a very natural procedure which consists in finding the parameter that attains the best match between empirically computed moments and ensemble moments. Specifically, for positive integer k let $m_k = m_k(\theta)$ be the k-th order ensemble moment of $f(x; \theta)$:

$$m_k = E_{\theta}[X^k] = \int x^k f(x; \theta) dx.$$

What if we could find a set of K moments such that the vector function

$$g(\theta) = [m_1(\theta), \ldots, m_K(\theta)]$$

could be inverted for θ? That is, we could construct an inverse function g^{-1} that gave a unique θ when applied to the set of moments:

$$\theta = g^{-1}(m_1, \ldots, m_K).$$

Then, by replacing the m_k’s with their empirical estimates, called the sample moment estimates,

$$\hat{m}_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k$$

we would obtain an estimator

$$\hat{\theta} = g^{-1}(\hat{m}_1, \ldots, \hat{m}_K).$$

This is the essence of the MOM estimator design procedure. Next we give some important asymptotic optimality properties of MOM estimators (see Serfling [36] for proofs).

IMPORTANT PROPERTIES OF MOM ESTIMATORS

When the moments m_k are smooth functions of the parameter θ and an inverse function g^{-1}, described above, exists:

* MOM estimators are asymptotically unbiased as $n \to \infty$
* MOM estimators are consistent

There are, however, some inherent difficulties that one sometimes encounters with MOM.

1. The MOM does not always give unique estimators.
2. The MOM is inapplicable in cases where moments do not exist (e.g. Cauchy p.d.f.) or are unstable. An alternative to MOM which sometimes yields good estimators is to match sample and ensemble fractional moments m_k where k is a positive rational number less than one. Fractional moments can exist when integer moments do not exist and can be quite useful in these situations [37].

Let’s do some examples.
Example 13 \(X \) i.i.d. Bernoulli random variables

Bernoulli measurements arise anytime one deals with (binary) quantized versions of continuous variables, e.g., thresholded radar signals ("radar return is above or below a threshold"), failure data, or digital media, e.g., Internet measurements. In these cases the parameter of interest is typically the probability of success, i.e., the probability that the measured variable is a "logical 1."

The model is that \(X = [X_1, \ldots, X_n] \) are i.i.d. with

\[
X_i \sim f(x; \theta) = \theta^x (1 - \theta)^{1-x}, \quad x = 0, 1.
\]

Here \(\theta \in [0, 1] \) or, more specifically, \(\theta = P(X_i = 1), 1 - \theta = P(X_i = 0) \).

Objective: find a MOM estimator of \(\theta \)

Note that for any \(k > 0 \) \(E[X_i^k] = P(X_i = 1) = \theta \) so that all moments are identical and the function \(g \) mapping moments to \(\theta \) is the identity map. Thus a MOM estimator of \(\theta \) is simply sample mean:

\[
\hat{\theta} = \bar{X}.
\]

It is obvious that \(\hat{\theta} \) is unbiased since \(E[\theta|X] = m_1 = \theta \). Furthermore, it has variance taking a maximum at \(\theta = \frac{1}{2} \) (Fig. 26)

\[
\text{var}_\theta(\bar{X}) = (m_2 - m_1^2)/n = \theta(1 - \theta)/n.
\]

![Figure 26: Variance of MOM estimator of probability of success of Bernoulli r.v.](image)

Reiterating, for this Bernoulli example the order of the moment used in the moment matching process leads to identical MOM estimators. This behavior of MOM is very unusual.

Example 14 \(X \) i.i.d. Poisson random variables
Poisson measurements are ubiquitous in many scenarios where there are counting measurements. For example, in positron emission tomography (PET) the decay of an isotope in a particular spatial location within a patient’s body produces a gamma ray which is registered as a single ”count” on a detector. The number of counts over a finite time interval is a Poisson random variable with rate parameter determined by the mean concentration of the isotope. The objective of a PET system is to reconstruct, i.e., estimate, the distribution of rates over the imaging volume. The Poisson distribution is also frequently used as a model for the number of components or degrees of freedom behind the measured values. For example, the number of molecules in a mass spectroscopy measurement, the number of atoms in a molecule, or the number of targets in a cell detected by a radar.

Again assuming i.i.d. measurements, the model for each data sample is

\[X_i \sim p(x; \theta) = \frac{\theta^x}{x!} e^{-\theta}, \quad x = 0, 1, 2, \ldots, \]

where \(\theta > 0 \) is the unknown rate. It is readily verified that the mean \(m_1 \) is equal to \(\theta \). Therefore, like in the Bernoulli example a MOM estimator of \(\theta \) is the sample mean

\[\hat{\theta}_1 = \bar{X}. \]

Alternatively, as the second moment satisfies \(m_2 = \theta + \theta^2 \), another MOM estimator is the (positive) value of \(\hat{\theta}_2 \) which satisfies the equation : \(\hat{\theta}_2 + \hat{\theta}_2^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 := \overline{X^2} \), i.e.

\[\hat{\theta}_2 = \frac{-1 \pm \sqrt{1 + 4X^2}}{2}. \]

As yet another example, we can express \(m_2 \) as \(m_2 = \theta + m_1^2 \) or \(\theta = m_2 - m_1^2 = \text{var}(X_i) \). Hence, a MOM estimator is

\[\hat{\theta}_3 = \overline{X^2} - \overline{X}^2 = n^{-1} \sum_{i=1}^{n} (X_i - \overline{X})^2. \]

Among all of these MOM estimators only the sample mean estimator is unbiased for finite \(n \):

\[E_\theta(\hat{\theta}_1) = \theta, \quad \text{var}_\theta(\hat{\theta}_1) = \theta/n, \]

\[E_\theta(\hat{\theta}_3) = \frac{n-1}{n} \theta, \quad \text{var}_\theta(\hat{\theta}_3) = (2\theta^2 + \theta)/n. \]

Closed form expressions for bias and variance of \(\hat{\theta}_2 \) do not exist.

You should notice that \(\hat{\theta}_1 \) compares favorably to \(\hat{\theta}_3 \) since it has both lower bias and lower variance.

We make the following observations.

1. \(\hat{\theta}_1 \) is unbiased for all \(n \).
2. \(\hat{\theta}_2, \hat{\theta}_3 \) are asymptotically unbiased as \(n \to \infty \).
3. Consistency of \(\hat{\theta}_1 \) and \(\hat{\theta}_3 \) is directly verifiable from the above expressions for mean and variance and Thebychev’s inequality.
4.4.3 MAXIMUM LIKELIHOOD (ML) SCALAR ESTIMATORS

Maximum likelihood (ML) is arguably the most commonly adopted parametric estimation principle in signal processing. This is undoubtedly due to the fact that, unlike other methods, ML usually results in unique estimators and is straightforward to apply to almost all problems.

For a measurement \(X = x \) we define the “likelihood function” for \(\theta \)
\[
L(\theta) = f(x; \theta)
\]
and the log-likelihood function
\[
l(\theta) = \ln f(x; \theta).
\]
These should be viewed as functions of \(\theta \) for a fixed value of \(x \) (Fig. 27). Readers may find it strange that the \(x \)-dependence of the functions \(L(\theta) \) and \(l(\theta) \) is not indicated explicitly. This convention of dropping such dependencies to clarify the “working” variable \(\theta \) is common in statistics and signal processing.

Figure 27: The likelihood function for \(\theta \)

The ML estimator \(\hat{\theta} \) is defined as the value of \(\theta \) which causes the data \(x \) to become “most likely,” i.e., \(\hat{\theta} \) makes it most likely that \(x \) was generated from \(f(x; \theta) \). Mathematically, we have the equivalent definitions
\[
\hat{\theta} = \arg\max_{\theta \in \Theta} f(X; \theta)
= \arg\max_{\theta \in \Theta} L(\theta)
= \arg\max_{\theta \in \Theta} l(\theta).
\]
In fact the ML estimate can be found by maximizing any monotone increasing function of \(L(\theta) \).
Important properties of ML estimators for smooth likelihoods (Ibragimov and Has’minskii [16], Serfling [36]) are

Property 1. MLE’s are asymptotically unbiased. The proof requires additional technical conditions.

Property 2. MLE’s are consistent. The proof requires additional technical conditions.

Property 3. Unlike many other estimators, e.g. MAP and UMVUE estimators, MLE’s are invariant to any transformation of the parameters, i.e.,

\[\varphi = g(\theta) \Rightarrow \hat{\varphi} = g(\hat{\theta}). \]

This is easy to see for monotone transformations (Fig. 28) but in fact it applies to arbitrary transformations (See exercises).

Property 4: MLE’s are asymptotically UMVU in the sense that

\[\lim_{n \to \infty} n \text{var}_\theta(\hat{\theta}) = \frac{1}{F_1(\theta)}, \]

where \(F_1 \) is a quantity known as the Fisher information, which will be introduced soon, and \(1/F_1 \) specifies the fastest possible asymptotic rate of decay of any unbiased estimator’s variance. The proof requires additional technical conditions.

Property 5: MLE’s are asymptotically Gaussian in the sense

\[\sqrt{n}(\hat{\theta}_n - \theta) \to Z, (i.d.) \]

where \(Z \sim \mathcal{N}(0, 1/F_1(\theta)) \). Here the notation i.d. denotes convergence in distribution. This means that the cumulative distribution function (cdf) of \(\sqrt{n}(\hat{\theta}_n - \theta) \) converges to the (standard normal) cdf of \(Z \). The proof requires additional technical conditions.

Property 6: The MLE is equivalent to the MAP estimator for a uniform prior \(f(\theta) = c \).

Now let’s go back and revisit our MOM examples with the MLE in mind.
Example 15 \(X \) i.i.d. Bernoulli random variables

We can solve for the MLE in two ways: (1) considering the entire observation \(X \); and (2) considering only a sufficient statistic \(T(X) \).

With the entire observation \(X = x \) the likelihood function is the product

\[
L_1(\theta) = f(x; \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1-x_i}.
\]

It is convenient to rewrite this in the form

\[
L_1(\theta) = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i} = \theta^{n\bar{x}} (1 - \theta)^{n - n\bar{x}}.
\] (29)

As this function smooth and concave in \(\theta \), differentiation with respect to \(\theta \) yields a stationary point condition, the ”ML equation,” for the MLE \(\hat{\theta} \)

\[
0 = \frac{\partial}{\partial \theta} f(x; \theta) = n \left[\frac{(1 - \hat{\theta})(1 - \hat{\theta})}{\hat{\theta}(1 - \hat{\theta})} \right] f(x; \hat{\theta}).
\]

Solving the equation \((1 - \hat{\theta})\bar{x} - \hat{\theta}(1 - \bar{x}) = 0\) we obtain the MLE

\[
\hat{\theta} = \bar{X},
\] (30)

which is identical to the MOM estimator obtained above.

Using the Fisher factorization (19) on the p.d.f. (29) of \(X \) it is easily seen that \(T(X) = \sum_{i=1}^{n} X_i \) is a sufficient statistic for \(\theta \). The distribution of \(T \) is binomial with parameter \(\theta \):

\[
f_T(t; \theta) = \binom{n}{t} \theta^t (1 - \theta)^{n-t}, \quad t = 0, \ldots, n,
\]

where the subscript \(T \) on the density of \(T \) is to clarify that this is the p.d.f. of the r.v. \(T \). Identification of \(t = n\bar{X} \) reveals that this is of exactly the same form, except for a constant multiplication factor, as (29). The ML equation is therefore the same as before and we obtain the identical MLE estimator (30).

Example 16 \(X \) i.i.d. Poisson random variables

To find the MLE of the rate parameter \(\theta \) express the density of the samples as:

\[
f(x_t; \theta) = \prod_{i=1}^{n} \frac{\theta^{x_i}}{x_i!} e^{-\theta}.
\]

The likelihood function \(L(\theta) = f(x; \theta) \) has to be maximized over \(\theta \) to produce the MLE. It is more convenient to deal with the log likelihood

\[
\hat{\theta}_{ml} = \arg\max_{\theta > 0} \ln L(\theta)
\]
and we have
\[l(\theta) = \ln f(x; \theta) = \ln \prod_{k=1}^{n} \frac{\theta^{x_k}}{x_k!} e^{-\theta} = \sum_{k=1}^{n} x_k \ln \theta - n\theta - \sum_{k=1}^{n} \ln x_k! \]
\[= \bar{x} \ln \theta - n\theta + c, \]
where \(c \) is an irrelevant constant.

It is easily verified (look at second derivative) that the log-likelihood \(l(\theta) \) is a smooth strictly concave function of \(\theta \). Thus the MLE is the unique solution \(\hat{\theta} = \bar{x} \) of the equation
\[0 = \frac{\partial \ln f}{\partial \theta} = \frac{n\bar{x}}{\theta} - n. \]

We find that the MLE is identical to the first MOM estimator we found for this problem:
\[\hat{\theta} = \bar{X}, \]
which we know is unbiased with variance equal to \(\theta \).

Let’s check the asymptotic Gaussian property. Write
\[\sqrt{n}(\bar{X} - \theta) = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \theta) \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \theta). \]

By the central limit theorem (CLT), this converges in distribution to a Gaussian r.v.
\[E_\theta[\sqrt{n}(\bar{X} - \theta)] = 0 \]
\[\text{var}_\theta(\sqrt{n}(\bar{X} - \theta)) = \theta. \]

4.4.4 SCALAR CRAMÈR-RAO BOUND (CRB) ON ESTIMATOR VARIANCE

The CRB can be defined for both random and non-random parameters. However the CRB is more useful for non-random parameters as it can be used to establish optimality or near optimality of an unbiased candidate estimator. Unlike the non-random case, for random parameters the optimal estimator and its MSE are functions of the known joint density of \(\theta \) and \(X \). Thus there exist more accurate alternatives to the CRB for approximating estimator MSE, most of which boil down to approximating an integral representation of the minimum mean squared error. We therefore focus our energies on the CRB for non-random parameters - the interested reader can refer to [43] for the random case.

Let \(\theta \in \Theta \) be a non-random scalar and assume:
1. \(\Theta \) is an open subset, e.g. \((a, b)\), of \(\mathbb{R} \).
2. $f(x; \theta)$ is smooth (Ibragimov and Has’minskii [16]) and differentiable in θ.

The following is the Cramér-Rao bound for scalar θ

For any unbiased estimator $\hat{\theta}$ of θ

$$\text{var}_\theta(\hat{\theta}) \geq 1/F(\theta), \quad (31)$$

where “=” is attained iff for some non-random scalar k_θ

$$\frac{\partial}{\partial \theta} \ln f(x; \theta) = k_\theta (\hat{\theta} - \theta). \quad (32)$$

Here k_θ is a constant that can depend on θ but not on x. When the CRB is attainable it is said to be a tight bound and (32) is called the CRB tightness condition.

In the CRB $F(\theta)$ is the Fisher information which can be shown [43] to take on either of the following two equivalent forms:

$$F(\theta) = E_\theta \left[\left(\frac{\partial}{\partial \theta} \ln f(X; \theta) \right)^2 \right] = -E_\theta \left[\frac{\partial^2}{\partial \theta^2} \ln f(X; \theta) \right]$$

Before going on to some examples, we provide a simple derivation of the scalar CRB here. A more detailed proof of the more general vector parameter CRB will be given later. There are three steps to the derivation of the scalar CRB. The first step is to notice that the mean of the derivative of the log-likelihood is equal to zero:

$$E_\theta[\partial \ln f_\theta(X)/\partial \theta] = E_\theta \left[\frac{\partial f_\theta(X)/\partial \theta}{f_\theta(X)} \right] = \int \frac{\partial}{\partial \theta} f_\theta(x) dx = \frac{\partial}{\partial \theta} \int f_\theta(x) dx = 1$$

The second step is to show that the correlation between the derivative of the log-likelihood and the estimator is a constant:

$$E_\theta[(\hat{\theta}(X) - E_\theta[\hat{\theta}])(\partial \log f_\theta(X)/\partial \theta)] = \int (\hat{\theta}(x) - E_\theta[\hat{\theta}]) \frac{\partial}{\partial \theta} f_\theta(x) dx = \frac{\partial}{\partial \theta} \int \hat{\theta}(x)f_\theta(x) dx \bigg|_{E_\theta[\hat{\theta]}=\theta} = 1$$
Where we have used the result of step 1 in line 2 above. Finally, apply the Cauchy-Schwarz (CS)
inequality $E^2[UV] \leq E[U^2]E[V^2]$ to obtain:

$$
1 = E_\theta^2[(\hat{\theta}(X) - E_\theta[\hat{\theta}])(\partial \ln f_\theta(X)/\partial \theta)] \\
\leq E_\theta[(\hat{\theta}(X) - E_\theta[\hat{\theta}])^2] \cdot E_\theta[(\partial \ln f_\theta(X)/\partial \theta)^2] \\
= \text{var}_\theta(\hat{\theta}) \cdot F(\theta).
$$

Equality occurs in the CS inequality if and only if $U = kV$ for some non-random constant k. This
gives (31) and completes the derivation of the CRB.

To illustrate the CRB let’s go back and reconsider one of the previous examples.

Example 17 CRB for the Poisson rate

Assume again that $X = [X_1, \ldots, X_n]$ is a vector of i.i.d. Poisson random variables

$$
X_i \sim f(x; \theta) = \frac{\theta^x}{x!}e^{-\theta}, \quad x = 0, 1, 2, \ldots
$$

To find the CRB we must first compute the Fisher information. Start with

$$
\ln f(x; \theta) = \sum_{k=1}^n x_k \ln \theta - n\theta - \sum_{k=1}^n \ln x_k!, \quad \text{constant in } \theta
$$

and differentiate twice

$$
\frac{\partial \ln f(x; \theta)}{\partial \theta} = \frac{1}{\theta} \sum_{k=1}^n x_k - n \quad (33)
$$

$$
\frac{\partial^2 \ln f(x; \theta)}{\partial \theta^2} = -\frac{1}{\theta^2} \sum_{k=1}^n x_k. \quad (34)
$$

Therefore, as $E[\sum_{k=1}^n X_k] = n\theta$, the Fisher information given the n i.i.d. samples is

$$
F_n(\theta) = \frac{n}{\theta}.
$$

The CRB asserts that for any unbiased estimator of the Poisson rate θ

$$
\text{var}_\theta(\hat{\theta}) \geq \frac{\theta}{n}.
$$

It is useful to make the following key observations.

Observation 1: From example (14) we know that the sample mean \bar{X} is unbiased and has $\text{var}_\theta(\bar{X}) = \theta/n$. This is equal to the CRB and we conclude the CRB is tight.

Observation 2: In fact we could have concluded by inspection that the unbiased estimator \bar{X}
achieves the CRB; i.e., without having to explicitly compute its variance and compare to one
over the Fisher information. This follows from the fact that equation (33) implies that the CRB tightness condition (32) is satisfied:

\[\frac{\partial \ln f(X; \theta)}{\partial \theta} = \frac{1}{\theta} \sum_{k=1}^{n} X_k - n = \frac{n}{\theta} \left(\frac{\bar{X}}{\theta} - \theta \right). \] (35)

Furthermore, once tightness is established in this fashion the variance of \(\bar{X} \) can be computed by computing the CRB. This indirect method can sometimes be simpler than direct computation of estimator variance.

Observation 3: the expectation of the right hand side of (35) is zero since \(\hat{\theta} \) is unbiased. This implies that \(E_{\theta} [\partial \ln f(X; \theta)/\partial \theta] = 0 \).

The interpretation is that the gradient at \(\theta \) of the log-likelihood is an unbiased estimator of zero when \(\theta \) is the true parameter, i.e. the parameter appearing in the subscript of the expectation. This relation is generally true: it holds for any density satisfying the differentiability and smoothness conditions \([16]\)) sufficient for existence of the CRB.

GENERAL PROPERTIES OF THE SCALAR CRB

Property 1. The Fisher information is a measure of the average (negative) curvature of the log likelihood function \(\ln f(x; \theta) \) near the true \(\theta \) (Hero \([14]\)) (Fig. 29).

![Figure 29: The curvature of the log likelihood function \(\ln f(x; \theta) \) in the vicinity of true \(\theta \)](image)

Property 2. Let \(F_n(\theta) \) be the Fisher information for a sample of \(n \) i.i.d. measurements \(X_1, \ldots, X_n \). Then

\[F_n(\theta) = nF_1(\theta). \]

Hence, for smooth likelihood functions of continuous parameters, and unbiased estimators, the variance \(\text{var}_\theta(\hat{\theta}) \) cannot decay faster than order \(1/n \).
Proof of Property 2:
Since $X = [X_1, \ldots, X_n]^T$ are i.i.d.

$$f(x; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

so that

$$F_n(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \ln f(X; \theta) \right]$$

$$= -E \left[\sum_{i=1}^{n} \frac{\partial^2}{\partial \theta^2} \ln f(X_i; \theta) \right]$$

$$= \sum_{i=1}^{n} -E \left[\frac{\partial^2}{\partial \theta^2} \ln f(X_i; \theta) \right]_{F_1(\theta)}$$

For unbiased estimators, the CRB specifies an unachievable region of variance as a function of n (Fig. 30). Good unbiased estimators $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ of scalar continuous parameters have variance that behaves as $\text{var}_{\theta}(\hat{\theta}) = O(1/n)$.

![Diagram](image)

Figure 30: The CRB defines an unachievable region of variance which is under the CRB curve, indicated by the unshaded area. Good unbiased estimators of continuous parameters have variance that decays as $1/n$.

Property 3. If $\hat{\theta}$ is unbiased and $\text{var}_{\theta}(\hat{\theta})$ attains the CRB $\hat{\theta}$ is said to be an **efficient estimator**. Furthermore, if an estimator is asymptotically unbiased and its variance decays with optimal rate constant

$$\lim_{n \to \infty} b_\theta(\hat{\theta}) = 0, \quad \lim_{n \to \infty} n\text{var}_{\theta}(\hat{\theta}) = 1/F_1(\theta),$$
then $\hat{\theta}$ is said to be *asymptotically efficient*. Efficient estimators are always UMVU (but not conversely).

Property 4. Efficient estimators for θ can only exist when the underlying model is in an exponential family, defined in Sec. 3.5.4:

$$ f(x; \theta) = a(\theta)b(x)e^{-c(\theta)t(x)}, $$

and when $E_0[t(x)] = \theta$, i.e., the density is in its natural parameterization (recall Sec. 3.5.4). Furthermore, when an i.i.d. sample $X = [X_1, \ldots, X_n]^T$ is available $\hat{\theta} = n^{-1}\sum_{i=1}^n t(x_i)$ is an efficient estimator of θ.

Proof of Property 4:

Without loss of generality we specialize to the case of a single sample $n = 1$. Recall the condition for equality in the CR bound to be achieved by an estimator $\hat{\theta}$ is that the p.d.f. be expressible as

$$ \frac{\partial}{\partial \theta} \ln f(x; \theta) = k_0(\hat{\theta} - \theta). \quad (36) $$

For fixed θ_0, integrate the LHS of condition (36) over $\theta \in [\theta_0, \theta']$

$$ \int_{\theta_0}^{\theta'} \frac{\partial}{\partial \theta} \ln f(x; \theta) d\theta = \ln f(x; \theta') - \ln f(x; \theta_0). $$

On the other hand, integrating the RHS of the condition

$$ \int_{\theta_0}^{\theta'} k_0(\hat{\theta} - \theta) d\theta = \int_{\theta_0}^{\theta'} k_0(\hat{\theta} - \theta) d\theta $$

$$ = \hat{\theta} \int_{\theta_0}^{\theta'} k_0 d\theta - \int_{\theta_0}^{\theta'} k_0(\hat{\theta} - \theta) d\theta. $$

Or combining the integrals of RHS and LHS of (36)

$$ f(x; \theta) = e^{-d(\theta)} \left[a(\theta) b(x) \right] e^{c(\theta)} \hat{\theta}. $$

We illustrate the above with two more examples.

Example 18 Parameter estimation for the exponential density.

A non-negative random variable X has an exponential density with mean θ if its p.d.f. is of the form $f(x; \theta) = \theta^{-1} \exp(-x/\theta)$ where $\theta > 0$. The exponential random variable is commonly used as a model for service time or waiting time in networks and other queuing systems. You can easily verify that this density is in the exponential family specified by $a(\theta) = \theta^{-1}$, $b(x) = I_{[0, \infty)}(x)$, $c(\theta) = -n\theta^{-1}$ and $t(x) = x$. Thus, as $E_0[t(X)] = \theta$, the p.d.f. $f(x; \theta)$ is in its natural parametrization and we conclude that the sample mean X is an efficient, and therefore UMVU, estimator of θ when n i.i.d. observations $X = [X_1, \ldots, X_n]^T$ are available.

NOTE: we cannot conclude that $1/X$ is an efficient (or even an unbiased) estimator of $1/\theta$. In fact it is even worse than this: we cannot conclude that a UMVUE exists for $1/\theta$ since the change of parameter to $\alpha = 1/\theta$ destroys the natural parameterization of the density.
Example 19 \(\overset{\text{i.i.d.}}{X}, X_i \sim \mathcal{N}(\theta, \sigma^2) \)

The Gaussian "bell curve" distribution arises in so many applications that it has become a standard model. Use of this model is usually justified by invocation of the Central Limit Theorem as describing the measurements, or measurement noise, as the sum of many small contributions, e.g. random atomic collisions, scattered light, aggregation of repeated measurements.

Our first objective will be to find the MLE and CRB for estimating the mean \(\theta \) of univariate Gaussian with known variance \(\sigma^2 \). As the Gaussian with unknown mean is in the exponential family we could take the same approach as above to find efficient estimators. But let’s spice things up and follow an alternative route of trying to tease an efficient estimator out of the tightness condition in the CRB.

\[
f(x; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^n \exp \left\{ -\frac{1}{2\sigma^2} \sum_{k=1}^{n} (x_k - \theta)^2 \right\}.
\]

Or

\[
\ln f(x; \theta) = -\frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{k=1}^{n} (x_k - \theta)^2 + c,
\]

where \(c \) is constant. Compute the first derivative

\[
\frac{\partial \ln f}{\partial \theta} = \frac{1}{\sigma^2} \sum_{k=1}^{n} (x_k - \theta)
\]

\[
= \frac{n}{\sigma^2} (\bar{x}_i - \theta).
\]

Thus the CRB tightness condition (32) is satisfied and we can identify, once again, the sample mean \(\bar{x}_i \) as the optimal estimator of the common mean of a Gaussian sample.

We take another derivative of the log-likelihood with respect to \(\theta \) and invert it to verify what we already knew about the variance of the sample mean

\[
\text{var}_\theta(\bar{X}) = 1/F_n(\theta) = \sigma^2/n.
\]

The first inequality is only true since we know that \(\bar{X} \) is efficient.

Note that the leading factor in the tight CRB condition (37) is: \(k_\theta = \text{var}_\theta^{-1}(\bar{X}) \). This is always true for efficient estimators when \(k_\theta \) does not depend on \(\theta \).

4.5 ESTIMATION OF MULTIPLE NON-RANDOM PARAMETERS

We now turn the more general problem of many unknown deterministic parameters. This problem is quite different from the previously studied case of multiple random parameters since there is no joint posterior density to marginalize. First we arrange all unknown parameters in a vector:

\[
\theta = [\theta_1, \ldots, \theta_p]^T,
\]

and state the problem as finding a vector valued estimator \(\hat{\theta} \) of \(\theta \).
The joint density for the measurements X is written as:

$$f(x; \theta_1, \ldots, \theta_p) = f(x; \theta).$$

POSSIBLE ESTIMATOR PERFORMANCE CRITERIA

As for a scalar estimator we define the vector estimator bias vector:

$$b_\theta(\hat{\theta}) = E_\theta[\hat{\theta} - \theta],$$

and the symmetric estimator covariance matrix:

$$\text{cov}_\theta(\hat{\theta}) = E_\theta[(\hat{\theta} - E[\hat{\theta}])((\hat{\theta} - E[\hat{\theta}])^T)$$

$$= \begin{bmatrix}
\text{var}_\theta(\hat{\theta}_1) & \text{cov}_\theta(\hat{\theta}_1, \hat{\theta}_2) & \cdots & \text{cov}_\theta(\hat{\theta}_1, \hat{\theta}_p) \\
\text{cov}_\theta(\hat{\theta}_2, \hat{\theta}_1) & \text{var}_\theta(\hat{\theta}_2) & \cdots & \cdots \\
\vdots & \vdots & \ddots & \cdots \\
\text{cov}_\theta(\hat{\theta}_p, \hat{\theta}_1) & \cdots & \cdots & \text{var}_\theta(\hat{\theta}_p)
\end{bmatrix}.$$

This matrix is often referred to as the variance-covariance matrix.

In many cases, only the diagonal entries of the estimator covariance matrix, i.e. the component estimator variances, will be of interest. However, as we will soon see, the entire estimator covariance matrix is very useful for generalizing the scalar parameter CRB.

We can also define the estimator concentration:

$$P_\theta(||\hat{\theta} - \theta|| > \epsilon) = \int_{||\hat{\theta} - \theta|| > \epsilon} f(\hat{\theta}; \theta) d\hat{\theta} = \int_{\{x: ||\hat{\theta}(x) - \theta|| > \epsilon\}} f(x; \theta) dx$$

The first order of business is to extend the CRB to vector parameters, called the matrix CRB.

4.5.1 MATRIX CRAMÈR-RAO BOUND (CRB) ON COVARIANCE MATRIX

Let $\theta \in \Theta$ be a $p \times 1$ vector and assume:

1. Θ is an open subset of \mathbb{R}^p
2. $f(x; \theta)$ is smooth [16] and differentiable in θ
3. $\text{cov}_\theta(\hat{\theta})$ and $F(\theta)$ (defined below) are non-singular matrices

The matrix CRB for vector valued parameters is the following. For any unbiased estimator $\hat{\theta}$ of θ:

$$\text{cov}_\theta(\hat{\theta}) \geq F^{-1}(\theta),$$

where “=” is attained iff the following is satisfied for some non-random matrix K_θ

$$\nabla_\theta \ln f(X; \theta) = K_\theta(\hat{\theta} - \theta).$$

In the case that this tightness condition (39) is satisfied $\hat{\theta}$ is said to be an efficient vector estimator.
In the matrix CRB (38) $\mathbf{F}(\theta)$ is the Fisher information matrix, which takes either of two equivalent forms,

$$
\mathbf{F}(\theta) = E \left[(\nabla_{\theta} \ln f(X; \theta)) (\nabla_{\theta} \ln f(X; \theta))^T \right] = -E \left[\nabla_{\theta}^2 \ln f(X; \theta) \right],
$$

where we have defined the gradient operator

$$
\nabla_{\theta} = \left[\frac{\partial}{\partial \theta_1}, \ldots, \frac{\partial}{\partial \theta_p} \right]^T,
$$

and the symmetric Hessian (curvature) operator

$$
\nabla_{\theta}^2 =
\begin{bmatrix}
\frac{\partial^2}{\partial \theta_1^2} & \frac{\partial^2}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2}{\partial \theta_1 \partial \theta_p} \\
\frac{\partial^2}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2}{\partial \theta_2^2} & \cdots & \frac{\partial^2}{\partial \theta_2 \partial \theta_p} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2}{\partial \theta_p \partial \theta_1} & \cdots & \cdots & \frac{\partial^2}{\partial \theta_p^2}
\end{bmatrix},
$$

The matrix CR Bound (38) has a few more properties than the scalar CRB.

Property 1: The inequality in the matrix bound should be interpreted in the sense of positive definiteness. Specifically if \mathbf{A}, \mathbf{B} are $p \times p$ matrices

$$
\mathbf{A} \geq \mathbf{B} \iff \mathbf{A} - \mathbf{B} \succeq \mathbf{0},
$$

where $\mathbf{A} - \mathbf{B} \succeq \mathbf{0}$ means $\mathbf{A} - \mathbf{B}$ is non-negative definite. This means that, in particular,

$$
\mathbf{z}^T (\mathbf{A} - \mathbf{B}) \mathbf{z} \geq 0
$$

for any vector $\mathbf{z} \in \mathbb{R}^p$, and all eigenvalues of $\mathbf{A} - \mathbf{B}$ are non-negative. For example, choosing $\mathbf{z} = [1, 0, \ldots, 0]^T$: and $\mathbf{z} = [1, \ldots, 1]^T$, respectively, $\mathbf{A} \succeq \mathbf{B}, \mathbf{A} \succeq \mathbf{B}$ implies both

$$
a_{ii} \geq b_{ii}, \quad \text{and} \quad \sum_{i,j} a_{ij} \geq \sum_{i,j} b_{ij}.
$$

However, $\mathbf{A} \succeq \mathbf{B}$ does NOT mean $a_{ij} \geq b_{ij}$ in general. A simple counterexample is constructed as follows. Let $0 < \rho < 1$ and consider

$$
\begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix} - \begin{bmatrix}
1 & \rho \\
\rho & 1
\end{bmatrix} = \begin{bmatrix}
1 & -\rho \\
-\rho & 1
\end{bmatrix},
$$

which has two eigenvalues $1 - \rho > 0$ and $1 + \rho > 0$. Hence $\mathbf{A} - \mathbf{B} > 0$ while clearly $a_{12} = 0 \ngeq \rho$.

Property 2: The matrix inequality (38) implies a scalar CRB on the variance of the i-th component of an unbiased vector estimator $\hat{\theta}$

$$
\text{var}_\theta(\hat{\theta}_i) \geq [\mathbf{F}^{-1}(\theta)]_{ii},
$$

where the right hand side (RHS) denotes the i-th element along the diagonal of the inverse Fisher information matrix.
Property 3. Fisher information matrix is a measure of the average curvature profile of the log likelihood near θ.

Property 4. Let $F_n(\theta)$ be the Fisher information for a sample of n i.i.d. measurements X_1, \ldots, X_n. Then, as in the scalar parameter case,

$$ F_n(\theta) = n F_1(\theta). $$

Hence $\text{var}_\theta(\hat{\theta}) = O(1/n)$ is also expected for good estimators of multiple unknown continuous valued parameters.

Property 5. Efficient vector estimators only exist for multiparameter exponential families

$$ f(x; \theta) = a(\theta)b(x)e^{-\mathcal{L}(\theta)[t(x)]} $$

When $f(x; \theta)$ is in its natural parameterization and $E[\sum_{i=1}^n t(X_i)] = \theta$, $\hat{\theta} = \sum_{i=1}^n t(X_i)$ is an unbiased efficient estimator.

Property 6. If an estimator $\hat{\theta}$ satisfies

$$ \nabla_\theta \ln f = K_\theta (\hat{\theta} - \theta), $$

then we can immediately conclude:

1. $\hat{\theta}$ is unbiased since, as shown in proof of the multiple parameter CRB;

$$ E_\theta [\nabla_\theta \ln f(X; \theta)] = 0, $$

2. $\hat{\theta}$ is efficient and thus its components are UMVU estimators;
3. The covariance of $\hat{\theta}$ is given by the inverse Fisher information $F(\theta)$;
4. If $K_\theta = K$ (not a function of θ) then $F(\theta) = K$ and

$$ \text{cov}_\theta(\hat{\theta}) = K^{-1}. $$

Proof of Matrix CR bound:

There are 3 steps in our derivation, which, with one exception, is a direct generalization of the proof of the scalar CRB: (1) show that the gradient of the log-likelihood is zero mean; (2) the correlation between the gradient of the log-likelihood and estimator bias is constant; (3) the covariance matrix of the concatenated gradient and bias vectors gives a relation between Fisher info and estimator covariance.

Step 1. Show $E_\theta [\nabla_\theta \ln f(X; \theta)] = 0$.

$$ \Rightarrow \quad E_\theta \left[\frac{1}{f(X; \theta)} \nabla_\theta f(X; \theta) \right] = \int_X \nabla_\theta f(x; \theta) dx $$

$$ = \nabla_\theta \int_X f(x; \theta) dx = 0. $$

Step 2. $E_\theta [\nabla_\theta \ln f(X; \theta) (\hat{\theta} - \theta)^T] = I.$
First observe

\[
E_{\theta} \left[\nabla_{\theta} \ln f(X; \theta) \right]
= E_{\theta} \left[\frac{1}{f(X; \theta)} \nabla_{\theta} f(X; \theta) \hat{\theta}^T \right]
= \int_X \nabla_{\theta} f(x; \theta) \hat{\theta}^T (x) dx
= \nabla_{\theta} \int_X f(x; \theta) \hat{\theta}^T (x) dx
\]

\[
e_{\theta[\hat{\theta}^T]=\hat{\theta}^T} \]

\[
= I.
\]

Now putting this together with result of the previous step

\[
E_{\theta} \left[\nabla_{\theta} \ln f(X; \theta) (\hat{\theta} - \theta)^T \right]
= E_{\theta} \left[\nabla_{\theta} \ln f(X; \theta) \theta^T \right] + E_{\theta} \left[\nabla_{\theta} \ln f(X; \theta) \right] \theta^T.
\]

Step 3. Define a \(2p \times 1\) random vector \(U\):

\[
U = \left[\begin{array}{c} \hat{\theta} - \theta \\ \nabla_{\theta} \ln f(X; \theta) \end{array} \right].
\]

Since any matrix expressed as an outer product of two vectors is non-negative definite

\[
E_{\theta} \left[UU^T \right] \geq 0.
\]

Using the results of steps 1 and 2, we have

\[
E_{\theta} \left[UU^T \right] = \begin{bmatrix} \text{cov}_{\theta}(\hat{\theta}) & I \\ I & F(\theta) \end{bmatrix} \geq 0.
\]

It only remains to apply the result of (2.3) to the above partitioned matrix to see that this implies that

\[
\text{cov}_{\theta}(\hat{\theta}) - F^{-1}(\theta) \geq 0.
\]

An alternative, and more direct, way to show this is to let \(w\) and \(y\) be arbitrary \(p\)-vectors and define \(v = \left[\begin{array}{c} w \\ y \end{array} \right] \). Then, as \(v^T E_{\theta} \left[UU^T \right] v \geq 0,\)

\[
w^T \text{cov}_{\theta}(\hat{\theta}) w + 2w^T y + y^T F(\theta) y \geq 0.
\]

Taking \(y = -F^{-1}(\theta) w\) in the above we obtain

\[
w^T [\text{cov}_{\theta}(\hat{\theta}) - F^{-1}(\theta)] w \geq 0.
\]

It remains to obtain the tightness condition ensuring equality in the CRB. Note first that if \(\text{cov}_{\theta}(\hat{\theta}) = F^{-1}\) then \(E_{\theta}[UU^T]\) necessarily has rank \(p\) (see exercises at end of chapter). This can
only happen if the random vector U \((40)\) has \(p\) linearly dependent components. As \(\text{cov}_\theta(\theta)\) and \(F(\theta)\) have been assumed non-singular, \(\hat{\theta} - \theta\) can have no linear dependencies and neither does \(\nabla_\theta \ln f\). Hence it can only be that
\[
\nabla_\theta \ln f = K_\theta (\hat{\theta} - \theta)
\]
for some non-random matrix \(K_\theta\). In other words the gradient of the log likelihood lies in the span of the estimator errors.

We move on to generalizations of MOM and ML estimators to the vector parameter case.

4.5.2 METHODS OF MOMENTS (MOM) VECTOR ESTIMATION

Let \(m_k = m_k(\theta)\) be the \(k\)-th order moment of \(f(x; \theta)\). The vector MOM estimation procedure involves finding \(K\) moments such that the vector function of \(\theta \in \mathbb{R}^p\)
\[
g(\theta) = [m_1(\theta), \ldots, m_K(\theta)]
\]
can be inverted, i.e., there exists a unique value \(\theta\) satisfying
\[
\theta = g^{-1}(m_1, \ldots, m_K).
\]
As in the scalar case, the MOM estimator is constructed by replacing \(m_k\) with its empirical estimate
\[
\hat{\theta} = g^{-1}(\hat{m}_1, \ldots, \hat{m}_K),
\]
where \(\hat{m}_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k\).

4.5.3 MAXIMUM LIKELIHOOD (ML) VECTOR ESTIMATION

The vector MLE is an obvious generalization of the scalar MLE
\[
\hat{\theta} = \arg\max_{\theta \in \Theta} f(X; \theta).
\]
For smooth likelihood functions, vector MLEs have several key properties ([16]):
1. Vector MLE’s are asymptotically unbiased;
2. Vector MLE’s are consistent;
3. Vector MLE’s are invariant to arbitrary vector transformations;
4. Vector MLE’s are asymptotically efficient and thus their component estimators are asymptotically UMVU;
5. Vector MLE’s are asymptotically Gaussian in the sense
\[
\sqrt{n} (\hat{\theta}_n - \theta) \rightarrow \tilde{z}, \quad \text{(i.d.)}
\]
where \(\tilde{z} \sim \mathcal{N}_p(0, F_1^{-1}(\theta))\) and \(F_1(\theta)\) is the single sample Fisher information matrix
\[
F_1(\theta) = -E_{\theta} \left[\nabla_\theta^2 \log f(X_1; \theta) \right].
\]
A couple of examples will illustrate these estimators.
Example 20 Joint estimation of mean and variance in a Gaussian sample

This is an extension of Example 20 to the case where both the mean and the variance are unknown. Assume an i.i.d. sample $X = [X_1, \ldots, X_n]$ of Gaussian r.v.s $X_i \sim N(\mu, \sigma^2)$. The unknowns are $\theta = [\mu, \sigma^2]$.

The log-likelihood function is

$$l(\theta) = \ln f(x; \theta) = -\frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{k=1}^{n} (x_k - \mu)^2 + c.$$ \hfill (41)

A. MOM approach to estimation:

We know that $m_1 = \mu$, $m_2 = \sigma^2 + \mu^2$ and thus

$$\mu = m_1, \quad \sigma^2 = m_2 - m_1^2.$$

Hence a MOM estimator of θ is:

$$\hat{\theta} = \left[\hat{\mu}, \hat{\sigma}^2 \right] = \left[\bar{X}, \bar{X}^2 - \bar{X} \right] = \left[\bar{X}, (X - \bar{X})^2 \right].$$

As usual we denote

$$\bar{X} = n^{-1} \sum_{k=1}^{n} X_k$$

$$(X - \bar{X})^2 = n^{-1} \sum_{k=1}^{n} (X_k - \bar{X})^2 = n^{-1} (X - \bar{X})^2 = \frac{n-1}{n} s^2,$$

and

$$s^2 = (n-1)^{-1} \sum_{k=1}^{n} (X_k - \bar{X})^2$$

is the sample variance.

B. ML approach.

As $l(\theta)$ (41) is a concave function (verify that $-\nabla_{\theta}^2 \ln f$ is positive definite) we can use the likelihood equation (stationary point condition) for finding $\hat{\theta} = \hat{\theta}$

$$0 = \nabla_{\theta} \ln f(x; \theta) = \begin{bmatrix} \frac{1}{\theta_2} \sum_{k=1}^{n} (x_k - \theta_1) \\ \frac{n/2}{\theta_2} - \frac{1}{2\theta^2} \sum_{k=1}^{n} (x_k - \theta_1)^2 \end{bmatrix}.$$

Therefore,

$$\hat{\theta}_1 = \hat{\mu} = \bar{X}, \quad \hat{\theta}_2 = \hat{\sigma}^2 = \frac{n-1}{n} s^2.$$
so that the MLE and MOM estimators are identical.

Let’s consider the performance of the ML/MOM estimator. The bias and covariance are simple enough to compute (recall that in Sec. 3.4 we showed that \((n - 1)s^2/\sigma^2\) is Chi square distributed with \(n - 1\) degrees of freedom):

\[
\begin{align*}
\bar{E}_\theta[\hat{\mu}] &= \mu, \\
\text{unbiased} \\
\bar{E}_\theta[\hat{\sigma}^2] &= \frac{(n - 1)}{n} \sigma^2; \\
\text{biased}
\end{align*}
\]

\[\text{var}_\theta(\bar{X}) = \sigma^2/n;\]

and

\[\text{var}_\theta(\hat{\sigma}^2) = \left(\frac{n - 1}{n}\right)^2 \text{var}_\theta(s^2) = 2\sigma^4/n \left(\frac{n - 1}{n}\right).\]

Since the sample mean and sample variance are uncorrelated (recall Sec. 3.4)

\[\text{cov}_\theta(\hat{\theta}) = \begin{bmatrix} \sigma^2/n & 0 \\ 0 & 2\sigma^4/n \left(\frac{n - 1}{n}\right) \end{bmatrix}.\] (42)

Next we compute the Fisher information matrix by taking the expectation of the Hessian \(-\nabla^2_\theta \ln f(X; \theta)\)

\[\mathbf{F}(\theta) = \begin{bmatrix} n/\sigma^2 & 0 \\ 0 & n/(2\sigma^4) \end{bmatrix},\] (43)

giving the CR bound

\[\text{cov}_\theta(\hat{\theta}) \geq \begin{bmatrix} \sigma^2/n & 0 \\ 0 & 2\sigma^4/n \end{bmatrix}.\] (44)

Some interesting observations are the following:

Observation 1. MOM and ML estimators derived above have covariances which violate the CR bound (compare the (2,2) elements of matrices (42) and the RHS of (44)). This is not a contradiction since the ML variance estimator is not unbiased!

Observation 2. Consider the bias-corrected estimator of \([\mu, \sigma^2]^T\)

\[
\hat{\theta} = [\bar{X}, \hat{s}^2]^T.
\]

This estimator is unbiased. Now, as \(s^2 = \left(\frac{n}{n - 1}\right) \hat{\sigma}^2\)

\[\text{var}_\theta(s^2) = \left(\frac{n}{n - 1}\right)^2 \text{var}_\theta(\hat{\sigma}^2),\]

\[\text{cov}_\theta(\hat{\theta}) = \begin{bmatrix} \sigma^2/n & 0 \\ 0 & 2\sigma^4/n \left(\frac{n - 1}{n}\right) \end{bmatrix} \geq \mathbf{F}^{-1}(\theta).\]

We conclude that the bias-corrected estimator’s covariance no longer violates the CRB. Indeed, \(\bar{X}\) is efficient estimator of \(\mu\) since

\[\text{var}_\theta(\hat{\mu}) = [\mathbf{F}^{-1}]_{11} = \sigma^2/n.\]
However, s^2 is not an efficient estimator of σ^2 since
\[\text{var}_\theta(s^2) > [\mathbf{F}^{-1}]_{22}. \]

Observation 3. as predicted, the MLE is asymptotically efficient as $n \to \infty$.
\[n\text{cov}_\theta(\hat{\theta}) = \begin{bmatrix} \sigma^2 & 0 \\ 0 & 2\sigma^4 \end{bmatrix} \left(\frac{n-1}{n} \right) \to \begin{bmatrix} \sigma^2 & 0 \\ 0 & 2\sigma^4 \end{bmatrix} = \mathbf{F}^{-1}_{1}(\theta). \]

Observation 4. We can also verify that, as predicted, $[\hat{\mu}, \hat{s}^2]$ is asymptotically Gaussian. It suffices to consider the following results:

a) $\hat{\mu}$ and \hat{s}^2 are independent r.v.s;
b) $\sqrt{n}(\hat{\mu} - \mu) = \mathcal{N}(0, \sigma^2)$;
c) $\sqrt{n}(s^2 - \sigma^2) = \sigma^2\sqrt{n}(\chi^2_{n-1}/(n - 1) - 1)$;
d) $\chi^2_{n} \sim \mathcal{N}(\nu, 2\nu), \nu \to \infty$.

Observation 5. We can easily manipulate the condition for equality in the CR bound to find an efficient vector estimator (but not of θ as originally specified!):
\[
\nabla_\theta \ln f(X; \theta) = \mathbf{K}_\theta \begin{bmatrix} \overline{X} - \mu \\ \overline{X^2} - (\sigma^2 + \mu^2) \end{bmatrix},
\]
where
\[
\mathbf{K}_\theta := \begin{bmatrix} n/\sigma^2 & 0 \\ 0 & n/2\sigma^4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2\mu & 1 \end{bmatrix}^{-1}.
\]

As the sample moments are unbiased estimates of the ensemble moments, we conclude that $\overline{X}, \overline{X^2}$ are efficient estimators of the first moment $E[X] = \mu$ and second (non-central) moment $E[X^2] = \sigma^2 + \mu^2$, respectively.

We continue with another example, which requires special treatment due to functional dependencies that exist between parameters.

Example 21 $\overline{N} = [N_1, \ldots, N_p]^T$ a multinomial random vector

The multinomial model is a generalization of the binomial model to more than two categories, "0" and "1", of outcome. Let the outcome Z of a single trial be one of the p elementary vectors in \mathbb{R}^p, $\mathbf{e}_1 = [1, 0, \ldots, 0]^T, \ldots, \mathbf{e}_p = [0, 0, \ldots, 1]^T$, with probabilities $\theta_1, \ldots, \theta_p$, respectively. The vector \mathbf{e}_k could be a tag attached to the event that a random throw of a die resulted in a face with k dots ($p = 6$) or that a symbol received by a teletype (who remembers those?) corresponds to the k-th letter of the alphabet ($p = 27$). The multinomial model describes the distribution of the sum
\[
\overline{N} = [N_1, \ldots, N_p]^T = \sum_{i=1}^{n} Z_i
\]
of these vectors obtained after n i.i.d. trials.

The probability of a particular multinomial outcome \overline{N} gives the probability mass function
\[
p(\overline{N}; \theta) = \frac{n!}{N_1! \cdots N_p!} \theta_1^{N_1} \cdots \theta_p^{N_p}.
\]
where \(N_i \geq 0 \) are integers satisfying \(\sum_{i=1}^{p} N_i = n \) and \(\theta_i \in [0,1] \) are cell probabilities satisfying \(\sum_{i=1}^{p} \theta_i = 1 \).

A MOM estimator of \(\hat{\theta} \) is obtained by matching the first empirical moment \(\bar{N} \) to the first ensemble moment \(E_\theta[N] = \theta n \). This yields the estimator \(\hat{\theta} = \bar{N} / n \), or more explicitly

\[
\hat{\theta} = \left[\frac{N_1}{n}, \ldots, \frac{N_p}{n} \right].
\]

To find the MLE of \(\theta \) we need to proceed with caution. The \(p \) parameters \(\theta \) live in a \(p-1 \) subspace of \(\mathbb{R}^p \) due to total cell probability constraint. We can find the MLE either by reparameterization of the problem or by using Lagrange multipliers. The Lagrange multiplier method will be adopted here.

To account for the constraint we replace the log-likelihood function with the penalized log-likelihood function

\[
J(\theta) = \ln f(N; \theta) - \lambda \left(\sum_{i=1}^{p} \theta_i - 1 \right),
\]

where \(\lambda \) is a Lagrange multiplier which will be selected in order to satisfy the constraint.

Now as \(J \) is smooth and concave we set the gradient of \(J(\theta) \) to zero to find the MLE:

\[
0 = \nabla_\theta J(\theta) = \nabla_\theta \left[\sum_{i=1}^{p} N_i \ln \theta_i - \lambda \theta_i \right] = \left[\frac{N_1}{\theta_1} - \lambda, \ldots, \frac{N_p}{\theta_p} - \lambda \right].
\]

Thus

\[
\hat{\theta}_i = \frac{N_i}{\lambda}, \quad i = 1, \ldots, p
\]

Finally, we find \(\lambda \) by forcing \(\hat{\theta} \) to satisfy constraint

\[
\sum_{i=1}^{p} \frac{N_i}{\lambda} = 1 \Rightarrow \lambda = \sum_{i=1}^{p} \frac{N_i}{n} = n.
\]

The solution to this equation gives the MLE and it is identical to the MOM estimator.

To derive the CRB requires more advanced theory of constrained CR bounds [9] since the \(\theta_i \)'s are linearly dependent.

4.6 Handling Nuisance Parameters

In many cases only a single parameter \(\theta_1 \) is of direct interest while the other unknowns \(\theta_2, \ldots, \theta_p \) are nuisance parameters which are not of interest. For example, in the Gaussian example with both unknown mean and variance, Example 20, the variance may not be of intrinsic interest. In this example, we found that the estimator covariance is diagonal, which implies that there is no correlation between the mean parameter estimation errors and the variance parameter estimation errors. As we will see below, this means that the variance is a rather benign nuisance parameter since knowledge or lack of knowledge of the variance does not affect the variance of the ML mean estimator. We divide the discussion of nuisance parameters into the cases of random and non-random parameters.
CASE I: HANDLING RANDOM NUISANCE PARAMETERS:
For random parameters the average cost only penalizes $\hat{\theta}_1$’s estimation errors:
\[
E[c(\hat{\theta}_1, \theta_1)] = \int_{\Theta_1} d\theta_1 \int_X dx \ c(\hat{\theta}_1(x), \theta_1) f(x|\theta_1) f(\theta_1).
\]
The prior on θ_1 is computed from the prior on θ
\[
f(\theta_1) = \int d\theta_2 \ldots \int d\theta_p f(\theta_1, \theta_2, \ldots, \theta_p).
\]
The conditional density of X given θ_1 is therefore
\[
f(x|\theta_1) = \int d\theta_2 \ldots \int d\theta_p f(x|\theta_1, \theta_2, \ldots, \theta_p) f(\theta_2, \ldots, \theta_p|\theta_1),
\]
yielding the posterior on θ_1
\[
f(\theta_1|x) = \int d\theta_2 \ldots \int d\theta_p f(\theta_1, \ldots, \theta_p|x).
\]
Observe that explicit estimates of $\theta_2, \ldots, \theta_p$ are not required to implement the posterior distribution of θ_1. However, integration (marginalization) of the conditional density over $\theta_2, \ldots, \theta_p$ is required and this may be quite difficult.

CASE II: HANDLING NON-RANDOM NUISANCE PARAMETERS:
The case of non-random parameters is quite different. The average cost still only penalizes for $\hat{\theta}_1$ estimation errors but nonetheless depends on all unknowns:
\[
E_{\tilde{\theta}}[C] = \int_X c(\hat{\theta}_1(x), \theta_1) f(x; \theta) \ dx.
\]
The maximum Likelihood Estimator of θ_1 is simply
\[
\hat{\theta}_1 = \arg\max_{\theta_1} \left(\max_{\theta_2, \ldots, \theta_p} \log f(X|\theta_1, \theta_2, \ldots, \theta_p) \right).
\]
Note that now we require maximization over all nuisance parameters or, equivalently, explicit estimates of the nuisance parameters are necessary.

CR BOUND PREDICTIONS FOR NON-RANDOM NUISANCE PARAMETERS
As above let’s say we are interested in unbiased estimation of only the first entry θ_1 in the vector of unknown parameters θ. Our derivation of the matrix CRB (38) made the explicit assumption that there existed unbiased estimators of all of the parameters. It turns out that this restriction is unnecessary when only θ_1 is of interest (see exercises).
Assume that $\tilde{\theta} = [\theta_1, \ldots, \theta_p]^T$ is an unknown parameter vector. The variance of any unbiased estimator $\hat{\theta}_1$ of θ_1 obeys the lower bound:
\[
\text{var}_g(\hat{\theta}_1) \geq [\{F^{-1}(\theta_1)\}]_{11}, \tag{45}
\]
where equality occurs iff there exists a nonrandom vector h_θ such that
\[
h_\theta^T \nabla_{\theta} \ln f(X; \theta) = (\hat{\theta}_1 - \theta_1).
\]
In (45) \([A]_{ij}\) denotes the \(ij\) entry of matrix \(A\), and as before
\[
F(\theta) = -E \begin{bmatrix}
\frac{\partial^2 l(\theta)}{\partial \theta_1^2} & \frac{\partial^2 l(\theta)}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 l(\theta)}{\partial \theta_1 \partial \theta_p} \\
\frac{\partial^2 l(\theta)}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 l(\theta)}{\partial \theta_2^2} & \cdots & \frac{\partial^2 l(\theta)}{\partial \theta_2 \partial \theta_p} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 l(\theta)}{\partial \theta_p \partial \theta_1} & \frac{\partial^2 l(\theta)}{\partial \theta_p \partial \theta_2} & \cdots & \frac{\partial^2 l(\theta)}{\partial \theta_p^2}
\end{bmatrix},
\]
and \(l(\theta) = \ln f(x; \theta)\).

Let the Fisher matrix be partitioned as
\[
F(\theta) = \begin{bmatrix}
a & b^T \\
b & C
\end{bmatrix},
\]
where
* \(a = -E_2[\partial^2 \ln f(X; \theta)/\partial \theta_1^2] = \) Fisher info for \(\theta_1\) without nuisance parameters,
* \(b = -E_2[\partial \nabla_{\theta_2, \ldots, \theta_p} \ln f(X; \theta)/\partial \theta_1] = \) Fisher coupling of \(\theta_1\) to nuisance parameters,
* \(C = -E_2[\nabla_{\theta_2, \ldots, \theta_p}^2 \ln f(X; \theta)] = \) Fisher info for nuisance parameters.

Using the partitioned matrix inverse identity (2) the RHS of CRB (45) can be expressed as
\[
[[F^{-1}(\theta)]]_{11} = \frac{1}{a - b^T C^{-1} b}.
\]

This gives several insights:

Observation 1: \([[F^{-1}(\theta)]]_{11} \geq 1/a = 1/[[F(\theta)]]_{11}\). Thus presence of nuisance parameters can only degrade estimator performance;

Observation 2: the amount of degradation is directly proportional to the amount of information coupling between \(\theta_1\) and \(\theta_2, \ldots, \theta_p\);

Observation 3: no degradation occurs when the Fisher matrix is block diagonal;

4.7 Exercises

4.1 Prove the formula \(|a + \Delta| = \|a\| + \text{sgn}(a)\Delta + [\text{sgn}(a + \Delta) - \text{sgn}(a)](a + \Delta)\) in Sec. 4.2.2.

4.2 Show the equivalence of the two expressions on the right hand side of the inequality (23).

4.3 Let \(X = [X_1, \ldots, X_n]^T\) be a vector of i.i.d. r.v.s \(X_i\) which are uniformly distributed over the interval \((\theta_1, \theta_2), \theta_1 < \theta_2\). Find the maximum likelihood estimator of \(\theta\).

4.4 Let \(Z_i, i = 1, \ldots, n\), be a set of i.i.d. random variables each with the alpha density
\[
p_{\alpha}(z) = \frac{\beta}{\sqrt{2\pi}} \Phi(\alpha) z^2 \exp\left(-\frac{1}{2} [\alpha - \beta/z]^2\right),
\]
where \(\beta > 0\) is unknown, \(\alpha\) is known and \(\Phi(z) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du\) is the standard normal CDF. Assuming that \(\alpha = 0\) and that \(\beta\) has an exponential prior density: \(p(\beta) = \frac{1}{\sigma_\beta} \exp\left(-\frac{\beta}{\sigma_\beta}\right)\), where \(\sigma_\beta > 0\) is known. Find an expression for the MAP estimate of \(\beta\). What does the MAP estimate reduce to as \(\sigma_\beta \to \infty\) (least informative prior)?
4.5 Let $W_i, i = 1, \ldots, n$, be a set of zero mean i.i.d. Gaussian random variables with variance σ^2_w. Let a be a zero mean Gaussian random variable with variance σ^2_a which is independent of W_i. The objective is to estimate the value of a given the observation

$$X_i = a + W_i, \quad i = 1, \ldots, n$$

(a) Find the MMSE estimator of a. How does this estimator compare to the MAP and MMAE estimators of a?

(b) Compute the MSE of the MMSE estimator (Hint: express error as a sum of two independent r.v.’s to simplify algebra). What happens to the MSE as $n \to \infty$ or as $\text{SNR} = \sigma^2_a/\sigma^2_w \to \infty$?

4.6 Let $X = [X_1, \ldots, X_n]^T$ be a vector of i.i.d. Gaussian r.v.s with mean μ and variance $\sigma^2 = \mu^2$ ($X_i \sim \mathcal{N}(\mu, \mu^2)$).

(a) Find a method of moments (MOM) estimator of μ based on the first moment.

(b) Find the maximum likelihood estimate of μ.

4.7 Let $X_i, i = 1, \ldots, n$, be an i.i.d. sample from the shifted exponential density $f(x; \theta) = e^{-(x-\theta)}, x \geq \theta$, where θ is an unknown parameter $-\infty < \theta < \infty$. Assume that $n > 1$.

(a) Find a MOM estimator of θ.

(b) Find the ML estimator of θ.

(c) Assuming the exponential prior for θ, $f(\theta) = e^{-\theta}, \theta \geq 0$, find the MAP estimator, the MMSE estimator, and the MMAE estimator of θ given the i.i.d. sample (be careful with your limits of integration in computing $f(\theta|\bar{x})$). What happens to these estimators as $n \to \infty$?

(d) Calculate the MSE of each of the estimators derived in part (c) (assume large n). Verify that the MMSE estimator has the lowest MSE.

4.8 The mean square error of a certain unbiased estimator $\hat{\theta}(x)$ of the mean of a measured random variable is equal to $\sigma^2/2$ where $\sigma^2 = \text{var}(x)$. What if anything does this tell you about the distribution of x (Hint: what does the CR bound say about distributions that are impossible)?

4.9 Available are n i.i.d. samples of a random variable X with density

$$f(x; \theta) = \frac{1}{2} \frac{1 + 3\theta x^2}{1 + \theta}$$

where $-1 \leq x \leq 1$ and $\theta \geq 0$.

(a) Is this density in the exponential family?

(b) Is the sample mean a sufficient statistic? If so, prove it for general n. If not, give a counterexample, e.g. specialize to $n = 2$.

(c) Find a MOM estimator of θ.

(d) Find the CR bound on estimator variance for any unbiased estimator of θ.

(e) Using either numerical integration (MATLAB) or analysis find the bias and variance of the MOM estimator and compare to the CR bound for large n (e.g. $n = 100$).

4.10 Let the observation X have conditionally uniform density

$$f(x|\theta) = \begin{cases}
\frac{1}{\pi}, & 0 < x \leq \theta \\
0, & \text{o.w.}
\end{cases}$$
where \(\theta \) is a random variable with density
\[
f_{\theta}(\theta) = \begin{cases}
\theta \exp(-\theta), & \theta \geq 0 \\
0, & \text{o.w.}
\end{cases}
\]
A useful formula \((v \geq 0)\): \(\int_v^\infty ue^{-u}du = (v + 1)e^{-v} \)

(a) Find the MAP estimator of \(\theta \).
(b) Find the minimum mean squared error estimator of \(\theta \).
(c) Find the minimum mean absolute error estimator of \(\theta \).

4.11 Let \(Z \) be a single observation having density function
\[
p_{\theta}(z) = (2\theta z + 1 - \theta), \quad 0 \leq z \leq 1
\]
where \(-1 \leq \theta \leq 1\).
(a) Assuming that \(\theta \) is a nonrandom parameter, find and plot the maximum likelihood estimator of \(\theta \) as a function of \(Z \).
(b) Is the ML estimator unbiased? If so does it achieve the CR bound?
(c) Now assume that \(\theta \) is a random variable with uniform prior density: \(p_{\theta}(\theta) = \frac{1}{2}, \quad \theta \in [-1, 1] \). Find and plot the minimum mean square error estimator of \(\theta \) as a function of \(Z \).
(d) Compute the conditional bias \(E[\hat{\theta}|\theta] - \theta \) and the conditional MSE \(E[(\hat{\theta} - \theta)^2|\theta] \) given \(\theta \) for each of the estimators of part a and c. Plot the two conditional MSE functions obtained and compare the MSE’s of the two estimators. Does one estimator perform uniformly better than the other?

4.12 \(\mathbf{X} = [X_1, \ldots, X_n]^T \) is an i.i.d. observation from the Gamma density
\[
X_i \sim f(x|\theta) = \frac{1}{\Gamma(\theta)}x^{\theta-1}e^{-x}, \quad x \geq 0
\]
where \(\theta \) is an unknown non-negative parameter and \(\Gamma(\theta) \) is the Gamma function. You should note the useful formulii
\[
\Gamma(\theta) = \int_0^\infty x^{\theta-1}e^{-x}dx \quad \text{and} \quad \frac{\Gamma(\theta + k)}{\Gamma(\theta)} = \frac{\theta(\theta + 1)\ldots(\theta + k - 1)}{\Gamma(\theta)}.
\]
(a) Find the CR bound on unbiased estimators of \(\theta \).
(b) Find the first order MOM estimator of \(\theta \) by matching ensemble mean to sample mean. Is your estimator unbiased? Compute the variance of your estimator.

4.13 In this exercise you will establish that UMVUE’s do not always exist. Let \(Z \) be a r.v. with probability mass function
\[
p_{\theta}(z) = \begin{cases}
\theta, & z = -1 \\
(1 - \theta)^2\theta^z, & z = 0, 1, 2, \ldots
\end{cases}
\]
where \(\theta \in (0, 1) \).
(a) Define the estimator
\[
\hat{\theta}_o(z) = \begin{cases}
1, & z = -1 \\
0, & z = 0, 1, 2, \ldots
\end{cases}
\]
Show that \(\hat{\theta}_o \) is an unbiased estimator of \(\theta \).
(b) Note that any unbiased estimator $\hat{\theta}$ can be expressed in the form $\hat{\theta} = \hat{\theta}_o + U$ where $U = U(Z)$ is a statistic satisfying $E_\theta[U] = 0$ (any U satisfying this condition is called an ancillary statistic). Using this condition and the form for the pmf of Z given above, establish that U must be of the form $U(Z) = aZ$ for some non-random constant a (Hint: Z-transform tables may be helpful).

(c) Now find an expression for the variance of an unbiased $\hat{\theta}$ and show that the value a which minimizes the variance is a function of θ. Hence no single unbiased estimator can achieve minimum variance for all $\theta \in (0, 1)$ and therefore no UMVUE for θ exists.

(d) Show that a UMVUE for $\phi = (1 - \theta)^2$ does exist even though a UMVUE for θ does not exist (Hint: define $\hat{\phi}_o(z) = 1$ for $z = 0$ and $\hat{\phi}_o(z) = 0$, otherwise and repeat the steps in part a through c).

4.14 The observation consists of x_1, \ldots, x_n i.i.d. samples where $x_i \sim f(x|\theta)$ and

$$f(x|\theta) = \begin{cases} \frac{1}{\theta}x^{\frac{1}{\theta}-1}, & 0 \leq x \leq 1 \\ 0, & \text{o.w.} \end{cases}$$

where θ, $0 < \theta < \infty$ is an unknown parameter.

(a) Compute the CR bound on unbiased estimators of θ. Is there an estimator that achieves the bound?

(b) Find the maximum likelihood estimator of θ.

(c) Compute the mean and variance of the maximum likelihood estimator. Specify a function $\varphi = g(\theta)$ for which the maximum likelihood estimator of φ is efficient.

(d) From one of your answers to parts a-c you should be able to derive the following formula

$$\int_0^1 u^\beta \ln \left(\frac{1}{u} \right) du = \frac{1}{(1 + \beta)^2}, \quad \beta > -1.$$

4.15 The measurement $x = [x_1, \ldots, x_n]^T$ is i.i.d. Gaussian with unknown mean μ and variance σ^2.

(a) Show that the sample mean $\bar{x}_i = n^{-1} \sum_{i=1}^n x_i$ and sample variance $s^2 = (n-1)^{-1} \sum_{k=1}^n (x_k - \bar{x}_i)^2$ are unbiased estimators and that they are uncorrelated and independent random variables (Hint: show that the Gaussian random variables $x_i - \bar{x}_i$ and \bar{x}_i are uncorrelated for $i = 1, \ldots, n$).

(b) Using the results of part (a) derive the covariance matrix for the estimator $\hat{\theta} = [\bar{x}_i, s^2]^T$.

(c) Derive the CR bound on the covariance matrix of any unbiased estimator $\hat{\theta}$ of $\theta = [\theta_1, \theta_2]^T = [\mu, \sigma^2]^T$. Compare to the result of part (b).

4.16 Show that if the CR bound is attained with equality then $E_\theta[UU^T]$ has rank p, where U is given by (40). (Hint: show that the matrix

$$E_\theta[UU^T] = \begin{bmatrix} F^{-1}(\theta) & I \\ I & F(\theta) \end{bmatrix}$$

has rank p.)
4.17 An alternative approach to parameter estimation is called the "quantile matching method" and you will explore this method here. Let \(f(x; \theta) \) be a density of the continuous r.v. \(X \) parameterized by the scalar parameter \(\theta \) and define the theoretical cdf \(F(x; \theta) = \int_{-\infty}^{x} f(u; \theta) du \). For \(n \) i.i.d. realizations \(\{X_i\}_{i=1}^{n} \) from \(f(x; \theta) \) define the empirical cdf as the fraction of \(X_i \)'s which are less than or equal to \(x \):

\[
\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,x]}(X_i)
\]

where \(I_A(y) \) equals 1 if \(y \in A \) and zero otherwise (the indicator function of set \(A \)).

(a) Derive the mean \(E_{\theta}[\hat{F}(x)] \) and covariance \(\text{cov}_{\theta}(\hat{F}(x), \hat{F}(y)) \) of \(\hat{F}(x) \). Show that \(\hat{F}(x) \) is an asymptotically consistent estimator of \(F(x; \theta) \).

(b) The quantile matching estimate (QME) \(\hat{\theta} \) is defined as that value of \(t \) which minimizes

\[
\int_{-\infty}^{\infty} |F(x; t) - \hat{F}(x)|^2 dx
\]

Let \(\theta \) be a location parameter: \(f(x; \theta) = f(x - \theta) \). Using the definition (46), show that \(\hat{\theta} \) must satisfy the following equation (Hint: use integration by parts):

\[
\int_{-\infty}^{\infty} f(x - \hat{\theta}) \hat{F}(x) dx - \frac{1}{2} = 0.
\] (47)

Show that if \(\hat{\theta} \) is the unique solution to (47) it is an asymptotically consistent estimator of \(\theta \) (Hint: for \(\hat{\theta} = t \) fixed and non-random, compute mean square value of left hand side of (47) and show that as \(n \to \infty \) it goes to a function of \(t \) which equals zero at \(t = \theta \)).

(c) Using matlab, or other software application of your choice, simulate the QME and the MLE for the following cases:

i. \(f(x; \theta) \) Gaussian with variance 1 and mean \(\theta \).

ii. \(f(x; \theta) = \alpha e^{-\alpha(x-\theta)}I_{[\theta,\infty)}(x) \) (shifted exponential) with \(\alpha = 1 \).

Run the above simulations 50-100 times each for the cases of \(n = 1, 5, 10, 15, 20, 25 \) observations, respectively. Using the results of your simulations find and plot as a function of \(n \) 1) the average mean-squared error for MLE and QME estimators; 2) the average quantile squared error (46) evaluated at \(t = \hat{\theta} \) (you should show 4 different plots). Also generate a couple of representative plots of the objective function (46) as a function of \(t \) for the Gaussian and shifted exponential cases above. Comment on what can be concluded from your simulation study.

4.18 Available are \(n \) i.i.d. samples of a discrete random variable \(X \) with probability mass function \(P(X = k) = p(k; \theta) \), given by

\[
p(k; \theta) = \begin{cases} \frac{\theta^{k-k_o}}{1+\theta}, & k = k_o, k_o + 1, \ldots, \\ 0, & \text{o.w.} \end{cases}
\]

where \(k_o \) is a known non-negative integer and \(\theta \) is unknown with \(0 \leq \theta < \infty \). (A potentially useful identity: \(\sum_{k=0}^{\infty} ka^k = a/(1-a)^2 \).)

(a) Is this density in the exponential family? Find a one dimensional sufficient statistic for \(\theta \).
(b) Find a MOM estimator of θ. Is your estimator unbiased?
(c) Find the ML estimator of θ. Is your estimator unbiased?
(d) Find the CR bound on estimator variance for any unbiased estimator of θ. Do the estimators of part (b) or part (c) attain the CR bound?

4.19 Available is a single measurement of a random variable W. The model for W is

$$W = (1 - Z)X + ZY,$$

where Z is Bernoulli with $P(Z = 0) = P(Z = 1) = 1/2$, X is Gaussian with zero mean and variance σ^2, and Y is Gaussian with mean μ and variance σ^2. Assume that μ and σ^2 are known and that X, Y, Z are independent.

(a) Find the posterior distribution of Z.
(b) Find the minimum mean squared error estimator of Z. Plot the estimator as a function of W.
(c) Find the MAP estimator of Z. Plot the estimator as a function of W.
(d) Find the affine minimum mean squared error estimator of Z. Plot the estimator as a function of W.

4.20 Let X_1, X_2, \ldots, X_n be i.i.d. variables with the standard Pareto density:

$$f(x; \theta) = \begin{cases} \theta c^\theta x^{-(\theta+1)}, & x \geq c \\ 0, & \text{o.w.} \end{cases}$$

where $c > 0$ is known and $\theta > 0$ is unknown.

(a) Is $f(x; \theta)$ a member of the exponential family? Why or why not?
(b) Find a one dimensional sufficient statistic for θ given X_1, X_2, \ldots, X_n.
(c) Find the Fisher information and state the CR bound for unbiased estimators of θ.
(d) Derive the maximum likelihood estimator $\hat{\theta}$ of θ.
(e) Is your estimator efficient?

4.21 Let X_1, X_2, \ldots, X_n be i.i.d. variables with the generalized Pareto density:

$$f(x; \theta) = \begin{cases} c^\theta x^{-(\theta+1)}, & x \geq \theta \\ 0, & \text{o.w.} \end{cases}$$

where $c > 0$ is known and $\theta > 0$ is unknown.

(a) Is $f(x; \theta)$ a member of the exponential family? Why or why not?
(b) Find a one dimensional sufficient statistic for θ given X_1, X_2, \ldots, X_n.
(c) The posterior density of a scalar parameter θ given an observation $\overline{x} = [x_1, \ldots, x_n]^T$ is a function of the form $f(\theta|\overline{x}) = g(\overline{x} - \theta)$ where \overline{x} is the sample mean and g is an integrable function satisfying $g(-u) = g(u)$ and $g(0) > g(u)$, $u \neq 0$. Derive the MAP, CME and CmE estimators of θ.

4.22 The CRB has several generalizations that we explore in this problem for scalar parameters θ of a density $f_\theta(x)$.

4.23 The CRB has several generalizations that we explore in this problem for scalar parameters θ.
Define the finite difference $\delta f = (f_{\theta+\Delta} - f_{\theta})/\Delta$. Show that for any unbiased estimator $\hat{\theta}$ of non-random θ

$$\text{var}_{\theta}(\hat{\theta}) \geq \frac{1}{E_{\theta}\left[(\delta f_{\theta}/f_{\theta})^2\right]}$$

with equality iff $\delta f_{\theta}/f_{\theta} = k_{\theta}(\hat{\theta} - \theta)$ for non-random constant k_{θ}. The above bound is called the Chapman Robbins version of the Barankin bound.

Show that the bound of part (a) implies the CRB in the case that θ is a non-random continuous parameter and f_{θ} is smooth (Hint: take limit as $\Delta \to 0$).

When θ is a random variable with prior density $p(\theta)$ show that

$$E[(\hat{\theta} - \theta)^2] \geq \frac{1}{J}$$

where

$$J = E\left[\frac{(\delta p(\theta|X)/p(\theta|X))^2}{p(\theta|X)}\right]$$

and $\delta p(\theta|X) = (p(\theta + \Delta|X) - p(\theta|X))/\Delta$. Here the expectation E is taken over both X and θ.

4.24 Let $g(x; \phi_1)$ and $h(x; \phi_2)$ be densities where ϕ_1, ϕ_2 are unknown scalar parameters. The arithmetic epsilon mixture model for X is:

$$f_A(x; \theta) = (1 - \epsilon)g(x; \phi_1) + \epsilon h(x; \phi_2)$$

where $0 \leq \epsilon \leq 1$ and $\theta = [\phi_1, \phi_2, \epsilon]^T$. The geometric epsilon mixture model for X is:

$$f_G(x; \theta) = \frac{1}{d(\theta)} g^{1-\epsilon}(x; \phi_1)h^\epsilon(x; \phi_2), \quad (48)$$

where

$$d(\theta) = \int g^{1-\epsilon}(x; \phi_1)h^\epsilon(x; \phi_2)dx$$

is a normalizing constant (related to the R\'enyi ϵ-divergence between g and h). From this exercise you will appreciate that the mixture f_G is easier to deal with than f_A for the purposes of investigating CR bounds, detectors and estimators. Assume that g and h are members of the exponential family of densities.

(a) Show that the three parameter density $f_G(x; \theta)$ is a member of the exponential family. Show that $f_A(x; \theta)$ is not a member of this family.

(b) Derive expressions for the six distinct entries of the Fisher information matrix (FIM) for jointly estimating the parameters θ from n i.i.d. observations from f_G. An explicit expression for the FIM does not generally exist for the standard mixture model f_A.

(c) For n i.i.d. observations from f_G give a condition on the parameter vector θ which guarantees that an efficient estimator exist for θ, i.e. for which the inverse FIM is an achievable lower bound on the covariance of unbiased estimators of θ (Hint: what is the natural paramaterization?).

(d) In the sequel of this exercise we specialize f_G to the case of a geometric mixture of two exponential densities

$$g(x; \theta) = \phi_1 \exp(-x\phi_1), \quad h(x; \theta) = \phi_2 \exp(-x\phi_2), \quad (49)$$

where $x, \phi_1, \phi_2 > 0$. Derive an expression for $d(\theta)$. Is the CR bound achievable for this model?
(e) Let \(n \) i.i.d. realizations be available from the geometric mixture \(f_G \) specified by (48) and (49). By evaluating the gradient of the likelihood function, find a set of (non-linear) equations which must be satisfied by the MLE of \(\theta \). Using these equations, and assuming that \(\phi_1, \phi_2 \) are known, find an explicit expression for the MLE of \(\epsilon \).

4.25 Let \(S \) and \(X \) be jointly Gaussian distributed with means and variances

\[
E[S] = \mu_S, \ E[X] = \mu_X, \\
\text{var}(S) = \sigma^2_S, \ \text{var}(X) = \sigma^2_X, \\
\text{cov}(S, X) = \rho \sigma_S \sigma_X.
\]

Specifically the joint density is bivariate Gaussian

\[
f_{S,X}(s, x) = \frac{1}{2\pi\sigma_S\sigma_X\sqrt{1-\rho^2}} \exp \left(-\frac{1}{2(1-\rho^2)} \left[\frac{(s-\mu_S)^2}{\sigma^2_S} - 2\rho \frac{(s-\mu_S)(x-\mu_X)}{\sigma_S\sigma_X} + \frac{(x-\mu_X)^2}{\sigma^2_X} \right] \right).
\]

(a) By integrating the joint density over \(s \), show that the marginal density \(f_X \) of \(X \) is a univariate Gaussian density with mean parameter \(\mu_X \) and variance parameter \(\sigma^2_X \).

(b) Using the above to show that the conditional density \(f_{S|X}(s|x) \) of \(S \) given \(X \) is univariate Gaussian with mean and variance parameters

\[
\mu_{S|X}(x) = \mu_S + \rho \frac{\sigma_S}{\sigma_X} (x - \mu_X), \\
\sigma^2_{S|X} = (1-\rho^2)\sigma^2_S.
\]

Note that while the mean parameter depends on \(x \) the variance parameter is independent of \(x \).

(c) Using this form for the conditional density show the mean and variance parameters are precisely the conditional mean and variance of \(S \) given \(X = x \), respectively.

4.26 A charity box is placed in a mall. The box can only accept quarters. With probability \(p \) (a deterministic quantity), a (good) person would come and place a quarter in the box, thus incrementing the number of quarters in the box by one. With probability 1 - \(p \), a (bad) person would come and empty the box, thus setting the number of quarters in the box to zero.

Assuming stationarity, it can be shown that the probability that \(k \) quarters will be observed at the end of the \(d \)-th day is

\[
P(T(d) = k) = p^k(1-p).
\]

(Notation: \(T(d) \) is the random variable representing the number of quarters in the box at the end of the \(d \)-th day.) In the following you should assume that \(T(1), T(2), \ldots \) are independent identically distribute (i.i.d) random variables.

(a) Maximum Likelihood and Efficiency: To estimate the percentage of good people \(p \), the box monitor counts the number of quarters in the box at the end of each day, \(D \) days in a row.

- Write down the joint PDF of the vector of number of quarters observed \([T(1), T(2), \ldots, T(D)] \).
- Find the ML estimator of \(p \) given \(T(1) = k_1, T(2) = k_2, \ldots, T(D) = k_D \).
- Is the ML estimator \(\hat{p}_{ML} \) efficient?

(b) Method of Moments: Define the the average number of quarters observed as \(\bar{k} = \frac{1}{D} \sum_{d=1}^{D} k_d \).
• Find the expected value of the average number of quarters observed $E[k]$ (hint: $\sum_{n=0}^{\infty} np^n = \frac{p}{(1-p)^2}$).

• Based on this result, suggest a method of moments estimator for p.

(c) **Efficiency and the CRB:** To investigate how well the charity box is doing, a new measure is considered $\gamma = \frac{p}{1-p}$, the ratio of the percentage of good people to the percentage of bad people, otherwise known as the good-to-bad ratio (GBR).

• Is the ML estimator of the GBR $\hat{\gamma}_{ML}$ efficient?
• Find the ML estimator of the GBR $\hat{\gamma}_{ML}$.
• Find the Cramér-Rao bound (CRB) on the MSE of an unbiased estimator for the GBR.
• Find the MSE of the ML estimator of the GBR.

4.27 Here you will show that the MLE is invariant to arbitrary functional transformations of the parameter. Let θ be a scalar parameter with range $\Theta = (-\infty, \infty)$, assume the sample X has j.p.d.f $f(x; \theta)$, and that there exists a unique MLE $\hat{\theta}$. Given a transformation g define the new parameter $\varphi = g(\theta)$.

(a) Assume that g is monotone, i.e. $g(\theta)$ is 1-1 invertible over all Θ. Show that the MLE of φ is

$$ \hat{\varphi} = g(\hat{\theta}). $$

(b) Next assume that g is smooth in the sense of piecewise monotonicity, i.e., there exists a partition of Θ into intervals $(-\infty, \theta_1], (\theta_1, \theta_2], \ldots, (\theta_M, \infty)$ such that g is monotone over each of these intervals (M may not be finite). Define the integer function h by: $h(\theta) = k$, if θ is in the k-th interval, $k = 1, \ldots, M + 1$. Show that the scalar-to-vector mapping $\theta \rightarrow [g(\theta), h(\theta)]$ is 1-1 invertible.

(c) Using result of (b) show that the MLE is invariant to piecewise monotone functional transformation.

4.28 Derive the CR bound (45) on the variance of an unbiased scalar estimator $\hat{\theta}_1$ of θ_1 when the rest of the parameters $\theta_2, \ldots, \theta_p$ in θ are unknown nuisance parameters. Do not assume that the nuisance parameters have unbiased estimators (Hint: define $U = [\hat{\theta}_1 - \theta_1, \nabla_{\theta}^T \ln f(X; \theta)]^T$ and proceed as in the proof of the matrix CRB).

End of chapter
5 LINEAR LEAST SQUARES ESTIMATION

In this chapter we will cover the following topics:
* Min MSE scalar, linear and affine estimation
* Projection theorem and orthogonality condition of linear estimation
* Optimality of affine estimator for jointly Gaussian case
* Nonstatistical linear least squares (LLS) estimation (regression)
* Optimality of LLS for Gaussian model

REFERENCES
Rao [33]
Soderstrom and Stoica [39]

Measurement vector: $\mathbf{x} = [x_1, \ldots, x_n]^T$
Parameter vector: $\mathbf{\theta} = [\theta_1, \ldots, \theta_p]^T$
Cases to consider: \mathbf{x} or $\mathbf{\theta}$ non-random quantities or realizations of random variables?

5.1 MIN MSE SCALAR, LINEAR, AND AFFINE ESTIMATION

First we will assume that \mathbf{x} and $\mathbf{\theta}$ are realizations of two random vectors \mathbf{X} and $\mathbf{\theta}$. Similarly to the last chapter, we use the notation $E[\mathbf{\theta}] = \int f(\mathbf{\theta}) d\mathbf{\theta}$ to denote expectation. However, in this chapter we will never refer to the density $f(\mathbf{\theta})$ explicitly since we will only assume knowledge of its first and second order moments.

5.1.1 BEST CONSTANT ESTIMATOR OF RANDOM PARAMETERS

Quantities which must be known:
* Mean vector: $E[\mathbf{\theta}]$

Objective: find a constant

$$\hat{\mathbf{\theta}} = \mathbf{\zeta}$$

which minimizes MSE:

$$\text{MSE}(\hat{\mathbf{\theta}}) = E[\|\mathbf{\theta} - \mathbf{\zeta}\|^2] = \int_{\mathbf{\theta}} \|\mathbf{\theta} - \mathbf{\zeta}\|^2 f(\mathbf{\theta}) \, d\mathbf{\theta}$$

Solution:

$$\text{MSE}(\hat{\mathbf{\theta}}) = E[\|\mathbf{\theta} - E[\mathbf{\theta}] - (\mathbf{\zeta} - E[\mathbf{\theta}])\|^2]$$

$$= E[\|\mathbf{\theta} - E[\mathbf{\theta}]\|^2] + \|E[\mathbf{\theta}] - \mathbf{\zeta}\|^2$$
\[-(E[\theta] - c)^T \begin{bmatrix} E[\theta - E[\theta]] & -E[(\theta - E[\theta])^T] \end{bmatrix} (E[\theta] - c) = 0\]

Hence: \(c = E[\theta] \) is the best constant

5.2 BEST LINEAR ESTIMATOR OF A SCALAR R.V. \(\theta \)

Quantities which must be known:

* Measurement vector: \(\mathbf{X} = [X_1, \ldots, X_n]^T \)
* Means: \(E[\mathbf{X}] \) and \(E[\theta] \)
* Second moment matrix:

\[
\mathbf{M}_X = E[\mathbf{X}\mathbf{X}^T]
\]

* Cross moment vector

\[
\mathbf{m}_{X\theta} = E[\mathbf{X}\theta]
\]

Objective: find \(\mathbf{h} \) to give optimal linear estimate \(\hat{\theta} \)

\[
\hat{\theta} = \mathbf{h}^T \mathbf{X}
\]

\(\mathbf{h} = [h_1, \ldots, h_n]^T \) a non-random vector of coefficients

Optimality criterion: MSE

\[
\text{MSE}(\hat{\theta}) = E[||\theta - \hat{\theta}||^2] = E[||\theta - \mathbf{h}^T \mathbf{X}||^2]
\]

\[
= \mathbf{h}^T E[\mathbf{X}\mathbf{X}^T] \mathbf{h} + E[||\theta||^2]
\]

\[
-\mathbf{h}^T E[\mathbf{X}\theta] - E[\theta \mathbf{X}^T] \mathbf{h}
\]

Note: Quadratic in unknowns \(\mathbf{h} \)

Optimal linear estimator can be found by differentiation:

\[
\nabla_\mathbf{h} \text{MSE}(\hat{\theta}) = \begin{bmatrix} \frac{\partial}{\partial h_1}, \ldots, \frac{\partial}{\partial h_n} \end{bmatrix} \text{MSE}(\hat{\theta})
\]

\[
= 2 (\mathbf{h}^T E[\mathbf{X}\mathbf{X}^T] - E[\theta \mathbf{X}^T])
\]

Therefore optimal \(\mathbf{h} \) satisfies “Normal” equation:
\[E[X'X]h = E[X\theta] \]

When \(M_X = E[X'X] \) is non-singular this is equivalent to

\[h = M_X^{-1}m_X\theta \]

and optimal linear estimator is

\[\hat{\theta} = m_X'X \]

which attains minimum MSE

\[\text{MSE}_{\text{min}} = E[|\theta|^2] - m_X'Xm_X\theta \]

Note that the optimal linear estimator satisfies an “average” analog \(E[\hat{\theta}] = E[\theta] \) to the unbiasedness condition of last chapter.

5.3 **BEST AFFINE ESTIMATOR OF A SCALAR R.V. \(\theta \)**

Quantities which must be known:

* Measurement vector: \(\underline{X} = [X_1, \ldots, X_n] \)
* Means: \(E[X] \) and \(E[\theta] \)
* Covariances:

\[\underline{R}_X = \text{cov}(X), \quad \underline{\tau}_{X,\theta} = \text{cov}(X, \theta) \]

Objective: find optimal affine estimate \(\hat{\theta} \) of a r.v. \(\theta \)

\[\hat{\theta} = h'X + b = h'(X - E[X]) + c \]

Optimality criterion: MSE

\[
\text{MSE} = E[|\theta - \hat{\theta}|^2] = E[(\theta - c - h'(X - E[X]))^2]
\]

\[
= h' \underbrace{E[(X - E[X])(X - E[X])]}_{\underline{R}_X} h + E[|\theta - c|^2]
\]

\[
- h' \underbrace{E[(X - E[X])(\theta - c)]}_{\underline{\tau}_{X,\theta}} - E[(\theta - c)(X - E[X])^T] h
\]

\[
- \underbrace{E[(\theta - c)(X - E[X])]}_{\underline{\tau}_{\theta,X}} h
\]
Note: quadratic in unknowns h, c.

Two observations:
1. As before we see that $c = E[\theta]$ minimizes $\text{MSE}(\hat{\theta})$
2. For h, optimal solution is found by differentiation:

$$0 = \nabla_h \text{MSE} = h^T R_X - \tau_{\theta,X}$$

Or h satisfies equation:

$$R_X h = \tau_{\theta,X}$$

When R_X is non-singular this is equivalent to

$$h = R_X^{-1} \tau_{\theta,X}$$

and optimal affine estimator is

$$\hat{\theta} = E[\theta] + \tau_{\theta,X}^T R_X^{-1} (X - E[X])$$

which attains minimum MSE

$$\text{MSE}_{\text{min}} = \text{var}(\theta) - \tau_{\theta,X}^T R_X^{-1} \tau_{\theta,X}$$

5.3.1 Superposition Property of Linear/Affine Estimators

Let ψ and ϕ be two random variables. Then, as statistical expectation is a linear operator, the best linear (affine) estimator of the sum $\theta = \psi + \phi$ given X is

$$\hat{\theta} = \hat{\psi} + \hat{\phi},$$

where $\hat{\psi}$ and $\hat{\phi}$ are the best linear (affine) estimators of ψ given X and of ϕ given X, respectively.

5.4 Orthogonality Condition and Projection Theorem

Definition: \mathcal{H} is a vector space over a scalar field \mathcal{F} if for any elements $x, y, z \in \mathcal{H}$ and scalars $\alpha, \beta \in \mathcal{F}$

1. $\alpha \cdot x + \beta \cdot y \in \mathcal{H}$ (Closure)
2. $x + (y + z) = (x + y) + z$
3. $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$
4. $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$
5. There is a vector $\phi \in \mathcal{H}$ s.t.: $x + \phi = x$
6. There are scalars 1,0 s.t.: $1 \cdot x = x, 0 \cdot x = \phi$
A normed vector space \mathcal{H} has an inner product $\langle \cdot, \cdot \rangle$ and a norm $\| \cdot \|$ which satisfy

1. $\langle x, y \rangle = \langle y, x \rangle^*$
2. $\langle \alpha \cdot x, y \rangle = \alpha^* \langle x, y \rangle$
3. $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
4. $\|x\|^2 = \langle x, x \rangle$
5. $\|x\| \geq 0$
6. $\|x\| = 0$ iff $x = \phi$
7. $\|x + y\| \leq \|x\| + \|y\|$ (Triangle ineq)
8. $|\langle x, y \rangle| \leq \|x\| \|y\|$ (Cauchy-Schwarz ineq)
9. Angle between x, y: $\psi = \cos^{-1} \left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$
10. $\langle x, y \rangle = 0$ iff x, y are orthogonal
11. $|\langle x, y \rangle| = \|x\| \|y\|$ iff $x = \alpha \cdot y$ for some α
12. The linear span of vectors $\{x_1, \ldots, x_k\}$ is

$$\text{span} \{x_1, \ldots, x_k\} := \left\{ y : y = \sum_{i=1}^{k} \alpha_i \cdot x_i, \quad \alpha_i \in \mathcal{F} \right\}$$

Figure 31: Illustration of linear span of two vectors in \mathbb{R}^3

13. A basis for \mathcal{H} is any set of linearly independent vectors x_1, \ldots, x_k such that $\text{span}\{x_1, \ldots, x_k\} = \mathcal{H}$
14. The dimension of \mathcal{H} is the number of elements in any basis for \mathcal{H}
15. A linear subspace \mathcal{S} is any subset of \mathcal{H} which is itself a vector space.
16. The projection x of a vector y onto a subspace \mathcal{S} is a vector x that satisfies
\[< y - x, u > = 0, \] for all \(u \in S \)

Figure 32: The projection of a vector \(x \) onto a subspace \(S \) in the plane

Examples of vector spaces:

1. Euclidean \(p \)-dimensional space \(\mathbb{R}^p \). Identify \(x \) with \(x \) and \(y \) with \(y \)

\[< x, y > = x^T y = \sum_{i=1}^{p} x_i y_i \]

A one dimensional subspace: the line

\[S = \{ y : y = av, a \in \mathbb{R} \} \]

where \(v \in \mathbb{R}^p \) is any fixed vector.

2. Complex \(p \)-space: \(x = [x_1, \ldots, x_p], y = [y_1, \ldots, y_p], \)

\[< x, y > = x^H y = \sum_{i=1}^{p} x_i^* y_i \]

An \(n \)-dimensional subspace:

\[S = \{ y : y = \sum_{i=1}^{n} a_i v_i, a_i \in \mathbb{C} \} \]

\[= \text{span}\{v_1, \ldots, v_n\} \]
Figure 33: A line is a one dimensional subspace of $\mathcal{H} = \mathbb{R}^p$

where $v_i \in \mathbb{C}^p$ are any linearly independent vectors in \mathcal{H}.

3. The space of square integrable cts. time functions $x(t)$

$$< x, y > = \int x(t)y(t) \, dt$$

A one dimensional subspace: scales of a given function

$$\mathcal{S} = \{ g : g(t) = a \, f(t), \, a \in \mathbb{R} \}$$

where $f = f(t)$ is any fixed function in \mathcal{H}.

4. The space of second order real random variables X defined on a sample space. Identify x, y as random variables X, Y:

$$< X, Y > = E[XY] = \int_{\Omega} X(\omega)Y(\omega)f(\omega) \, d\omega$$

Ω: sample space of elementary outcomes ω

Q. How to use vector spaces for estimation?

A. Identify $\mathcal{H} = \{ Y : Y$ a r.v. with $E[|Y|^2] < \infty \}$.

Inner product between two “vectors” in \mathcal{H} is defined as

$$< X, Y > := E[XY]$$

(X, Y real r.v.s)
5.4.1 LINEAR MINIMUM MSE ESTIMATION REVISITED

Cast the linear estimation problem into \mathcal{H}

Observe r.v.s: $\mathbf{X} = [X_1, \ldots, X_n]^T$

Find linear estimator:

$$\hat{\theta} = \mathbf{u}^T \mathbf{X}$$

Identify “solution subspace”

$$\mathcal{S} := \text{span}\{X_1, \ldots, X_n\}$$

and norm

$$\|\theta - \hat{\theta}\|^2 = E[|\theta - \hat{\theta}|^2] = \text{MSE}(\hat{\theta})$$

Hence: best linear estimate of θ is a vector $\hat{\theta} \in \mathcal{S}$ which minimizes the norm squared $\|\theta - \hat{\theta}\|^2$.

Linear estimator projection theorem: the best linear estimator of θ based r.v.s X_1, \ldots, X_n is the projection of θ onto $\text{span}\{X_1, \ldots, X_n\}$.

Orthogonality Condition: the best linear estimator $\hat{\theta}$ satisfies

$$<\theta - \hat{\theta}, u> = 0, \quad \text{for all } u \in \mathcal{S}$$

Equivalently, if $u_1, \ldots, u_{n'}$ is any basis for \mathcal{S}

$$<\theta - \hat{\theta}, u_i> = 0, \quad i = 1, \ldots, n'$$
Simple expression for minimum MSE:

$$\|\theta - \hat{\theta}\|^2 = <\theta - \hat{\theta}, \theta - \hat{\theta}>$$

$$= <\theta - \hat{\theta}, \theta> - <\theta - \hat{\theta}, \hat{\theta} >_{\in S}$$

$$= <\theta - \hat{\theta}, \theta>$$

5.4.2 AFFINE MINIMUM MSE ESTIMATION

Cast the affine estimation problem into \mathcal{H}

Observe r.v.s: $X = [X_1, \ldots, X_n]^T$

Re-express estimator equation to identify solution subspace

$$\hat{\theta} = h^T X + b$$

$$= \begin{bmatrix} h^T, b \end{bmatrix} \begin{bmatrix} X \\ 1 \end{bmatrix}$$

Identify solution subspace and error norm

$$S := \text{span}\{X_1, \ldots, X_n, 1\}$$
\[\|\theta - \hat{\theta}\|^2 = \text{MSE}(\hat{\theta}) \]

Affine projection theorem: the best affine estimator of \(\theta \) based r.v.s \(X_1, \ldots, X_n \) is the projection of \(\theta \) onto \(\text{span}\{X_1, \ldots, X_n, 1\} \).

5.4.3 Optimality of Affine Estimator for Linear Gaussian Model

Assume \(X, \theta \) are jointly Gaussian

Then min MSE estimator \(\hat{\theta} = \hat{\theta}(X) \) is in fact affine:

\[
E[\theta|X] = E[\theta] + R_{X,\theta}^T R_X^{-1}(X - E[X])
\]

Proof:

Let \(\hat{\theta}_l \) be the affine min MSE estimator.

From projection theorem we know that error is orthogonal to measurements

\[
E[(\theta - \hat{\theta}_l)X] = 0
\]

Note: Since \(\theta - \hat{\theta}_l \) is a linear combination of Gaussian r.v.s it is itself Gaussian.

Since Gaussian r.v.s that are orthogonal are in fact independent r.v.’s

\[
E[(\theta - \hat{\theta}_l)|X] = E[(\theta - \hat{\theta}_l)] = 0
\]

Therefore, as \(\hat{\theta}_l \) is a function of \(X \) we have

\[
0 = E[(\theta - \hat{\theta}_l)|X] = E[\theta|X] - \hat{\theta}_l
\]

or

\[
E[\theta|X] = \hat{\theta}_l
\]

Which establishes the desired result.

5.5 Best Affine Estimation of a Vector

Quantities which must be known:

* Measurement vector: \(X = [X_1, \ldots, X_n] \)
* Measurement mean vector: \(E[X] \)
* Prior Mean Vector: \(E[\theta] \)
* Covariances: \(R_X = \text{cov}(X) \)
\[\mathbf{R}_{X,\theta} = \text{cov}(\mathbf{X}, \theta) = [\mathcal{L}_{X,\theta_1}, \ldots, \mathcal{L}_{X,\theta_p}] \]

Objective: estimate \(\theta = [\theta_1, \ldots, \theta_p]^T \)

Sum of MSE estimation criterion:

\[
\text{MSE}(\hat{\theta}) = \sum_{i=1}^{p} \text{MSE}(\hat{\theta}_i) = \sum_{i=1}^{p} E|\theta_i - \hat{\theta}_i|^2 = \text{trace} \left(E[(\theta - \hat{\theta}) (\theta - \hat{\theta})^T] \right)
\]

Affine estimator \(\hat{\theta}_i \) is defined by

\[
\hat{\theta}_i = h_i^T \mathbf{X} + b_i, \quad i = 1, \ldots, p
\]

and

\[
\hat{\theta} = [\hat{\theta}_1, \ldots, \hat{\theta}_p]^T = \mathbf{H}^T \mathbf{X} + \mathbf{b}
\]

\[
\mathbf{H} = [h_1, \ldots, h_p]
\]

SOLUTION TO MINIMUM SUM OF MSE PROBLEM:

Since \(h_i \)'s appear separately in each of the summands of MSE(\(\hat{\theta} \)), the minimization of MSE is equivalent to the uncoupled minimization of each MSE(\(\hat{\theta}_i \)).

\[
\min_{\hat{\theta}} \text{MSE}(\hat{\theta}) = \sum_{i=1}^{p} \min_{\hat{\theta}_i} \text{MSE}(\hat{\theta}_i)
\]

Therefore the minimum MSE solution is simply the concatenation of the scalar estimators of each \(\theta_i \):

\[
\begin{bmatrix}
\hat{\theta}_1 \\
\vdots \\
\hat{\theta}_p
\end{bmatrix}
=
\begin{bmatrix}
E[\theta_1] \\
\vdots \\
E[\theta_p]
\end{bmatrix}
+
\begin{bmatrix}
\sum_{\theta_1,X} \mathbf{R}_{X}^{-1}(\mathbf{X} - E[\mathbf{X}]) \\
\vdots \\
\sum_{\theta_p,X} \mathbf{R}_{X}^{-1}(\mathbf{X} - E[\mathbf{X}])
\end{bmatrix},
\]

Or equivalently:

\[
\hat{\theta} = E[\theta] + \mathbf{R}_{\theta,\mathbf{X}} \mathbf{R}_{\mathbf{X}}^{-1}(\mathbf{X} - E[\mathbf{X}])
\]

resultant minimum sum of MSE

\[
\text{MSE}_{\text{min}} = \text{trace} \left(\mathbf{R}_{\theta} - \mathbf{R}_{\theta,\mathbf{X}} \mathbf{R}_{\mathbf{X}}^{-1} \mathbf{R}_{\mathbf{X},\theta} \right)
\]
Example 22 *Min MSE Linear Prediction*

Linear p-th order 1-step predictor:

$$\hat{X}_k = \sum_{i=1}^{p} a_i X_{k-i}$$

$\{X_i\}$ a zero mean w.s.s. random sequence with a.c.f.

$$r(k) := E[X_iX_{i-k}]$$

Objective: find min MSE predictor coefficients $\{a_i\}$

![Figure 36: Linear predictor as a FIR filter](image)

Note: identify $\theta = X_k$ as random scalar “parameter,” and $h_i = a_i$ coefficient vector to be determined.

Solution:

Step 1. Rewrite predictor equation in vector form

$$\hat{X}_k = a^T X$$

where

$$X = [X_{k-1}, \ldots, X_{k-p}]^T, \quad a = [a_1, \ldots, a_p]^T$$

Step 2. orthogonality condition becomes

$$E[(X_k - a^T X)X_{k-i}] = 0, \quad i = 1, \ldots, p$$
or concatenation into a row vector gives

\[
\mathbf{0}^T = \begin{bmatrix} E[(X_k - \mathbf{a}^T \mathbf{X})X_{k-1}] \\ \vdots \\ E[(X_k - \mathbf{a}^T \mathbf{X})X_{k-p}] \end{bmatrix} = E[(X_k - \mathbf{a}^T \mathbf{X})\mathbf{X}^T]
\]

Which specifies the optimal predictor coefficients \(\mathbf{a} = \hat{\mathbf{a}} \) as

\[
\hat{\mathbf{a}} = \mathbf{R}^{-1} \mathbf{\mathcal{L}}
\]

where we have defined the correlation vector:

\[
\mathbf{\mathcal{L}}^T = [r_1, \ldots, r_p] = E[\mathbf{X} \mathbf{X}^T]
\]

and Toeplitz covariance matrix

\[
\mathbf{R} = ((r_{i-j}))_{i,j=1,p} = E[\mathbf{X} \mathbf{X}^T]
\]

The min MSE is

\[
\text{MSE}_{\text{min}} = \langle X_k - \hat{\mathbf{a}}^T \mathbf{X}, X_k \rangle = r_0 - \hat{\mathbf{a}}^T \mathbf{\mathcal{L}} = r_0 - \mathbf{\mathcal{L}}^T \mathbf{R}^{-1} \mathbf{\mathcal{L}}
\]

Relation: Linear prediction and AR(p) model for \(\{X_i\} \).

Define residual prediction error \(V_k = X_k - \hat{X}_k \). Then, obviously

\[
X_k = \hat{X}_k + V_k = \sum_{i=1}^{p} a_i X_{k-i} + V_k
\]

When \(V_k \) is w.s.s. white noise the above representation is called a *p*-th order autoregressive, or AR(p), model for \(\{X_i\} \).

Example 23 An Inverse Problem

Measurement model:

\[
\mathbf{X} = \mathbf{H} \mathbf{\theta} + \mathbf{N}
\]

* \(\mathbf{X} = [X_1, \ldots, X_m]^T \): random measurements
* \(\mathbf{\theta} = [\theta_1, \ldots, \theta_p]^T \): unknown random parameters
Figure 37: Block diagram for inverse problem

* \(\mathbf{N} = [n_1, \ldots, n_m]^T \): zero mean measurement noise
* \(\theta, \mathbf{N} \) uncorrelated
* \(\mathbf{H} \): a known \(m \times p \) matrix

Objective: find affine min MSE estimator \(\hat{\theta} \)

Solution: directly follows from vector min MSE estimation results

\[
\hat{\theta} = E[\theta] + \mathbf{R}_{\theta, \mathbf{X}} \mathbf{R}_{\mathbf{X}}^{-1} (\mathbf{X} - E[\mathbf{X}])
\]

Find

\[
E[\mathbf{X}] = E[\mathbf{H\theta} + \mathbf{N}] = \mathbf{H} E[\theta]
\]

\[
\mathbf{R}_{\mathbf{X}} = \text{cov}(\mathbf{H\theta} + \mathbf{N}, \mathbf{N}) = \mathbf{H} \mathbf{R}_{\theta} \mathbf{H}^T + \mathbf{R}_{\mathbf{N}}
\]

\[
\mathbf{R}_{\mathbf{X}, \theta} = \text{cov}((\mathbf{H\theta} + \mathbf{N}), \theta) = \mathbf{H} \mathbf{R}_{\theta}
\]

Final result:

\[
\hat{\theta} = E[\theta] + \mathbf{R}_{\theta} \mathbf{H}^T [\mathbf{H} \mathbf{R}_{\theta} \mathbf{H}^T + \mathbf{R}_{\mathbf{N}}]^{-1} (\mathbf{X} - \mathbf{H} E[\theta])
\]

and min sum of MSE is

\[
\text{MSE}_{\text{min}} = \text{trace} \left(\mathbf{R}_{\theta} - \mathbf{R}_{\theta} \mathbf{H}^T [\mathbf{H} \mathbf{R}_{\theta} \mathbf{H}^T + \mathbf{R}_{\mathbf{N}}]^{-1} \mathbf{H} \mathbf{R}_{\theta} \right)
\]
Remarks:
1. When R_N dominates $HR_\theta H^T$: $\text{MSE}_{\text{min}} \approx \text{trace}R_\theta$
2. When $HR_\theta H^T$ dominates R_N and H is full rank: $\text{MSE}_{\text{min}} \approx 0$.

5.6 NONSTATISTICAL LEAST SQUARES (LINEAR REGRESSION)

In some cases one does not have a good enough model to compute the ensemble averages, e.g. R and $R_{X\theta}$, required for implementation of the linear minimum MSE estimators discussed above. In these cases one must resort to training data to estimate these ensemble averages. However, a natural question arises: to what extent is it optimal to simply substitute empirical averages into the formulas derived above? The answer depends of course on our definition of optimality. Non-statistical least squares is a new formulation of this problem for which the optimal solutions turn out to be the same form as our previous solutions, but with empirical estimates substituted for R and $R_{X\theta}$.

Assume that a pair of measurements available ($n \geq p$)

$$y_i, \quad \bar{x}_i = [x_{i1}, \ldots, x_{ip}]^T, \quad i = 1, \ldots, n.$$

x_{ip} could be equal to x_{i-p} here, but this is not necessary.

$$y_i = \bar{x}_i^T \bar{a} + v_i, \quad i = 1, \ldots, n$$

* y_i is response or output or dependent variable
* \bar{x}_i is treatment or input or independent variable
* \bar{a} is unknown $p \times 1$ coefficient vector to be estimated
\[a = [a_1, \ldots, a_p]^T \]

Objective: find linear least squares estimator \(\hat{a} \) of \(a \) that minimizes sum of squared errors

\[SSE(a) = \sum_{i=1}^{n} (y_i - x_i^T a)^2 \]

Equivalent \(n \times 1 \) vector measurement model:

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_n \\
\end{bmatrix} = \begin{bmatrix}
x_1^T \\
\vdots \\
x_n^T \\
\end{bmatrix} a + \begin{bmatrix}
v_1 \\
\vdots \\
v_n \\
\end{bmatrix}
\]

\[y = Xa + v. \]

where \(X \) is a non-random \(n \times p \) input matrix.

The estimation criterion is

\[SSE(a) = (y - Xa)^T (y - Xa) \]

Solution to LLSE of \(a \):

Step 1. Identify vector space containing \(y \): \(\mathcal{H} = \mathbb{R}^n \)

Inner product: \(\langle y, z \rangle = y^T z \)

Step 2. Identify solution subspace containing \(Xa \)

\[\mathcal{S} = \text{span}\{ \text{columns of } X \} \]

which contains vectors of form

\[Xa = \sum_{k=1}^{p} a_k \begin{bmatrix} x_{1k}, \ldots, x_{nk} \end{bmatrix}^T \]

Step 3. Apply projection theorem

Orthogonality Condition: the best linear estimator \(\hat{a} \) satisfies

\[\langle y - X\hat{a}, u_i \rangle = 0, \quad i = 1, \ldots, n \]

where \(u_i \) are columns of \(X \), or equivalently

\[\hat{0}^T = (y - X\hat{a})^T X \]

\[= y^T X - \hat{a}^T X^T X \]
or, if X has full column rank p then $X^T X$ is invertible and

$$\hat{a} = [X^T X]^{-1} X^T \hat{y}$$

$$= \hat{R}_x^{-1} \hat{r}_{xy}$$

where

$$\hat{R}_x \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T, \quad \hat{r}_{xy} \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} x_i y_i$$

Projection operator form of predicted output response:

$$\hat{y} = X \hat{a}$$

which, using above, can be represented as the orthogonal projection of \hat{y} onto \mathcal{H}

$$\hat{y} = X \hat{a}$$

$$= X [X^T X]^{-1} X^T \hat{y}$$

$$= \underbrace{X [X^T X]^{-1} X^T}_{\text{orthog. projection}} \hat{y}$$

Properties of orthogonal projection operator:

$$\Pi_X = X [X^T X]^{-1} X^T$$

Property 1. Π_X projects vectors onto column space of X

Define decomposition of \hat{y} into components $\underbrace{\hat{y}_X}_{\text{in column space of } X}$ and $\underbrace{\hat{y}_X^\perp}_{\text{orthogonal to column space of } X}$

$$\hat{y} = \hat{y}_X + \hat{y}_X^\perp$$

Then for some vector $\alpha = [\alpha_1, \ldots, \alpha_n]^T$

$$\hat{y}_X = X \alpha, \quad X^T \hat{y}_X^\perp = 0$$

We have:
Figure 39: Column space decomposition of a vector y

$$
\Pi_X y = \Pi_X (y_X + y^\perp) \\
= X [X^T X]^{-1} X^T \alpha + X [X^T X]^{-1} X^T y_X^\perp \\
= X \alpha \\
= y_X
$$

so that Π_X extracts the column space component of y.

Thus we can identify $y_X = \Pi_X y$ so that we have the representation

$$
\hat{y} = \Pi_X y + (I - \Pi_X) y \\
= y_X
$$

It follows immediately that

2. $I - \Pi_X$ projects onto the space orthogonal to $\text{span}\{\text{cols}X\}$

3. Π_X is symmetric and idempotent: $\Pi_X^T \Pi_X = \Pi$

4. $(I - \Pi_X) \Pi_X = 0$

Projection operator form of LS estimator gives alternative expression for minimum SSE

$$
\text{SSE}_{\text{min}} = (y - \hat{y})^T (y - \hat{y})
$$
\[y^T [I - \Pi_X]^T [I - \Pi_X] y = y^T [I - \Pi_X] y \]

Example 24 *LS optimality of sample mean*

Measure \(x = [x_1, \ldots, x_n]^T \)

Objective: Find best constant \(c \) which minimizes the sum of squares

\[\sum_{k=1}^{n} (x_i - c)^2 = (x - c\mathbf{1})^T (x - c\mathbf{1}) \]

where \(\mathbf{1} = [1, \ldots, 1]^T \)

Step 1: identify solution subspace

\(S \) is diagonal line: \(\{ y : y = a\mathbf{1}, \ a \in \mathbb{R} \} \)

![Diagonal line is solution subspace for LS scalar](image)

Figure 40: *Diagonal line is solution subspace for LS scalar*

Step 2. apply orthogonality condition

\[(x - c\mathbf{1})^T \mathbf{1} = 0 \iff c = \frac{x^T \mathbf{1}}{\mathbf{1}^T \mathbf{1}} = n^{-1} \sum_{k=1}^{n} x_i \]

Example 25 *LLS linear prediction from training sample*

Measurement sequence \(\{ z_i \} \)

Training sequence of \(n + p \) samples of \(z_i \)
Fit an AR(p) model to training sequence

\[z_k = \sum_{i=1}^{p} a_i z_{k-i} + v_k, \quad k = p+1, \ldots, n \]

such that SSE is minimized

\[SSE(n) = \sum_{k=1}^{n} (z_{k+p} - \sum_{i=1}^{p} a_i z_{k+p-i})^2 \]

Solution

Step 1. Identify response variables \(y_k = z_k \) and input vectors \(\bar{z}_k = [z_{k-1}, \ldots, z_{k-p}]^T \).

\[
\begin{bmatrix}
 z_{n+p} \\
 \vdots \\
 z_{p+1}
\end{bmatrix}
=
\begin{bmatrix}
 \bar{z}_{n+p} \\
 \vdots \\
 \bar{z}_{p+1}
\end{bmatrix} a +
\begin{bmatrix}
 v_{n+p} \\
 \vdots \\
 v_{p+1}
\end{bmatrix}
\]

\[y = Xa + v, \]

Step 2. Apply orthogonality condition

The LLS \(p \)-th order linear predictor is of the form:
\[\hat{z}_k = \sum_{i=1}^{p} \hat{a}_i z_{k-i} \]

where \(\hat{a} = [\hat{a}_1, \ldots, \hat{a}_p]^T \) is obtained from formula

\[\hat{a} = [X^T X]^{-1} X^T \hat{y} = \hat{R}^{-1} \hat{r} \]

and we have defined the sample correlation quantities:

\[\hat{r} = [\hat{r}_1, \ldots, \hat{r}_p]^T \]

\[\hat{R} = ((\hat{r}(i-j)))_{i,j=1,p} \]

\[\hat{r}_j := n^{-1} \sum_{i=1}^{n} z_{i+p}z_{i-p-j}, \quad j = 0, \ldots, p \]

5.7 WEIGHTED LINEAR LEAST SQUARES

As before assume linear model for input and response variables

\[
\begin{bmatrix}
y_1 \\
\vdots \\
y_n
\end{bmatrix} = \begin{bmatrix}
x_{1}^T \\
\vdots \\
x_{n}^T
\end{bmatrix} a + \begin{bmatrix}
v_1 \\
\vdots \\
v_n
\end{bmatrix} = Xa + v.
\]

Weighted linear least squares estimator \(\hat{a} \) of \(a \) minimizes

\[SSE(a) = (y - Xa)^T W (y - Xa) \]

where \(W \) is a symmetric positive definite \(n \times n \) matrix.

Solution to WLLS problem:

Step 1. Identify vector space containing \(y \): \(\mathcal{H} = \mathbb{R}^n \)

Inner product: \(\langle y, z \rangle = y^T W z \)

Step 2. Identify solution subspace \(S \)

\[Xa = \text{span}\{\text{columns of } X\} \]

Step 3. apply projection theorem

Orthogonality Condition: the best linear estimator \(\hat{a} \) satisfies
\[0 = (\mathbf{y} - \mathbf{X}\hat{\mathbf{a}})^T \mathbf{WX} \]
\[= \mathbf{y}^T \mathbf{WX} - \hat{\mathbf{a}}^T \mathbf{X}^T \mathbf{WX} \]

or, if \(\mathbf{X} \) has full column rank \(p \) then \(\mathbf{X}^T \mathbf{WX} \) is invertible and

\[\hat{\mathbf{a}} = \left(\mathbf{X}^T \mathbf{WX} \right)^{-1} \mathbf{X}^T \mathbf{W} \mathbf{y} \]

5.7.1 PROJECTION OPERATOR FORM OF WLS PREDICTOR

The vector \(\hat{\mathbf{y}} \) of LS predictors \(\hat{\mathbf{y}}_i = \mathbf{x}_i^T \hat{\mathbf{a}} \) of the actual output \(\mathbf{y} \) is

\[\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{a}} \]

which can be represented as the “oblique” projection of \(\mathbf{y} \) onto \(\mathcal{H} \)

\[\hat{\mathbf{y}} = \underbrace{\mathbf{X}[\mathbf{X}^T \mathbf{WX}]^{-1} \mathbf{X}^T \mathbf{W} \mathbf{y}}_{\text{oblique projection } \Pi_{\mathbf{X}, \mathbf{W}}} \]

![Oblique projection interpretation of WLS estimator](image)

Figure 42: Oblique projection interpretation of WLS estimator

Resultant weighted sum of square error:
\[\begin{align*}
\text{WSSE}_{\text{min}} &= y^T \left[I - X[X^T W X]^{-1} X^T W \right] [I - X[X^T W X]^{-1} X^T W]^T y \\
&= y^T [I - \Pi_{x,w}]^T [I - \Pi_{x,w}] y
\end{align*} \]

ALTERNATIVE INTERPRETATION: WLS predictor as LS predictor with preprocessing and postprocessing:

As \(W \) is positive definite we have square root factorization

\[W = W^{\frac{1}{2}} W^{\frac{1}{2}} \]

and

\[\hat{y} = W^{-\frac{1}{2}} \left(W^{\frac{1}{2}} X [X^T W X]^{-1} X^T W^{\frac{1}{2}} \right) [W^{\frac{1}{2}} y] \]

orthog. projector \(\Pi_{W^{\frac{1}{2}} x} \)

\[= W^{-\frac{1}{2}} \Pi_{W^{\frac{1}{2}} x} W^{\frac{1}{2}} \hat{y} \]

\[\begin{array}{ccc}
y & \xrightarrow{W^{\frac{1}{2}}} & \Pi \\
& \xrightarrow{\Pi} & W^{\frac{1}{2}} \hat{y}
\end{array} \]

Figure 43: Interpretation of WLS estimator as pre- and postprocessing with orthogonal projection

Example 26 Adaptive Linear Prediction

Now want to fit AR(p) model
\[z_k = \sum_{i=1}^{p} a_i z_{k-i} + v_k, \quad k = 1, 2, \ldots \]

such that at time \(n \) we minimize WLS criterion

\[
WSSE(n) = \sum_{k=1}^{n} \rho^{n-k} (z_{k+p} - \sum_{i=1}^{p} a_i z_{k+p-i})^2
\]

\(\rho \in [0, 1] \) is an exponential forgetting factor

\[\rho^{n-i} \]

\[1 \]

\[1/e \]

\[-1/\ln \rho \]

\[n \]

\[n+1 \]

\[i \]

Figure 44: Exponential forgetting factor applied to past errors for adaptive prediction

Solution of WLS problem:
As before, identify response variables \(y_k = z_k \) and input vectors \(x_k = [z_{k-1}, \ldots, z_{k-p}]^T \).
Also identify weight matrix

\[
W = \begin{bmatrix}
\rho^0 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \rho^{n-1}
\end{bmatrix}
\]

In this way we obtain WLLS predictor coefficients as

\[
\hat{a} = [X^T W X]^{-1} X^T W y
\]

\[
= \hat{R}^{-1} \hat{\tilde{z}}
\]
and we have defined the smoothed sample correlation quantities:

\[\hat{r} = [\hat{r}_1, \ldots, \hat{r}_p]^T \]

\[\hat{R} = ((\hat{r}(i - j)))_{i,j=1,p} \]

\[\hat{r}_j := \sum_{i=1}^{n} \rho^{n-i} z_{i+p} z_{i+p-j}, \quad j = 0, \ldots, p \]

Minimum WSSE is:

\[\text{WSSE}_{\text{min}} = \hat{r}_0 - \hat{r}^T \hat{R}^{-1} \hat{r} \]

Figure 45: Typical trajectory of the error criterion for predicting a stationary AR(1) process

5.8 OPTIMALITY OF WLLS IN THE GAUSSIAN MODEL

Model

\[\underline{Y} = X \underline{a} + \underline{V} \]

* \(\underline{V} \sim \mathcal{N}_n(0, \underline{R}) \)
* covariance matrix \(\underline{R} \) is known
* \(X \) is known non-random matrix of measurements

The density function of \(\underline{Y} \) is multivariate Gaussian
$$f(y; a) = \frac{1}{\sqrt{(2\pi)^n|R|}} \exp \left(-\frac{1}{2} (y - Xa)^T R^{-1} (y - Xa) \right)$$

ML estimator of a is identical to WLLS estimator

$$\hat{a}_{ml} = \arg\max_a \ln f(Y; a)$$

$$= \arg\min_a (Y - Xa)^T R^{-1} (Y - Xa)$$

so that

$$\hat{Y} = X\hat{a}_{ml} = X[X^T R^{-1} X]^{-1} R^{-1} X^T Y = \Pi_{X,W} Y$$

PERFORMANCE: look at condition for equality in CRB

$$(\nabla_a \ln f)^T = (Y - Xa)^T R^{-1} X$$

$$= \left(\frac{Y^T R^{-1} X [X^T R^{-1} X]^{-1} - a^T}{\hat{a}^T} \right) \frac{X^T R^{-1} X}{K_a}$$

Hence, When X is nonrandom and noise covariance R is known to be equal to the LS weighting matrix W^{-1}, we conclude

* the WLLS estimator \hat{a} is unbiased
* the WLLS estimator is efficient and therefore UMVUE
* recalling property 5 of CRB in Section 4.5.1, as K_a is not a function of a the estimator covariance is

$$\text{cov}_a(\hat{a}) = K_a^{-1} = [X^T R^{-1} X]^{-1} = \hat{R}^{-1} \frac{1}{n}$$

5.9 EXERCISES

5.1 Give a concrete example of two zero mean random variables X and Z for which the linear minimum mean square error estimator of X given Z is equal to 0. Give another concrete example where the overall (linear or non-linear) minimum mean square error estimator is 0.

5.2 Here you explore how linear minimum MSE estimation principles can be applied to non-linear estimation. Given an observed random variable X define the vector of monomials in X (also called a Vandermonde vector):

$$Y = [1, X, X^2, \ldots, X^m]^T,$$
where \(m \geq 1 \) is a positive integer. A non-linear polynomial estimator of another random variable \(\theta \) is simply a linear combination of the elements of \(Y \):

\[
\hat{\theta} = h^T Y,
\]

where \(h = [h_0, \ldots, h_m]^T \) is a set of estimation coefficients to be determined.

(a) Show that the choice of \(h \) that minimizes the MSE \(E[(\theta - \hat{\theta})^2] \) satisfies the system of equations

\[
M_Y h = m_Y \theta,
\]

where \(M_Y = E[YY^T] \) and \(m_Y \theta = E[Y \theta] \). Assuming \(M_Y \) is non-singular, show that the resulting minimum mean square error is \(\text{MSE}_{\text{min}} = E[\theta^2] - m_Y \theta^T M_Y^{-1} m_Y \theta \). Using the partitioned matrix inverse identity (2) find an expression for the difference between the minimum MSE attainable by an optimal linear estimator, i.e., \(\hat{\theta} \) in the special case \(m = 1 \), and that attainable by an optimal polynomial estimator (\(m > 1 \)).

(b) Assume that \(\theta \) and \(X \) are jointly Gaussian and zero mean. Using the results of (a), and the fact that the conditional mean estimator is a linear estimator for the jointly Gaussian case, derive the following identity on the moments of jointly Gaussian r.v.s

\[
E[X^k \theta] = \frac{E[X \theta]}{E[X^2]} E[X^k].
\]

(c) Let \(X = S^2 + W \) where \(S, W \) are jointly Gaussian and zero mean. Derive an expression for the optimal polynomial estimator of \(S \) for \(m = 3 \). Compare the performance of your estimator to that of the optimal linear estimator.

(d) Let \(X = \text{sgn}(S) + W \) where \(S, W \) are jointly Gaussian and zero mean. Derive an expression for the optimal polynomial estimator of \(\text{sgn}(S) \) for \(m = 3 \). Compare the performance of your estimator to that of the optimal linear estimator.

5.3 The least squares method can also be applied to multiple-response linear observation models of the form

\[
y_{1k} + \alpha_1 y_{2k} + \ldots + \alpha_{p-1} y_{pk} = \beta_1 x_{1k} + \ldots + \beta_q x_{qk} + v_k, \quad k = 1, \ldots, n
\]

where \(\{y_{1k}, \ldots, y_{pk}\}_k \) are \(n \) different observed waveforms (responses) and the \(\alpha_i \) and \(\beta_i \) coefficients are to be determined by minimizing the least squares criterion

\[
\text{SSE}(\alpha, \beta) = \sum_{k=1}^{n} (y_k + \alpha_1 y_{2k} + \ldots + \alpha_{p-1} y_{pk} - \beta_1 x_{1k} - \ldots - \beta_q x_{qk})^2
\]

(a) Show that the above observation model is equivalent to the vector model

\[
Y[1, \alpha]^T = X\beta + v
\]

where \(Y \) and \(X \) are \(n \times p \) and \(n \times q \) matrices, respectively, \(v \) is a \(n \times 1 \) vector of residuals \(v_k, \alpha = [\alpha_1, \ldots, \alpha_{p-1}]^T \) and \(\beta = [\beta_1, \ldots, \beta_q]^T \).

(b) Assuming that \(X \) has linearly independent columns (full rank) find the least squares estimates \(\hat{\beta} \) and \(\hat{\alpha} \) and the resulting minimum SSE. (Hint: first minimize over \(\beta \) then over \(\alpha \))

(c) Assume that the vector \(v = [1, \alpha]^T \) is constrained to have length \(||v|| = c \), where \(c \geq 1 \) is a specified constant. Derive an explicit form for the LS estimators. (Hint: Rayleigh theorem (Ch. 2 or [8]) on minimizing quadratic forms).
(d) The “sensor selection problem” is the following. Fix p' and consider choosing the subset of p' response waveforms $\{y_{i_1,k}\}_{k=1}^n, \ldots, \{y_{i_{p'},k}\}_{k=1}^n$, $i_1, \ldots, i_{p'}$ distinct integers in $1, \ldots, p$, out of the p responses which provide the best fit, i.e. minimize the residuals. Show that the algorithm for solving this sensor selection problem requires solving $n!/(p!(n-p'))!$ separate least squares problems.

(e) The optimal sensor selection algorithm which you obtained in the previous part of this exercise is of high computational complexity, in the worst case it requires solving approximately np' least squares problems. Comment on how the solutions to parts (b) or (c) of this exercise could be used to approximate the optimal solution.

5.4 Let the observation have the standard linear model $y_k = x_k^T \hat{a} + v_k$, $k = 1, \ldots, n$. We saw in this chapter that when y_k and x_k are known and v_k is Gaussian the MLE of \hat{a} is equivalent to the WLSE with weight matrix equal to the covariance matrix of the vector $\bar{v} = [v_1, \ldots, v_n]^T$. In many applications there exist outliers, i.e. a small number of unusually large residual errors v_k, and the Gaussian assumption is not appropriate. Here we treat the case of heavy-tailed distributions of v_k which leads to an estimate of \hat{a} which is more robust to outliers.

(a) Assume that v_k are i.i.d. r.v.s with marginal density $f_v(v)$. Show that the MLE of \hat{a} is

$$\hat{a} = \arg\min_a \left\{ \sum_{k=1}^n \log f_v(y_k - x_k^T \hat{a}) \right\}$$

(b) Assuming f_v is a smooth function, derive the CR bound on unbiased estimators of \hat{a}. Under what conditions is the bound attainable?

(c) Show that for Laplacian noise with $f_v(v) = \frac{\beta}{2} \exp(-\beta|v|)$, $\beta \geq 0$, the MLE reduces to the minimizer of the sum of the absolute errors $|y_k - x_k^T \hat{a}|$.

(d) Consider the noise density $f_v(v) = c(\alpha, b) \exp(-v^2/(\alpha^2 + v^2))$, $v \in [-b, b]$, b and α fixed known parameters and c a normalizing constant. Show that the MLE \hat{a} can be interpreted as a non-linearly weighted LSE in the sense that it satisfies the “orthogonality condition”

$$\sum_{k=1}^n \lambda_k(\hat{a})(y_k - x_k^T \hat{a})x_k = 0$$

where

$$\lambda_k(\hat{a}) = \frac{1}{\alpha^2 + (y_k - x_k^T \hat{a})^2}$$

(e) The solution to the non-linearly weighted LSE above can be approximated using an “iterative reweighted least squares” technique which consists of approximating the above “orthogonality condition” by implementing the following procedure

i. Initialize $\hat{a}_0 = \hat{a}$ equal to the standard unweighted LS estimate $\hat{a} = [X^TX]X^Ty$.

ii. Repeat until convergence:

$$\hat{a}_{i+1} = [X^TW_iX]^{-1}X^TW_iy, i = 1, 2, \ldots$$

where W_i is a diagonal weight matrix with diagonal entries $\lambda_1(\hat{a}_i), \ldots, \lambda_n(\hat{a}_i)$.

Implement this algorithm in MATLAB and study its convergence for various values of α, b.
5.5 In many applications involving fitting a model to a set of input and output measurements \(X (n \times p)\) and \(y (n \times 1)\), not only are the output measurements noisy but the input measurements may also be noisy. In this case the method of Total Least Squares (TLS) [8] is applicable. One formulation of TLS is to model the measurements by

\[
y_k = (x_k + \epsilon_k)^T a + v_k, \quad k = 1, \ldots, n
\]

where \(v_k\) is a zero mean white Gaussian noise with variance \(\sigma_v^2\) and \(\epsilon_k\) is an i.i.d. sequence of zero mean Gaussian \(p \times 1\) random vectors with diagonal covariance matrix \(\sigma_v^2 I_p\).

(a) Find the likelihood equation which must be satisfied by the MLE of \(a\) when \(\sigma_v\) and \(\sigma_\epsilon\) are known. To what does your equation reduce when \(\sigma_\epsilon^2\) dominates \(\sigma_v^2\)? What is the ML estimator for \(a\) in this case?

(b) Show that the MLE of \(a\) is identical to the standard LS estimator for unknown \(\sigma_v\).

(c) Find the Fisher information and the CR bound on unbiased estimator covariance for the case of known \(\sigma_v\) and \(\sigma_\epsilon\). Repeat for the case of unknown \(\sigma_\epsilon\). For which of these cases, if any, is the CR bound achievable?

5.6 It is desired to find the linear least sum of squares (LLSS) fit of a complex valued vector \(a\) to the model

\[
y_k = x_k^T a + v_k, \quad k = 1, \ldots, n
\]

where \(y_k\) and \(x_k = [x_{k1}, \ldots, x_{kp}]^T\) are observed. Defining the vector space \(\mathcal{H}\) of complex valued \(n\)-dimensional vectors with norm \(<y, z> = y^H z\) (“\(H\)” denotes complex conjugate transpose) and vector \(y = [y_1, \ldots, y_n]^T\) and matrix \(X = [x_1, \ldots, x_n]^T\) (analogously to the case studied in sec. 5.6 of notes). Assume that \(X\) is full rank. Using the projection theorem show that the solution to the LLSE problem \(\min_a \|y - Xa\|^2\) is of the form

\[
\hat{a} = [X^H X]^{-1} X^H y
\]

with minimum LLSS residual error squared

\[
\|y - X\hat{a}\|^2 = y^H [I - X[X^H X]^{-1} X^H] y.
\]

5.7 This problem applies the solution to the previous exercise. Let the complex observations be given as \(X = \{X(0), \ldots, X(N-1)\}\). Hypothesize that \(X(k)\) is a damped sinusoid in additive noise:

\[
X(k) = a e^{-\alpha k} e^{j2\pi f_0 k} + Z(k), \quad k \geq 0,
\]

where \(a \in \mathcal{C}\) is an unknown complex scale factor, \(\alpha \geq 0\) is an unknown decay constant, and \(f_0 \in [0, \frac{1}{2}]\) is an unknown frequency.

(a) For known \(\alpha\) and \(f_0\) show that the least-squares estimator of \(a\) which minimizes the sum of the squared residuals \(SSE(a) = \sum_{k=0}^{N-1} |X(k) - a e^{-\alpha k} e^{j2\pi f_0 k}|^2\) over \(a\) has the form (large \(N\)):

\[
\hat{a} = \mathcal{X}(z_0) (1 - e^{-2\alpha}),
\]

where \(\mathcal{X}(z_0) = \sum_{k=0}^{N-1} X(k) z_0^{-k}\) is the Z-transform of \(X\) evaluated at the point \(z = z_0 = e^{\alpha+j2\pi f_0}\) outside the unit circle. Note that for \(\alpha = 0\) this is just the DFT of \(X(k)\).
(b) Now for known α but unknown a show that the (non-linear) least-squares estimator for f_0 which minimizes the sum of the squared residuals $SSE(\hat{a}) = \sum_{k=0}^{N-1} |X(k) - \hat{a}e^{-\alpha k}\hat{e}^{2\pi f_0 k}|^2$ over f_0 is obtained by maximizing the Z-transform of X over the radius e^α circle $|z| = e^\alpha$:

$$\hat{f}_0 = \arg\max_{f_0} |X(z_0)|^2,$$

and:

$$\hat{a} = \mathcal{X}(e^{\alpha+j2\pi f_0}) (1 - e^{-2\alpha}).$$

Note that \hat{f}_0 reduces to the location of the highest peak in the magnitude “frequency spectrum” $S(f) = |\mathcal{X}(e^{2\pi f})|$ of $X(k)$ when α is known to be equal to 0.

(c) Finally for unknown a, α, f_0 show that the non-linear least-squares estimator of a, f_0 is obtained by maximizing the scaled Z-transform of X over the exterior of the unit disk:

$$\hat{f}_0, \hat{a} = \arg\max_{f_0, \alpha \geq 0} |X(z_0)|^2 (1 - e^{-2\alpha}),$$

and:

$$\hat{a} = \mathcal{X}(e^{\hat{a}+j2\pi f_0}) (1 - e^{-2\hat{a}}).$$

5.8 It is desired to fit the coefficients α and β to the linear model for the measurements $y_k = \alpha + \beta k + v_k, k = 1, \ldots, N$, where v_k is the model error residual to be minimized by suitable choice of α, β. Find the linear least squares estimator for these coefficients (you can leave your solution in the form of a pair of simultaneous equations if you wish).

5.9 It is hypothesized that the relation between a pair of measured variables y_k and x_k is non-linear. A reasonable model for this is

$$y_k = a_0 + a_1 x_k + \ldots + a_p x^p + v_k, \ k = 1, \ldots, n$$

(a) For a single sample ($n = 1$) find the set of coefficients a_0, \ldots, a_p which minimizes the mean squared error $E[(y_k - [a_0 + a_1 x_k + \ldots + a_p x^p])^2]$ under the assumption that y_k and x_k are r.v.’s with known moments $E[y_k x^l], l = 0, \ldots, p$, and $E[x_k^2], l = 0, \ldots, 2p$.

(b) Repeat part (a) for the non-statistical least squares estimation error criterion for n samples $\sum_{k=1}^{n} (y_k - [a_0 + a_1 x_k + \ldots + a_p x^p])^2$.

(c) Show that the two estimators found in (a) and (b) become equivalent as $n \to \infty$.

5.10 A sequence of observations $y_k, k = 1, \ldots, N$ is to be modeled as the sum of two sinusoids

$$y_k = A \cos(\omega_o k) + B \sin(\omega_o k) + v_k$$

where v_k is an error residual, ω is known, and A, B are to be determined.

(a) Derive the linear least squares estimators of A, B. Express your result in terms of the real and imaginary parts of the DFT $\mathcal{Y}(\omega) = \sum_{k=1}^{N} y_k e^{-j\omega k}$ of y_k. You may assume that $\sum_{k=1}^{N} \cos(2\omega_o k) = \sum_{k=1}^{N} \sin(2\omega_o k) = 0$.

(b) Now assume that A and B are uncorrelated r.v.s with mean μ_A and μ_B and variance σ^2 and that v_k is zero mean white noise of unit variance uncorrelated with A, B. Derive the affine minimum mean square error estimator of A, B given $y_k, k = 1, \ldots, N$.

(c) Express the result of (b) in terms of the real and imaginary parts of the DFT $\mathcal{Y}(\omega) = \sum_{j=1}^{N} y_k e^{-j\omega k}$ of y_k and compare to the result of part (a).
In this problem you will explore least squares deconvolution. Available for measurement are the noisy outputs $Y_k, k = 1, \ldots, n,$ of a known LTI filter (channel), with known finite impulse response $\{h_k\}_{k=0}^p$ and having an unknown input $\{X_k\},$ and measured in additive noise $\{W_k\}$

$$Y_k = \sum_{i=0}^p h_i X_{k-i} + W_k, \quad k = 1, \ldots, n$$

The objective is to deconvolve the measurements using the known channel $\{h_k\}$ to recover the input $\{X_k\}.$ Assume that $X_k = 0$ for $k \leq 0.$

(a) Show that the above measurement equation can be put in the form

$$Y = HX + W,$$

where H is a matrix of impulse responses of the FIR filter. Identify the entries of the vectors X, W and the matrix $H.$

(b) Assuming that H has linearly independent columns (full rank) find the linear least squares estimate \hat{X} which minimizes the sum of squared errors $\sum_{k=1}^n (Y_k - h_k * X_k)^2$ (" * " denotes convolution). Give a relation on p, n or $\{h_i\}$ to ensure that H has full rank.

(c) In some cases estimation errors in the recent past are more important than errors in the more distant past. Comment on how you would incorporate this into a weighted linear least squares criterion and find the criterion-minimizing linear estimator $\hat{X}.$

(d) A simple model for imprecise knowledge of the channel is

$$Y = (H + zI)X + W$$

where z is a zero mean Gaussian random variable with variance $\sigma^2.$ Assuming that W is zero mean Gaussian random vector with identity covariance (I) find the likelihood function for $\theta \overset{\text{def}}{=} X$ based on the observation $Y.$ Show that the ML estimator reduces to the linear least squares estimate of part (b) when $\sigma^2 \to 0.$
6 OPTIMAL LINEAR FILTERING AND PREDICTION

In this chapter we turn to estimation for random process measurements. We will cover the following topics.

* Wiener-Hopf Equations of min MSE filtering for w.s.s. processes
* Non-causal filtering, estimation, and prediction
* Causal linear time invariant (LTI) prewhitening: spectral factorization
* Causal LTI prediction: the Wiener filter
* Causal linear time varying (LTV) prewhitening: the innovations filter
* Causal (LTV) prediction: the Kalman-Bucy filter

A word about notation is in order here. Up to now in this text we have used upper case letters for random variables reserving lower case for their realizations. However, it is customary to drop the upper case for random processes and we will do so in this chapter putting the reader at small risk of confusion between realizations, i.e. waveforms, and random processes. Fortunately, second order statistical treatments like that covered here incur fewer accidents due to this kind of abuse of notation.

REFERENCES
Kailath [19]
Haykin [12]
Thomas [42]

6.1 WIENER-HOPF EQUATIONS OF OPTIMAL FILTERING

Two zero mean w.s.s. discrete time random processes \(x \) and \(g \) are of interest to us:

\[
\begin{align*}
x &= \{x_k : k \in \mathcal{I} \} : \text{observed over an index set } \mathcal{I} \\
g &= \{g_k : -\infty < k < \infty \} : \text{unobserved and to be estimated from } x
\end{align*}
\]

Objective: estimate a time sample of \(g \), e.g. \(g_i \), by a linear function of the waveform \(x \). Note that \(g_k \) plays the role of a random parameter, which we denoted \(\theta_k \) in previous chapters.

\[
\hat{g}_k = \sum_{j \in \mathcal{I}} h(k, j)x_j
\]

such that we achieve minimum MSE

\[
\text{MSE}(\hat{g}_k) = E[|g_k - \hat{g}_k|^2]
\]

Solution: by orthogonality condition

\[
E[(g_k - \hat{g}_k)u_i^*] = 0, \quad i \in \mathcal{I}
\]

for any basis set \(\{u_i\} \) spanning \(\text{span}\{x_i : i \in \mathcal{I}\} \).

Basis \(u_i = x_i, \; i \in \mathcal{I}, \) will suffice here.
Obtain Wiener-Hopf (WH) equation for optimal filter $h(k, j)$ from orthogonality condition

$$0 = E[(g_k - \hat{g}_k)x_i^*]$$

$$= E[g_k x_i^*] - \sum_{j \in I} h(k, j)E[x_j x_i^*]$$

$$= r_{gx}(k-i) - \sum_{j \in I} h(k, j)r_x(j-i), \quad i \in I$$

When I is finite this is equivalent to a matrix equation which can be solved as in previous section.

Two cases of interest here:

Case I: $I = \{-\infty, \ldots, \infty\}$: non-causal estimation (smoothing)

Case II: $I = \{-\infty, \ldots, k\}$: Causal estimation (filtering)

6.2 NON-CAUSAL ESTIMATION

For $I = \{-\infty, \ldots, \infty\}$ WH equation becomes

$$r_{gx}(k-i) - \sum_{j=-\infty}^{\infty} h(k, j)r_x(j-i) = 0, \quad -\infty < i < \infty$$

Fact: solution $h(k, j)$ is LTI filter $h(k-j)$ (Exercise in this chapter).

Take double-sided Z-transform to obtain:
\[P_{g x}(z) - H(z)P_x(z) = 0 \]

or optimum filter has frequency domain transfer function
\[H(e^{j\omega}) = \frac{P_{g x}(e^{j\omega})}{P_x(e^{j\omega})} \]

By invoking the orthogonality condition the minimum MSE can be expressed as follows
\[
\text{MSE}_{\text{min}} = E[(g_k - h_k \ast x_k)g_k^*] = r_g(0) - h_k \ast r_{xg}(k)|_{k=0}
\]

Or in frequency domain (recall notation \(P(\omega) \) for \(P(e^{j\omega}) \))
\[
\text{MSE}_{\text{min}} = \int_{-\pi}^{\pi} [P_g(\omega) - H(\omega)P_{xg}(\omega)] \, d\omega = \int_{-\pi}^{\pi} \left[P_g(\omega) - \frac{P_{g x}(\omega)P_{xg}(\omega)}{P_x(\omega)} \right] \, d\omega \quad (51)
\]

Example 27 *Wide sense stationary signal in additive noise*

Measurement model
\[x_i = s_i + w_i, \quad -\infty < i < \infty \]

* \(s, w \) are uncorrelated w.s.s. random processes
* \(g_k = s_k \) to be estimated

Obtain min MSE filter for estimation of \(s_k \) and its min MSE
\[
H = \frac{P_s}{P_s + P_w} = \begin{cases}
1, & P_s/P_w \gg 1 \\
0, & P_s/P_w \ll 1
\end{cases}
\]

\[
\text{MSE}_{\text{min}} = \int_{-\pi}^{\pi} \frac{P_sP_w}{P_s + P_w} \, d\omega = \begin{cases}
0, & P_s/P_w \gg 1 \\
\text{var}(s_k), & P_s/P_w \ll 1
\end{cases}
\]

Problem: \(H(\omega) \) is non-negative real so that \(h_k \) is symmetric impulse response. This implies that \(\hat{s}_k = \sum_{j=-\infty}^{\infty} h(j)x_{k-j} \) depends on future measurements (non-causal)!
Figure 47: Min MSE filter for estimating w.s.s. signal in noise has symmetric impulse response.

6.3 CAUSAL ESTIMATION

Objective: find linear min MSE estimate of g_k based only on past measurements

$$\hat{g}_k = \sum_{j=-\infty}^{k} h(k-j)x_j$$

where h satisfies Wiener-Hopf equations

$$0 = r_{gx}(k-i) - \sum_{j=-\infty}^{k} h(k-j)r_x(j-i), \quad -\infty < i \leq k$$ \hspace{1cm} (52)

Let’s explicitly constrain filter h_j to be causal: $h(j) = 0, j < 0$. Then we have after change of variable (see homework exercises)

$$0 = r_{gx}(l) - \sum_{j=-\infty}^{\infty} h(l-j)r_x(j), \quad l \geq 0$$ \hspace{1cm} (53)

Difficulty: cannot just take z-transform as we did before due to restriction on l. Indeed the equation (53) does not specify the value of the difference on the LHS for negative values of l; these values can be arbitrary as long as RHS = 0 for $l \geq 0$.
6.3.1 SPECIAL CASE OF WHITE NOISE MEASUREMENTS

One case where solution to WH is simple: $x_i = w_i = \text{white noise of unit variance:}$

$$r_w(k) = \delta_k = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

Wiener-Hopf Eqn becomes

$$r_{gw}(l) - \sum_{j=-\infty}^{\infty} h(l-j)r_w(j) = r_{gw}(l) - h(l), \quad l \geq 0$$

Hence we can specify optimal causal filter as

$$h(k) = \begin{cases} r_{gw}(k), & k \geq 0 \\ 0, & \text{o.w.} \end{cases}$$

Or in z-transform domain:

$$H(z) = \{\mathcal{P}_{gw}(z)\}_+$$

(54)

where we have defined truncated z-transform of a time function $b(k)$ with z-transform $B(z)$

$$\{B(z)\}_+ \overset{\text{def}}{=} \sum_{k=0}^{\infty} b(k)z^{-k}$$

Figure 48: Truncated z-transform of a function b_k.
6.3.2 GENERAL CASE OF NON-WHITE MEASUREMENTS

Our derivation of the Wiener filter is based on the approach of Bode and Shannon [4]. The main idea behind this derivation is the following. If we could “prewhiten” x with a filter h_w then we could follow with optimal filter of form (54). This suggests a “prewhitening approach” to solving general problem. However, not just any old whitening filter will do. In keeping with the original objective of causal linear minimum mean square error estimation we the prewhitening filter must itself be causal and, to ensure that we lose no information about $\{x_i\}_{i=-\infty}^k$, it must be causally invertible, i.e. we must be able to recover past values of the input $\{x_i\}_{i=-\infty}^k$ from past values of the output.

Figure 49: Solution of the causal estimation problem by a cascade of a prewhitening filter h_w and an optimal wiener filter \tilde{h} for white noise.

Thus the optimal filter \tilde{H} for whitened measurements is specified by

$$\tilde{H}(z) = \{P_{gw}(z)\}_+$$

$$= \{P_{gx}(z)H_w(z^{-1})\}_+$$

The filter H_w must satisfy conditions

1. h_w whitens the input process

$$P_w(z) = H_w(z)H_w(z^{-1})P_x(z) = 1$$

2. h_w is causal

3. h_w is causally invertible

Definition: A filter (discrete time) h_w with transfer function $H_w(z)$ is causal and causally invertible iff $H_w(z)$ and $1/H_w(z)$ have no singularities outside the unit circle, i.e.,
and similarly,
\[\frac{1}{|H_w(z)|} < \infty, \quad |z| > 1 \]

Figure 50: The cascade of causal filters \(H_w \) and \(\frac{1}{H_w} \) is causal and all pass thus implying that \(\{w_i\}_{i=-\infty}^k \) contains same information as \(\{x_i\}_{i=-\infty}^k \), i.e. \(w_i \) is white sufficient statistic.

6.4 CAUSAL PREWHITENING VIA SPECTRAL FACTORIZATION

Assume \(x_k \) is w.s.s. with

* \(r_x(k) \) positive definite and summable \(\left(\sum_{k=-\infty}^{\infty} |r_x(k)| < \infty \right) \)

* rational PSD

\[
\mathcal{P}_x(z) = \sum_k r_x(k) z^{-k} = \frac{b(z)}{a(z)}
\]

where

\(r_x(k) = E[x_i x_{i-k}] \) is acf of \(x \)
\(b(z) = b_q z^q + \cdots + b_1 z + b_0 \)
\(a(z) = a_p z^p + \cdots + a_1 z + a_0 \)

For \(h_w \) to satisfy whitening condition require

\[
H_w(z)H_w(z^{-1}) = \frac{1}{\mathcal{P}_x(z)}
\]
Next we deal with causality conditions

Any rational PSD can be factored into the form of a ratio of factors of simple first order polynomials

\[P_x(z) = c \frac{\prod_{i=1}^{q}(1 - z/z_{oi})(1 - zz_{oi})}{\prod_{i=1}^{p}(1 - z/z_{pi})(1 - zz_{pi})}, \]

where \(c \) is a real constant and \(z_{oi}, z_{pi} \) are zeros and poles of \(P_x(z) \).

This factorization implies the following important properties of rational PSDs

- \(P_x(z^{-1}) = P_x(z) \) \quad (symmetric \(r_k \))
- \(P_x(z^*) = P_x^*(z) \) \quad (real \(r_k \))
- \(P_x(z) \to \) no poles on unit circle \quad (bounded \(r_k \))
- \(P_x(z) \to \) zeros on unit circle occur in pairs \quad (p.d. \(r_k \))

These conditions imply that there exist positive square root factors \(P_x^+(z) \) and \(P_x^-(z) \) which satisfy:

\[P_x(z) = P_x^+(z)P_x^-(z), \]
\[P_x^+(z^{-1}) = P_x^-(z). \]

and

- \(P_x^+(z) \) has all poles and zeros inside unit circle
- \(P_x^-(z) \) has all poles and zeros outside unit circle

Therefore, conclude that the assignment
\[H_w(z) = \frac{1}{\mathcal{P}_x^+(z)} \]

satisfies whitening condition (55) and \(H(z) \), \(1/H(z) \) have all their poles inside unit circle.

Can identify \(1/H_w(z) \) causal synthesis filter for measurement process \(x_k \)

\[x_k = h_w^{-1}(k) \ast w_k \]

where \(h_w^{-1}(k) \) is the inverse Z-transform of \(1/H_w(z) = \mathcal{P}_x^+(z) \).

This can be useful for simulation of \(x_k \) with arbitrary rational PSD from pseudo-random white noise samples \(w_k \).

\[w(k) \xrightarrow{1/H_w} x(k) \]

Figure 52: A representation of \(x_k \) with PSD \(\mathcal{P}_x \) as output of LTI causal filter \(H_w(z) = \mathcal{P}_x^+ \) driven by white noise.

6.5 CAUSAL WIENER FILTERING

Putting \(H_w \) and \(\tilde{H} \) together we obtain formula for the causal Weiner filter

\[
H(z) = H_w(z) \tilde{H}(z) = \frac{1}{\mathcal{P}_x^+(z)} \left\{ \mathcal{P}_{gx}(z) H_w(z^{-1}) \right\}_+ \\
= \frac{1}{\mathcal{P}_x^+(z)} \left\{ \mathcal{P}_{gx}(z) \over \mathcal{P}_x(z) \right\}_+ . \tag{56}
\]

A time-domain expression for the minimum mean squared error \(\text{MSE}_{\text{min}} = E[(g_k - \hat{g}_k)^2] \) attained by the causal Wiener filter can simply be derived using the orthogonality condition

\[
\text{MSE}_{\text{min}} = r_g(0) - \sum_{k=0}^{\infty} h(k)r_{gx(-k)}, \tag{57}
\]
where \(h(k) \) is the inverse Z-transform of \(H(z) \) in (56). Unlike the case of non-causal estimation (recall expression (51) there is no simple frequency-domain representation for \(\text{MSE}_{\text{min}} \).

Example 28 Causal prewhitening an AR(1) noise process

\[
x(k) = -ax(k-1) + u(k), \quad (-1 < a < 1)
\]

where \(u(k) \) is white noise with variance 1.

Figure 53: Synthesis filter of AR(1) process is a single pole IIR.

First find PSD.

\[
\mathcal{P}_x(z) = \frac{1}{1 + az^{-1}} \quad \mathcal{P}_u(z) = \frac{1}{1 + az^{-1}} \quad r_x(k) = \frac{a^k}{1 - a^2}
\]

The causal prewhitening filter is FIR

\[
H_w(z) = 1 + az^{-1} \iff h_w(k) = \delta(k) + a\delta(k - 1)
\]

Can be implemented even without access to infinite past

Example (ctd.) Prediction of an AR(1) from noiseless observations

Now we let \(g_k = x_{k+\alpha} \) where \(\alpha \) is a positive integer. When \(\alpha > 0 \) this is a prediction problem. In light of the fact that we have just found the prewhitening filter, it remains to find the quantity

\[
\left\{ \frac{\mathcal{P}_{gx}(z)}{\mathcal{P}_x(z)} \right\}_+
\]

to specify the Wiener filter-predictor (56).
Figure 54: Auto-correlation function of AR(1) process with AR coefficient α is slowly decaying double sided exponential for $-1 \ll \alpha \leq 0$. (figure k-axis label should be $-1/\ln|\alpha|$).

Figure 55: Causal prewhitening filter for AR(1) process with AR coefficient α is a single tap FIR filter.
As \(r_{gx}(k) = E[x_{i+\alpha}x_{i-k}] = r_x(k + \alpha) \): \(P_{gx}(z) = z^\alpha P_x(z) \). Hence

\[
\left\{ \frac{P_{gx}(z)}{P_x(z)} \right\}_+ = \left\{ z^\alpha P_x^+(z) \right\}_+ = \left\{ z^\alpha/(1 + az^{-1}) \right\}_+
\]

Now, using the identity (77) derived in the exercises, we see that

\[
\left\{ z^\alpha/(1 + az^{-1}) \right\}_+ = (-a)^\alpha/(1 + az^{-1})
\]

Hence, the Wiener filter-predictor is simply

\[
H(z) = \frac{1}{P_x^+(z)} \left(\frac{(-a)^\alpha}{1 + az^{-1}} \right) = (-a)^\alpha
\]

which in the time domain gives the optimal predictor as \(\hat{x}_{k+\alpha} = (-a)^\alpha x_k \). This just corresponds to scaling the most recent observation and is consistent with \(x_k \) being a 1st order Markov sequence so that, for predicting the future, past information is not useful given present information.

Example 29 *Causally prewhitening an AR(1) plus white noise process*

\[x(k) = v_{AR(1)}(k) + V(k) \]

where

* \(v_{AR(1)}(k) \) is AR(1) with \(a = -0.8 \)
* \(V(k) \) is white noise of variance 1/0.36
* \(v_{AR(1)}(k) \) and \(V(k) \) are uncorrelated

Using result (76) derived in the Exercises, find PSD as a rational function with double pole and double zero

\[
P_x(z) = \frac{1}{(1 - 0.8z^{-1})} \frac{1}{(1 - 0.8z)} + 1/0.36
\]

\[
= \frac{d(1 + bz^{-1})}{(1 + az^{-1})} \frac{d(1 + bz)}{(1 + az)}
\]

\[
\frac{P_x^+(z)}{P_x(z)}
\]

where \(a = -0.8, b = -0.5 \) and \(d = 1/\sqrt{0.225} \).

Unlike previous example, the causal prewhitening filter \(h_w(k) \) is now IIR

\[
H_w(z) = 1/d \left(\frac{1 + az^{-1}}{1 + bz^{-1}} \right)
\]

and thus prewhitening cannot be implemented without access to infinite past.
Note that the synthesis filter $1/H_w(z)$ can be applied to white noise w_k to obtain recursion for x_k with both an autoregressive (AR) component (LHS) and a moving average (MA) component (RHS):

$$x_k + ax_{k-1} = b_1 w_k + b_2 w_{k-1}$$

where $b_1 = d$ and $b_2 = db$. Random processes x_k that satisfy the recursion above are “ARMA(1,1)” process.

Example (ctd.) Prediction of AR(1) from noisy observations

Similarly to the previous example we let $\hat{g}(k) = v_{AR(1)}(k+\alpha)$ where α is a non-negative integer. As the measurement noise $u(k)$ and the AR(1) process $v_{AR(1)}(k)$ are uncorrelated $P_{gx}(z) = P_{gv}(z) = z^\alpha P_v(z)$ where $P_v(z)$ is the PSD of $v_{AR(1)}$ and $P_{gv}(z)$ is the cross spectral density of g and $v_{AR(1)}$. Therefore, after substitution of the expression for P_{-x} obtained above,

$$\left\{ \frac{P_{gx}(z)}{P_{-x}(z)} \right\}_+ = \frac{1}{d} \left\{ z^\alpha \frac{1}{1 + bz} \frac{1}{1 + az^{-1}} \right\}_+$$

Before proceeding further, we will need to express the product of two ratios in $\{\cdot\}_+$ as a sum of two ratios in order to apply the identities (77) and (78). To do this, observe

$$\frac{1}{1 + bz} \frac{1}{1 + az^{-1}} = \frac{z^{-1}}{b + z^{-1}} \frac{1}{1 + az^{-1}} = \frac{A}{b + z^{-1}} + \frac{B}{1 + az^{-1}}$$

where A and B are to be determined. Comparing the LHS of the top line to the bottom line of this last equation it is obvious that

$$A = \lim_{z^{-1} \to -b} \frac{z^{-1}}{1 + az^{-1}} = -b/(1 - ab)$$

$$B = \lim_{z^{-1} \to -1/a} \frac{z^{-1}}{b + z^{-1}} = 1/(1 - ab)$$

Thus we have from (58)

$$\left\{ \frac{P_{gx}(z)}{P_{-x}(z)} \right\}_+ = \frac{1}{d(1 - ab)} \left\{ \frac{z^\alpha}{1 + az^{-1}} - \frac{z^{\alpha+1}b}{1 + bz} \right\}_+$$

$$= \frac{1}{d(1 - ab)} \frac{(-a)^\alpha}{1 + az^{-1}}$$

where we have used the identity (78) which shows that only the first additive term in $\{\cdot\}_+$ survives (the second term corresponds to an anticausal component).

Hence, using (56) the Wiener filter-predictor is simply

$$H(z) = \frac{q}{1 + bz^{-1}}$$

where $q = \frac{(-a)^\alpha}{d^2(1 - ab)}$, which can be implemented in the time domain as the single pole IIR filter recursion

$$\hat{g}(k) = -b\hat{g}(k - 1) + qx_k.$$
with \(\hat{g}(k) = \hat{v}_{AR(1)}(k + \alpha) \). It can be readily verified that in the limit as the measurement noise \(\text{var}(u(k)) \) goes to zero, \(b \to 0 \), \(d^2 \to 1 \), and \(q \to -(a)^\alpha \) so that this IIR predictor filter reduces to the simple Wiener predictor filter of the previous example having no measurement noise.

Derivation of the MSE of the Wiener filter is left as an exercise for the reader.

6.6 CAUSAL FINITE MEMORY TIME VARYING ESTIMATION

The Wiener filter is limited to the cases where the processes \(g_k \) and \(x_k \) are jointly w.s.s. and the estimating filter is LTI, i.e. access to infinite past is available. In practice, however, this is not the case and we will need to handle the situation for which

1. \(g_k, x_k \) may not be jointly w.s.s.
2. estimator filter is turned on at time \(k = 0 \) with initial conditions (finite memory) and is not LTI.

Objective: find linear min MSE estimate of \(g_k \) based only on finite past+present measurements

\[
\hat{g}_k = \sum_{j=0}^{k} h(k, j) x_j \tag{59}
\]

We know that optimal \(h \) satisfies the \(k \times k \) system of Wiener-Hopf equations.

\[
0 = r_{gx}(k, i) - \sum_{j=0}^{k} h(k, j) r_x(j, i), \quad 0 \leq i \leq k
\]

Or, since summation is over finite number of indices we can express this in the familiar matrix form

\[
h_k = R_x^{-1} r_{gx}
\]

where \(h_k = [h(k, k), h(k, k - 1), \ldots, h(k, 1)]^T \), \(R_x \) is the \((k + 1) \times (k + 1)\) covariance matrix of the first \(k \) measurements, and \(r_{gx} \) is the \((k + 1)\)-element vector of cross correlations between \(g \) and \(x(0), \ldots, x(k) \).

Difficulty: standard matrix inverse approach has growing memory and computation as \(k \) increases: not suitable for real time implementation.

6.6.1 SPECIAL CASE OF UNCORRELATED MEASUREMENTS

As before we first convert to a case where solution to WH is simple:

\(x_i = \eta_i = \text{non-stationary white noise} \)

\[
r_\eta(j, i) = \sigma_\eta^2(i) \delta_{j-i}
\]

Solution to WH equation is now immediate
\[0 = r_{g\eta}(k, i) - \sum_{j=0}^{k} h(k, j)r_{\eta}(j, i) = r_{g\eta}(k, i) - h(k, i)\sigma_{\eta}^2(i), \quad 0 \leq i \leq k \]

and gives optimal filter as a projection coefficient associated with projecting \(g_k \) onto the \(i \)-th noise component \(\eta_i \):

\[
h(k, i) = \frac{< g_k, \eta_i >}{< \eta_i, \eta_i >} = \frac{r_{g\eta}(k, i)}{\sigma_{\eta}^2(i)}, \quad 0 \leq i \leq k
\]

6.6.2 Correlated Measurements: The Innovations Filter

Q. How to “prewhiten” \(x_k \)?

A. A time-varying “prewhitening filter” has to yield output variables \(\{\eta_i\} \) which are uncorrelated, which are causally and linearly generated from past of \(\{x_i\} \), and from which the past \(\{x_i\} \) can be recovered in a causal fashion.

This translates to the following required conditions on \(\eta_i \):

1. \(\text{cov}(\eta_i, \eta_j) = 0, \ i \neq j \)

2. \(\text{span}\{\eta_k, \eta_{k-1}, \ldots, \eta_0\} = \text{span}\{x_k, x_{k-1}, \ldots, x_0\}, \ k = 1, 2, \ldots \)

Recursive construction of \(\{\eta_i\} \):

Let \(\hat{x}_{k|k-1} \) be the optimal 1-step linear predictor of \(x_k \) given past \(\{x_{k-1}, \ldots, x_0\} \).
\[\hat{x}_{k|k-1} = \sum_{i=0}^{k-1} a_{k,i} \ x_i \]

Equivalently,

\[\hat{x}_{k|k-1} = \sum_{i=0}^{k-1} \alpha_{k,i} \ \eta_i \]

Recall orthogonality condition

\[E[(x_k - \hat{x}_{k|k-1})x_i] = 0, \quad i = 0, \ldots, k - 1 \]

Suggests following algorithm for \(\eta_i \)'s

\[
\begin{align*}
\eta_0 &= x_0 \\
\eta_1 &= x_1 - \hat{x}_{1|0} \\
&\vdotswithin{=} \\
\eta_k &= x_k - \hat{x}_{k|k-1}
\end{align*}
\]

or, more explicitly, in matrix form

\[
\begin{bmatrix}
\eta_0 \\
\vdots \\
\eta_k
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
-\alpha_{10} & \ddots & \ddots & 0 \\
& \ddots & \ddots & \ddots \\
& & -\alpha_{k,0} & \cdots & -\alpha_{k,k-1} & 1
\end{bmatrix}
\begin{bmatrix}
x_0 \\
\vdots \\
x_k
\end{bmatrix}
\]

\[\eta_k = A \ x_k \]

* \(\eta_i \) is the "innovations process"

* Rows of \(A \) specify causal invertible “innovations filter”

* Note: as \(A \) is invertible \(\{\eta_i\} \) is equivalent to \(\{x_i\} \).

6.6.3 INNOVATIONS AND CHOLESKY DECOMPOSITION

The innovations representation gives decomposition for covariance \(R_x \) of \(x \)

\[
R_x = E[x x^T] = E[A^{-1} \eta \eta^T A^{-T}]\]
Figure 57: The innovations filter produces equivalent uncorrelated measurement sequence η_i.

\[
\begin{align*}
A^{-1}E[\eta\eta^T]A^{-T} &= A^{-1}R_{\eta}A^{-T}
\end{align*}
\]

FORWARD CHOLESKY DECOMPOSITION

Any symmetric positive definite matrix B has a decomposition of the form

\[
B = L_f P_f L_f^T
\]

where

* P_f diagonal matrix of “forward prediction error variances”
* L_f is lower triangular matrix of “forward prediction coefficients”
* P_f and L_f are non-singular

BACKWARD CHOLESKY DECOMPOSITION

Any symmetric positive definite matrix B has a decomposition of the form

\[
B = L_b^T P_b L_b
\]

where

* P_b diagonal matrix of “backwards prediction error variances”
* L_b is lower triangular matrix of “backwards prediction coefficients”
* P_b and L_b are non-singular
6.7 TIME VARYING ESTIMATION/PREDICTION VIA THE KALMAN FILTER

Since $\text{span}\{\eta_i\}_{i=0}^k = \text{span}\{x_i\}_{i=0}^k$, the innovations are just another basis spanning the observations, which happens to be a orthogonal basis. Thus we have the equivalent representation for the optimal causal finite memory estimator (59) of g_k

$$\hat{g}_k = \hat{g}_{k|k} = \sum_{j=0}^{k} \tilde{h}(k, j)\eta_j$$

where \tilde{h} is the projection coefficient

$$\tilde{h}(k, j) = \frac{\langle g_k, \eta_j \rangle}{\eta_j \eta_j} = \frac{r_{g\eta}(k, j)}{\sigma^2_{\eta}(j)}$$

We can now write a “pseudo recursion” for $\hat{g}_{k|k}$

$$\hat{g}_{k|k} = \sum_{j=0}^{k-1} \tilde{h}(k, j)\eta_j + \tilde{h}(k, k)\eta_k$$

$$= \hat{g}_{k|k-1} + \tilde{h}(k, k)\eta_k \quad (60)$$

This is not a “true recursion” since we do not yet know how to compute the update $\tilde{h}(k-1, j) \rightarrow \tilde{h}(k, j)$ for the projection coefficient nor the update $\eta_{k-1} \rightarrow \eta_k$ of the innovations. To obtain a true recursion we will need to assume a dynamical model for x_k. The derivation will then proceed in two steps: first we will consider generating a recursion for the innovations, which will require developing the recursion $\hat{x}_{k|k-1} \rightarrow \hat{x}_{k+1|k}$; second we will specialize g_k to the case of signal prediction, $g_k = s_{k+1}$, and signal filtering, $g_k = s_k$, for the case that x_k satisfies the linear model $x_k = s_k + v_k$.

6.7.1 DYNAMICAL MODEL

Specifically, we will assume that x_k is given by the model

$$x_k = s_k + v_k$$

$$s_k = c_k^T \xi_k$$

$$\xi_{k+1} = A_{k+1,k} \xi_k + B_k w_k, \quad \xi_0 = \xi_o \quad (61)$$

where:

s_k is a (scalar) signal and v_k is a (scalar) measurement noise,

ξ_k is a p dimensional “state vector” (“internal state” of system generating $\{s_k\}$),

c_k is a p-element vector describing how the state affects the signal component s_k of the measurement x_k,

w_k is a state noise vector ($q \times 1$)

B_k is the state noise input matrix ($p \times q$)
\(\mathbf{A}_{k+1,k} \) is a state transition matrix \((p \times p)\) describing the signal dynamics which are due solely to
the initial condition \(\xi_0 \) (in the absence of driving noise \(w_k \)).

We make the following simplifying statistical assumptions:

State Model (SM) Assumptions A1-A4

A1 \(v_k \): uncorrelated sequence with zero mean and variance \(E[v_k^2] = \sigma_v^2(k) \)
A2 \(w_k \): uncorrelated sequence with zero mean and covariance matrix \(E[w_kw_k^T] = R_w(k) \) \((q \times q)\)
A3 \(\xi_0 \) has zero mean and covariance matrix \(E[\xi_0 \xi_0^T] = R_\xi(0) \) \((p \times p)\)
A4 \(v_k, \xi_0, w_j \) are mutually uncorrelated for all \(j, k \)

Figure 58: State space model for observation.

6.7.2 Kalman Recursions for Innovations and State Prediction

For convenience, here we summarize the results derived in the next subsection. Under the assumptions A1-A4 the innovations \(\eta_k \) from \(\{x_j\}_{j=0}^{k-1} \) can be recursively generated from the following **Kalman recursions for innovation**

Kalman Recursions for innovations and state prediction

First we have the **Measurement Update Equations**:

\[
\eta_k = x_k - \hat{\xi}_k^T \hat{\xi}_{k|k-1} \tag{62}
\]

\[
\hat{\xi}_{k+1|k} = \mathbf{A}_{k+1,k} \hat{\xi}_{k|k-1} + \Gamma_{k+1,k} \eta_k, \quad \hat{\xi}_{0|0} = 0 \tag{63}
\]

where \(\Gamma_{k+1,k} \) is the Kalman Gain, computed offline as function of state predictor error covariance

\[
R_\xi(k|k-1) = E[(\xi_k - \hat{\xi}_k) \hat{\xi}_k^T] \tag{64}
\]
\[\Gamma_{k+1, k} = A_{k+1, k} R_{\xi}(k|k-1)c_k \frac{1}{\sigma^2_\eta(k)} \]

(64)

where \(\sigma^2_\eta(k) \) is the innovations variance

\[\sigma^2_\eta(k) = c_k^T R_{\xi}(k|k-1)c_k + \sigma^2_v(k). \]

(65)

The covariance matrix \(R_{\xi}(k|k-1) \) is updated according to the **Time Update Equations**:

\[R_{\xi}(k+1|k) = [A_{k+1, k} - \Gamma_{k+1, k} c_k^T] R_{\xi}(k|k-1) [A_{k+1, k} - \Gamma_{k+1, k} c_k]^T \]

\[+ B_k R_w(k) B_k^T + \Gamma_{k+1, k} \Gamma_{k+1, k}^T \sigma^2_v(k). \]

(66)

\[R_{\xi}(0|1) = R_{\xi}(0) \]

(67)

6.7.3 KALMAN FILTER DERIVATION

Our derivation is based on the Gevers and Kailath innovations approach [7].

Step 1: Gather Together Key Properties

The simplifying assumptions (A1-A4) imply the following properties

Properties P1-P3

P1 \(\{ \xi_j \}_{j=1}^k \) is uncorrelated with \(w_k \) (A2,A4) and with \(v_k \) (A1,A4), and therefore

P2 \(\{ x_j \}_{j=1}^k \) is uncorrelated with \(w_k \) and \(v_{k+1} \).

P3 \(< x_k, \eta_j > = < s_k + v_k, \eta_j > = < s_k, \eta_j >, j < k \), since \(< v_k, \eta_j > = 0, j < k \), as \(\eta_j \in \text{span}\{x_j, x_{j-1}, \ldots, x_0\} \) and \(v_k \) is uncorrelated sequence (A1).
Step 2: establish relation between $\hat{x}_{k|k-1}$ and $\hat{\xi}_{k|k-1}$

Putting P2 and P3 together we obtain from representation (60) for $g_k = s_k$:

$$
\hat{x}_{k|k-1} = \sum_{j=0}^{k-1} \frac{< s_k, \eta_j >}{\|\eta_j\|^2} \eta_j
$$

$$
= \sum_{j=0}^{k-1} \frac{< \xi_k, \eta_j >}{\|\eta_j\|^2} \eta_j + \hat{\xi}_{k|k-1}
$$

Step 3: Establish update formula for $\hat{\xi}_{k|k-1} \rightarrow \hat{\xi}_{k+1|k}$

Recall that the linear minimum mean square estimator for a random vector is simply the concatenation of the linear minimum mean square estimators for each element of the random vector. Thus, with abuse of notation, denoting $< \xi_{k+1}, \eta_k >$ the vector composed of inner products $< (\xi_{k+1})_i, \eta_k >$, $i = 1, \ldots, p$,

$$
\hat{\xi}_{k+1|k} = \sum_{j=0}^{k} \frac{< \xi_{k+1}, \eta_j >}{\|\eta_j\|^2} \eta_j
$$

$$
= \sum_{j=0}^{k-1} \frac{< \xi_{k+1}, \eta_j >}{\|\eta_j\|^2} \eta_j + \frac{< \xi_{k+1}, \eta_k >}{\|\eta_k\|^2} \eta_k
$$

(68)

Define the Kalman gain vector

$$
\Gamma_{k+1} = \frac{< \xi_{k+1}, \eta_k >}{\|\eta_k\|^2},
$$

(69)

and note that, from the state equation (61) for ξ_k and the fact that w_k and η_j are uncorrelated for $j \leq k$,

$$
\frac{< \xi_{k+1}, \eta_j >}{\|\eta_j\|^2} = \frac{< A_{k+1, k} \xi_k, \eta_j >}{\|\eta_j\|^2} + \frac{< B_k w_k, \eta_j >}{\|\eta_j\|^2}
$$

$$
= A_{k+1, k} \frac{< \xi_k, \eta_j >}{\|\eta_j\|^2}, \quad j \leq k
$$

which is $A_{k+1, k}$ times the projection coefficient for projecting ξ_k onto η_j.

Substitution of the above back into (68) gives the desired recursion

$$
\hat{\xi}_{k+1|k} = A_{k+1, k} \sum_{j=0}^{k-1} \frac{< \xi_k, \eta_j >}{\|\eta_j\|^2} \eta_j + \Gamma_{k+1} \eta_k
$$

$$
= A_{k+1, k} \hat{\xi}_{k|k-1} + \Gamma_{k+1} \eta_k
$$

(70)

with initial condition $\hat{\xi}_{0|-1} = 0$.
Step 4: Find expression for $\|\eta_k\|^2$

Define the state estimator error vector

$$\tilde{\xi}_{k|k-1} = \xi_k - \hat{\xi}_{k|k-1}. $$

Then, again using the state model for x_k,

$$
\eta_k = x_k - \hat{x}_{k|k-1} = \frac{C_k^T}{\Sigma_k} \hat{\xi}_k + v_k - \frac{C_k^T}{\Sigma_k} \hat{\xi}_{k|k-1} = \frac{C_k^T}{\Sigma_k} \tilde{\xi}_{k|k-1} + v_k
\tag{71}
$$

We can use this result to find the innovations variance $\|\eta_k\|^2 = \sigma^2_\eta(k)$ which is required for computing the projection coefficients in (68), specifically the Kalman gain (69) needed for recursion (70). As $\tilde{\xi}_{k|k-1} \in \text{span}\{\xi_k, x_{k-1}, \ldots, x_0\}$, $\tilde{\xi}_{k|k-1}$ is uncorrelated with v_k, from (71)

$$
\sigma^2_\eta(k) = \frac{C_k^T}{\Sigma_k} R_{\tilde{\xi}}(k|k-1) \Sigma_k + \sigma^2_v(k)
\tag{72}
$$

where $R_{\tilde{\xi}}(k|k-1)$ is the state estimator error covariance matrix. To evaluate this we will need to establish a recursion for this error covariance matrix. However, an expression for the Kalman gain will be required to develop the error covariance update equations.

Step 5: Express Kalman gain $\Gamma_{k+1,k}$ in terms of state estimator error covariance $R_{\tilde{\xi}}(k|k-1)$

The Kalman gain vector $\Gamma_{k+1,k}$ (69) can be related to the state estimator error covariance by the following steps

1. $< \xi_{k+1}, \eta_k > = A_{k+1,k} < \xi_k, \eta_k > + B_k < w_k, \eta_k > = A_{k+1,k} < \xi_k, \eta_k >$ (from whiteness of w_k and fact that $\eta_k \in \text{span}\{x_k, \ldots, x_0\}$).
2. $< \xi_k, \eta_k > = < \xi_k - \tilde{\xi}_{k|k-1}, \eta_k > = < \tilde{\xi}_{k|k-1}, \eta_k >$ (noting that $< \tilde{\xi}_{k|k-1}, \eta_k > = 0$ from orthogonality principle of linear estimation)
3. $< \tilde{\xi}_{k|k-1}, \eta_k > = E[\tilde{\xi}_{k|k-1} \eta_k] = E[\tilde{\xi}_{k|k-1} \tilde{\xi}_{k|k-1}^T] \Sigma_k (\eta_k = \frac{C_k^T}{\Sigma_k} \tilde{\xi}_{k|k-1} + v_k$ and v_k is white noise uncorrelated with $\tilde{\xi}_{k|k-1}$)

Putting the above together, and recalling that $\|\eta_k\|^2 = \sigma^2_\eta(k)$ calculated in (72), we obtain

$$
\Gamma_{k+1,k} = \frac{< \xi_{k+1}, \eta_k >}{\|\eta_k\|^2} = A_{k+1,k} \frac{< \xi_k, \eta_k >}{\|\eta_k\|^2} \\
= A_{k+1,k} R_{\tilde{\xi}}(k|k-1) \Sigma_k \frac{1}{\frac{C_k^T}{\Sigma_k} R_{\tilde{\xi}}(k|k-1) \Sigma_k + \sigma^2_v(k)}
\tag{73}
$$

Step 6: Find recursive update for estimator error covariance $R_{\tilde{\xi}}(k|k-1) \rightarrow R_{\tilde{\xi}}(k+1|k)$

First find update equation for $\tilde{\xi}_{k|k-1}$ by subtracting the state estimator update equation (70) from the actual state update equation (61)

$$
\xi_{k+1} - \tilde{\xi}_{k+1|k} = A_{k+1,k} (\xi_k - \tilde{\xi}_{k|k-1}) + B_k w_k - \Gamma_{k+1,k} \eta_k.
$$
Identifying $\tilde{\xi}_{k+1|k} = \xi_{k+1} - \hat{\xi}_{k+1|k}$ and using $\eta_k = \xi_{k|k-1}^T \xi_{k|k-1} + v_k$ in the above

$$
\tilde{\xi}_{k+1|k} = A_{k+1,k} \tilde{\xi}_{k|k-1} + B_k \eta_k - \Gamma_{k+1,k} (\xi_{k|k-1}^T \xi_{k|k-1} + v_k)
$$

$$
= [A_{k+1,k} - \Gamma_{k+1,k} \xi_{k|k-1}^T] \hat{\xi}_{k|k-1} + B_k \eta_k - \Gamma_{k+1,k} v_k
$$

(74)

Now properties P1-P3 imply that the three additive terms in (74) are mutually uncorrelated. Therefore, the covariance of the RHS is the sum of three covariance matrices and we obtain the update equation (67)

$$
R_{\tilde{\xi}}(k+1|k) = [A_{k+1,k} - \Gamma_{k+1,k} \xi_{k|k-1}^T] R_{\xi}(k|k-1) [A_{k+1,k} - \Gamma_{k+1,k} \xi_{k|k-1}^T]^T + B_k R_w(k) B_k^T + \Gamma_{k+1,k} R_{\xi}(k|k-1) \Gamma_{k+1,k}^T \sigma_\eta^2(k).
$$

An alternative form of the recursion (67) can be derived by using (65) and (69) which makes $R_{\tilde{\xi}}(k|k-1)$ explicit in the quantity $\Gamma_{k+1,k}$. After some algebra this produces the equivalent update equation

$$
R_{\tilde{\xi}}(k+1|k) = A_{k+1,k} R_{\xi}(k|k-1) A_{k+1,k}^T + B_k R_w(k) B_k^T - A_{k+1,k} R_{\xi}(k|k-1) \xi_{k|k-1}^T \xi_{k|k-1} R_{\xi}(k|k-1) A_{k+1,k}^T / \sigma_\eta^2(k)
$$

(75)

where $\sigma_\eta^2(k) = \xi_{k|k-1}^T \xi_{k|k-1} / \sigma_\eta^2(k)$, as defined above.

6.8 KALMAN FILTERING: SPECIAL CASES

The Kalman filter equation (63) generates the innovations sequence η_k which is needed to compute the estimate $\hat{g}_{k|k}$ defined in Sec. 6.7 by the equation (60). Also needed are the projection coefficients $\tilde{h}(k,j)$, $j = 1, \ldots, k$. We discuss two special cases for which these coefficients are simply computed, Kalman prediction and Kalman filtering.

6.8.1 KALMAN PREDICTION

The linear prediction problem is to predict future value of the observation x_{k+1} from a linear combination of past and present observations $\{x_j\}_{j=0}^k$, or, equivalently, from the past and present innovations $\{\eta_j\}_{j=0}^k$. Recalling the measurement model (61), $x_{k+1} = s_{k+1} + v_{k+1}$ is the sum of two uncorrelated components. Hence, denoting the predictor by $\hat{s}_{k+1|k}$ and applying the superposition property (50) of linear estimators of a sum of random variables

$$
\hat{s}_{k+1|k} = \hat{s}_{k+1|k} + \hat{\nu}_{k+1|k} = \hat{s}_{k+1|k}
$$

where $\hat{\nu}_{k+1|k} = 0$ due to the fact that v_k is white and thus uncorrelated with the past innovations, i.e. unpredictable. Finally, as $s_{k+1} = \xi_{k+1|k}^T \xi_{k+1|k} + v_{k+1}$

$$
\hat{s}_{k+1|k} = \xi_{k+1}^T \xi_{k+1|k}
$$

which can be computed from the Kalman filter (63) for state estimation discussed in the previous sub-section.
6.8.2 KALMAN FILTERING

The filtering problem is to estimate the signal component \(s_k \) in \(x_k = s_k + v_k \) from past and present measurements \(\{x_j\}_{j=0}^k \) (equivalently \(\{\eta_j\}_{j=0}^k \)). Let \(\hat{s}_{k|k} \) denote this estimate. Set \(g_k = s_k \) and from the general recursion (60) we obtain

\[
\hat{s}_{k|k} = \hat{s}_{k|k-1} + \tilde{h}(k, k) \eta_k,
\]

where \(\hat{s}_{k|k-1} \) is the linear predictor derived in the last subsection and

\[
\tilde{h}(k, k) = \frac{E[s_k \eta_k]}{\text{var}(\eta_k)} = \frac{c_k^T E[\xi_k \eta_k]}{\text{var}(\eta_k)}.
\]

Recall that in the process of showing the expression (73) for the Kalman gain \(\Gamma_{k+1, k} \) we established

\[
E[\xi_k \eta_k] = \mathbf{R}_{\xi}(k|k-1) c_k.
\]

Putting this together with the expression (65) we obtain

\[
\tilde{h}(k, k) = \frac{c_k^T \mathbf{R}_{\xi}(k|k-1) c_k}{c_k^T \mathbf{R}_{\xi}(k|k-1) c_k + \sigma_v^2(k)}.
\]

All of the above quantites are available from the Kalman filter recursions (62) and (67).

6.9 KALMAN FILTER FOR SPECIAL CASE OF GAUSSIAN STATE AND NOISE

Assume:

* \(v_k, \xi_o \) and \(w_k \) are jointly Gaussian

Then:

* \(x_k = s_k + v_k \) is a Gaussian random process
* Kalman filter yields min MSE state predictor

\[
\hat{\xi}_{k|k-1} = E[\xi_k | x_{k-1}, \ldots, x_1]
\]

* \(\{\eta_k\} \) is an equivalent uncorrelated Gaussian measurement

6.10 STEADY STATE KALMAN FILTER AND WIENER FILTER

Assume

* \(A_{k+1, k}, b_k, c_k \) and \(\mathbf{R}_w(k) \) are time-invariant
* \(\mathbf{R}_v(k) \) is time-invariant
* The state error covariance matrix \(\mathbf{R}_{\xi}(k+1, k) \) converges to a positive definite matrix as \(k \to \infty \).

Then:

* \(s_k \) is w.s.s. as \(k \to \infty \)
* \(x_k \) is w.s.s. as \(k \to \infty \)

\(\Rightarrow \) Steady state innovations filter is equivalent to Wiener prewhitening filter
In particular, in steady state, \(\eta_k \) becomes a (w.s.s.) white noise with
\[
\sigma^2_\eta(k) \to \sigma^2_\eta(\infty) = \xi^T R_\xi(\infty) \xi + \sigma_v^2
\]
The steady state error covariance matrix \(R_\xi(\infty) \) can be found in two steps:

Step 1: set \(R_\xi(k, k-1) = R_\xi(k+1, k) = R_\xi(\infty) \) in covariance update equation (67), equivalently, (75), obtaining the steady state covariance equation:
\[
R_\xi(\infty) = AR_\xi(\infty)A^T + BR_wB^T - AR_\xi(\infty)\xi^T R_\xi(\infty)A^T / \sigma^2_\eta(\infty),
\]

Step 2: Noting that, as \(\sigma^2_\eta(\infty) \) is linear in \(R_\xi(\infty) \), the steady state covariance equation is equivalent to a quadratic equation in \(R_\xi(\infty) \), called an *algebraic Ricatti equation* [19]. This can be solved numerically but for small state dimension \(R_\xi(\infty) \) it can be often found by hand.

Example 30 *Kalman filter for estimation of a constant signal*

The objective is to find an optimal recursive estimator of a constant signal in random noise given a finite number of observations. Accordingly, let’s assume the following special case of the dynamical observation model (61)
\[
x_k = s_k + v_k \\
s_{k+1} = s_k.
\]
Here \(s_k \) is a scalar state and we can identify \(C_k = 1, B_k = 0, A_{k+1,k} = 1, \) and \(R_\xi(0) = \sigma_s^2. \) For notational simplicity define the normalized state error covariance (actually the variance since the state is one dimensional):
\[
T_{k+1} = R_\xi(k+1, k)/\sigma_v^2.
\]
With this notation, and the identifications above, the (scalar) update equation (75) for \(R_\xi(k+1, k) \) gives
\[
T_{k+1} = T_k/(T_k + 1), \quad T_o = \sigma_s^2/\sigma_v^2,
\]
which has explicit solution \(T_k = 1/(k + 1/\text{SNR}) \), where \(\text{SNR} = \sigma_s^2/\sigma_v^2. \) The Kalman gain is simply
\[
\Gamma_{k+1,k} = \frac{T_k}{T_k + 1} = T_{k+1}.
\]
Therefore, the Kalman filter update for \(\hat{s}_{k|k-1} \) is
\[
\hat{s}_{k+1|k} = \hat{s}_{k|k-1} + \Gamma_{k+1,k}\eta_k,
\]
which, using \(\eta_k = x_k - \hat{s}_{k|k-1} \) is equivalent to the AR(1) recursion
\[
\hat{s}_{k+1|k} = [1 - \Gamma_{k+1,k}]\hat{s}_{k|k-1} + \Gamma_{k+1,k}x_k,
\]
with initial condition \(\hat{s}_{0|1} = 0. \) approximation to \(\Gamma_{k+1,k} = T_{k+1} \):
\[
T_{k+1} \approx \frac{1}{k + 1}.
\]
yielding the large k form of the AR(1) recursion:

$$\hat{s}_{k+1|k} = \frac{k}{k+1} \hat{s}_{k|k-1} + \frac{1}{k+1} x_k,$$

which is equivalent to

$$\hat{s}_{k+1|k} = \frac{1}{k+1} \sum_{i=0}^{k} x_i.$$

Thus, as expected, the Kalman filter estimator of a constant signal becomes identical to the sample mean estimator of the ensemble mean for large k - as the transients of the filter die down the initial condition has no more influence.

It should be observed in the above example that the Kalman filter does not converge in steady state to a LTI filter since the asymptotic state covariance is not positive definite - the variance is equal to zero.

6.11 SUMMARY OF STATISTICAL PROPERTIES OF THE INNOVATIONS

We summarize important properties of the innovations that will be important in the sequel. As the observation noise v_k is uncorrelated with the signal s_k, we have three equivalent expressions for the innovations

$$\eta_k = x_k - \hat{x}_{k|k-1},$$
$$\eta_k = x_k - \hat{s}_{k|k-1},$$
$$\eta_k = \xi_k^T (\xi_k - \hat{\xi}_k) + v_k,$$

Furthermore:

$$E[\eta_i] = 0$$
$$\text{cov}(\eta_i, \eta_j) = 0, \quad i \neq j$$

and, as shown above, the innovations variance is

$$\text{var}(\eta_k) = \sigma^2_{\eta}(k)$$
$$= \xi_k^T R_\xi(k) \xi_k + \sigma^2_{v}(k).$$
6.12 EXERCISES

6.1 As we know, the optimal filter $h(k, j)$ for estimating the sample $g(k)$ of the process $\{g(k)\}_{i=-\infty}^{\infty}$ from zero mean process $\{x(i)\}_{i=-\infty}^{\infty}$ satisfies the Wiener-Hopf equation

$$r_{gx}(k, i) - \sum_{j=-\infty}^{\infty} h(k, j)r_{x}(i, j) = 0, \quad -\infty < i < \infty$$

Show that when g and x are jointly w.s.s. random processes, i.e. $r_{x}(i, j) = r_{x}(i-j)$ and $r_{gx}(k, i) = r_{gx}(k-i)$, $h(k, j)$ can be assumed to be linear time invariant (LTI), i.e. $h(k, j) = h(k-j)$ will satisfy the WH equation. Now show that the same holds for the causal optimal filter $h(k, j)$ which satisfies

$$r_{gx}(k, i) - \sum_{j=-\infty}^{\infty} h(k, j)r_{x}(i, j) = 0, \quad -\infty < i < k.$$

(Hint: Find Weiner-Hopf equations for estimating $y(k+l)$ where l is an arbitrary time shift, make a change of index i and a change of variable j and show by comparison to the Weiner-Hopf equations for estimating $y(k)$ that $h(k, j) = h(k-j, 0)$).

6.2 Derive the equation (53) for the Causal Wiener filter $0 = r_{gx}(l) - \sum_{m=-\infty}^{\infty} h(l-m)r_{x}(m)$ from the original equation (52) by making two changes of variable in sequence: reindex i by $l = k-i$ and reindex j by $m = k-j$.

6.3 For constants a, c and the definitions $q = 1 + c + ca^2$, $r = ca$, derive the following identity

$$\frac{1}{(1 + az^{-1})(1 + az)} + c = \frac{d(1 + bz^{-1})}{(1 + az^{-1})} \frac{d(1 + bz)}{(1 + az)}$$

(76)

where

$$b = \frac{q/r \pm \sqrt{(q/r)^2 - 4}}{2}, \quad d^2 = q/(1 + b^2)$$

Observe that when c is positive real, one of the roots in the equation for b satisfies $|b| \leq 1$ while the other satisfies $|b| \geq 1$.

6.4 In the development of the causal and non-causal Weiner estimators we have assumed that all processes were zero mean. Here we deal with the case of non-zero mean w.s.s. processes for which the affine Weiner estimator is appropriate.

Assume the measurement process $\{x_k\}_k$ and the target process $\{g_k\}_k$ to be estimated are w.s.s. and have non-zero means $E[x_k] = \mu_x(k)$ and $E[g_k] = \mu_y(k)$.

(a) The affine non-causal Wiener estimator of g_k is defined by the filter $h(k, j)$ and sequence of constants s_k as

$$\hat{g}_k = a_k + \sum_{j=-\infty}^{\infty} h(k, j)x_j$$

where $h(k, j)$ and a_k are selected to minimize the mean square estimation error $\text{MSE}(h, a) = E[(g_k - \hat{g}_k)^2]$. Show that the optimal filter satisfies $h(k, j) = h(k-j)$ where $h(j)$ is the optimal linear time invariant non-causal Weiner filter for estimating the zero mean process $g_k - \mu_y(k)$ from the centered zero mean measurements $x_k - \mu_x(k)$ and that the optimal sequence a_k is $\mu_y(k) + \sum_{j=-\infty}^{\infty} h(k-j)\mu_x(j)$. Further show that the minimum MSE of the affine non-causal Weiner estimator is functionally independent of the means μ_y and μ_x.

(b) Repeat question (a) for the case of the causal affine Wiener estimator which satisfies the additional restriction that \(h(k, j) = h(k - j) = 0, k < j \).

6.5 You have the measurement model
\[
x_k = s_k^2 + w_k
\]
where \(w_k \) is zero mean white noise of variance \(\sigma^2 \) and \(s_k \) is a w.s.s. zero mean Gaussian random sequence with \(r_s(k) = a^k/(1 - a^2) \), \(k \geq 0 \). \(w_k \) is independent of \(s_k \).

(a) Find the quantities \(\mathbb{E}[s_i^2 s_i - k] \) and \(\mathbb{E}[s_i^2 s_i - k] \) (Hint: use the property that for any zero mean jointly Gaussian r.v.s \(W, X, Y, Z \):
\[
\mathbb{E}[WXYZ] = \mathbb{E}[WX]\mathbb{E}[YZ] + \mathbb{E}[WZ]\mathbb{E}[XY] + \mathbb{E}[WX]\mathbb{E}[Y] + \mathbb{E}[W] + \mathbb{E}[X] + \mathbb{E}[Z] + \mathbb{E}[W] + \mathbb{E}[X] + \mathbb{E}[Z]
\]

(b) Using the results of (a) find the optimal affine non-causal Wiener estimator for \(s_k \). Explain your result.

(c) Using the results of (a) find the optimal affine non-causal Wiener estimator for \(s_k^2 \).

6.6 Assume the measurement model
\[
x_k = a s_k + v_k
\]
where \(s_k \) and \(v_k \) are zero mean jointly w.s.s. and uncorrelated, and \(a \) is a random variable independent of \(s_k \) having mean \(\mu_a \) and variance \(\sigma_a^2 \).

(a) Find the non-causal Weiner filter for estimating \(s_k \).

(b) Find the MSE of the output of the non-causal Weiner filter. How does it behave as a function of \(\mu_a \) and \(\sigma_a^2 \)?

(c) Find the causal Weiner filter for estimating \(s_k \). Specialize to the case where \(s_k \) is an AR(1) process as in Example 29 with pole at \(-a \) and where \(v_k \) is white noise with variance \(\sigma^2 \).

6.7 For \(|a| < 1 \), use the geometric series formula \(\sum_{k=0}^{\infty} c^k z^k = 1/(1 - cz) \), \(|cz| < 1 \) to derive the following two results:
\[
\begin{align*}
\left\{ \frac{z^l}{1 + az^{-1}} \right\}_+ &= \begin{cases}
(-a)^l \frac{1}{1 + az^{-1}}, & l \geq 0 \\
\frac{z^l}{1 + az^{-1}}, & l < 0
\end{cases} \quad (77)
\end{align*}
\]
and
\[
\left\{ \frac{z^l}{1 + az} \right\}_+ = \begin{cases}
1, & l = 0 \\
0, & l > 0
\end{cases} \quad (78)
\]
Now apply these results to compute the Z-domain quantity (for \(l \geq 0 \))
\[
\left\{ \frac{z^l}{(1 + az^{-1})(1 + bz)} \right\}_+ |a|, |b| < 1
\]

6.8 Let the measurement model be
\[
x_k = h_k * s_k + v_k
\]
where \(s_k \) and \(v_k \) are zero mean jointly w.s.s. and uncorrelated, and \(h_k \) is a causal and causally invertible filter with Z-transform \(H(z) \).

(a) Find the non-causal Weiner filter for estimating \(s_k \).

(b) Find the causal Weiner filter for estimating \(s_k \).
(c) Compare the results for (a) and (b) to the estimator $h_k^{-1} \ast \hat{s}_k$ where \hat{s}_k is the output of the standard Weiner filter for estimating s_k using the measurement model $x_k = s_k + v_k$ and h_k^{-1} is the inverse Z-transform of $1/H(z)$.

6.9 Let the measurement model be as in Example 29

$$x_k = s_k + v_k$$

where s_k and v_k are zero mean jointly w.s.s. and uncorrelated. It is desired to estimate $g_k = h_k * s_k$ where h_k is the causal FIR filter with transfer function

$$H(z) = 1 + \alpha z^{-1}, \quad \alpha \in (-1, 1)$$

. Assume that $\alpha \neq a \neq b$.

(a) Find the non-causal Weiner filter for estimating g_k.
(b) Find the causal Weiner filter for estimating g_k.
(c) Compare the results for (a) and (b) to the estimator $\hat{g}_k = h_k * \hat{s}_k$ where \hat{s}_k is alternatively the output of the standard non-causal and causal Weiner filters, respectively, for estimating s_k.

6.10 The process s_k is a zero mean AR(2) process following the recursion

$$s_k = 0.8s_{k-1} - 0.15s_{k-2} + w_k$$

where w_k is zero mean white noise of variance 1.5 uncorrelated with s_{k-1}, s_{k-2}, \ldots. The observation is

$$x_k = s_k + v_k$$

where v_k is zero mean white noise with variance 0.5 independent of s_k.

(a) Express the AR(2) recursion in Z-transform domain as $Z\{s_k\} = H(z)Z\{w_k\}$ and use the input/output PSD relation $P_s(z) = H(z)H(z^{-1})P_w(z)$ to determine the PSD $P_s(z)$ of s_k.

(b) Find the non-causal Wiener filter for estimating s_k.
(c) Find the causal Wiener filter for estimating s_k.

6.11 TBD

6.12 A common multipath model for a communications receiver is that the direct path signal plus an attenuated and delayed indirect path version of the signal are received in additive white noise:

$$x_k = s_k + bs_{k-1} + w_k$$

The objective is to estimate the signal s_k given a set of measurements $\{x_k\}_k$. In the following assume that w_k is zero mean white with variance σ_w^2, s_k is zero mean white with variance σ_s^2, b is a constant $|b| < 1$, and s_k, w_k are uncorrelated. You can assume that $(\sigma_s^2(1 + b^2) + \sigma_w^2)/\sigma_w^2 = 5/2$ if that helps simplify your answers to the following.

(a) Find the power spectral density (PSD) $P_x(e^{j\omega})$ of x_k, the cross PSD $P_{sz}(e^{j\omega})$ of s_k and x_k, and the spectral factorization of $P_x(z)$, $z \in \mathbb{C}$.

(b) Find the optimal non-causal Wiener filter for estimating s_k.
(c) Find the optimal causal Wiener filter for estimating s_k.
6.13 In the derivation of the discrete time Kalman filter we assumed that the state noise \(w_k \) was uncorrelated with the measurement noise \(v(k) \). In this problem we generalize the Kalman filter to the case where \(E[w_k v(l)] = V_{ww} \delta_{kl} \) where \(\delta_{kl} \) is the kronecker delta function. Derive the Kalman filter equations.

6.14 The measurement equation is given by

\[
x_k = s_k + v_k
\]

where \(s_k \) satisfies the dynamic model \((|a| < 1)\)

\[
s_{k+1} = as_k + w_k, \quad s_0 = s_0
\]

and \(v_k, w_k, s_0 \) are uncorrelated, \(v_k \) and \(w_k \) are zero mean white noises with variances \(\sigma_v^2 \) and \(\sigma_w^2 \), respectively.

(a) Derive the Kalman filter equations.

(b) Derive the steady state state error covariance (variance) \(R_s(\infty) \) by setting \(R_s(k+1|k) = R_s(k|k-1) = R_s(\infty) \) in the Kalman error covariance update formula and solving explicitly for \(R_s(\infty) \). Find the corresponding steady state Kalman gain.

(c) By taking the Z-transform of the steady state Kalman state recursion show that the Kalman predictor \(\hat{s}_{k+1|k} \) is the output of a LTI with input \(x_k \).

(d) Compare the steady state Kalman predictor previously derived to the causal Wiener predictor based on the infinite past.

6.15 Let the random sequence \{\(x_k \)\} be zero mean and wide sense stationary of the form

\[
x_k = s_k + v_k
\]

where \(s_k \) is a signal with PSD \(P_s \) and \(v_k \) is a white noise. You only get to measure the value of \(x_k \) for odd indices \(k = 2n - 1, \ n = -\infty, \ldots, \infty \). The objective is to estimate \(s_k \) at both odd and even time instants \(k \). Note that when \(v_k = 0 \) the problem reduces to “filling in” the missing (even) data points.

(a) What is the system of Wiener-Hopf equations which must be satisfied by the optimal linear filter for estimating \{\(s_k \)\} from the measurements? Is the solution to this system of equations time-invariant? If so find an expression for the optimal non-causal Wiener filter transfer function \(H(z) \).

(b) Now assume that \(s_k = as_{k-1} + w_{k-1} \) where \(|a| < 1 \) and \(w_k \) is white noise independent of \(v_k \). Derive Kalman filter equations for recursively generating estimates \(\hat{s}_{2n-1|2n-1} \) and \(\hat{s}_{2n|2n-1} \) from the past measurements \{\(x_{2k-1} \)\}_{k=1}^n \). Does the KF reduce to a linear time invariant filter as \(n \to \infty \).

6.16 Derive the minimum mean square error expression (57) for the Wiener filter and use it to find the MSE of the optimal predictors of Examples 28 and 29.

6.17 In the following three exercises you will explore the extended Kalman filter (EKF) for non-linear state dynamics. Similarly to Section 6.7.3 of the notes we assume that the observations \(y_k \) obey a dynamical model, except that here we assume that the state can evolve non-linearly and that the additive noises are \textit{Gaussian}:

\[
y_k = s_k + v_k
\]

\[
s_k = \xi_k^T \xi_k, \quad k = 0, 1, \ldots
\]

\[
\xi_{k+1} = g(\xi_k) + B_k w_k
\]
where g is a possibly non-linear p-dimensional function of the p-dimensional state vector ξ_k, v_k and w_k are mutually independent zero mean temporally uncorrelated (white) noises which are Gaussian distributed with variance σ^2_v and covariance matrix R_w, respectively. All other assumptions on the model are identical to those made in Section 6.7.3. Let the posterior density of the state ξ_k given the observation sequence $Y_\ell = \{y_1, y_2, \ldots, y_\ell\}$ up to time ℓ be denoted $f_{\xi_k|Y_\ell}$.

(a) Show that in the linear case ($g(\xi_k) = A\xi_k$) the posterior density $f_{\xi_k|Y_\ell}$ is Gaussian:

$$f_{\xi_k|Y_\ell}(\xi_k|Y_\ell) = \frac{1}{|R(\xi|k)|^{1/2}(2\pi)^{p/2}} \exp \left(-\frac{1}{2}(\xi_k - \hat{\xi}_k)^T R^{-1}_\xi(k|k)(\xi_k - \hat{\xi}_k) \right)$$

where $\hat{\xi}_k|k$ is the Kalman filter's state estimator and $R(\xi|k) = E[(\xi_k - \hat{\xi}_k)(\xi_k - \hat{\xi}_k)^T]$ is the state estimator error covariance matrix.

(b) Using Bayes formula show that for arbitrary linear or non-linear function g the state posterior density $\rho_k(\xi_k)$ def $f_{\xi_k|Y_k}(\xi_k|Y_\ell)$ obeys the recursion

$$\rho_{k+1}(\xi_{k+1}) = f_{y_{k+1}|\xi_{k+1}}(y_{k+1}|\xi_{k+1}) \int f_{\xi_k|Y_\ell}(\xi_k|Y_\ell) \rho_k(\xi_k) d\xi_k.$$ (79)

where the density $h_1(u) = f_{\xi_{k+1}|\xi_{k+1}}(u|\xi_{k+1})$ has the form of a multivariate Gaussian density with mean parameter $g(\xi_k)$ and covariance matrix parameter BR_gB^T and the density $h_2(z) = f_{y_{k+1}|\xi_{k+1}}(z|\xi_{k+1})$ has the form of a univariate Gaussian density with mean parameter $c^T\xi_{k+1}$ and variance parameter σ^2_v.

(c) Specialize the recursion (79) to the linear case ($g(\xi_k) = A\xi_k$) and derive a relation for the quadratic form $(\xi_{k+1} - \hat{\xi}_{k+1}(k+1))^T R^{-1}_\xi(k+1|k+1)(\xi_{k+1} - \hat{\xi}_{k+1}(k+1))$ by equating the exponent on the left hand side of the equation to the exponent on the right hand side (Hint: completion of the square in the integrand).

(d) Using the relation found in part (c) derive Kalman filter equations specifying state estimator updates $\hat{\xi}_{k|k} \rightarrow \hat{\xi}_{k+1|k+1}$ and inverse covariance updates $R^{-1}_\xi(k|k) \rightarrow R^{-1}_\xi(k+1|k+1)$ in the following manner. To derive state update equation take derivative of relation (c) with respect to ξ_{k+1} and evaluate the resulting equation at $\xi_{k+1} = A\xi_{k|k}$. To derive covariance update equation take second derivative with respect to ξ_{k+1}. You may find the Woodbury-Sherman-Morrissey identity (Eq. (1) of Ch. 2) useful here. The right hand side of your inverse covariance update equation should be in a simple form involving only two simple additive terms.

6.18 This is a continuation of the previous exercise. Here we apply Laplace's approximation to the posterior distribution to obtain approximate state and covariance update recursions from (79). Laplace's approximation asserts that

$$f_{\xi_k|Y_\ell}(\xi_k|Y_\ell) \approx \frac{|F_k|^\frac{p}{2}}{(2\pi)^{p/2}} \exp \left(-\frac{1}{2}(\xi_k - \hat{\xi}_k)^T F_k(\xi_k - \hat{\xi}_k) \right)$$

where $\hat{\xi}_k|k = \arg\max_{\xi_k} f_{\xi_k|Y_\ell}(\xi_k|Y_\ell)$ is the MAP estimator of ξ_k given past observations Y_ℓ and $F_k = F(\hat{\xi}_k|k)$ is the $p \times p$ observed Fisher information matrix (FIM) where, for $u \in \mathbb{R}^p$

$$F(u) = -\nabla^2_u \ln f_{\xi_k|Y_\ell}(u|Y_\ell).$$
(a) Using Laplace’s approximation, and the approximation \(g(\xi_k) = g(\hat{\xi}_{k|k}) + \nabla g(\hat{\xi}_{k|k})(\xi_k - \hat{\xi}_{k|k}) \), in the integrand of the right hand side of (79), evaluate the integral by completion of the square.

(b) Using the results of part (a), and an analogous differentiation method to the one you used in part (d) of the previous exercise, generate a recursion \(\hat{\xi}_{k+1|k+1} \rightarrow \hat{\xi}_{k+1|k+1} \) for the MAP state estimator and a recursion \(F_k \rightarrow F_{k+1} \) for the observed FIM (given your previous work on part (d) of Ex. 6.17 you should be able to quickly identify the solutions without much algebra). These equations represent the EKF filter. Represent your state estimator recursion in a form reminiscent of the Kalman filter, i.e.

\[
\hat{\xi}_{k+1|k+1} = g(\hat{\xi}_{k|k}) + \Gamma_k \eta_k
\]

where \(\eta_k \) is an analog to the Kalman innovation sequence and \(\Gamma_k \) is an analog to the Kalman Gain matrix (but which depends on \(\hat{\xi}_{k|k} \)).

(c) Evaluate the EKF specified by the recursions found in (b) for the case of a scalar \((p = 1) \) state \(\xi_k \), scalar state noise \(\xi_k \), scalar \(c \), and the quadratic plant

\[
g(\xi_k) = a \xi_k^2,
\]

where \(|a| < 1\). If the Fisher recursion is initialized by \(F_{-1} > 0 \) will the observed Fisher information remain \(F_k \) positive for all \(k \geq 0 \)?

6.19 This is a continuation of the previous exercise. An approach to the EKF which does not require making the supplemental approximation \(g(\xi_k) = g(\hat{\xi}_{k|k}) + \nabla g(\hat{\xi}_{k|k})(\xi_k - \hat{\xi}_{k|k}) \) is to apply the Laplace approximation to the posterior of the successive pair of states

\[
f_{\xi_{k+1|k+1}, \xi_k | Y_k}(\xi_{k+1|k+1}, \xi_k | Y_k) \approx \frac{|Q_k|^{1/2}}{(2\pi)^p} \exp \left(-\frac{1}{2} \left[\begin{array}{c} \xi_{k+1|k+1} - \hat{\xi}_{k+1|k+1} \\ \xi_k - \hat{\xi}_{k|k} \end{array} \right]^T Q_k^{-1} \left[\begin{array}{c} \xi_{k+1|k+1} - \hat{\xi}_{k+1|k+1} \\ \xi_k - \hat{\xi}_{k|k} \end{array} \right] \right)
\]

where \(Q_k = Q(\hat{\xi}_{k+1|k+1}, \hat{\xi}_{k|k}) \) is the \(2p \times 2p \) observed FIM where, for \(u, v \in \mathbb{R}^p \)

\[
Q(u, v) = -\left[\begin{array}{cc} \nabla_u^2 & \nabla_u \nabla_v^2 \\ \nabla_u \nabla_v & \nabla^2
\end{array} \right] \ln f_{\xi_{k+1|k+1}, \xi_k | Y_k}(u, v | Y_k).
\]

Find a set of EKF equations by using this approximation and compare to your solution in part (b) of Ex. 6.18. (You can assume that the state is 1 dimensional if you like).

6.20 Wiener filtering of a signal corrupted by noise which is correlated with the signal: Consider the system in Fig. 60(a). The observations \(x(n) \) are given by

\[
x(n) = s(n) + v(n)
\]

where \(s(n) \) is an AR(1) random process \((H(z) = \frac{1}{1 + az^{-1}}, |a| < 1) \) given by

\[
s(n) = (-a)s(n-1) + w(n)
\]

and \(v(n) \) is a noise which is partially correlated with the signal and is given by

\[
v(n) = \rho w(n) + \sqrt{1 - \rho^2} u(n),
\]
where \(0 \leq \rho \leq 1 \). Both \(u(n) \) and \(w(n) \) are uncorrelated, zero mean, white noise processes with variances \(\sigma_w^2 \) and \(\sigma_u^2 \), respectively. To simplify the problem, an equivalent block diagram is presented in Fig. 60(b). (Hint \(H(z) = 1 + \rho \frac{1 + az^{-1}}{1 + az^{-1}} \), where \(b = \frac{\rho}{\rho + 1} \).

(a) Non-causal Wiener Filtering: Find the non-causal Wiener filter for \(s(n) \) given \(x(n) \). Express the filter in terms of \(\rho \), \(H(z) \), \(\sigma_w^2 \), and \(\sigma_u^2 \). (There is no need to substitute \(H(z) = \frac{1}{1 + az^{-1}} \) yet.)

(b) Explain and interpret what happens when \(\rho = 0 \) and \(\rho = 1 \). Obtain closed-form expressions for the Wiener filter in terms of \(\sigma_w^2 \), \(\sigma_u^2 \), \(a \), and \(z \) (here, substitute \(H(z) = \frac{1}{1 + az^{-1}} \)).

(c) Causal Wiener Filtering: Consider the case where \(\rho = 1 \). Find the whitening filter for the causal Wiener filter of \(s(n) \) given \(x(n) \).

(d) Causal Wiener Filtering: Consider the case where \(\rho = 1 \). Find the causal Wiener filter of \(s(n) \) given \(x(n) \).

6.21 Wiener/Kalman filtering of a moving average (MA) system: Consider the system in Fig. 61. The observations \(x(n) \) are given by

\[
x(n) = s(n) + v(n)
\]

where \(s(n) \) is an MA(1) random process \((H(z) = 1 + az^{-1}, |a| < 1) \) given by

\[
s(n) = au(n - 1) + u(n).
\]
Both $v(n)$ and $u(n)$ are uncorrelated, zero mean, white noise processes with variances σ_v^2 and σ_u^2, respectively.

[(a)]

(a) **Non-causal Wiener Filtering:** Find the non-causal Wiener filter for $s(n)$ given $x(n)$.

(b) **Causal Wiener Filtering:**
- Find the whitening filter for the causal Wiener filter of $s(n)$ given $x(n)$. (Hint: find a similar relationship to the one in question 6.3 on page 148 of the textbook, which is applicable to this question.)
- Find the causal Wiener filter of $s(n)$ given $x(n)$.

(c) **Kalman Filtering:** Derive the Kalman filter for $s(n)$ given $x(n)$. (Hint: choose the state vector as $\xi_n = [u(n), u(n-1)]^T$).

(d) **Kalman Filtering:** Find the steady state Kalman gain in terms of a, σ_v^2, and σ_u^2.

End of chapter
7 FUNDAMENTALS OF DETECTION

Next we treat the problem of detection: this is equivalent to estimation when there are only a small number of possible values for the unknown parameter θ. Some may argue that detection has a simpler and more elegant theory than estimation, and this might be true depending on the "eye of the beholder." However, as we will see detection and estimation are closely linked, especially when there exist unknown nuisance parameters that can confound our detection algorithms.

We will cover the following:

* Optimal detection theory
* Bayesian approach to detection
* Frequentist approach to detection
* Receiver Operating Characteristic (ROC) curves
* Classification theory

REFERENCES

Van Trees [43]
Scharf [35]
Mood, Graybill and Boes [26]
Bickel and Doksum [3]
Srinath, Rajasekaran and Viswanathan [40]

MORE ADVANCED REFERENCES

Poor [31]
Helstrom [13]
Lehmann [21]
Ferguson [6]

Example 31 A motivating radar example

We start with a practical example to motivate the detection theory to come later. Assume that you make a continuous time measurement $x(t)$ over a time interval $[0, T]$ and you wish to decide whether $x(t)$ is noise alone

$$x(t) = w(t), \quad 0 \leq t \leq T$$

or whether it is signal plus noise

$$x(t) = \theta s(t - \tau) + w(t), \quad 0 \leq t \leq T.$$

Here we assume

* $s(t)$ is a known signal that may or may not be present
* $w(t)$ is a zero mean Gaussian white noise with known power spectral density level $N_o/2$
* τ is a known time delay, $0 \leq \tau \ll T$
* $\int_0^T |s(t - \tau)|^2 dt = \int_0^T |s(t)|^2 dt$ is the signal energy
* $\theta \in \{0,1\}$ unknown nuisance parameter

The detection objective is to decide whether the signal is present or not, and to do this with minimum average number of decision errors.

There is a common notation that has been developed for stating the detection hypotheses: "no signal present" (H_0) vs "signal present" (H_1)

\[
H_0 : x(t) = w(t) \quad \Leftrightarrow \quad H_0 : \theta = 0
\]
\[
H_1 : x(t) = s(t - \tau) + w(t) \quad H_1 : \theta = 1
\]

Without trying to choose a decision function to optimize any particular detection performance criterion - we will do this later - two methods of detection could be considered, shown in Fig. 62:

Energy-threshold detector:

\[
y = \int_0^T |x(t)|^2 dt \quad \overset{H_1}{\underset{H_0}{>}} \eta
\]

Filter-threshold detector

\[
y = \int_0^T h(T - t)x(t) dt \quad \overset{H_1}{\underset{H_0}{>}} \eta
\]

Figure 62: (a) energy-threshold detector, (b) filter-threshold detector

ERROR ANALYSIS:

Referring to Fig. 63, there are two types of decision error to be concerned about:

FALSE ALARM: $y > \eta$ when no signal present
MISS: $y < \eta$ when signal present

We can easily compute the conditional probabilities of these errors when there is no signal present and when there is a signal present, respectively:

$$P_F = P(\text{say signal} | \text{no signal}) = \int_{y > \eta} f(y | \text{no signal}) dy$$

$$P_M = P(\text{say no signal} | \text{signal}) = \int_{y \leq \eta} f(y | \text{signal}) dy$$

TWO QUESTIONS

Q1: Is there an optimal way of trading off P_M for P_F?

Q2: Can we optimize the filter $h(\cdot)$ in the filter-threshold detector to give optimal tradeoff?

We will defer the answer to Q1 till later. The filter in the filter-threshold detector can be chosen to optimize a design criterion. As a large overlap of the two densities in Fig. 64 makes the tradeoff much worse between the two types of error, a reasonable strategy would be to choose the filter $h(\cdot)$ to minimize this overlap. A measure of the amount of overlap is the deflection

$$d^2 = \frac{|E[y|\text{signal}] - E[y|\text{no signal}]|^2}{\text{var}(y|\text{no signal})}.$$

Large values of d^2 translate into well separated densities $f(y|H_0)$ and $f(y|H_1)$ with low overlap. Our objective should be to maximize d^2 and thus minimize the overlap.

We can easily compute the deflection for our radar example. Note that the presence of the signal produces shift in mean but not in the variance.
Figure 64: Miss probability P_M and false alarm probability P_F for the radar example. Note that decreasing one type of error by changing the decision threshold η is necessarily accompanied by increasing the other type of error.

\[
E[y|\text{no signal}] = 0
\]

\[
E[y|\text{signal}] = \int_0^T h(T-t)s(t-\tau)dt
\]

\[
\text{var}[y|\text{no signal}] = N_o/2 \int_0^T |h(t)|^2 dt.
\]

Then, applying the Cauchy-Schwarz inequality

\[
d^2 = \frac{2}{N_o} \left| \int_0^T h(T-t)s(t-\tau)dt \right|^2 \leq \frac{2}{N_o} \int_0^T |h(T-t)|^2 dt \frac{\int_0^T |s(t)|^2 dt}{\int_0^T |s(t)|^2 dt}
\]

with “=” if and only if $h(T-t) = as(t-\tau)$ for some constant a.

⇒ obtain “matched filter” solution as optimal deflection filter:

\[
h(t) = s(T+\tau-t)
\]

CASE of $s(\tau)$ = a short duration ”pulse”

* $\int_0^T |s(t-\tau)|^2 dt$ does not depend on τ

* optimal detector can be implemented as:
\[y = \int_0^T s(t - \tau)x(t)dt \]
\[= \int_{-\infty}^\infty s(t - \tau)x(t)dt \]
\[= s(-t) \ast x(t)|_{t=\tau} \]

Figure 65: SNR optimal receiver implemented as a matched filter receiver for delayed signal in noise.

7.1 THE GENERAL DETECTION PROBLEM

Let’s now turn to the general detection problem. We have the following setup, as before:

- \(X \) a measured random variable, random vector, or random process
- \(x \in \mathcal{X} \) is a realization of \(X \)
- \(\theta \in \Theta \) are unknown parameters
- \(f(x; \theta) \) is p.d.f. of \(X \) (a known function)

Two distinct hypotheses on \(\theta \)

\[\theta \in \Theta_0, \quad \text{or} \quad \theta \in \Theta_1 \]

\(\Theta_0, \Theta_1 \) is partition of \(\Theta \) into two disjoint regions

\[\Theta_0 \cup \Theta_1 = \Theta, \quad \Theta_0 \cap \Theta_1 = \{\text{empty}\} \]

NOTATION:
Figure 66: SNR optimal receiver implemented as a correlator receiver for delayed signal in noise.

Figure 67: Detection probability $P_D = 1 - P_M$ for the radar example.
The detector must decide on the region of Θ that contains the unknown parameter θ.

\[H_0 : \theta \in \Theta_0 \quad \Rightarrow \quad H_0 : X \sim f(x; \theta), \; \theta \in \Theta_0 \]
\[H_1 : \theta \in \Theta_1 \quad \Leftarrow \quad H_1 : X \sim f(x; \theta), \; \theta \in \Theta_1 \]

H_0: the null hypothesis, noise alone hypothesis

H_1: the alternative hypothesis, signal present hypothesis

As the true hypothesis is not under our control it is often called the "true state of nature."

7.1.1 SIMPLE VS COMPOSITE HYPOTHESES

When θ can take on only two values and Θ_0 and Θ_1 are singleton sets, the hypotheses are said to be **simple**.

$\Theta = \{\theta_0, \theta_1\}$, $\Theta_0 = \{\theta_0\}$, $\Theta_1 = \{\theta_1\}$.

In this case the p.d.f. $f(x; \theta)$ is completely known given either H_0 or H_1.

If the hypotheses are not simple then at least one of Θ_1 or Θ_0 is not a singleton and is said to be composite. Simple hypotheses are much easier to deal with and one is lucky to encounter them in practical problems!

7.1.2 THE DECISION FUNCTION

Detection objective: design a decision rule (test function)

\[\phi(x) = \begin{cases}
1, & \text{decide } H_1 \\
0, & \text{decide } H_0
\end{cases} \]
The test function $\phi(x)$ maps \mathcal{X} to the decision space $\{0, 1\}$ for deciding H_0 and H_1. The function $\phi(x)$ induces a partition of \mathcal{X} into decision regions

$$X_0 = \{x : \phi(x) = 0\}, \quad X_1 = \{x : \phi(x) = 1\}$$

Figure 69: Test function separates measurement space into two decision regions X_0 and X_1 (the region under the raised platform).

FALSE ALARM AND MISS ERRORS

False alarm and miss probabilities associated with the test function ϕ can be expressed simply:

$$P_F(\theta) = E_\theta[\phi] = \int_{\mathcal{X}} \phi(x)f(x; \theta)dx, \quad \theta \in \Theta_0,$$

$$P_M(\theta) = E_\theta[1 - \phi] = \int_{\mathcal{X}} [1 - \phi(x)]f(x; \theta)dx, \quad \theta \in \Theta_1,$$

where in the expectation expressions the reader must interpret $\phi = \phi(X)$ as a random variable. Equivalently

$$P_F(\theta) = \int_{X_1} f(x|\theta)dx, \quad \theta \in \Theta_0$$

$$P_M(\theta) = 1 - \int_{X_1} f(x|\theta)dx, \quad \theta \in \Theta_1$$

The probability of correctly deciding H_1 is called the (correct-) detection probability:

$$1 - P_M(\theta) = P_D(\theta) = E_\theta[\phi], \quad \theta \in \Theta_1$$

We give separate treatment for case of random and non-random θ.
7.2 BAYES APPROACH TO DETECTION

There are three elements involved in taking a Bayesian approach. One must:
1. Assign a prior $f(\theta)$ density for θ
2. Assign a cost or risk to wrong decisions
 * $c_{ij} = \text{cost of deciding } H_i \text{ when } H_j \text{ is true}$
3. Find and implement decision rule which has minimum average risk

7.2.1 ASSIGNING PRIOR PROBABILITIES

Obtain prior probabilities on H_0, H_1

\[P(H_0) = P(\theta \in \Theta_0) = \int_{\Theta_0} f(\theta) d\theta \]
\[P(H_1) = P(\theta \in \Theta_1) = \int_{\Theta_1} f(\theta) d\theta \]

with $P(H_0) + P(H_1) = 1$

In this case we can compute conditional p.d.f.’s given H_0 and H_1 by integrating over θ

\[f(x|H_0) = \frac{\int_{\Theta_0} f(x|\theta)f(\theta)d\theta}{P(H_0)} \]
\[f(x|H_1) = \frac{\int_{\Theta_1} f(x|\theta) f(\theta) d\theta}{P(H_1)} \]

7.2.2 MINIMIZATION OF AVERAGE RISK

We first define the cost or risk matrix:

\[C = \begin{bmatrix} c_{11} & c_{10} \\ c_{01} & c_{00} \end{bmatrix}. \]

We will assume throughout that \(c_{ii} \leq c_{ij}, \) i.e. the cost of making a correct decision is less than that of making an incorrect one. The actual cost incurred for a given realization of \(X, \) which we will call \(C, \) is a function of the outcome \(\phi(X) \) of the test and a function of the true state, \(H_0 \) or \(H_1, \) of nature. The cost \(C \in \{c_{11}, c_{10}, c_{01}, c_{00}\} \) is therefore a random variable and we can seek decision rules that minimize its average value, called the "average risk" associated with the decision function.

We adopt the following "Bayes" design criterion: Select \(\phi, \) equivalently \(X_0 \) and \(X_1, \) to minimize average risk, equal to the statistical expectation \(E[C] \) of the incurred cost \(C \)

\[
E[C] = c_{11}P(say \ H_1|H_1)P(H_1) + c_{00}P(say \ H_0|H_0)P(H_0) + c_{10}P(say \ H_1|H_0)P(H_0) + c_{01}P(say \ H_0|H_1)P(H_1) \tag{80}
\]

Define the Bayesian false alarm and miss probabilities

\[
P_F = \int_{X_1} f(x|H_0) dx = P(say \ H_1|H_0) \tag{81}
\]

\[
P_M = 1 - \int_{X_1} f(x|H_1) dx = P(say \ H_0|H_1)
\]

These differ from the probabilities \(P_F(\theta) \) and \(P_M(\theta) \) defined above since they denote error probabilities that involve averages of \(\theta \) over \(\Theta_0 \) and \(\Theta_1. \) With these definitions we can express (80) in equivalent form

\[
E[C] = c_{00}P(H_0) + c_{11}P(H_1) + [c_{01} - c_{11}]P(H_1)P_M + [c_{10} - c_{00}]P(H_0)P_F
\]

Observe: \(E[C] \) linear in \(P_M, P_F, P(H_1), P(H_0) \) for any fixed decision rule \(\phi. \) This will become important when we start comparing performances of different decision rules so take note!

7.2.3 OPTIMAL BAYES TEST MINIMIZES \(E[C] \)

Using the integral representation (81) allows us to rewrite \(E[C] \) explicitly as function of decision region \(X_1 \)

\[
E[C] = c_{00}P(H_0) + c_{01}P(H_1) + \int_{X_1} ([c_{10} - c_{00}]P(H_0)f(x|H_0) - [c_{01} - c_{11}]P(H_1)f(x|H_1)) \ dx
\]
The solution is now obvious: if we had a choice to assign a candidate point \(x \) to \(X_1 \) we would choose \(X_1 \) only when it decreased the average risk, i.e., made the integrand negative. Thus, assign \(x \) to \(X_1 \) if
\[
[c_{10} - c_{00}] P(H_0)f(x|H_0) < [c_{01} - c_{11}] P(H_1)f(x|H_1)
\]
and assign \(x \) to \(X_0 \) otherwise.

When \(c_{10} > c_{00} \) and \(c_{01} > c_{11} \) the optimal test is therefore the Bayes likelihood ratio test (BLRT)
\[
\Lambda_B(x) := \frac{f(x|H_1)}{f(x|H_0)} \quad \frac{H_1}{H_0} > \eta
\]
where \(\eta \) is the optimal Bayes threshold
\[
\eta = \frac{[c_{10} - c_{00}] P(H_0)}{[c_{01} - c_{11}] P(H_1)}
\]
The random variable \(\Lambda_B(X) \) is called the Bayes likelihood ratio test (BLRT) statistic. Note that the costs and the prior probability \(p = P(H_0) = 1 - P(H_1) \) only influence the BLRT through the threshold \(\eta \), the Bayes likelihood ratio statistic \(\Lambda_B(x) \) does not depend on \(p \).

7.2.4 MINIMUM PROBABILITY OF ERROR TEST

Consider the special case of \(c_{00} = c_{11} = 0 \) and \(c_{01} = c_{10} = 1 \). This turns the average risk into the prob. error criterion
\[
E[C] = P_M P(H_1) + P_F P(H_0) = P_e
\]
which is minimized by the LR test
\[
\frac{f(x|H_1)}{f(x|H_0)} \quad \frac{H_1}{H_0} > \frac{P(H_0)}{P(H_1)}
\]
Using Bayes rule you can easily see that this is equivalent to the “Maximum a posteriori” (MAP) test
\[
\frac{P(H_1|x)}{P(H_0|x)} \quad \frac{H_1}{H_0} > 1.
\]

7.2.5 PERFORMANCE OF BAYES LIKELIHOOD RATIO TEST

To simplify notation we define \(\overline{C} = E[C] \). Let the minimum of risk \(\overline{C} \), attained by the BLRT, be denoted \(\overline{C}^* \)
\[
\overline{C}^* = c_{00} P(H_0) + c_{11} P(H_1) + [c_{01} - c_{11}] P(H_1) P_M^*(\eta) + [c_{10} - c_{00}] P(H_0) P_F^*(\eta)
\]
where
\[
P_M^*(\eta) = P(\Lambda_B > \eta|H_0), \quad P_F^*(\eta) = P(\Lambda_B \leq \eta|H_1).
\]
Viewing $C^* = C^*(p)$ as a function of p, the minimum risk describes a performance curve (Fig. 71) as a function of $p = P(H_0)$ that is called the minimum risk curve. Note that this curve does not specify the performance of any single test function as a function of p; recall that the average risk of any specified test is linear in p. Rather it specifies the risk that would be attainable if the different optimal BLRT’s were implemented for different values of p, i.e. different BLRT thresholds. Thus the minimum risk curve prescribes a lower bound on the average risk attained by any test for any value of p.

![Minimum Risk Curve](image)

Figure 71: The minimum risk curve associated with optimal BLRTs specifies an achievable lower bound on average risk of any test.

7.2.6 MIN-MAX BAYES DETECTOR

In many cases the true value of p is unknown to the experimenter or designer of the test. Therefore, the optimal threshold of the BLRT cannot be implemented. As any specified test, even a BLRT with fixed threshold, has a linear average risk it might incur an unacceptably large average risk as p approaches either 0 or 1 (see straight line in Fig. 72). A sensible alternative in such a situation is for the designer to adopt a minimax strategy: if nature gets to select the true p then we should select a test to minimize worst case average risk

$$C_{\text{minimax}} = \max_{p \in [0,1]} C(p)$$

It is intuitively obvious from Fig. 72 that the minimax test must be an optimal Bayes test, i.e., a test whose average risk line is tangent to the minimum risk curve, implemented with a threshold η^* which makes C a horizontal line, i.e. the slope of C should be zero. Thus we have the following minimax optimality condition

$$C = \left[c_{00} (1 - P_F^*(\eta)) + c_{10} P_F^*(\eta) - c_{11} (1 - P_M^*(\eta)) - c_{01} P_M^*(\eta) \right] p + c_{11} (1 - P_M^*(\eta)) + c_{01} P_M^*(\eta)$$
Figure 72: Power curve of any fixed test ϕ is a straight line. The minimax optimal test ϕ^* has a horizontal power curve which is tangent to the minimum risk, denoted $\overline{C^*}(p)$, at its maximum.

where $P_F^*(\eta)$ and $P_M^*(\eta)$ are the Bayesian false alarm and miss probabilities of the BLRT implemented with threshold η.

In the special case $\overline{C} = P_e$: $c_{00} = c_{11} = 0$, $c_{10} = c_{01} = 1$ we obtain the minimax condition on the MAP test:

$$\overline{C} = \left[P_F^*(\eta) - P_M^*(\eta) \right] p + P_M^*(\eta)$$

This implies that η should be selected so as to ensure the “equalization” condition is satisfied

$$P_F^*(\eta) = P(\Lambda_B > \eta|H_0) = P(\Lambda_B \leq \eta|H_1) = P_M^*(\eta).$$

Denoting this minimax value of η as η^*, and noting that the designer can choose a threshold by choosing (guessing) a value of p, the minimax threshold is related to a minimax choice p^* through the relation $\eta^* = p^*/(1 - p^*)$.

7.2.7 EXAMPLES

Example 32 Radar example revisited

Objective: Given the matched filter output y find the Bayes optimal detector.

1. Assume that $P(H_0) = P(H_1) = \frac{1}{2}$
2. Recall that y is

$$y = \int_0^T s(t)x(t)dt$$
which is a realization of a Gaussian random variable Y having means and variances

$$E[Y|H_0] = 0, \quad \text{var}[Y|H_0] = N_o/2 \int_0^T |s(t)|^2 dt = \sigma_0^2$$

$$E[Y|H_1] = \int_0^T |s(t)|^2 dt = \mu_1, \quad \text{var}[Y|H_1] = N_o/2 \int_0^T |s(t)|^2 dt = \sigma_0^2$$

Bayes LR test is

$$\Lambda_B(y) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{1}{2\sigma_0^2}(y-\mu_1)^2}$$

$$= e^{y\mu_1/\sigma_0^2 - \frac{1}{2}\mu_1^2/\sigma_0^2}$$

$$H_1 > H_0 \quad \eta = 1$$

LR test statistic $\Lambda_B(Y)$ is a monotone function of Y since $\mu_1 > 0$.

Equivalent test is filter-threshold detector

$$Y \begin{cases} H_1 \\ H_0 \end{cases} \gamma = \frac{1}{2} \mu_1$$

Performance of Bayes LRT for radar example

$$P_F = P(Y > \gamma|H_0)$$

$$= P(\underbrace{Y/\sigma_0}_{\sim\mathcal{N}(0,1)} > \gamma/\sigma_0|H_0)$$

$$= \int_{\gamma/\sigma_0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du$$

$$= 1 - \mathcal{N}(\gamma/\sigma_0) := Q(\gamma/\sigma_0)$$

and

$$P_M = P(Y < \gamma|H_1)$$

$$= P(\underbrace{(Y - \mu_1)/\sigma_0}_{\sim\mathcal{N}(0,1)} > (\gamma - \mu_1)/\sigma_0|H_1)$$

$$= \mathcal{N}((\gamma - \mu_1)/\sigma_0)$$

Note: since standard Gaussian p.d.f. is symmetric

$\mathcal{N}(-u) = 1 - \mathcal{N}(u)$
and thus, since $\gamma = \mu_1/2$

$$P_M = P_F = 1 - N(\mu_1/\sigma_0)$$

Conclude: the Bayes threshold γ is actually minmax!

Therefore the probability of error reduces to

$$P_e = P_M + P_F = P_F$$

7.3 TESTING MULTIPLE HYPOTHESES

We measure x having conditional p.d.f. $f(x|\theta)$

* $\theta \in \Theta$

Consider partition $\Theta_1, \ldots, \Theta_M$ of parameter space

OBJECTIVE: To test M hypotheses on θ

$$H_1 : \theta \in \Theta_1$$

$$\vdots$$

$$H_M : \theta \in \Theta_M$$
Figure 74: Equally likely hypotheses have minmax threshold $\gamma = \frac{1}{2}\mu_1$ for problem of detection of shift in mean of a Gaussian r.v.

Figure 75: Error probability curve of Bayes LRT as function of $\mu_1 = \|s\|^2$.
DEcision function:

\[\phi(x) = [\phi_1(x), \ldots, \phi_M(x)]^T \]

where

\[\phi_i(x) \in \{0, 1\}, \quad \sum_{i=1}^{M} \phi_i(x) = 1 \]

Note: decision function specifies a partition of measurement space \(X \) into \(M \) decision regions

\[X_i = \{x : \phi_i(x) = 1\}, \quad i = 1, \ldots, M \]

Bayes approach: has three elements:
1. Assign a prior \(f(\theta) \) density for \(\theta \)
2. Assign costs to wrong decisions
 \(c_{ij} = \) cost of deciding \(H_i \) when \(H_j \) is true
3. Find and implement decision rule which has minimum average cost

7.3.1 Prior Probabilities

Obtain prior probabilities on \(H_i, i = 1, \ldots, M \)

\[P(H_i) = P(\theta \in \Theta_i) = \int_{\Theta_i} f(\theta)d\theta \]
Figure 77: Partition of parameter space into M hypotheses is equivalent (via the test function $\phi(x)$) to partition of X into M regions.

with $\sum_{i=1}^{M} P(H_i) = 1$

We now have conditional p.d.f.s

$$f(x|H_i) = \frac{\int_{\Theta_i} f(x|\theta)f(\theta)d\theta}{P(H_i)}$$

\Rightarrow Thus we have reduced the composite hypotheses above to the following simple hypotheses

$$H_1 : X \sim f(x|H_1)$$
$$\vdots$$
$$H_M : X \sim f(x|H_M)$$

where H_i has prior probability $P(H_i)$

7.3.2 MINIMIZE AVERAGE RISK

Cost or risk matrix is now $M \times M$:

$$C = \begin{bmatrix}
c_{11} & \cdots & c_{1M} \\
\vdots & \ddots & \vdots \\
c_{M1} & \cdots & c_{MM}
\end{bmatrix}$$

Design Criterion: Select ϕ, equivalently $\{x_i\}_{i=1}^{M}$, to minimize average risk $E[C] = \overline{C}$
\[\mathcal{C} = \sum_{i,j=1}^{M} c_{ij} P(\text{say } H_i|H_j)P(H_j) \]

Specialize to case
* \(c_{ii} = 0 \)
* \(c_{ij} = 1, \ i \neq j \)

Then we have \(\mathcal{C} = P_e \)

\[\mathcal{C} = \sum_{i,j:i \neq j} P(\text{say } H_i|H_j)P(H_j) \]
\[= 1 - \sum_{i,j:i=j} P(\text{say } H_i|H_j)P(H_j) \]
\[= 1 - \sum_{i,j:i=j} P(X \in X_i|H_i)P(H_i) \]
\[= 1 - \sum_{i=1}^{M} \int_{X_i} f(x|H_i)dx \ P(H_i) \]

Observe: to make \(\mathcal{C} \) as small as possible

\[x \in X_i \iff f(x|H_i)P(H_i) \geq f(x|H_j)P(H_j), \ j \neq i \]

Or in terms of decision function:

\[\phi_i(x) = \begin{cases} 1, & f(x|H_i)P(H_i) \geq f(x|H_j)P(H_j) \\ 0, & \text{o.w.} \end{cases} \]

Shorthand notation

\[\hat{H}_i = \hat{H}_i(x) = \arg\max_{H_j} \{ f(x|H_j)P(H_j) \} \]

This is equivalent to the “MAP” rule

\[\hat{H}_i = \arg\max_{H_j} \{ P(H_j|x) \} \]

REMARKS:
* MAP decision rule minimizes average \(P_e \)
* Minimum average \(P_e \) is equal to

\[P_e^* = 1 - \sum_{i=1}^{M} E[\phi_i(x)|H_i]P(H_i) \]
* MAP decision rule on x depends only through LR = sufficient statistic

* For equally likely H_i, $P(H_i) = 1/M$ and MAP test is of form

$$\hat{H}_i = \arg\max_{H_j} \{f(x|H_j)\}$$

which should be read: “estimate $\hat{H}_i = H_1$ if $f(x|H_1) > f(x|H_0)$.” This can be interpreted as the “Maximum likelihood” estimate of true hypothesis H_j

Example 33 Classifier of Gaussian Means

* $\mathbf{X} = [X_1, \ldots, X_n]^T$ are i.i.d. $\mathcal{N}(\mu, \sigma^2)$

* σ^2 is known

OBJECTIVE: classify μ among three possible values

$$H_1: \mu = \mu_1$$

$$H_2: \mu = \mu_2$$

$$H_3: \mu = \mu_3$$

Assume equally likely hypotheses

We know that MAP classifier depends on the \mathbf{X} only through sufficient statistic for μ:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

which is Gaussian with mean μ and variance σ^2/n.

Therefore, the MAP test is of form:

Decide H_k iff

$$f(\bar{X}|H_k) \geq f(\bar{X}|H_j)$$

where

$$f(\bar{x}|H_k) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp \left(-\frac{1}{2\sigma^2/n} (\bar{x} - \mu_k)^2 \right)$$

or eliminating common factors and taking logarithm

$$\bar{X}\mu_k - \frac{1}{2} \mu_k^2 \geq \bar{X}\mu_j - \frac{1}{2} \mu_j^2$$

\Rightarrow Linear decision regions!
Concrete example: $\mu_1 = -1$, $\mu_2 = +1$, $\mu_3 = 2$

Plot 3 lines as a function of \overline{X} to find the decision regions:

$\mathcal{X}_1 = \{ X : \overline{X} \leq 0 \}$
$\mathcal{X}_2 = \{ X : 0 < \overline{X} \leq 3/2 \}$
$\mathcal{X}_3 = \{ X : \overline{X} \geq 3/2 \}$

These are regions separated by hyperplanes in $\mathcal{X} = \mathbb{R}^n$.

Figure 78: For three hypotheses on Gaussian mean the decision regions are specified by intersections of three lines $y = \overline{x} \mu_k - \frac{1}{2} \mu_k^2$, $k = 1, 2, 3$, which are graphed here over domain \overline{x} (incorrectly labeled $\overline{x_i}$).

7.3.3 DEFICIENCIES OF BAYES APPROACH

* Requires assigning prior to θ, H_0, H_1, ...
* Only ensures best average performance w.r.t. selected prior
* Provides no guaranteed protection against FA, M

7.4 FREQUENTIST APPROACH TO DETECTION

Alternative criterion: constrain FA and minimize M.

We will need to extend the test function to allow randomization:

$$\phi(x) = \begin{cases}
1, & \text{say } H_1 \\
q(x), & \text{flip a coin w/ prob Heads (} H_1 \text{) = } q(x) \\
0, & \text{say } H_0
\end{cases}$$
Note, we have interpretation:

\[\phi(x) = P(\text{say } H_1 | \text{observe } x) \]

False alarm probability and detection probability are functions of \(\theta \)

\[
E_\theta[\phi] = \int_\mathcal{X} \phi(x) f(x; \theta) dx = \begin{cases}
P_F(\theta), & \theta \in \Theta_0 \\
P_D(\theta), & \theta \in \Theta_1
\end{cases}
\]

Definition: A test \(\phi \) is said to be of (FA) level \(\alpha \in [0, 1] \) if

\[\max_{\theta \in \Theta_0} P_F(\theta) \leq \alpha \]

Definition: The power function' of a test \(\phi \) is

\[\beta(\theta) = P_D(\theta) = 1 - P_M(\theta), \quad \theta \in \Theta_1 \]

7.4.1 CASE OF SIMPLE HYPOTHESES: \(\theta \in \{\theta_0, \theta_1\} \)

\[H_0 : X \sim f(x; \theta_0) \]

\[H_1 : X \sim f(x; \theta_1) \]

Neyman-Pearson Strategy: find most powerful (MP) test \(\phi^* \) of level \(\alpha \):

\[E_{\theta_1}[\phi^*] \geq E_{\theta_0}[\phi] \]

for any other test satisfying \(E_{\theta_0}[\phi] \leq \alpha \).

Lemma 1 Neyman Pearson Lemma: The MP test of level \(\alpha \in [0, 1] \) is a randomized LRT of the form

\[\phi^*(x) = \begin{cases}
1, & f(x; \theta_1) > \eta f(x; \theta_0) \\
q, & f(x; \theta_1) = \eta f(x; \theta_0) \\
0, & f(x; \theta_1) < \eta f(x; \theta_0)
\end{cases} \]

where \(\eta \) and \(q \) are selected to satisfy

\[E_{\theta_0}[\phi^*] = \alpha \]

The MP test maximizes power \(E_{\theta_1}[\phi(x)] \) subject to constraint \(E_{\theta_0}[\phi(x)] \leq \alpha \). This constrained estimation problem is equivalent to maximizing the constrained objective function

\[
L(\phi) = E_{\theta_1}[\phi(x)] + \eta (\alpha - E_{\theta_0}[\phi(x)])
\]

where \(\eta > 0 \) is Lagrange multiplier selected so that solution \(\phi^* \) satisfies constraint \(E_{\theta_0}[\phi] = \alpha \).

Now the power can be expressed via the LR transformation for expectation, also known as the “Girsanov representation:”

\[
E_{\theta_1}[\phi(x)] = E_{\theta_0}\left[\phi(x) \frac{f(x; \theta_1)}{f(x; \theta_0)} \right]
\]

and hence:

\[
L(\phi) = E_{\theta_0}\left[\phi(x) \left(\frac{f(x; \theta_1)}{f(x; \theta_0)} - \eta \right) \right] + \eta \alpha
\]

Which yields the randomized LRT (82) of NPL.

Proof 2 of NPL: more elementary

Need show that for \(\phi \) arbitrary, \(\phi^* \) satisfies

\[
E_{\theta_1}[\phi^*] \geq E_{\theta_1}[\phi], \quad \text{when} \quad E_{\theta_0}[\phi^*] = \alpha, \quad E_{\theta_0}[\phi] \leq \alpha
\]

Two steps:

Step 1: Show by enumerating all possible cases of \(>, < \) and \(= \) between the terms on RHS and LHS

\[
\phi^*(x)[f(x; \theta_1) - \eta f(x; \theta_0)] \geq \phi(x)[f(x; \theta_1) - \eta f(x; \theta_0)]
\]
(83)

Step 2: integrate (83) over all \(x \)

\[
\int_{\mathcal{X}} \phi^*(x)[f(x; \theta_1) - \eta f(x; \theta_0)]dx \geq \int_{\mathcal{X}} \phi(x)[f(x; \theta_1) - \eta f(x; \theta_0)]dx
\]

\[
= \int_{\mathcal{X}} \phi^*(x)f(x; \theta_1)dx - \eta \int_{\mathcal{X}} \phi^*(x)f(x; \theta_0)dx\quad \overbrace{\quad E_{\theta_1}[\phi^*]} \quad \overbrace{\quad E_{\theta_0}[\phi^*]} \quad \overbrace{\quad E_{\theta_1}[\phi]} \quad \overbrace{\quad E_{\theta_0}[\phi]}\]

Hence
\[E_{\theta_1}[\phi^*] - E_{\theta_1}[\phi] \geq \eta \left(E_{\theta_0}[\phi^*] - E_{\theta_0}[\phi] \right) \geq 0 \]

Which establishes NPL.

RESOURCE ALLOCATION INTERPRETATION OF MP TEST

\(f(x; \theta_0) = \) current value of security \(x \)

\(f(x; \theta_1) = \) future value of security \(x \)

\(\phi(x) = \) decision whether or not to invest in security \(x \)

\(\alpha = \) total available dollars for investment

\(\beta = \) total future value of investment

NPL says simply: it is best to invest \(\alpha \$ \) in the securities which have the highest returns \(f(x; \theta_1)/f(x; \theta_0) \).

Figure 79: Future value, current value, and relative return of a set of securities \(X \)

GENERAL REMARKS CONCERNING MP TESTS

Remark 1. shorthand LRT notation

\[\Lambda(x) = \frac{f(x; \theta_1)}{f(x; \theta_0)} \begin{cases} H_1 \quad \frac{H_1}{H_0} \geq \eta \\ \end{cases} \]

Remark 2. \(P_F \) of MP test is (\(\Lambda \) denotes \(\Lambda(X) \))

\[P_F = E_{\theta_0}[\phi^*(x)] = \frac{P_{\theta_0}(\Lambda > \eta) + qP_{\theta_0}(\Lambda = \eta)}{1 - F_\Lambda(\eta|H_0)} \]

Randomization must be performed only if \(P_{\theta_0}(\Lambda > \eta) \) has jump discontinuities.
Otherwise \(q \) can be set to zero and randomization is not necessary.

Jump discontinuities occur when \(\Lambda = \Lambda(x) \) is not a cts random variable.

\[
1 - F_{\Lambda}(t) = P(\Lambda > t|H_0)
\]

\[
\alpha^* = \alpha^* - \alpha = P_D(\eta, q)
\]

Figure 80: Randomization is necessary to attain a level \(\alpha \) when \(1 - \alpha \) is not in the range of values of the cdf of \(\Lambda \).

Remark 3. LR is identical to Bayes LR for simple hypotheses.

Remark 4. Unlike BLRT threshold \(\eta \) is specified by only one quantity \(\alpha \).

Remark 5. If \(T = T(X) \) is a sufficient statistic for \(\theta \), LRT depends on \(X \) only through \(T(X) \)

Indeed if \(f(X; \theta) = g(T, \theta)h(X) \) then

\[
\Lambda(X) = g(T, \theta_1)/g(T, \theta_0) = \Lambda(T)
\]

Conclude: can formulate the LRT based on p.d.f. of \(T \) instead of the p.d.f. of entire data sample \(X \).

7.5 ROC CURVES FOR THRESHOLD TESTS

All threshold tests have \(P_F \) and \(P_D \) indexed by a parameter \(\eta \).

The Receiver Operating Characteristic (ROC) is simply the plot of the parametric curve \(\{P_F(\eta, q), P_D(\eta, q)\}\eta,q \).

Equivalently, ROC is the plot of \(\beta = P_D \) vs \(\alpha = P_F \).

PROPERTIES OF ROC’S

1. ROC for coin flip detector \((\phi(x) = q \) independent of data) is a diagonal line with slope = 1

\[
\alpha = P_F = E_{\theta_0}[\phi] = q
\]

\[
\beta = P_D = E_{\theta_1}[\phi] = q
\]
Figure 81: A typical ROC curve.

Figure 82: ROC curve for coin flip detector.
2. ROC of any MP test always lies above diagonal: MP test is “unbiased” test
Definition: a test ϕ is unbiased if its detection probability β is at least as great as its false alarm α: $\beta \geq \alpha$.

Figure 83: ROC curve for MP test always lies above diagonal.

3. ROC of any MP test is always convex cap (concave).
To see concavity, let (α_1, β_1) be the level and power of a test ϕ_1 and (α_2, β_2) be the level and power of a test ϕ_2. Define the test

$$\phi_{12} = p\phi_1 + (1 - p)\phi_2$$

This test can be implemented by selecting ϕ_1 and ϕ_2 at random with probability p and $1-p$, respectively. The level of this test is

$$\alpha_{12} = E_0[\phi_{12}] = pE_0[\phi_1] + (1-p)E_0[\phi_2] = p\alpha_1 + (1-p)\alpha_2$$

and its power is similarly

$$\beta_{12} = E_1[\phi_{12}] = p\beta_1 + (1-p)\beta_2$$

Thus, as p varies between 0 and 1, ϕ_{12} has performance $(\alpha_{12}, \beta_{12})$ which varies on a straight line connecting the points (α_1, β_1) and (α_2, β_2).

4. If ROC curve is differentiable, MP-LRT threshold needed for attaining any pair $(\alpha, P_D(\alpha))$ on ROC can be found graphically as slope of ROC at the point α.

$$\eta = \frac{d}{d\alpha}P_D(\alpha)$$

5. When the hypotheses H_0 and H_1 are simple, the MP-LRT threshold that attains minmax P_e can also be found graphically by intersection of line $P_M = 1 - P_D = P_F$ and ROC.

Example 34 Test against uniform density
Figure 84: ROC of any MP test is always convex cap. A test with non-convex ROC (thick line) can always be improved by randomization which has effect of connecting two endpoints \((\alpha_1, \beta_1)\) and \((\alpha_2, \beta_2)\) on ROC by straight line.

Figure 85: Threshold of MP-LRT can be found by differentiation of ROC curve.
Two hypotheses on a scalar r.v. x

$$H_0 : f(x) = f_0(x)$$

$$H_1 : f(x) = f_1(x)$$

where f_0 and f_1 are two densities shown below

Objective: find the MP-LRT

Solution:

LRT is

$$\Lambda(x) = \frac{f_1(x)}{f_0(x)} \begin{cases} \frac{H_1}{H_0} & \frac{\eta}{\eta} \\ & \frac{\eta}{\eta} \end{cases}$$

or equivalently

$$f_1(x) \begin{cases} \frac{H_1}{H_0} & \frac{\eta}{\eta} \\ & \frac{\eta}{\eta} \end{cases} \eta f_0(x)$$

From figure it is obvious that for a given η the H_1 decision region is

$$\mathcal{X}_1 = \begin{cases} \{\eta/4 < x < 1 - \eta/4\}, & 0 \leq \eta \leq 2 \\ \text{empty}, & \text{o.w.} \end{cases}$$

Setting threshold
Figure 87: *Two densities to be tested*

Figure 88: *Region X_1 for which MP-LRT decides H_1 are set of values x for which triangle exceeds horizontal line of height η.***
Select η to meet constraint $P_F = \alpha$.

FIRST: attempt to set η without randomization ($q = 0$).

Assume $\eta \in [0, 2]$

\[
\alpha = P(X \in \mathcal{X}_1|H_0) = \int_{\eta/4}^{1-\eta/4} f_0(x)dx
\]

\[
= 1 - \eta/2
\]

Hence required η is simply

\[
\eta = 2(1 - \alpha)
\]

and we see that no randomization is required.

Power of MP-LRT is:

\[
P_D = P(X \in \mathcal{X}_1|H_1) = \int_{\eta/4}^{1-\eta/4} f_1(x)dx
\]

\[
= 2 \int_{\eta/4}^{\frac{\eta}{2}} f_1(x)dx = 2 \int_{\eta/4}^{\frac{\eta}{2}} 4xdx
\]

\[
= 1 - \eta^2/4
\]

Plug in level α threshold $\eta = 2(1 - \alpha)$ to power expression to obtain the ROC curve

\[
\beta = 1 - (1 - \alpha)^2
\]

Example 35 Testing for an increase in rate θ of Poisson arrivals

\[
X \sim f(x; \theta) = \frac{\theta^x}{x!}e^{-\theta}, \quad x = 0, 1, \ldots
\]

Objective: to find MP-LRT of

\[
H_0 : \theta = \theta_0 \\
H_1 : \theta = \theta_1
\]

for $\theta_1 > \theta_0 > 0$

Solution: MP test is LRT
Figure 89: ROC curve for uniform vs. triangle pdf example.

\[\Lambda(x) = \left(\frac{\theta_1}{\theta_0} \right)^x e^{\theta_0 - \theta_1} \]

Since “ln” is monotone increasing, and \(\theta_1 > \theta_0 \), MP-LRT is equivalent to linear test

\[x \begin{cases} H_1 \text{ if } \gamma < \gamma \text{ if } H_0 \end{cases} \]

where (immaterial for MP-LRT) \(\gamma = \frac{\ln \eta + \theta_1 - \theta_0}{\ln(\theta_1/\theta_0)} \)

First try to set threshold \(\gamma \) without randomization:

\[\alpha = P_{\theta_0}(X > \gamma) = 1 - P_{\theta_0}(\gamma) \]

where \(P_{\theta_0}(\cdot) \) is the CDF of a Poisson r.v. with rate \(\theta \).

Note: as Poisson CDF is not continuous only the following values are attainable without randomization

\[\alpha \in \{ \alpha_i \}_{i=1}^{\infty}, \quad \alpha_i = 1 - P_{\theta_0}(i) \]

If \(\alpha \neq \alpha_i \) for some \(i \) we need randomize by selecting \(\gamma, q \) to satisfy:

\[\alpha = P_{\theta_0}(X > \gamma) + qP_{\theta_0}(X = \gamma) \]

Solution to randomization threshold for Poisson example:
Assume \(\alpha \in (\alpha_i, \alpha_{i+1}) \). Set
\(F_X(x|H_i) = P(X \leq x|H_i) \)

\[\begin{array}{c}
1 - \alpha_i \\
1 - \alpha \\
1 - \alpha_{i+1}
\end{array} \]

\(x \)

\(\eta \)

Figure 90: CDF of LR test statistic for testing increase in Poisson rate is staircase function

\[\gamma = \gamma^* := P_{\theta_0}^{-1}(1 - \alpha_i) \]

which gives \(P_{\theta_0}(X > \gamma^*) = \alpha_i \)

and \(P_{\theta_0}(X = \gamma^*) = \alpha_{i+1} - \alpha_i \)

giving

\[\alpha = \alpha_i + q(\alpha_{i+1} - \alpha_i) \]

remains to solve this equation for \(q \):

\[q = q^* := \frac{\alpha - \alpha_i}{\alpha_{i+1} - \alpha_i} \]

Power of randomized MP-LRT is:

\[P_D = P_{\theta_1}(X > \gamma^*) + q^*P_{\theta_1}(X = \gamma^*) \]

Example 36 On Off keying (OOK) in Gaussian noise

\[H_0 : X = W \]
\[H_1 : X = 1 + W \]

where \(W \sim \mathcal{N}_1(0, 1) \). The LR statistic is
Figure 91: Power curves of LRT for detecting an increase in rate of a Poisson r.v. The smooth curve is the (randomized) MP test while the staircase curve is the non-randomized LRT.

\[\Lambda(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-1)^2} = e^{-\frac{1}{2}} \]

We will compare Bayes LRT, MP-LRT and minmax LRT

1. Min \(P_e \) (Bayes) test for equally likely \(H_0, H_1 \) (\(\eta = 1 \)):

\[
x \begin{array}{c}
\overset{H_1}{\underset{H_0}{>}}
\end{array} \quad \ln \eta + \frac{1}{2} = \frac{1}{2}
\]

2. Minmax test:

\[
x \begin{array}{c}
\overset{H_1}{\underset{H_0}{>}}
\end{array} \quad \ln \eta + \frac{1}{2} := \lambda
\]

Where \(\lambda \) is chosen to satisfy

\[P_F = 1 - N(\lambda) = N(\lambda - 1) = P_M \]

Solution \(\lambda = \frac{1}{2} \) is obvious since \(N(-x) = 1 - N(x) \):

3. NP test:

\[
x \begin{array}{c}
\overset{H_1}{\underset{H_0}{>}}
\end{array} \quad \lambda
\]

where \(\alpha = P(X > \lambda | H_0) = 1 - N(\lambda) \) or
\[\lambda = N^{-1}(1 - \alpha) \]

ROC curve is obtained from
\[P_D = P(X > \lambda|H_1) = P(X - 1 > \lambda - 1|H_1) = 1 - N(\lambda - 1) \]
so that, substituting \(\lambda \) expression above,
\[\beta = P_D = 1 - N(\lambda - 1) = 1 - N(N^{-1}(1 - \alpha) - 1) \]

Performance comparison:

Specifying FA level \(\alpha = 0.001 \) we obtain for MP-LRT: \(\lambda = 2.329 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(P_F)</th>
<th>(P_D)</th>
<th>(P_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayes</td>
<td>0.31</td>
<td>0.69</td>
<td>0.31</td>
</tr>
<tr>
<td>Minmax</td>
<td>0.31</td>
<td>0.69</td>
<td>0.31</td>
</tr>
<tr>
<td>NP</td>
<td>0.001</td>
<td>0.092</td>
<td>0.5</td>
</tr>
</tbody>
</table>

7.6 Exercises

7.1 A proprietary binary hypothesis test \(\phi \) is implemented in a software package which you are considering purchasing based on a trial examination period. You run several experiments and obtain the following table of probabilities of detection \(\beta \) vs. false alarm \(\alpha \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>0.7</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Comment on the quality of this test. Could you improve on this test? If so specify the improved test and compute its ROC curve.

Figure 92: Densities under \(H_0 \) and \(H_1 \) for on-off keying detection.
7.2 Let Z be a random variable with values in the interval $[-1, 1]$ having density function

$$p_{\theta}(z) = \frac{1}{2} \frac{3}{3 + \theta} (\theta z^2 + 1)$$

where $\theta > 0$. Note θ controls the deviation of p_{θ} from the uniform density p_0. You are to test Z against non-uniformity given a single sample Z.

(a) Assuming priors $p = P(H_1) = 1 - P(H_0)$ (note this is opposite to the convention of this chapter) derive the minimum probability of error (MAP) test for the simple hypotheses $H_0 : \theta = 0$ vs. $H_1 : \theta = \theta_1$, where θ_1 is a fixed and known positive value.

(b) Find an expression for the ROC curve and plot for $\theta_1 = 0, 1, 10$.

(c) Now find the form of the min-max test. Show how you can use your answer to part b) to graphically determine the min-max threshold.

(d) Derive the MP test for the same simple hypotheses as in part (a).

7.3 Let Z be a single observation having density function

$$p_{\theta}(z) = (2\theta z + 1 - \theta), \quad 0 \leq z \leq 1$$

where $-1 \leq \theta \leq 1$.

(a) Find the most powerful test between the hypotheses

$$H_0 : \theta = 0$$
$$H_1 : \theta = 1$$

Be sure to express your test in terms of the false alarm level $\alpha \in [0, 1]$. Plot the ROC curve for this test.

(b) repeat part (a) for $H_1 : \theta = -1$.
7.4 It is desired to test the following hypotheses based on a single sample \(x \):

\[
\begin{align*}
H_0 & : \quad x \sim f_0(x) = \frac{3}{2} x^2, -1 \leq x \leq 1 \\
H_1 & : \quad x \sim f_1(x) = \frac{3}{4} (1 - x^2), -1 \leq x \leq 1
\end{align*}
\]

(a) Under the assumption that the prior probabilities of \(H_0 \) and \(H_1 \) are identical, find the minimum probability of error (Bayes) test.

(b) Find the Most Powerful test of level \(\alpha \in [0, 1] \).

(c) Derive and plot the ROC curve for these tests.

7.5 Let \(f(x|H_0) \) and \(f(x|H_1) \) be densities of an observed r.v. \(x \) and assume that the likelihood ratio \(\Lambda = f(x|H_1)/f(x|H_0) \) has corresponding densities \(f_{\Lambda}(\lambda|H_0) \) and \(f_{\Lambda}(\lambda|H_1) \) under \(H_0 \) and \(H_1 \), respectively. Show that the slope \(d\beta/d\alpha \) at a point \(\alpha \) of the ROC of the LRT is equal to the threshold \(\eta \) attaining level \(\alpha \). (Hint: show that \(d\beta/d\alpha = f_{\Lambda}(\eta|H_1)/f_{\Lambda}(\eta|H_0) \) and then apply \(f_{\Lambda}(u|H_k) = \int_{\{x: \Lambda(x)=u\}} f(x|H_k)dx, k=0,1 \).)

7.6 Let a detector have the ROC curve \(\{(\alpha, \beta) : \alpha \in [0, 1]\} \) where the power function \(\beta = \beta(\alpha) \) is a function of the false alarm level \(\alpha \). The area under the ROC is defined as

\[
AUC = \int_0^1 \beta(\alpha)d\alpha
\]

The AUC is frequently used as an alternative to the power function to assess the performance of various detectors. Assume simple hypotheses and invoke properties of ROCs in answering the following questions.

(a) Show that among all tests the MP LRT maximizes AUC.

(b) Show the following inequalities for the AUC of a MP LRT

\[
\frac{1}{2} \leq AUC \leq \beta(\frac{1}{2}) \leq 1
\]

(c) Show that for any LRT whose ROC \(\beta(\alpha) \) is differentiable in \(\alpha \)

\[
AUC = 1 - \int_0^1 \alpha \eta(\alpha)d\alpha
\]

where \(\eta = \eta(\alpha) \) is the LRT’s threshold attaining the false alarm level \(\alpha \). When combined with (b) this implies the interesting result for LRT’s: as the integral is bounded \(\lim_{\alpha \to 0}(\alpha \eta) = 0 \), i.e. \(\alpha \) decreases to zero faster than \(\eta(\alpha) \) increases to \(\infty \).

End of chapter
8 UNIFORMLY MOST POWERFUL TESTS AND ALTERNATIVES FOR COMPOSITE HYPOTHESES

The case of composite hypotheses, i.e., unknown parameters under either H_0 or H_1, presents challenges. But these challenges must be met as we rarely know all of the parameters that can describe the distributions under these hypotheses. Unfortunately, there seldom exists a test which is most powerful for all values of the unknown parameters. However, there are other strategies we can take to design tests whose performance is robust to these unknowns. Here we will cover the following topics:

* Uniformly most powerful (UMP) tests
* Min-max tests
* Locally best tests,
* CFAR tests
* Unbiased tests
* GLR tests

REFERENCES
Van Trees [43]
Lehmann [21]
Ferguson [6]

8.1 UNIFORMLY MOST POWERFUL (UMP) TESTS

For simplicity, consider a simple null hypothesis with composite alternative

$$
H_0 : \theta = \theta_0 \\
H_1 : \theta \in \Theta_1
$$

Note that for good detectors $P_D = P_D(\theta_1)$ varies as function of $\theta_1 \in \Theta_1$. Recall that ϕ is of level α if

$$
P_F = E_{\theta_0}[\phi] \leq \alpha
$$

A false alarm constrained uniformly most powerful test (UMP) is a test which is MP for any and all values of $\theta \in \Theta_1$, i.e., it is more powerful than any other similarly constrained test (Fig. 94). We give a formal definition below

Definition: a test ϕ^* is a uniformly most powerful (UMP) test of level α if for any other level α test ϕ

$$
\beta^*(\theta) = E_\theta[\phi^*] \geq E_\theta[\phi] = \beta(\theta), \text{ for all } \theta \in \Theta_1.
$$

There are two steps for discovering a UMP when it exists and, short of this, establishing that a UMP does not exist:

Step 1: Fix $\theta \in \Theta_1$ and find MP test of level α

Step 2: if decision regions of this MP test do not depend on our choice of $\theta \in \Theta_1$ then the MP test is actually UMP over $\theta \in \Theta_1$.

Example 37 Tests of mean in Gaussian sample with known variance

\(\overline{X} = [X_1, \ldots, X_n]^T \) i.i.d., \(X_1 \sim \mathcal{N}(\mu, \sigma^2) \), \(\sigma^2 \) is known.

Three cases of interest:

- \(H_0 : \mu = 0 \)
- \(H_1 : \mu > 0 \)
- \(H_0 : \mu = 0 \)
- \(H_1 : \mu < 0 \)
- \(H_1 : \mu \neq 0 \)

Step 1: find LRT for fixed \(\mu \) under \(H_1 \)

It suffices to work the problem based on a sufficient statistic \(T = \overline{X} \) for \(\mu \). We know:

\[
\begin{align*}
\overline{X} & \sim \mathcal{N}(0, \sigma^2/n), \quad \text{under } H_0 \\
\overline{X} & \sim \mathcal{N}(\mu, \sigma^2/n), \quad \text{under } H_1
\end{align*}
\]

therefore,

\[
\Lambda(\mu) = \frac{f(\overline{X}; \mu)}{f(\overline{X}; 0)} = \frac{\exp \left(\frac{-(\overline{X} - \mu)^2}{2\sigma^2/n} \right)}{\exp \left(\frac{-\overline{X}^2}{2\sigma^2/n} \right)}
\]

\[
= \exp \left(\frac{n\mu \overline{X} - n\mu^2}{2\sigma^2} \right) \overset{H_1}{>}_{H_0} \eta
\]

For clarity, our notation explicitly brings out the dependance of the likelihood ratio on \(\mu \). Note that \(\Lambda(\mu) \) is monotone increasing in \(\mu \overline{X} \) so that one form of the MP-LRT is
\[\mu \left(\frac{\sqrt{n} \bar{X}}{\sigma} \right) \begin{cases} H_1 & \text{if } \bar{X} \geq \gamma \\ H_0 & \text{if } \bar{X} < \gamma \end{cases} \]

CASE I: Single sided alternative \(H_1 : \mu > 0 \)

In this case \(\mu \) can be absorbed into RHS without changing inequalities:

\[T(X) = \frac{\sqrt{n} \bar{X}}{\sigma} \begin{cases} H_1 & \text{if } \bar{X} > \gamma^+ \\ H_0 & \text{if } \bar{X} < \gamma^+ \end{cases} \]

or equivalently, MP-LRT is the linear detector

\[\sum_{i=1}^{n} X_i \begin{cases} H_1 & \text{if } \sum_{i=1}^{n} X_i > \gamma' \\ H_0 & \text{if } \sum_{i=1}^{n} X_i < \gamma' \end{cases} = \gamma^+ \sqrt{n} \sigma^2 \]

Figure 95: Optimal detector for positive Gaussian mean is a memoryless linear device followed by a summer and decision mechanism.

Next we must set threshold:

Since we know \(\bar{X} \sim N(0, \sigma^2/n) \) under \(H_0 \):

\[\alpha = P_0(\sqrt{n} \bar{X}/\sigma > \gamma^+) = 1 - \mathcal{N}(\gamma^+) \]

\[\mathcal{N}(0,1) \]

Or

\[\gamma^+ = \mathcal{N}^{-1}(1 - \alpha) \]
Final form of MP-LRT for $H_1 : \mu > 0$ reveals that it is UMP against unknown positive μ

\[y \overset{\text{def}}{=} \frac{\sqrt{n} X}{\sigma} \overset{H_1}{\underset{H_0}{\gtrless}} N^{-1}(1 - \alpha) \]

Equivalent form in terms of sample mean statistic

\[\bar{X} \overset{H_1}{\underset{H_0}{\gtrless}} \frac{\sigma}{\sqrt{n}} N^{-1}(1 - \alpha) \]

Equivalent form in terms of sum statistic

\[\sum_{i=1}^{n} X_i \overset{H_1}{\underset{H_0}{\gtrless}} \sqrt{n} \sigma N^{-1}(1 - \alpha) \]

Figure 96: Threshold γ^+ of MP-LRT for $H_0 : \mu = 0$ vs. $H_1 : \mu > 0$ in i.i.d. Gaussian with known variance. $f(y; 0)$ and $f(y; 1)$ denote the densities of $y = \frac{\sqrt{n} X}{\sigma}$ under H_0 and H_1, respectively.

Power of single sided test:
Since $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$ under H_1

\[
\beta = P_{\mathcal{N}(\sqrt{n} \mu / \sigma, 1)} (\bar{X} / \sigma > \gamma^+)
\]

\[
= 1 - \mathcal{N} \left(\gamma^+ - \frac{\sqrt{n} \mu}{\sigma} \right)
\]

\[
= 1 - \mathcal{N} \left(N^{-1}(1 - \alpha) - d \right)
\]
where \(d\) is the \textbf{positive detectability index}

\[
d = \frac{\sqrt{n}\mu}{\sigma} = \frac{E[T|H_1] - E[T|H_0]}{\sqrt{\text{var}_0(T)}}
\]

Figure 97: The ROC curve of MP-LRT for \(H_0 : \mu = 0\) vs. \(H_1 : \mu > 0\) for \(n\) i.i.d. Gaussian with known variance for various values of \(d\).

CASE II: Single sided alternative \(H_1 : \mu < 0\)

Recall that the MP LRT for fixed \(\mu\) has the form

\[
\mu \frac{\sqrt{n} X}{\sigma} \begin{cases} H_1 & \gamma^{-} \\ H_0 & \gamma \end{cases}
\]

This is now equivalent to

\[
\frac{\sqrt{n} X}{\sigma} \begin{cases} H_0 & \gamma^{-} \\ H_1 & \gamma \end{cases}
\]

Setting threshold:

\[
\alpha = P_0(\sqrt{n} X/\sigma \leq \gamma^{-}) = N(\gamma^{-})
\]

or now
Figure 98: The power curve of MP-LRT for $H_0 : \mu = 0$ vs. $H_1 : \mu > 0$ for n i.i.d. Gaussian with known variance plotted as a function of $d > 0$

\[
\gamma^- = N^{-1}(\alpha) = -N^{-1}(1 - \alpha)
\]

Again we see MP-LRT is UMP against unknown negative μ

Power curve for $\mu < 0$ case can be derived similarly

\[
\beta = 1 - N \left(N^{-1}(1 - \alpha) + \frac{\sqrt{n} \mu}{\sigma} \right)_{-|d|}
\]

where d is now negative valued

\[
d = \frac{\sqrt{n} \mu}{\sigma}
\]

CASE III: Double sided alternative $H_1 : \mu \neq 0$

Recall again the form of MP LRT for fixed μ

\[
\mu \frac{\sqrt{n} \bar{X}}{\sigma} \overset{H_1}{>}_{H_0} \gamma
\]

Unfortunately it is no longer possible to absorb μ into threshold without affecting the inequalities. We thus conclude that the decision region varies depending on sign of μ. Therefore no UMP test exists.

NOTE: use of either of the previous UMP tests for one sided alternative gives biased test!
Figure 99: Threshold determination for MP-LRT of $H_0 : \mu = 0$ vs. $H_1 : \mu < 0$ for n i.i.d. Gaussian observations with known variance.

Figure 100: The power curve of MP-LRT for $H_0 : \mu = 0$ vs. $H_1 : \mu < 0$ in i.i.d. Gaussian with known variance plotted as a function of d.
If use single sided test from CASE I then

\[\beta = 1 - \mathcal{N}\left(N^{-1}(1 - \alpha) - d\right) \]

Figure 101: The single sided MP-LRT for \(H_0 : \mu = 0 \) vs. \(H_1 : \mu > 0 \) fails to detect negative signal.

If use single sided test from CASE II then

\[\beta = 1 - \mathcal{N}\left(N^{-1}(1 - \alpha) + d\right) \]

Example 38 Test of variance in Gaussian sample with known mean

\(\mathbf{X} = [X_1, \ldots, X_n]^T \) i.i.d., \(X_1 \sim \mathcal{N}(\mu, \sigma^2) \), \(\mu \) known.

Again three cases of interest:

- \(H_0 : \sigma^2 = \sigma_o^2 \)
- \(H_1 : \sigma^2 > \sigma_o^2 \)
- \(H_1 : \sigma^2 < \sigma_o^2 \)
- \(H_1 : \sigma^2 \neq \sigma_o^2 \)

Solution

STEP 1: find MP-LRT for fixed \(\sigma^2 \)

Approach 1: work problem directly from entire random data sample \(\mathbf{X} \).

The likelihood ratio depends on \(\sigma^2 \) and, for fixed value of \(\sigma^2 \), is given by:
Figure 102: The single sided MP-LRT for $H_0 : \mu = 0$ vs. $H_1 : \mu > 0$ fails to detect positive signal.

Figure 103: The power curve of Case I or Case II MP-LRT’s for double sided hypotheses is biased over range $-\infty < d < \infty$.
\[\Lambda(\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}^n \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{n} (X_k - \mu)^2 \right) \]
\[\frac{1}{\sqrt{2\pi\sigma_o^2}}^n \exp \left(-\frac{1}{2\sigma_o^2} \sum_{k=1}^{n} (X_k - \mu)^2 \right) \]
\[= \left(\frac{\sigma_o^2}{\sigma^2} \right)^{n/2} \exp \left(\frac{\sigma^2 - \sigma_o^2}{2\sigma^2\sigma_o^2} \sum_{k=1}^{n} (X_k - \mu)^2 \right) \quad \frac{H_1}{\eta} \]

Which is monotone increasing in the quantity

\[(\sigma^2 - \sigma_o^2) \sum_{k=1}^{n} (X_k - \mu)^2 \]

Thus we obtain MP-LRT

\[(\sigma^2 - \sigma_o^2) \frac{n}{\sigma_o^2} \frac{\hat{\sigma}_n^2}{n} \frac{H_1}{\gamma} \]

where

\[\hat{\sigma}_n^2 = n^{-1} \sum_{k=1}^{n} (X_k - \mu)^2 \]

Approach 2: work problem based on sufficient statistic for \(\sigma^2 \)

\[T(X) = \sum_{i=1}^{n} (X_i - \mu)^2 \]

The density of \(T(X)/\sigma^2 \) is Chi-square with \(n \) d.f.

⇒ using standard transformation of variables formula, p.d.f. of \(T \) is:

\[f(T; \sigma^2) = \sigma^{-2} f\chi(T, \sigma^{-2}) \]
\[= \sigma^{-2} \frac{1}{2^{n/2} \Gamma(n/2)} e^{-T/(2\sigma^2)} (T/\sigma^2)^{n/2-1} \]

Hence MP-LRT is

\[\Lambda(\sigma^2) = \left(\frac{\sigma_o^2}{\sigma^2} \right)^{n/2} \exp \left\{ \frac{\sigma^2 - \sigma_o^2}{2\sigma^2\sigma_o^2} T \right\} \quad \frac{H_1}{\eta} \]

Which is monotone in \((\sigma^2 - \sigma_o^2) T \).
Thus we obtain MP-LRT
\[
(\sigma^2 - \sigma_o^2) \frac{n \hat{\sigma}_\mu^2}{\sigma_o^2} \frac{H_1}{H_0} > \gamma
\]
where again
\[
\hat{\sigma}_\mu^2 = n^{-1} \sum_{k=1}^{n} (X_k - \mu)^2
\]

CASE I: Single sided alternative \(H_1 : \sigma^2 > \sigma_o^2 \)
In this case MP-LRT is simply
\[
T(X) = \frac{n \hat{\sigma}_\mu^2}{\sigma_o^2} \frac{H_1}{H_0} \gamma^+
\]
or equivalently, we have a square law detector
\[
T(X) = \frac{1}{\sigma_o^2} \sum_{i=1}^{n} (X_i - \mu)^2 \frac{H_1}{H_0} \gamma^+
\]

\[
\text{Figure 104: Optimal detector for increase in Gaussian variance is a memoryless non-linear device (squarer) followed by a summer and decision mechanism. This detector has been called the square law detector and the energy detector.}
\]
Under \(H_0, X_k \sim \mathcal{N}(\mu, \sigma_o^2) \) so the test statistic \(T(X) \) is Chi-square with \(n \) d.f.
Therefore
\[
\alpha = P_0(T(X) > \gamma^+) = 1 - \chi_n(\gamma^+)
\]
and

\[\gamma^+ = \chi^{-1}_n(1 - \alpha) \]

Hence MP-LRT is

\[\frac{n \hat{\sigma}^2}{\sigma_o^2} H_1 \overset{\text{H}_0}{\underset{\text{H}_0}{\geq}} \chi^{-1}_n(1 - \alpha) \]

which is UMP against any \(\sigma^2 > \sigma_o^2 \) for known \(\mu \).

Figure 105: Density functions under \(H_0 \) and \(H_1 \) of optimal UMP test statistic for testing against \(\sigma^2 > \sigma_o^2 \) for known mean \(\mu \). Threshold \(\gamma^+ \) is determined by the \(1 - \alpha \) quantile of the \(H_0 \) density.

Power: since \(\frac{\sigma^2}{\sigma_o^2} \frac{n \hat{\sigma}^2}{\sigma_o^2} = \chi_n \)

\[\beta = P_1 \left(\frac{n \hat{\sigma}^2}{\sigma_o^2} > \gamma^+ \right) = 1 - \chi_n \left(\frac{\sigma_o^2}{\sigma^2} \chi^{-1}_n(1 - \alpha) \right) \]

CASE II: Single sided alternative \(H_1 : \sigma^2 < \sigma_o^2 \)

Find that MP-LRT has form

\[\frac{n \hat{\sigma}^2}{\sigma_o^2} H_0 \overset{\text{H}_1}{\underset{\text{H}_1}{<}} \gamma^- \]

where now

\[\gamma^- = \chi^{-1}_n(\alpha) \]

So that we have UMP test against \(\sigma^2 < \sigma_o^2 \) for known \(\mu \)
Figure 106: Power curves for one sided test of variance $\sigma^2 > \sigma_0^2$ for known mean μ with i.i.d. Gaussian observations for various values of σ^2/σ_0^2 and $n = 3$.

Figure 107: ROC curves for one sided test of variance $\sigma^2 > \sigma_0^2$ with i.i.d. Gaussian observations for various values of σ^2/σ_0^2 and $n = 3$.
Figure 108: Density functions under H_0 and H_1 of optimal UMP test statistic for testing against $\sigma^2 < \sigma_0^2$ for known mean μ. Threshold γ^+ is determined by the $1 - \alpha$ quantile of the H_0 density.

Figure 109: ROC curves for one sided test of variance $\sigma^2 < \sigma_0^2$ with i.i.d. Gaussian observations for various values of σ^2/σ_0^2 and $n = 3$.
Power:

\[\beta = 1 - \chi_n \left(\frac{\sigma^2}{\sigma^2_0} \chi_n^{-1}(\alpha) \right) \]

Case III: Double sided alternative \(H_1 : \sigma^2 \neq \sigma^2_0 \)
No UMP exists.

Example 39 One sided test on median of Cauchy density

Assume \(X_1, \ldots, X_n \) i.i.d. with marginal density

\[f(x_1; \theta) = \frac{1}{\pi} \frac{1}{1 + (x_1 - \theta)^2} \]

Objective: investigate existence of UMP test for

\[H_0 : \theta = 0 \]
\[H_1 : \theta > 0 \]

Step 1: First find LRT for fixed \(\theta > 0 \)

\[\Lambda(\theta) = \frac{f(x; \theta)}{f(x; 0)} = \prod_{i=1}^{n} \frac{1 + x_i^2}{1 + (x_i - \theta)^2} \]

where we have explicitly indicated the dependency of \(\Lambda \) on \(\theta \) in the notation (dependence of \(\Lambda \) on \(x \) is suppressed). For the special case of a single sample (\(n = 1 \)):

\[\Lambda(\theta) = \frac{1 + x_1^2}{1 + (x_1 - \theta)^2} \]

Step 2: The decision region depends on \(\theta \) even if \(\theta > 0 \) (See exercises). Therefore, in this case no UMP exists even for the one sided hypothesis!

8.2 General Conditions for Existence of UMP Tests

\[H_0 : \theta = \theta_0 \]
\[H_1 : \theta \in \Theta_1 \]

Monotone LR condition (1D parameter \(\theta \))

Let \(f(x; \theta) \) have Fisher Factorization
\[f(x; \theta) = g(T; \theta) h(x) \]

\(T \) a sufficient statistic.

Then an UMP test of any level \(\alpha \) exists if the likelihood ratio is either monotone increasing or monotone decreasing in \(T \) for all \(\theta \in \Theta_1 \)

\[\Lambda = \frac{f(x; \theta)}{f(x; \theta_0)} = \frac{g(T; \theta)}{g(T; \theta_0)} = \Lambda_\theta(T) \]

To see this note that MP test for \(H_1 : \theta = \theta_1 \) is

\[\Lambda_{\theta_1}(T) \begin{array}{c} \gtrless \ \\ \gtrless \end{array} \eta \]

which is equivalent to test on \(T \) with threshold \(\gamma = \Lambda_{\theta_1}^{-1}(\eta) \)

\[T \begin{array}{c} \gtrless \ \\ \gtrless \end{array} \gamma \quad \text{(increasing } \Lambda) \]

\[T \begin{array}{c} \lesssim \ \\ \lesssim \end{array} \gamma \quad \text{(decreasing } \Lambda) \]

Densities satisfying monotone LR condition for one sided \(H_1 \):

\[H_1 : \theta > \theta_0, \quad \text{or} \quad H_1 : \theta < \theta_0 \]

1. \(x \) i.i.d. sample from 1D exponential family,
2. In particular: Gaussian, Bernoulli, Exponential, Poisson, Gamma, Beta
3. \(x \) i.i.d. sample from a Uniform density \(U(0, \theta) \)
4. \(x \) i.i.d. sample from noncentral-t, noncentral Fisher F
5. \(x \) i.i.d. sample from shifted Laplace, logistic

In fact: monotone LR condition guarantees MP-LRT is UMP wrt \(H_o : \theta < \theta_0 \) too!

Situations where monotone LR does not hold

1. Gaussian density with single sided \(H_1 \) on mean but having unknown variance
2. Cauchy density with single sided \(H_1 \)
3. Exponential family with double sided \(H_1 \)

8.3 Composite Hypothesis Detection Strategies

Here it is desired to test doubly composite

\[H_0 : \theta \in \Theta_0 \]

\[H_1 : \theta \in \Theta_1 \]
Now, most fixed detectors will have both P_F and P_D varying as functions of $\theta \in \Theta_0$ and $\theta \in \Theta_1$, respectively.

Recall that for composite H_0 we say that test ϕ is of level α if

$$\max_{\theta_0 \in \Theta_0} P_F(\theta_0) \leq \alpha$$

where $P_F(\theta) = E_{\theta_0}[\phi]$

Two classes of strategies:
1. Optimize alternative detection criterion
2. Constrain form of detector to a class for which UMP may exist

8.4 MINIMAX NEYMAN PEARSON DETECTION

Objective: find level α test which maximizes worst case power

Constraint:

$$\max_{\theta \in \Theta_0} E_{\theta}[\phi] \leq \alpha$$

Maximize:

$$\min_{\theta \in \Theta_1} E_{\theta}[\phi]$$

![Figure 110: Various power curves for different test functions and their minima over the unknown parameter θ varying over H_1 parameter space Θ_1. Minimax NP test ϕ_3^α maximizes minimum power.](image)

METHOD OF SOLUTION: find “least favorable” densities

Simplifying assumption: Θ discrete parameter space.
Fundamental identity on the mean [11]: For any summable sequence \(\{a(k)\}_k \) and any probability distribution \(\{p(k)\}_k \)

\[
\min_k a(k) \leq \sum_k a(k)p(k) \leq \max_k a(k)
\]

with equality when \(p(k) = \text{delta function concentrated on } \arg\min_k a(k) \) and \(\arg\max_k a(k) \). Therefore

\[
\min_k a(k) = \min_{\{p(k)\}} \sum_k a(k)p(k), \quad \max_k a(k) = \max_{\{p(k)\}} \sum_k a(k)p(k)
\]

* Let \(\{p_0(\theta)\} \) be an arbitrary probability distribution on \(\Theta_0 \)

* Let \(\{p_1(\theta)\} \) be an arbitrary probability distribution on \(\Theta_1 \)

Then the worst case \(P_F(\theta) \) and \(P_M(\theta) \) can be expressed as worst case average \(P_F \) and \(P_M \)

\[
\max_{\theta \in \Theta_0} E_\theta[\phi] = \max_{p_0} \sum_{\theta \in \Theta_0} E_\theta[\phi]p_0(\theta) = \sum_{\theta \in \Theta_0} E_\theta[\phi]p^*_0(\theta)
\]

\[
\min_{\theta \in \Theta_1} E_\theta[\phi] = \min_{p_1} \sum_{\theta \in \Theta_1} E_\theta[\phi]p_1(\theta) = \sum_{\theta \in \Theta_1} E_\theta[\phi]p^*_1(\theta)
\]

where

* \(p^*_0 \) maximizes the false alarm probability

* \(p^*_1 \) minimizes the detection probability (power)

Define “least favorable pair” of densities

\[
f^*_0(x) = \sum_{\theta \in \Theta_0} f(x; \theta)p^*_0(\theta)
\]

\[
f^*_1(x) = \sum_{\theta \in \Theta_1} f(x; \theta)p^*_1(\theta)
\]

Then the minimax objective reduces to

Constraint:

\[
E^*_0[\phi] = \int_\mathcal{X} \phi(x)f^*_0(x)dx \leq \alpha
\]

Maximize:

\[
E^*_1[\phi] = \int_\mathcal{X} \phi(x)f^*_1(x)dx
\]

Which, corresponds to finding a MP test of level \(\alpha \) for the derived simple hypotheses
\[H_0^* : X \sim f_0^* \]
\[H_1^* : X \sim f_1^* \]
Hence minimax NP test is the LRT
\[
\frac{f_1^*(x)}{f_0^*(x)} \begin{cases} H_1 & \eta \\ H_0 & \end{cases}
\]
where threshold \(\eta \) is chosen to satisfy:
\[
\int_X \phi^*(x)f_0^*(x)dx = \alpha
\]
Observations
* Minimax NP test is an optimal Bayes test for random \(\theta \) over \(\Theta_1 \) and \(\Theta_0 \) but without prior probabilities on \(H_0 \) and \(H_1 \).
* Performance of minimax NP test can be overly conservative, especially if least favorable priors concentrate on atypical values of \(\theta \).
* Least favorable priors \(p_1^* \), \(p_0^* \) may be difficult to find in practice
\[\Rightarrow \] Helpful facts concerning \(f_1^* \), \(f_0^* \) [6]:
* \(p_0^* \) and \(p_1^* \) make \(H_0^* \) and \(H_1^* \) the most difficult to discriminate
* \(p_1^* \) and \(p_0^* \) can each assume at most two values over \(\Theta_1 \) and \(\Theta_0 \)

Figure 111: Least favorable density \(p_1^*(\theta) \) is piecewise constant over \(\Theta_1 \).

Specifically, there exists a subset \(\Theta_0^+ \) of \(\Theta_0 \) such that
\[
p_0^*(\theta) = \begin{cases} q, & \theta \in \Theta_0^+ \\ 0, & \theta \in \Theta_0 - \Theta_0^+ \end{cases}
\]
where \(q \) is equal to the volume of \(\Theta^+_0 \)

\[
q = \begin{cases}
\int_{\Theta^+_0} d\theta, & \Theta_0 \text{ cts.} \\
\sum_{\theta \in \Theta^+_0} \theta, & \Theta_0 \text{ discrete}
\end{cases}
\]

and similarly for \(p^*_1 \).

Examples of minimax tests will be explored in the exercises.

8.5 Locally Most Powerful (LMP) Single Sided Test

Main idea: if we can’t find a UMP over the entire set \(\theta > \theta_0 \) then perhaps we can find a test that remains MP over small perturbations, e.g., \(\theta \in (\theta_0, \theta_0 + \Delta] \) with \((0 < \Delta \ll 1) \), from \(H_0 \). First we consider single sided case and 1D parameter \(\theta \)

\[
H_0 : \theta = \theta_0 \\
H_1 : \theta > \theta_0
\]

The idea is simple. Referring to Fig. 112, we recall that the power curve of a good test increases as a function of \(\theta \). Therefore, it makes sense to try and find a test that will maximize the rate of increase near \(\theta_0 \). This leads to the definition:

\[
\text{Definition 2} \quad \text{A locally most powerful (LMP) test } \phi \text{ of level } \alpha \text{ has power curve that maximizes slope of } \beta(\theta) \text{ at } \theta = \theta_0.
\]

We can formulate the LMP testing strategy \(\phi \) by posing it as the following optimization:

Constrain: \(E_{\theta_0}[\phi] \leq \alpha \)
Maximize: \(\frac{d}{d\theta_0} E_{\theta_0}[\phi] \)

Similarly to the derivation of NPL in the previous chapter, we obtain the solution \(\phi \) to this optimization as the test

\[
\phi_{LMP}(x) = \begin{cases} 1, & df(x; \theta_0)/d\theta_0 > \eta f(x; \theta_0) \\ q, & df(x; \theta_0)/d\theta_0 = \eta f(x; \theta_0) \\ 0, & df(x; \theta_0)/d\theta_0 < \eta f(x; \theta_0) \end{cases}
\]

Or for short

\[
\Lambda_{LMP}(x) = \frac{df(x; \theta_0)/d\theta_0}{f(x; \theta_0)} \begin{cases} H_1, & \theta_0 \leq \eta \\ H_0, & \theta_0 > \eta \end{cases}
\]

where \(\eta \) is selected to satisfy constraint (possibly with randomization)

\[
E_{\theta_0}[\phi] \leq \alpha
\]

To prove this is quite simple if we follow the Lagrange multiplier approach that was used to derive the MP test of Lemma 1. First, note that we can express \(\frac{d}{d\theta_0} E_{\theta_0}[\phi] \) using the "Girsanov representation" and a relation for the derivative of the logarithm function

\[
\frac{d}{d\theta_0} E_{\theta_0}[\phi] = \frac{d}{d\theta_0} \int \phi(x) f_{\theta_0}(x) dx
\]

Therefore, the Lagrangian associated with our constrained maximization problem is simply written as:

\[
\frac{d}{d\theta_0} E_{\theta_0}[\phi] + \eta (\alpha - E_{\theta_0}[\phi]) = E_{\theta_0} \left[\phi \left(\frac{d}{d\theta_0} \ln f_{\theta_0} - \eta \right) \right] + \eta \alpha,
\]

which is obviously maximized by selecting \(\phi = \phi_{LMP} \) given above.

There is a close connection between the LMP and maximum likelihood estimation. Assuming that we have set \(\eta = 0 \) we can write the LMP test in an equivalent form

\[
\Lambda_{LMP} = \frac{d}{d\theta_0} \ln f(x; \theta_0) \begin{cases} H_1, & \theta_0 > \eta \\ H_0, & \theta_0 \leq \eta \end{cases}
\]

Thus we decide \(H_1 \) if the slope of the likelihood function is positive at \(\theta = \theta_0 \). Such a situation occurs when the log-likelihood function is strictly concave and the MLE \(\hat{\theta} \) is greater than \(\theta_0 \), i.e. the MLE provides good evidence that \(H_1 \) is true! If \(\eta > 0 \) then the slope at \(\theta_0 \) has to be both large and positive, providing even stronger evidence that \(\theta > \theta_0 \).

Example 40 *Gaussian one sided test against zero mean*
Find: differential LR has the form

\[
\frac{df(x; \theta)/d\theta}{f(x; \theta)} = \frac{d}{d\theta} \ln f(x; \theta) = \frac{\sum_{i=1}^{n} (X_i - \theta)}{\sigma^2}
\]

LMP for testing \(\theta = \theta_0 = 0 \) vs. \(\theta > 0 \) is therefore:

\[
\sum_{i=1}^{n} X_i \begin{cases} H_1 & > \gamma \\ H_0 & < \gamma \end{cases}
\]

or level \(\alpha \) LMP is the linear UMP test obtained before

\[
\frac{\sqrt{n} \overline{X}_i}{\sigma} \begin{cases} H_1 & > \gamma \\ H_0 & < \gamma \end{cases}
\]

Example 41 Cauchy one sided test against zero median (ctd)

Find: differential LR has the form

\[
\frac{df(x; \theta)/d\theta}{f(x; \theta)} = 2 \sum_{i=1}^{n} \frac{X_i - \theta}{1 + (X_i - \theta)^2}
\]
For $\theta = \theta_0 = 0$ LMP test is therefore:

$$T(X) = \sum_{i=1}^{n} \frac{X_i}{1 + X_i^2} \quad \frac{H_1}{H_0} = \begin{cases} > \gamma \\
< \gamma \end{cases}$$

Figure 114: Memoryless non-linearity $g(x) = x/(1 + x^2)$ input-output characteristic for LMP test of one sided test against zero median for a Cauchy r.v.

Test statistic $T(X)$ is sum of i.i.d. r.v.s with mean 0 and variance 1/8 under H_0. Therefore threshold γ can be found via CLT for large n:

$$\gamma = \sqrt{n/8} \mathcal{N}^{-1}(1 - \alpha)$$

Example 42 Testing for positive mean of Laplace distribution

* $X = [X_1, \ldots, X_n]$ i.i.d,

$$X_i \sim f(x; \theta) = \frac{a}{2} e^{-a|x-\theta|}, \quad a > 0$$

Log-likelihood function takes the form:

$$\ln f(x; \theta) = -a \sum_{i=1}^{n} |X_i - \theta| + n \ln \frac{a}{2}$$

$$= -a \sum_{X_i > \theta} (X_i - \theta) + a \sum_{X_i < \theta} (X_i - \theta) + c$$

$$= a \theta (n_+ - n_-) + b(\theta)$$
Figure 115: Optimal detector for positive Cauchy median is a memoryless non-linearity followed by a summer and decision mechanism.

Figure 116: Laplace density \(f(x) = ae^{-a|x-\theta|}/2 \). Width, as measured by where \(f(x) \) falls to \(1/e \) of its peak, is \(2/a \).
where

\[n_+ = \# X_i > \theta, \quad n_- = \# X_i < \theta = n - n_+ \]

Note: \(b(\theta) \) is piecewise constant function

Find: differential LR has the form

\[\frac{df(x; \theta_0)/d\theta_0}{f(x; \theta_0)} = a(n_+ - n_-) \]

LMP is therefore:

\[T(X) = n_+ - n_- \]

or equivalently, in a form more comparable to the Cauchy and Gaussian examples (41) and (37) having \(\theta_0 = 0 \):

\[T(X) = \sum_{i=1}^{n} \text{sgn}(X_i) \]

Figure 117: LMP detector for testing positive mean \(\theta > 0 \) for a Laplace r.v. is composed of a summer and memoryless non-linearity.

PERFORMANCE:

\(T(X) \) is a discrete shifted Binomial r.v.
\[T(X) = \sum_{i=1}^{n} (2b_i - 1) = 2B(n, p) - n \]

where \(b_i \) are i.i.d. Bernoulli r.v.'s with parameter

\[p = P_\theta(b_i = 1) = P_\theta(X_i > 0) \]

\[\Rightarrow \text{Randomized test is necessary to set false alarm.} \]

Figure 118: The CDF of test statistic is staircase function (value of \(F_T \) over \(\gamma_1 \leq T(X) < \gamma_- \) is \(1 - \alpha_+ \)). Randomization is necessary for meeting FA constraint.

\[\alpha = P_0(T(X) > \gamma_-) + q(\alpha_+ - \alpha_-) \]

where \(\alpha_- \) and \(\gamma_- \) are related by

\[\alpha_- = P_0(\underbrace{T(X)}_{2B(n, \frac{1}{2}) - n} > \gamma_-) = 1 - B_{n, p} \left(\frac{\gamma_- + n}{2} \right) \]

and the randomization parameter \(q \) is as usual

\[q = \frac{\alpha - \alpha_-}{\alpha_+ - \alpha_-} \]

8.6 MOST POWERFUL UNBIASED (MPU) TESTS

Recall: a test \(\phi \) of level \(\alpha \) is an unbiased test if
Figure 119: ROC curve of LMP detector for testing positive mean $\theta > 0$ for a Laplace r.v.

$$E_{\theta} [\phi] \geq \alpha, \quad \text{all } \theta \in \Theta_1$$

A test ϕ of level α is uniformly MPU (UMPU) if for all $\theta \in \Theta_1$ its power function dominates that of all other unbiased tests of level α. By restricting the class of competing tests there is hope that a MP test may emerge among them. Unfortunately this is not much more frequent than in the unrestricted case. For more details on the theory and practice of unbiased testing see Lehmann [21].

8.7 LOCALLY MOST POWERFUL UNBIASED DOUBLE SIDED TEST

Consider double sided hypotheses:

$$
H_0 : \theta = \theta_0 \\
H_1 : \theta \neq \theta_0
$$

Observe: The power function of a good unbiased level α test ϕ should have global minimum at $\theta = \theta_0$.

Locally unbiased test optimization for 1D parameter θ

Constraints:

$$E_{\theta_0} [\phi] \leq \alpha, \quad \frac{d}{d\theta_0} E_{\theta_0} [\phi] = 0. \quad (84)$$

Subject to these constraints want to maximize curvature at θ_0

$$\frac{d^2}{d\theta_0^2} E_{\theta_0} [\phi]$$
Figure 120: Power curve of most powerful unbiased test (MPU) dominates that of all other unbiased tests of the same FA level.

Figure 121: Power curve of a good locally unbiased test has minimum at α with maximum curvature.
Using Lagrange multipliers it is easily shown that the test function ϕ which solves this constrained maximization problem has the form:

$$
\phi(x) = \begin{cases}
1, & d^2 f(x; \theta_0)/d\theta_0^2 > \eta(f(x; \theta_0) + \rho d f(x; \theta_0)/d\theta_0) \\
q, & d^2 f(x; \theta_0)/d\theta_0^2 = \eta(f(x; \theta_0) + \rho d f(x; \theta_0)/d\theta_0) \\
0, & d^2 f(x; \theta_0)/d\theta_0^2 < \eta(f(x; \theta_0) + \rho d f(x; \theta_0)/d\theta_0)
\end{cases}
$$

where ρ, η, q are selected to satisfy the two constraints.

In some cases, one can meet the constraints by selecting $\rho = 0$ and varying only $q \in [0,1]$ and $\eta \in [0,\infty)$. In this situation, the locally optimal test (85) reduces to the simpler (randomized) LRT form

$$
d^2 f(x; \theta_0)/d\theta_0^2 \begin{array}{c} \frac{f(x; \theta_0)}{f(x; \theta_0)} \\
H_1 \\
H_0 \end{array} \eta.
$$

Example 43 Double sided test against zero mean of Gaussian sample with known variance

Step 1: Find derivatives of p.d.f. of sufficient statistic X (Here for clarity we define its pdf as $f_X(v; \mu)$ for $v \in \mathbb{R}$).

$$
f_X(v; \mu) = \frac{1}{\sqrt{2\pi\sigma^2/n}} e^{-\frac{(v-\mu)^2}{2\sigma^2/n}}
$$

$$
df_X(v; \mu)/d\mu = (n/\sigma^2) (v - \mu) f_X(v; \mu)
$$

$$
d^2 f_X(v; \mu)/d\mu^2 = (n/\sigma^2) [n/\sigma^2(v - \mu)^2 - 1] f_X(v; \mu)
$$

Thus LMPU LRT is

$$
\frac{X^2 - \sigma^2/n}{\sigma^2/n + \rho X} \begin{array}{c} \frac{H_1}{H_0} \\
\eta \end{array}
$$

Step 2: Select ρ, η to satisfy constraints

First we attempt to satisfy constraints with $\rho = 0$ and η a free variable.

For this case LMPU LRT reduces to

$$
|X| \begin{array}{c} \frac{H_1}{H_0} \\
\gamma \end{array}
$$

(86)

Since

$$
X \sim \mathcal{N}(0, \sigma^2/n), \quad \text{under } H_0
$$

we have
\[
\alpha = 1 - P_0(-\gamma < \bar{X} \leq \gamma) = 2(1 - N(\gamma \sqrt{n}/\sigma))
\]

Or

\[
\gamma = \frac{\sigma}{\sqrt{n}} N^{-1}(1 - \alpha/2)
\]

Success! We can set threshold \(\gamma \) to achieve arbitrary \(P_F = \alpha \) with \(\rho = 0 \) and without randomization. Of course it still must be verified that the test (86) satisfies the second constraint in (84) which is that \(d/d\mu P_D(\mu)|_{\mu=0} = 0 \). This can be shown by establishing symmetry of the power function about \(\mu = 0 \). The details are left as an exercise.

Equivalent form of locally-unbiased test

\[
\frac{1}{n} \left| \sum_{i=1}^{n} X_i \right| > \gamma
\]

![Diagram](image.png)

Figure 122: Locally best unbiased double-sided test for non-zero Gaussian mean is a memoryless non-linearity followed by a summer and decision device.

Power:

Since

\[
\bar{X} \sim N(\mu, \sigma^2/n), \quad \text{under } H_1
\]

\[
P_D = 1 - P_\mu(-\gamma < \bar{X} \leq \gamma)
\]

\[
= 1 - [N(\sqrt{n} (\gamma - \mu)/\sigma) - N(\sqrt{n} (-\gamma - \mu)/\sigma)]
\]
\[= 1 - N(N^{-1}(1 - \alpha/2) - d) - N(N^{-1}(1 - \alpha/2) + d) \]

where as usual:

* \(d = \sqrt{n} \mu/\sigma \) is detectability index

\[\beta_{\text{UMP}} (\mu > 0) \]

\[\beta_{\text{LMP}} \]

\[\beta_{\text{UMP}} (\mu < 0) \]

\[\beta_{\text{LMP}} \]

Figure 123: Power curve of LMPU test for for non-zero Gaussian mean with known variance as a function of values of \(d \).

Remark:

* It can be shown that in the Gaussian example above the LMPU test is actually UMPU. See Ferguson [6].

The LMPU strategy can in principle be extended to multiple parameters as follows. Assume

\[\theta = [\theta_1, \ldots, \theta_p]^T \]

and let's test the hypotheses:

\[H_0 : \theta = \theta_0 \]

\[H_1 : \theta \neq \theta_0 \]

Constraints:

\[E_{\theta_0}[\phi] \leq \alpha, \quad \nabla_{\theta_0} E_{\theta_0}[\phi] = 0 \] \hspace{1cm} (87)

Maximize:

\[\text{trace} \left\{ \nabla^2_{\theta_0} E_{\theta_0}[\phi] \right\} \]
where trace \(\{A\} \) denotes trace of matrix \(A \).

This is a similar optimization as we encountered in proving the Neyman Pearson Lemma. However, now there are \(p+1 \) constraints as indicated in (87). One of them is due to the false alarm constraint and \(p \) of them are due to constraining the gradient vector to zero. The optimal test can be found by applying Lagrange multipliers and has the form

\[
\frac{\text{trace} \left\{ \nabla^2_{\theta_0} f(x; \theta_0) \right\}}{f(x; \theta_0) + \sum_{i=1}^{p} \rho_i \partial f(x; \theta_0) / \partial \theta_{0i}} \begin{cases} H_1 & \text{if } H_1 \geq H_0 \eta, \\ H_0 & \text{otherwise} \end{cases}
\]

where \(\rho_1, \ldots, \rho_p, \eta \) are selected to satisfy the constraints (possibly with randomization).

8.8 CFAR DETECTION

A sometimes reasonable condition is to require that tests have constant false alarm rate (CFAR), i.e. constant \(P_F(\theta) \) over \(\theta \in \Theta_0 \). Then one attempts to find a UMP CFAR test. The setup is as follows:

Constraint:

\[E_{\theta}[\phi] = \alpha, \quad \theta \in \Theta_0 \]

Maximize:

\[E_{\theta}[\phi], \quad \theta \in \Theta_1 \]

A effective methodology for finding CFAR tests is by the use of invariance principles [20]. CFAR tests are also known as similar tests and for more information see [21].

8.9 INVARINATE TESTS

Consider the general case where we have partition of \(\theta \)

\[\theta = [\varphi_1, \ldots, \varphi_p, \xi_1, \ldots, \xi_q]^T \]

nuisance parameters

and \(X \sim f(x; \varphi, \xi) \)

It is desired to test single sided hypotheses

\[
H_0 : \varphi = 0, \quad \xi = \xi_o \\
H_1 : \varphi > 0, \quad \xi = \xi_o
\]

where \(\xi_o \in \mathbb{R}^q \) is unknown \(\Rightarrow \) UMP does not usually exist.

Invariant tests seek to find a transformation (compression) of the data

\[
Z = Z(X)
\]

which satisfies:

Property 1. \(Z \) contains (almost) as much information concerning \(\varphi \) as \(X \)
Property 2. Distribution of Z is not a function of ξ.
Due to Property 2, if we throw away x and retain only
$Z \sim f(z; \varphi)$
then we are back to testing simpler hypotheses for which an UMP may exist

$$H_0 : \varphi = 0$$
$$H_1 : \varphi > 0$$

The theory of optimal invariant tests is treated in detail in [20] in which invariance is referred to as exact robustness.
For now we concentrate on a particular suboptimal “invariant” approach

8.9.1 GENERALIZED LIKELIHOOD RATIO TEST

We now turn to one of the most prevalent methods of dealing with detection for composite hypotheses. Unlike the previous methods, which were all motivated by solving a performance driven optimization problem, the generalized likelihood ratio test (GLRT) is better looked at as a heuristic principle than as a test strategy having assured optimality properties. However, as will be discussed below, the GLRT is a straightforward procedure and it does have asymptotic (large n) optimality properties that are major attractions.

We consider the general composite hypotheses

$$H_0 : \theta \in \Theta_0$$
$$H_1 : \theta \in \Theta_1$$

The GLRT can be defined as an “estimate-and-plug” procedure to test H_0 vs. H_1:

Step 1: Find good estimates $\hat{\theta}_0$ and $\hat{\theta}_1$ of θ under H_0 and H_1

Step 2: substitute these estimates into the LR statistic

Using this procedure we obtain the GLRT

$$\Lambda = \frac{f(x; \hat{\theta}_1)}{f(x; \hat{\theta}_0)} \frac{H_1}{H_0} > \eta$$

where η is selected to give FA level α

Any consistent estimators will ensure that the GLRT has favorable asymptotic properties. However, the most common case of the GLRT is when the estimators $\hat{\theta}_1$ and $\hat{\theta}_0$ are MLEs:

$$\Lambda_{GLR} = \frac{\max_{\theta \in \Theta_1} f(x; \theta)}{\max_{\theta \in \Theta_0} f(x; \theta)} \frac{H_1}{H_0} > \eta$$

Note: these MLE’s are constrained to $\theta \in \Theta_0$ and $\theta \in \Theta_1$, respectively.
For a simple hypothesis H_0 the GLRT reduces to

$$
\Lambda_{GLR} = \sup_{\theta \in \Theta_1} \frac{f(x; \theta)}{f(x; \theta_0)}
$$

$$
= \sup_{\theta \in \Theta_1} \Lambda(\theta) = \Lambda(\hat{\theta}_1).
$$

where

$$
\Lambda(\theta) = \frac{f(x; \theta)}{f(x; \theta_0)}
$$

8.9.2 ASYMPTOTIC PROPERTIES OF GLRT

The following properties are stated simply and without proof. For proofs of these properties the reader is referred to [23] or [3].

1. Since the MLE $\hat{\theta}$ is consistent estimator as $n \to \infty$ the GLRT is asymptotically UMP.

2. For double sided alternative hypothesis H_1 and i.i.d. observations $X = [X_1, \ldots, X_n]^T$ the GLR test statistic has a Chi-square limiting distribution as $n \to \infty$ [3]. Specifically, assume the partition

$$
\theta = [\varphi_1, \ldots, \varphi_p, \xi_1, \ldots, \xi_q]^T
$$

and consider the GLRT for

$$
H_0 : \varphi = \varphi_0, \quad \xi = \xi_o
$$

$$
H_1 : \varphi \neq \varphi_0, \quad \xi = \xi_o
$$

where ξ_o is unknown.

FACT: when the density $f(x; \theta)$ is smooth under H_0 it can be shown that for large n

$$
2 \ln \Lambda_{GLR}(X) \sim \chi_p, \quad \text{under } H_0
$$

(88)

3. If a UMP exists then the GLRT will be identical to it (See Bickel and Doksum [3]).

8.10 EXERCISES

8.1 The observations $\{x_i\}_{i=1}^n$ are i.i.d. exponential $x_i \sim f_\theta(x) = \beta e^{-\beta x}$, where $x, \beta \geq 0$. Consider testing the following single sided hypotheses

$$
H_0 : \beta = \beta_0
$$

$$
H_1 : \beta > \beta_0
$$

(a) First find the MP test of level α for the simple alternative $H_1 : \beta = \beta_1$ where $\beta_1 > \beta_0$. Express the threshold in terms of the Gamma distribution (distribution of n i.i.d. exponential r.v.s). Next establish that your test is UMP for the single sided composite H_1 above.
(b) Specialize the results of (a) to the case of a single observation \(n = 1 \) and derive the ROC curve. Plot your curve for \(\beta_1/\beta_0 = 1, 5, 10 \).

(c) Derive the locally most powerful test (LMPT) for the single sided hypotheses (maximize slope of power subject to FA constraint) and verify that it is identical to the UMP test.

(d) Now consider testing the double sided hypotheses

\[
H_0 : \beta = \beta_0 \\
H_1 : \beta \neq \beta_0
\]

Derive the LMPT (maximize curvature of power subject to FA constraint and zero slope condition). Derive the ROC for \(n = 1 \) and compare to the ROC of part (b) over the region \(\beta > \beta_0 \).

(e) Derive the GLRT for the double sided hypotheses of part (d). Compare to your answer obtained in part (d).

8.2 Let \(Z \) be a single observation having density function

\[p_\theta(z) = (2\theta z + 1 - \theta), \quad 0 \leq z \leq 1 \]

where \(-1 \leq \theta \leq 1\).

(a) Is there a uniformly most powerful test between the composite hypotheses

\[
H_0 : \theta = 0 \\
H_1 : \theta \neq 0
\]

and, if so, what is it?

(b) Find the generalized likelihood ratio test for these hypotheses.

(c) Now assume that under \(H_1 \) the parameter \(\theta \) has prior density \(p(\theta) = |\theta| I_{[-1,1]}(\theta) \) so that under \(H_1 \) the density of \(Z \) is \(f_1(z) = \int f(z|\theta)p_\theta(\theta)d\theta \), where \(f(z|\theta) = p_\theta(z) \). Find the MP test between hypotheses \(H_0 \) and this new \(H_1 \). What if the prior density were the asymmetric \(p(\theta) = \frac{1}{2}(\theta + 1)I_{[-1,1]}(\theta) \)?

8.3 A random variable \(X \) has density

\[f(x; \theta) = \frac{1 + \theta x}{2}, \quad -1 \leq x \leq 1 \]

where \(\theta \in [-1,1] \).

(a) Find the MP test of level \(\alpha \) for testing the simple hypotheses

\[
H_0 : \theta = \theta_0 \\
H_1 : \theta = \theta_1
\]

based on a single sample \(x \), where \(\theta_0 \in [-1,0] \) and \(\theta_1 \in (0,1] \) are known. Derive and plot the ROC when \(\theta_0 = 0 \).

(b) Is there a UMP test of level \(\alpha \), and if so what is it, for the following hypotheses?

\[
H_0 : \theta = 0 \\
H_1 : \theta > 0
\]
(c) Now consider testing the doubly composite hypotheses

\[H_0 : \theta \leq 0 \]
\[H_1 : \theta > 0 \]

Find the GLRT for the above hypotheses. Derive the threshold of the GLRT that ensures the level \(\alpha \) condition \(\max_{\theta \in [-1,0]} P_{FA}(\theta) \leq \alpha \).

8.4 Available is an i.i.d. sample of a Poisson r.v. with distribution \(p_\theta(k) = P_\theta(x_i = k) = \frac{\theta^k}{k!} e^{-\theta} \), \(k = 0, 1, 2, \ldots \).

(a) Find the GLRT for testing the hypotheses

\[H_0 : \theta = \theta_0 \]
\[H_1 : \theta \neq \theta_0 \]

Do not attempt to set the exact threshold for level \(\alpha \).

In the following parts of this exercise you will show how to set the GLRT threshold under the large \(n \) Chi-square approximation to the GLRT test statistic \(\Lambda = \max_{\theta \neq \theta_0} p_\theta(\mathbf{x}) / p_{\theta_0}(\mathbf{x}) \).

(b) Directly show that under \(H_0 \), the statistic \(2 \log \Lambda \) is asymptotically Chi-square with 1 d.f. by expanding \(\Lambda = \Lambda(\mathbf{x}) \) about the sample mean \(\bar{x} = \theta_0 \), neglecting all terms of order \((x_i - \theta_0)^3 \) and higher, and recalling that \((N(0,1))^2 \) is Chi-square with 1 d.f.

(c) Using the result of part (b) set the threshold of your GLRT in part (a).

(d) Using the asymptotic results of part (b) find the GLRT between

\[H_0 : \theta \leq \theta_0 \]
\[H_1 : \theta > \theta_0 \]

with threshold.

8.5 Let \(X_1, X_2, \ldots, X_n \) be i.i.d. random variables with the marginal density \(X_i \sim f(x) = \epsilon g(x) + (1 - \epsilon) h(x) \), where \(\epsilon \in [0,1] \) is a non-random constant and \(g(x) \) and \(h(x) \) are known density functions. It is desired to test the composite hypotheses

\[H_0 : \epsilon = 1/2 \] \hspace{1cm} (89)
\[H_1 : \epsilon > 1/2 \] \hspace{1cm} (90)

(a) Find the most powerful (MP) test between \(H_0 \) and the simple hypothesis \(H_1 : \epsilon = \epsilon_1 \), where \(\epsilon_1 > 1/2 \) (you needn’t solve for the threshold). Is your MP test a UMP test of the composite hypotheses (90)?

(b) Find the locally most powerful (LMP) test for (90). Show how you can use the CLT to set the threshold for large \(n \).

(c) Find the generalized LRT (GLRT) test for (90) in the case of \(n = 1 \). Compare to your answer in part (b).

8.6 Let \(\{X_i\}_{i=1}^n \) be i.i.d. following an exponential distribution

\[f(x; \theta) = \theta e^{-\theta x}, \quad x \geq 0 \]

with \(\theta > 0 \). You are to design a test of the hypotheses

\[H_0 : \theta = \theta_0 \]
\[H_1 : \theta \neq \theta_0 \]

Here we explore various testing strategies.
(a) Show that the GLRT reduces to a test on the sum of the X_i’s and derive the threshold to attain FA level α (Hint: the sum of n standard (mean = 1) exponential r.v.s is standard Gamma with parameter n).

(b) Now assume that H_0 and H_1 have equal prior probabilities $p = 1/2$ and that, conditioned on H_1, θ itself follows an exponential distribution of the form $f(\theta) = \beta e^{-\beta \theta}$, $\theta \geq 0$, where $\beta > 0$ is known. Find the form of the Bayes LRT (with threshold) which attains minimum probability of decision error. What happens as $\beta \to \infty$?

8.7 As in Exercise 4.24, let n i.i.d. realizations be available from the geometric mixture f_G specified by (48) and (49). Assume that ϕ_1, ϕ_2 are known and $\phi_1 \neq \phi_2$.

(a) Consider the hypothesis testing problem on f_G

$$H_0 : \epsilon = 0$$
$$H_1 : \epsilon > 0. \hspace{0.5cm} (91)$$

Does a level α UMP test for these hypotheses exist? If so what is it? If not derive a GLRT test. You must specify a threshold of level α (you can assume large n).

(b) Consider the hypothesis testing problem on f_G

$$H_0 : \epsilon = 1/2$$
$$H_1 : \epsilon \neq 1/2. \hspace{0.5cm} (92)$$

Does a level α UMP test for these hypotheses exist? If so what is it? If not derive a GLRT test. You must specify a threshold of level α (you can assume large n).

(c) Under the identical assumptions as in part (h) find a locally most powerful unbiased test of (92) based on n i.i.d. observations from f_G and compare to the GLRT.

8.8 Let X be a random variable with density $f(x; \theta) = (\theta + 1)x^\theta$, $x \in [0,1]$ and $\theta > -1$. Consider testing the hypotheses

$$H_0 : \theta = 0$$
$$H_1 : \theta = \theta_1 \hspace{0.5cm} (93)$$

(a) Find the most powerful (MP) test of level α for testing these hypotheses and derive expressions for the power function and ROC curve. Does the decision region of the MP test of level α depend on the value of θ_1? Does there exist a UMP test of level α for testing H_0 vs. $H_1 : \theta > 0$? How about for testing H_0 against $H_1 : \theta \neq 0$?

(b) Assuming priors on the hypotheses $p = P(H_0), 1 - p = P(H_1)$ find the optimal Bayes test of (93) under the assumption that $c_{00} = c_{11} = 0$ and $c_{01} = c_{10} = 1$ (minimal probability of error test). Find and plot the minimum risk (probability of error) $\pi^*(p)$ as a function of p for $\theta_1 = 1$. Using these results find the mini-max Bayes detector and its threshold for this value of θ.

(c) Find the locally most powerful test for testing H_0 vs. $H_1 : \theta > 0$ and derive an expression for the ROC curve.

(d) Find the GLRT for testing H_0 against $H_1 : \theta \neq 0$ and derive expressions for P_F and P_D in terms of the threshold and plot the ROC curve.
8.9 In this exercise you will explore the problem of detecting an anomaly in an image solely on
the basis of filtered measurements, e.g., a blurred version of the image. This type of problem
is related to “non-destructive testing” and arises in many situations that we encounter in our
daily lives, e.g., when we pass our suitcases through a security scanner at the airport. When
there is no noise and no anomaly the scanner outputs an image that lies in a known subspace,
the span of the columns of a known \(n \times p \) matrix \(H \), denoted \(\text{colspan}(H) \). You might just
think of the columns of \(H \) as blurry images of all the possible “benign” objects that one could
pack into a suitcase. An anomaly occurs when the image has components lying outside of
this subspace of benign objects. Of course, there is also additive noise that complicates our
ability to detect such anomalies.

Now we can state the anomaly detection problem as testing the hypotheses
\[
H_0 : \quad X = H\theta + W \\
H_1 : \quad X = \psi + H\theta + W, \tag{94}
\]
where we have defined the observed image as a vector \(X = [X_1, \ldots, X_n]^T \), the parameter
vector \(\theta = [\theta_1, \ldots, \theta_p]^T \) describes the specific linear combination of benign objects present in
the suitcase, \(\psi = [\psi_1, \ldots, \psi_n]^T \) describes the anomalous component of the image, and \(W \) is a
Gaussian noise vector with zero mean and covariance matrix \(\text{cov}(W) = \sigma^2 I \). We will assume
throughout this exercise that we know the matrix \(H \) and \(\sigma^2 \). We also assume that \(H \) is full
rank: \(\text{rank}(H) = p \leq n \).

(a) Assume that \(\theta \) is known. For known \(\psi \) what is the most powerful (MP) test of level
\(\alpha \) for testing \(H_0 \) vs. \(H_1 \)? Is the test you derived in part (a) UMP for testing \(H_0 \) vs.
\(H_1 : \quad X = c\psi + H\theta + W, \) where \(c > 0 \) is an unknown constant? Is the test UMP for
totally unknown \(\psi \)?

(b) Find an expression for and plot the ROC curve (hand drawn is fine) for the test derived in
(a). What function of \(\psi, \theta, H, \) and \(\sigma \) determines the shape of the ROC, i.e., detectability
index?

(c) Now assume that \(\theta \) is unknown but that \(\psi \) is known. Find the GLRT of level \(\alpha \) for testing
(94) and find its ROC curve. What function of \(\psi, \theta, H, \) and \(\sigma \) determines the shape of
the ROC, i.e., detectability index? What happens to the detectability when \(p = n \)?

(d) Now assume that \(\theta \) and \(\psi \) are both unknown. Find the GLRT for testing (94).

(e) Assume that \(\psi \) is known but \(\theta \) is unknown. Also assume that the anomaly vector satisfies
the constraint \(\psi^T \psi \leq \epsilon, \epsilon > 0 \). Using the results you derived in (c) find the least
detectable (giving lowest power) and the most detectable (giving highest power) anomaly
vectors.

8.10 Assume \(X \) is a Cauchy distributed random variable with density
\[
f(x; \theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}.
\]
You are to test the hypotheses \(H_0 : \theta = 0 \) vs. \(H_1 : \theta > 0 \). Derive the MP test of level \(\alpha \) for
testing \(H_0 : \theta = 0 \) vs. \(H_1 : \theta = \theta_1 \) for a fixed value \(\theta_1 > 0 \). Specify the decision region \(X_1 \)
for outcome \(X \) that will result in deciding \(H_1 \). Show that this decision region depends on \(\theta_1 \)
and therefore establish that no UMP exists.

End of chapter
9 GLRT FOR THE I.I.D. GAUSSIAN MODEL

Here we specialize to testing hypotheses on the mean and variance of the scalar Gaussian distribution based on iid samples. We will deal with the following scenarios:

* Tests on mean of a single population: σ^2 known
* Tests on mean of a single population: σ^2 unknown
* Tests on variance of a single population: μ known
* Tests on variance of a single population: μ unknown
* Tests on equality of means in two populations
* Tests on equality of variances in two populations
* Tests on correlation between two populations

References:
Bickel and Doksum [3]
Morrison [27]

Recall the form of the density of an i.i.d. Gaussian vector $\mathbf{X} = [X_1, \ldots, X_n]^T$ with mean μ and variance σ^2:

$$
 f(\mathbf{x}; \mu, \sigma) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right)
$$

9.1 TESTS ON THE MEAN: σ^2 KNOWN

Case I: $H_0 : \mu = \mu_o, H_1 : \mu > \mu_o$
Case II: $H_0 : \mu \leq \mu_o, H_1 : \mu > \mu_o$
Case III: $H_0 : \mu = \mu_o, H_1 : \mu \neq \mu_o$

We have already established that UMP test exists for Case I. Can show that same test is UMP for case II by checking monotone likelihood condition [21].

9.1.1 CASE III: $H_0 : \mu = \mu_o, H_1 : \mu \neq \mu_o$

$\mathbf{X} = [X_1, \ldots, X_n]^T$ i.i.d., $X_i \sim \mathcal{N}(\mu, \sigma^2)$
Here $\theta = \mu, \Theta = \mathbb{R}$ and we want to test

$$
 H_0 : \mu = \mu_o \\
 H_1 : \mu \neq \mu_o
$$

where μ_o is fixed and known.

$$
 \Lambda_{GLR} = \max_{\mu \neq \mu_o} \Lambda(\mu) = \max_{\mu \neq \mu_o} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right) / \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu_o)^2\right)
$$
We must consider two cases

1. \(\hat{\mu}_{ml} \neq \mu_o \)
2. \(\hat{\mu}_{ml} = \mu_o \)

Case 1. \(\hat{\mu}_{ml} \neq \mu_o \):
In this case it is obvious that

\[
\max_{\mu \neq \mu_o} \Lambda(\mu) = \Lambda(\hat{\mu}_{ml})
\]

Case 2. \(\hat{\mu}_{ml} = \mu_o \):
Since \(\Lambda(\mu) \) is a continuous function with maximum at \(\mu = \hat{\mu}_{ml} \) we have again

\[
\max_{\mu \neq \mu_o} \Lambda(\mu) = \lim_{\epsilon \to 0} \Lambda(\hat{\mu}_{ml} + \epsilon) = \Lambda(\hat{\mu}_{ml})
\]

Figure 124: For a continuous LR density \(f(x; \mu) \) the maximum of the likelihood ratio test statistic \(\lambda(\mu) \) occurs at the MLE \(\mu = \hat{\mu}_{ml} \)

Thus, since we know \(\hat{\mu}_{ml} \) is sample mean for Gaussian model

\[
\Lambda_{GLR} = \frac{\exp \left(-\frac{1}{2\sigma^2} \sum_{j=1}^{n} (x_j - \bar{x})^2 \right)}{\exp \left(-\frac{1}{2\sigma^2} \sum_{j=1}^{n} (x_j - \mu_o)^2 \right)}
\]

Now \(\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \) (recall that \(\bar{x} \) is the LLS estimator over all estimator functions that are independent of the data)

\[
\sum_{j=1}^{n} (x_j - \mu_o)^2 = \sum_{j=1}^{n} (x_j - \bar{x})^2 + n(\bar{x} - \mu_o)^2
\]
Hence,

$$\Lambda_{GLR} = \exp \left(\frac{n}{2\sigma^2} (\bar{x} - \mu_o)^2 \right)$$

and the GLRT is simply

$$\sqrt{n} \frac{|\bar{x} - \mu_o|}{\sigma} \begin{cases} H_1 & \gamma = N^{-1}(1 - \alpha/2) \\ H_0 \end{cases}$$

Identical to the LMPU (UMPU) test!

Note: as predicted by our results on asymptotic distribution of GLRT from the last chapter

$$2 \ln \Lambda_{GLR} = 2 \ln \left\{ \exp \left(\frac{n}{2\sigma^2} (\bar{X}_i - \mu_o)^2 \right) \right\}$$

$$= \left(\frac{\bar{X}_i - \mu_o}{\sigma/\sqrt{n}} \right)^2 \sim N(0,1)$$

which is distributed as a central Chi-square with 1 d.f.

A general lesson learned for GLRT’s:

⇒ for testing double sided hypotheses of form

$$H_0 : \theta = \theta_o$$
$$H_1 : \theta \neq \theta_o$$

if LR $\Lambda(\theta)$ is a continous function of θ then

$$\max_{\theta \neq \theta_o} \Lambda(\theta) = \max_{\theta} \Lambda(\theta) = \Lambda(\hat{\theta}_{ml})$$

9.2 TESTS ON THE MEAN: σ^2 UNKNOWN

Case I: $H_0 : \mu = \mu_o, \sigma^2 > 0$, $H_1 : \mu > \mu_o, \sigma^2 > 0$

Case II: $H_0 : \mu \leq \mu_o, \sigma^2 > 0$, $H_1 : \mu > \mu_o, \sigma^2 > 0$

Case III: $H_0 : \mu = \mu_o, \sigma^2 > 0$, $H_1 : \mu \neq \mu_o, \sigma^2 > 0$
9.2.1 CASE I: \(H_0 : \mu = \mu_o, \sigma^2 > 0, \ H_1 : \mu > \mu_o, \sigma^2 > 0 \)

From properties of the MLE for Gaussian mean and variance we can easily show

\[
\Lambda_{GLR} = \frac{\max_{\mu > \mu_o, \sigma^2 > 0} f(x; \mu, \sigma^2)}{\max_{\sigma^2 > 0} f(x; \mu_o, \sigma^2)} = \begin{cases} 1, & \overline{x} \leq \mu_o \\ \frac{f(x; \mu_o, (x_i - \overline{x})^2)}{f(x; \mu_o, (x_i - \mu_o)^2)}, & \overline{x} > \mu_o \end{cases}
\]

where \(f(x; \mu, \sigma^2) \) is the \(\mathcal{N}(\mu, \sigma^2) \) density and (as usual)

\[
\overline{x} = n^{-1} \sum_{i=1}^{n} x_i \\
(x_i - t)^2 = n^{-1} \sum_{i=1}^{n} (x_i - t)^2 = \hat{\sigma}^2
\]

Now

\[
\frac{f(x; \overline{x}, (x_i - \overline{x})^2)}{f(x; \mu_o, (x_i - \mu_o)^2)} = \left(\frac{(x_i - \mu_o)^2}{(x_i - \overline{x})^2} \right)^{n/2} = \left(1 + \frac{(\overline{x} - \mu_o)^2}{(x_i - \overline{x})^2} \right)^{n/2} = (1 + T^2(\overline{x}))^{n/2}
\]

where

\[
T(\overline{x}) = \frac{\overline{x} - \mu_o}{\sqrt{(x_i - \overline{x})^2}}
\]

Now, since \(T^2(\overline{x}) \) is monotone in \(T(\overline{x}) \) for \(\overline{x} > \mu_o \)

GLRT is

\[
T(\overline{x}) = \frac{\overline{x} - \mu_o}{\sqrt{(x_i - \overline{x})^2}} \begin{cases} H_1 \ \text{ rejects} & \gamma \ \text{H}_0 \\ H_0 \ \text{fails to reject} & \gamma' \end{cases}
\]

which is equivalent to the one sided t-test:

\[
\frac{\sqrt{n} (\overline{x} - \mu_o)}{s} \begin{cases} H_1 \ \text{ rejects} & \gamma' \ \text{H}_0 \\ H_0 \ \text{fails to reject} & \gamma \end{cases}
\]
where recall that s^2 is the *unbiased* variance estimate for unknown mean

$$s^2 = (n - 1)^{-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Figure 125: *The one sided t-test for detection of mean exceeding μ_0 when variance is unknown*

PERFORMANCE:

Under H_0 we have

$$T(X) = \frac{\mathcal{N}(0,1) - \sigma}{\sqrt{n} \sqrt{(\overline{X}_i - \mu_0)}}$$

$$= \frac{\chi_n - \chi_{n-1} \sigma^2}{\sqrt{\chi_{n-1}/(n-1)}}$$

$$= \mathcal{N}(0,1)$$

where T_{n-1} is Student-t r.v. with $n - 1$ d.f.

Thus

$$\alpha = P_0(T(X) > \gamma) = 1 - T_{n-1}(\gamma)$$

so that

$$\gamma = T_{n-1}^{-1}(1 - \alpha)$$
Under H_1 we have:
* $\bar{X_i} - \mu_o$ has mean $\mu - \mu_o$ which is no longer zero.
$\Rightarrow T(\bar{X})$ follows the non-central Student-t distribution
$T_{n,d}$ with $n - 1$ d.f. and non-centrality parameter

$$d = \frac{\sqrt{n}(\mu_1 - \mu_0)}{\sigma}$$

Hence, the power of the one sided t-test is

$$\beta = 1 - T_{n-1,d}(T_{n-1}^{-1}(1 - \alpha))$$

Note: for large n, $T_{n-1,d} \to N(1,1)$

\Rightarrow power function goes to that of single sided hypothesis on μ with σ^2 known.

![Figure 126: Power curve for one sided t-test](image)

9.2.2 **CASE II:** $H_0: \mu \leq \mu_o, \sigma^2 > 0$, $H_1: \mu > \mu_o, \sigma^2 > 0$

Can show that GLRT has identical one-sided t-test form as in Case I. (Exercise)

$$\frac{\sqrt{n}(\bar{x} - \mu_o)}{s} \overset{H_1}{\overset{H_0}{\gtrless}} T_{n-1}^{-1}(1 - \alpha)$$

9.2.3 **CASE III:** $H_0: \mu = \mu_o, \sigma^2 > 0$, $H_1: \mu \neq \mu_o, \sigma^2 > 0$

This case is very similar to the double sided case for known σ^2.

We obtain GLRT as double sided t-test
\[
\frac{\sqrt{n}|\bar{X} - \mu_0|}{s} \sim^H \begin{cases}
H_1 & T_{n-1}^{-1}(1 - \alpha/2) < H_0 \end{cases}
\]

with power curve

\[
\beta = 1 - T_{n-1,d}(T_{n-1}^{-1}(1 - \alpha/2)) + T_{n-1,-d}(T_{n-1}^{-1}(1 - \alpha/2))
\]

For large \(n \) this converges to the power curve derived in the case of known variance.

9.3 TESTS ON VARIANCE: KNOWN MEAN

CASE I: \(H_0 : \sigma^2 = \sigma^2_o, H_1 : \sigma^2 > \sigma^2_o \)

CASE II: \(H_0 : \sigma^2 \leq \sigma^2_o, H_1 : \sigma^2 > \sigma^2_o \)

CASE III: \(H_0 : \sigma^2 = \sigma^2_o, H_1 : \sigma^2 \neq \sigma^2_o \)

9.3.1 CASE I: \(H_0 : \sigma^2 = \sigma^2_o, H_1 : \sigma^2 > \sigma^2_o \)

Similarly to the case studied for one sided tests of the mean

* the continuity of the Gaussian p.d.f. \(f(x; \mu, \sigma^2) \) as a function of \(\sigma^2 \) gives:

\[
\Lambda_{GLR} = \frac{\max_{\sigma^2 > \sigma^2_o} f(x; \mu, \sigma^2)}{f(x; \mu, \sigma^2_o)}
\]

\[
= \begin{cases}
\frac{f(x; \mu, \hat{\sigma}^2_\mu)}{f(x; \mu, \sigma^2_o)}, & \hat{\sigma}^2_\mu > \sigma^2_o \\
1, & \hat{\sigma}^2_\mu \leq \sigma^2_o
\end{cases}
\]

where \(\hat{\sigma}^2_\mu \) is the unbiased estimate of the variance for known mean

\[
\hat{\sigma}^2_\mu = n^{-1} \sum_{i=1}^{n} (x_i - \mu)^2
\]

After some simple manipulation the GLRT takes the form

\[
\Lambda_{GLR} = \left(\frac{1}{\max\{\hat{\sigma}^2_\mu / \sigma^2_o, 1\}} e^{\max(\hat{\sigma}^2_\mu / \sigma^2_o, 1) - 1} \right)^{n/2}
\]

As the function \(e^u / u \) is monotone increasing over \(u \geq 1 \), the GLRT reduces to
Figure 127: The function e^u/u is monotone increasing over $u \geq 1$.

Figure 128: The GLRT always chooses H_1 for $\gamma < 1$.
\[
\max\{\frac{\hat{\sigma}^2}{\sigma^2_o}, 1\} \gtrless_{H_0} \gamma
\]

Now if \(\gamma \leq 1\) then false alarm \(\alpha = 1\).
Hence we can select \(\gamma > 1\) and GLRT reduces to the single sided Chi-square test

\[
T(x) = \frac{n\hat{\sigma}^2}{\sigma^2_o} \gtrless_{H_0} \chi^{-1}_n(1 - \alpha)
\]

which we know from previous work is actually an UMP test.
An alternative form of the UMP test is a single sided energy detector

\[
\sum_{i=1}^{n} (x_i - \mu)^2 \gtrless_{H_0} \gamma
\]

Figure 129: GLRT for one sided test of positive shift in variance is an energy detector.

9.3.2 **CASE II:** \(H_0: \sigma^2 \leq \sigma^2_o, H_1: \sigma^2 > \sigma^2_o\)

Now we have

\[
\Lambda_{GLR} = \frac{\max_{\sigma^2 > \sigma^2_o} f(x; \mu, \sigma^2)}{\max_{\sigma^2 \leq \sigma^2_o} f(x; \mu, \sigma^2)}
\]
\[
\begin{align*}
\Lambda_{GLR} &= \begin{cases}
\left(\frac{1}{\hat{\sigma}^2_\mu/\sigma^2_o} e^{\frac{\hat{\sigma}^2_\mu}{\sigma^2_o}-1}\right)^{n/2}, & \hat{\sigma}^2_\mu > \sigma^2_o \\
\left(\frac{\hat{\sigma}^2_\mu}{\sigma^2_o} e^{1-\frac{\hat{\sigma}^2_\mu}{\sigma^2_o}}\right)^{n/2}, & \hat{\sigma}^2_\mu \leq \sigma^2_o
\end{cases}
\end{align*}
\]

Figure 130: The function \(ue^{-u}\) is monotone increasing over \(0 \leq u \leq 1\).

As \(e^u/u\) is monotone increasing over \(u > 1\) and \(ue^{-u}\) is monotone increasing over \(0 \leq u \leq 1\), the GLRT reduces to the same form as derived for Case I:

\[
\frac{n \hat{\sigma}^2_\mu}{\sigma^2_o} \begin{cases}
> H_1, & \quad & H_0 \quad \gamma
\end{cases}
\]

and the rest of the analysis is identical to before.

9.3.3 CASE III: \(H_0 : \sigma^2 = \sigma_o^2, \quad H_1 : \sigma^2 \neq \sigma_o^2\)

Now, we have
\[\Lambda_{GLR} = \frac{\max_{\sigma^2 \neq \sigma_0^2} f(x; \mu, \sigma^2)}{f(x; \mu, \sigma_0^2)} = \frac{f(x; \mu, \hat{\sigma}^2)}{f(x; \mu, \sigma_0^2)} = \left(\frac{1}{\hat{\sigma}_\mu^2/\sigma_0^2} e^{\hat{\sigma}^2 / \sigma_0^2 - 1} \right)^{n/2} \]

Figure 131: As \(e^u / u \) is convex the decision \(H_0 \) region of double sided Chi-square test is an interval \([\gamma_-, \gamma_+].\)

As the function \(e^u / u \) is convex over \(u \geq 0 \) the \(H_0 \) decision region can be written in the form:

\[\gamma_- \leq \frac{\hat{\sigma}^2}{\sigma_0^2} \leq \gamma_+ \]

where \(\gamma_- \) and \(\gamma_+ \) are selected to give \(P_F = \alpha. \)

A common choice of thresholds is (\(\alpha \leq \frac{1}{2} \)):

\[\begin{align*}
\gamma_- &= \frac{1}{n} \chi_n^{-1}(\alpha/2) \\
\gamma_+ &= \frac{1}{n} \chi_n^{-1}(1 - \alpha/2)
\end{align*} \]

which gives equal area (\(\alpha/2 \)) to the upper and lower tails of the \(\chi_n \) distribution corresponding to a total FA probability \(P_F = \alpha \) (see Fig. 132).

Power of double sided GLRT of variance:
Figure 132: Quantiles of Chi-square specify the thresholds γ_- and γ_+ for double sided test of variance.

Assume that the true value of $\sigma^2 > \sigma_o^2$ under H_1 is $\sigma^2 = \sigma_1^2$. Then

$$\beta = 1 - P(n\gamma_\leq \frac{n\hat{\sigma}_\mu^2}{\sigma_o^2} \leq n\gamma_+|H_1)$$

$$= 1 - P(n\gamma_- \leq \frac{n\hat{\sigma}_\mu^2}{\sigma_1^2} \left(\frac{\sigma^2_1}{\sigma^2_o}\right) \leq n\gamma_+|H_1)$$

$$= 1 - \chi_n\left(n\gamma_+\frac{\sigma^2_o}{\sigma^2_1}\right) + \chi_n\left(n\gamma_-\frac{\sigma^2_o}{\sigma^2_1}\right).$$

9.4 TESTS ON VARIANCE: UNKNOWN MEAN

CASE I: $H_0: \sigma^2 = \sigma_o^2$, $\mu \in \mathbb{R}$, $H_1: \sigma^2 > \sigma_o^2$, $\mu \in \mathbb{R}$

CASE II: $H_0: \sigma^2 < \sigma_o^2$, $\mu \in \mathbb{R}$, $H_1: \sigma^2 > \sigma_o^2$, $\mu \in \mathbb{R}$

CASE III: $H_0: \sigma^2 = \sigma_o^2$, $\mu \in \mathbb{R}$, $H_1: \sigma^2 \neq \sigma_o^2$, $\mu \in \mathbb{R}$

9.4.1 CASE I: $H_0: \sigma^2 = \sigma_o^2$, $H_1: \sigma^2 > \sigma_o^2$

We now have

$$\Lambda_{GLR} = \frac{\max_{\sigma^2 > \sigma_o^2, \mu} f(\bar{x}; \mu, \sigma^2)}{\max_{\mu} f(\bar{x}; \mu, \sigma_o^2)}$$

$$= \begin{cases}
\frac{f(\bar{x}; \hat{\sigma}^2)}{f(\bar{x}; \hat{\sigma}_o^2)}, & \hat{\sigma}^2 > \sigma_o^2 \\
1, & \hat{\sigma}^2 \leq \sigma_o^2 \end{cases}$$
where now

\[\hat{\sigma}^2 = n^{-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

This is identical to the case of known \(\mu \) with \(\mu \) replaced by \(\bar{x} \).

Hence, referring to work done for that case, we immediately obtain the single sided GLRT

\[T(\bar{x}) = \frac{n\hat{\sigma}^2}{\sigma_o^2} = \frac{(n-1)s^2}{\sigma_o^2} \]

\[H_1 \quad \gamma \]

\[H_0 \]

PERFORMANCE

Under \(H_0 \),

\[* \quad T(X) \text{ is a Chi-square r.v. with } n - 1 \text{ d.f. and thus} \]

\[\gamma = \chi_{n-1}^{-1}(1 - \alpha) \]

Under \(H_1 \),

\[* \quad T(X) \text{ is Chi-square with } n - 1 \text{ d.f. (scaled by } \sigma^2/\sigma_o) \text{ so} \]

\[\beta = 1 - \chi_{n-1}^{-1}(\gamma \sigma_o^2/\sigma^2) \]

\[= 1 - \chi_{n-1}^{-1}(1 - \alpha) \sigma_o^2/\sigma^2 \]

9.4.2 CASE II: \(H_0 : \sigma^2 < \sigma_o^2, \mu \in \mathbb{R}, \quad H_1 : \sigma^2 > \sigma_o^2, \mu \in \mathbb{R} \)

GLRT is identical to Case I.

9.4.3 CASE III: \(H_0 : \sigma^2 = \sigma_o^2, \mu \in \mathbb{R}, \quad H_1 : \sigma^2 \neq \sigma_o^2, \mu \in \mathbb{R} \)

The derivation of the GLRT is completely analogous to Case III for known mean.

The \(H_0 \) decision region is identical to before except that sample variance replaces \(\hat{\sigma}_\mu^2 \), and the test statistic now has only \(n - 1 \) d.f.

\[\chi_{n-1}(\alpha/2) \leq \frac{(n-1)s^2}{\sigma_o^2} \leq \chi_{n-1}(1 - \alpha/2) \]

The power function is identical to previous Case III for known \(\mu \) except that \(\chi_n \) CDF is replaced by \(\chi_{n-1} \) CDF.
9.5 TESTS ON EQUALITY OF MEANS: UNKNOWN VARIANCE

Two i.i.d. independent samples
\(X = [X_1, \ldots, X_{n_1}]^T, X_i \sim \mathcal{N}(\mu_x, \sigma^2) \)
\(Y = [Y_1, \ldots, Y_{n_2}]^T, Y_i \sim \mathcal{N}(\mu_y, \sigma^2) \)

Case I: \(H_0: \mu_x = \mu_y, \sigma^2 > 0, H_1: \mu_x \neq \mu_y, \sigma^2 > 0 \)
Case II: \(H_0: \mu_x \leq \mu_y, \sigma^2 > 0, H_1: \mu_x > \mu_y, \sigma^2 > 0 \)

\(X, Y \) have the joint density

\[
f(x, y; \mu_x, \mu_y, \sigma_x, \sigma_y) = \left(\frac{1}{2\pi \sigma_x^2} \right)^{n_1/2} \left(\frac{1}{2\pi \sigma_y^2} \right)^{n_2/2} \exp \left(-\frac{1}{2\sigma_x^2} \sum_{i=1}^{n_1} (x_i - \mu_x)^2 - \frac{1}{2\sigma_y^2} \sum_{i=1}^{n_2} (y_i - \mu_y)^2 \right)
\]

where \(n = n_1 + n_2 \).

9.5.1 CASE I: \(H_0: \mu_x \leq \mu_y, \sigma^2 > 0, H_1: \mu_x > \mu_y, \sigma^2 > 0 \)

GLR statistic is given by

\[
\Lambda_{GLR} = \frac{\max_{\mu_x \neq \mu_y, \sigma^2 > 0} f(x, y; \mu_x, \mu_y, \sigma^2)}{\max_{\mu, \sigma^2 > 0} f(x, y; \mu, \mu, \sigma^2)} = \frac{\max_{\mu_x, \mu_y, \sigma^2 > 0} f(x, y; \mu_x, \mu_y, \sigma^2)}{\max_{\mu, \sigma^2 > 0} f(x, y; \mu, \mu, \sigma^2)}
\]

Now note: MLE for case \(\mu_x \neq \mu_y \) is

\[
\hat{\mu}_x = \bar{x} = n_1^{-1} \sum_{i=1}^{n_1} x_i
\]
\[
\hat{\mu}_y = \bar{y} = n_2^{-1} \sum_{i=1}^{n_2} y_i
\]
\[
\hat{\sigma}_1^2 = n^{-1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2 + n^{-1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2 = \frac{n_1 \sigma_x^2 + n_2 \sigma_y^2}{n}
\]

while MLE for case \(\mu_x = \mu_y = \mu \) is
\hat{\mu} = n^{-1} \sum_{i=1}^{n_1} x_i + n^{-1} \sum_{i=1}^{n_2} y_i = \frac{n_1}{n} \hat{\mu}_x + \frac{n_2}{n} \hat{\mu}_y

\hat{\sigma}_0^2 = n^{-1} \sum_{i=1}^{n_1} (x_i - \hat{\mu})^2 + n^{-1} \sum_{i=1}^{n_2} (y_i - \hat{\mu})^2

= \hat{\sigma}_1^2 + \frac{n_1}{n} \hat{\mu}^2 - \bar{x}^2 + \frac{n_2}{n} \hat{\mu}^2 - \bar{y}^2

Plugging these MLE's into numerator and denominator of LR statistic, obtain after some algebra

\Lambda_{GLR} = \left(\frac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2} \right)^{n/2} c

= \left(\frac{\hat{\sigma}_1^2 + \frac{n_1}{n} (\hat{\mu} - \bar{x})^2 + \frac{n_2}{n} (\hat{\mu} - \bar{y})^2}{\hat{\sigma}_1^2} \right)^{n/2} c

So that one form of GLRT test is

\frac{n_1}{n} (\hat{\mu} - \bar{x})^2 + \frac{n_2}{n} (\hat{\mu} - \bar{y})^2
\frac{n_1}{n} \hat{\sigma}_x^2 + \frac{n_2}{n} \hat{\sigma}_y^2

\begin{cases} \frac{n_1}{n} (\hat{\mu} - \bar{x})^2 + \frac{n_2}{n} (\hat{\mu} - \bar{y})^2 & H_1 \\ \frac{n_1}{n} \hat{\sigma}_x^2 + \frac{n_2}{n} \hat{\sigma}_y^2 & H_0 \end{cases} \gamma

Figure 133: Block diagram of test of equality of means of two populations.

To reduce this to a well known test statistic we use the identities

\hat{\mu} - \bar{x} = \frac{n_1}{n} (\bar{y} - \bar{x})
\[
\hat{\mu} - \bar{y} = -\frac{n_2}{n}(\bar{y} - \bar{x})
\]

to obtain final form of GLRT

\[
T(x, y) = \left| \frac{\sqrt{\frac{n_1n_2}{n}(y - \bar{x})}}{s_2} \right|^{H_1 > H_0} \gamma
\]
(95)

where we have defined the pooled sample variance

\[
s_2^2 = \frac{1}{n - 2} \left(\sum_{i=1}^{n_1} (x_i - \hat{\mu})^2 + \sum_{i=1}^{n_2} (y_i - \hat{\mu})^2 \right)
\]

The test (95) is the well known paired \textit{t-test}.

PERFORMANCE

Under \(H_0 \):

\[
\overline{y_i} - \overline{x_i} = \mathcal{N}(0, \sigma^2) \cdot \sqrt{(1/n_1 + 1/n_2)}
\]

and the test statistic is of the form of a \(|\text{Student-t}|\) with \(n_1 + n_2 - 2 = n - 2 \) d.f.

\[
T(X, Y) = \left| \frac{\mathcal{N}(0, 1)}{\sqrt{\chi_{n-2}/n - 2}} \right|
\]

Setting the threshold is now straightforward

\[
\alpha = P_0(-\gamma < T_{n-2} \leq \gamma)
\]

\(\Rightarrow \gamma = T_{n-2}^{-1}(1 - \alpha/2) \)

so that we have level \(\alpha \) test

\[
\left| \frac{\sqrt{\frac{n_1n_2}{n}(y - \bar{x})}}{s_2} \right|^{H_1 > H_0} T_{n-2}^{-1}(1 - \alpha/2)
\]

Under \(H_1 \) the test statistic is \(|\text{non-central Student-t}|\) with \(n - 2 \) d.f and non-centrality \(d = \sqrt{n_1n_2/n}|\mu_y - \mu_x|/\sigma \).

9.5.2 CASE II: \(H_0 : \mu_y \leq \mu_x, \sigma^2 > 0, \) \(H_1 : \mu_y > \mu_x, \sigma^2 > 0 \)

In an analogous manner to before: find that the GLRT reduces to the one sided \(t \)-test

\[
\left| \frac{\sqrt{\frac{n_1n_2}{n}(y - \bar{x})}}{s_2} \right|^{H_1 > H_0} \gamma = T_{n-2}^{-1}(1 - \alpha)
\]
9.6 TESTS ON EQUALITY OF VARIANCES

Two i.i.d. independent samples

* \(X = [X_1, \ldots, X_{n_1}]^T, X_i \sim \mathcal{N}(\mu_x, \sigma_x^2) \)

* \(Y = [Y_1, \ldots, Y_{n_2}]^T, Y_i \sim \mathcal{N}(\mu_y, \sigma_y^2) \)

* \(\mu_x, \mu_y \) unknown

Case I: \(H_0 : \sigma_x^2 = \sigma_y^2, H_1 : \sigma_x^2 \neq \sigma_y^2 \)
Case II: \(H_0 : \sigma_x^2 = \sigma_y^2, H_1 : \sigma_x^2 > \sigma_y^2 \)

9.6.1 CASE I: \(H_0 : \sigma_x^2 = \sigma_y^2, H_1 : \sigma_x^2 \neq \sigma_y^2 \)

The GLR statistic is

\[
\Lambda_{GLR} = \frac{\max_{\sigma_x^2 \neq \sigma_y^2, \mu_x, \mu_y} f(x, y; \mu_x, \mu_y, \sigma_x^2, \sigma_y^2)}{\max_{\sigma_x^2 = \sigma_y^2, \mu_x, \mu_y} f(x, y; \mu, \mu, \sigma_x^2, \sigma_y^2)}
\] \hspace{1cm} (96)

\[
= \frac{f(x, y; \tilde{\mu}, \tilde{\mu}, \tilde{\sigma}_x^2, \tilde{\sigma}_y^2)}{f(x, y; \tilde{\mu}, \tilde{\mu}, \tilde{\sigma}_x^2, \tilde{\sigma}_y^2)}
\] \hspace{1cm} (97)

where we have defined the pooled variance estimate \(\tilde{\sigma}^2 \) as

\[
\tilde{\sigma}^2 = \frac{n_1}{n} \sigma_x^2 + \frac{n_2}{n} \sigma_y^2.
\]

The expression (98) is easily shown to reduce to

\[
\Lambda_{GLR} = \sqrt{\frac{(\tilde{\sigma}^2)^{n_1+n_2}}{\left(\frac{\tilde{\sigma}_x^2}{n_1} + \frac{\tilde{\sigma}_y^2}{n_2}\right)^{n_1+n_2}}} \eta
\] \hspace{1cm} (99)

Thus we obtain the equivalent test:

\[
\left(\left(1 + \frac{n_2\tilde{\sigma}_y^2}{n_1\tilde{\sigma}_x^2} \right)^{n_1} \cdot \left(1 + \frac{1/u}{n_1\tilde{\sigma}_x^2} \right)^{n_2} \right) \eta \hspace{1cm} (99)
\]

By investigating stationary points of \(g(u) \)

\(\Rightarrow \) function \(g(u) = (1 + u)^{n_1} (1 + 1/u)^{n_2} \) is convex and has a single minimum over the range \(u \geq 0 \)

Specifically, note that:
Figure 134: The double sided test statistic is of the form \(g(u) \) which is convex over \(u \geq 0 \) with minimum at \(u = n_2/n_1 \).

\[
g'(u) = \frac{n_1}{u^2} (1 + u)^{n_1 - 1} (1 + 1/u)^{n_2 - 1} (u^2 + (1 - n_2/n_1)u - n_2/n_1)
\]

has only one positive root which occurs at \(u = n_2/n_1 \).

Hence the \(H_0 \) decision region for the GLRT is of the form

\[
\gamma_- \leq \frac{n_2 \hat{\sigma}_y^2}{n_1 \hat{\sigma}_x^2} \leq \gamma_+
\]

which is equivalent to a Fisher F-test

\[
\gamma_- \leq \frac{s_y^2}{s_x^2} \leq \gamma_+
\]

Where the thresholds can be set according to

\[
\gamma_- = \mathcal{F}_{n_1-1,n_2-1}^{-1}(\alpha/2)
\]

\[
\gamma_+ = \mathcal{F}_{n_1-1,n_2-1}^{-1}(1 - \alpha/2)
\]
9.6.2 CASE II: $H_0: \sigma_x^2 = \sigma_y^2$, $H_1: \sigma_y^2 > \sigma_x^2$

We now have

$$
\Lambda_{GLR} = \frac{\max_{\sigma_y^2 > \sigma_x^2, \mu_x, \mu_y} f(x, y; \mu_x, \mu_y, \sigma_x^2, \sigma_y^2)}{\max_{\sigma_y^2 = \sigma_x^2, \mu_x, \mu_y} f(x, y; \mu, \mu, \sigma_x^2, \sigma_y^2)}
$$

$$
= \begin{cases}
\sqrt{(\hat{\sigma}_y^2)^{n_1+n_2} / (\hat{\sigma}_x^2)^{n_1} (\hat{\sigma}_y^2)^{n_2}}, & \hat{\sigma}_y^2 > \hat{\sigma}_x^2 \\
1, & \hat{\sigma}_y^2 = \hat{\sigma}_x^2
\end{cases}
$$

From the study of the previous case we know that the function $g(u)$ defined in (99) is convex with minimum at n_2/n_1.

This implies that Λ_{GLR} is monotone increasing in $\hat{\sigma}_y^2 / \hat{\sigma}_x^2$ over the range $\hat{\sigma}_y^2 > \hat{\sigma}_x^2$.

Thus we obtain that the GLRT is a single sided F-test

$$
\frac{s_y^2}{s_x^2} \begin{cases}
H_1 \\
< \\
H_0
\end{cases} \gamma
$$

where

$$
\gamma = \mathcal{F}_{n_2-1, n_1-1}^{-1}(1 - \alpha)
$$
9.7 TESTS ON CORRELATION

Two i.i.d. samples
\[\mathbf{X} = [X_1, \ldots, X_n]^T, \]
\[\mathbf{Y} = [Y_1, \ldots, Y_n]^T, \]
\[\mathbf{Z}_i = [X_i, Y_i]^T \sim \mathcal{N}_2(\mu, \mathbf{R}) \]
\[\mu = [\mu_x, \mu_y]^T, \quad \mathbf{R} = \begin{bmatrix} \sigma^2_x & \sigma_{xy} \\ \sigma_{yx} & \sigma^2_y \end{bmatrix} \]

Correlation coefficient \(\rho \)
\[\rho = \frac{\sigma_{xy}}{\sigma_x \sigma_y} \]

Case I: \(H_0 : \rho = 0, \ H_1 : \rho \neq 0 \)
Case II: \(H_0 : \rho = 0, \ H_1 : \rho > 0 \)

The sequence of i.i.d. vectors \(\{\mathbf{Z}_i\}_{i=1}^n \) has the bivariate density
\[
f(x, y; \mu, \mathbf{R}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \mathbf{R}}} \exp \left(-\frac{1}{2} \sum_{i=1}^n (z_i - \mu)^T \mathbf{R}^{-1} (z_i - \mu) \right)
\]

9.7.1 CASE I: \(H_0 : \rho = \rho_0, \ H_1 : \rho \neq \rho_0 \)

We will show later that
* the maximum of the bivariate Gaussian p.d.f. \(f(x, y; \mu, \mu, \mathbf{R}) \) over \(\mu_x, \mu_y \) and \(\mathbf{R} \) is equal to
\[
\max_{\mathbf{R}, \mu_x, \mu_y} f(x, y; \mu, \mu, \mathbf{R}) = \left(\frac{1}{(2\pi)^2 \sqrt{\det \mathbf{R}}} \right)^{n/2} e^{-n/2}
\]
and maximum is attained by the joint ML estimates

\[
\hat{\mu}_x = \bar{x} \\
\hat{\mu}_y = \bar{y} \\
\hat{\mathbf{R}} = \frac{1}{n} \sum_{i=1}^n \begin{bmatrix} x_i \\ y_i \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} = \begin{bmatrix} \hat{\sigma}^2_x & \hat{\sigma}_{xy} \\ \hat{\sigma}_{yx} & \hat{\sigma}^2_y \end{bmatrix}
\]

where
\[
\hat{\sigma}_{xy} = n^{-1} \sum_{i=1}^n (x_i y_i - \bar{x} \bar{y})
\]
Using this we can easily find GLR statistic

\[\Lambda_{GLR} = \frac{\max_{R,\mu_x,\mu_y} f(x,y;\mu_x,\mu_y, R)}{\max_{\text{diagonal } R,\mu_x,\mu_y} f(x,y;\mu_x,\mu_y, R)} \]

\[= \left(\frac{\hat{\sigma}_x^2 \hat{\sigma}_y^2}{\hat{\sigma}_x^2 \hat{\sigma}_y^2 - \hat{\sigma}_{xy}^2} \right)^{n/2} \]

\[= \left(\frac{1}{1 - \hat{\rho}^2} \right)^{n/2} \]

where we have defined sample correlation coefficient

\[\hat{\rho} = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x \hat{\sigma}_y} \]

As \(\Lambda_{GLR} \) is monotonic increasing in \(|\hat{\rho}|\) we have one simple form of the GLRT

\[|\hat{\rho}| \begin{cases} H_1 \quad > \gamma \\ H_0 \end{cases} \]

The distribution under \(H_0 \) of \(\hat{\rho}(X) \) is analytical but non-standard [33].

A more convenient test:

Note that the function

\[g(u) = \frac{u^2}{1 - u^2} \]

is monotone increasing in \(|u|\).

Therefore, the GLRT is equivalent to

\[\frac{|\hat{\rho}|}{\sqrt{1 - \hat{\rho}^2} \sqrt{n - 2}} \begin{cases} H_1 \quad > \gamma \\ H_0 \end{cases} \]

The statistic \(\hat{\rho}/\sqrt{1 - \hat{\rho}^2} \sqrt{n - 2} \) can be shown to follow the student-t distribution with \(n - 2 \) d.f. [3].

⇒ Level \(\alpha \) threshold is determined

\[\gamma = T_{n-2}^{-1}(1 - \alpha/2) \]
9.7.2 CASE II: $H_0 : \rho = 0$, $H_1 : \rho > 0$

By analogous methods as used before the GLRT is a one sided test of the form

\[
\hat{\rho} \begin{cases} \sim H_1 \\ \gtrless \sim H_0 \end{cases} \gamma
\]

or alternatively

\[
\frac{(n - 2) \hat{\rho}}{\sqrt{1 - \hat{\rho}^2}} \begin{cases} \sim H_1 \\ \gtrless \sim H_0 \end{cases} T_{n-2}(1 - \alpha)
\]

9.8 EXERCISES

1. n i.i.d. realizations of a bivariate Gaussian random vector $\mathbf{z} = [z_1, z_2]^T$ are observed where the mean of \mathbf{z} is \bar{s} and the covariance is of the form:

\[
R_z = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \sigma^2,
\]

Note: $R_z^{-1} = \begin{bmatrix} 1 & -\rho \\ -\rho & 1 \end{bmatrix} \frac{1}{\sigma^2(1 - \rho^2)}$

where the component variances σ^2 and the correlation coefficient $\rho \in [-1, 1]$ are known.

(a) Derive the MP LRT (with threshold) of the simple hypotheses

\[
H_0 : \bar{s} = s_0 \\
H_1 : \bar{s} = s_1.
\]

For $s_0 = 0$ is your test UMP for $H_1 : \bar{s} \neq 0$? when $|\rho| > 0$? How about for $\rho = 0$?
(b) Find the ROC of the MP LRT of part (a) and show that it is specified by the detectability index

\[d^2 = \frac{|E[T|H_1] - E[T|H_0]|^2}{\text{var}(T|H_0)} = n(s_1 - s_0)^T R^{-1}_z (s_1 - s_0) \]

where \(T \) is a test statistic linear in \(z \).

(c) Now assume that \(s_0 \) and \(s_1 \) satisfy the “power” constraints \(s_0^T s_0 = s_1^T s_1 = 1 \). For fixed \(\rho \) show that the optimal signal pair \(s_1, s_0 \) which maximizes \(d^2 \) must satisfy \(s_1 - s_0 = c[1, 1] \) when \(\rho < 0 \) while it must satisfy \(s_1 - s_0 = c[1, -1] \) when \(\rho > 0 \), where \(c \) is a constant ensuring the power constraint.

(d) Assuming the optimal signal pair derived in part (b), for what value of \(\rho \) is the detectability index the worst (smallest) and for what value is it the best? Does this make sense?

2. The test on equality of a pair of means in Sec. 9.5 required equal variances and led to the paired t-test of (95). Extend this to the case where the variances on each population may be unequal.

End of chapter
10 CONFIDENCE INTERVALS

In this chapter we will cover confidence intervals and confidence regions. The specific topics include:

OUTLINE
* Confidence intervals via pivots
* Confidence intervals and double sided tests
* Confidence interval for mean, variance, correlation
* Confidence regions for vector mean, covariance variance

REFERENCES
Bickel and Doksum [3]
Mood, Graybill and Boes [26]
Morrison [27]

10.1 DEFINITION OF CONFIDENCE INTERVAL

Let $\theta \in \Theta$ be an unknown scalar parameter
Let $X \sim f(x; \theta)$ be an observed random variable, random vector or random process.

As opposed to a point estimator $\hat{\theta}(X)$ which is a (random) point in the parameter space Θ, a confidence interval $[T_1(X), T_2(X)]$ is a (random) interval in parameter space. Confidence intervals are also called set or interval estimators.

OBJECTIVE: find two statistics $T_1 = T_1(X)$ and $T_2 = T_2(X)$, $T_1 < T_2$, which specify endpoints of a random interval

$[T_1, T_2]$

that contains θ with high probability.

CONSTRUCTION OF CONFIDENCE INTERVALS
1. Fix $\alpha \in [0, 1]$
2. For all $\theta \in \Theta$ we require

$$P_\theta(T_1 \leq \theta \leq T_2) \geq 1 - \alpha$$

The interval $[T_1, T_2]$ is called a $100(1 - \alpha)\%$ confidence interval

Equivalently:
$\Rightarrow 1 - \alpha$ is confidence level of statement “$\theta \in [T_1, T_2]$”
$\Rightarrow [T_1, T_2]$ is a set estimate of θ
$\ast P_\theta(T_1 \leq \theta \leq T_2)$ is coverage probability of the confidence interval
$\ast 1 - \alpha$ is lower bound on coverage probability of a $100(1 - \alpha)\%$ conf. interval
$\ast T_2 - T_1$ is the size of confidence interval
\ast Sometimes a level α GLRT or LMPT of double sided hypotheses can be useful for finding confidence intervals.
Figure 137: Confidence interval covers θ with probability at least $1 - \alpha$.

Figure 138: In n-trials a $(1 - \alpha)\%$ confidence interval $[T_1, T_2]$ covers θ approximately $(1 - \alpha)n$ times (or more) for n large. Here shown is an 85\% confidence interval.
10.2 CONFIDENCE ON MEAN: KNOWN VAR

Objective: find confidence interval on the mean μ based on i.i.d. Gaussian sample $X = [X_1, \ldots, X_n]$ with known variance σ^2.

APPROACH 1: Use Tchebychev inequality:

$$P_{\mu}(|X_i - \mu| \geq \epsilon) \leq \frac{\sigma^2/n}{\epsilon^2}$$

Figure 139: Tchebychev inequality specifies an interval containing the mean with at least probability $1 - \sigma^2/n\epsilon^2$. In figure $f(y; \mu, \sigma)$ denotes the density of the sample mean $Y = \bar{X}_i$.

or, setting $\epsilon = c \sigma/\sqrt{n}$

$$P_{\mu}(|X_i - \mu| \geq c \sigma/\sqrt{n}) \leq \frac{1}{c^2}$$

or equivalently

$$P_{\mu}(|X_i - \mu| \leq c \sigma/\sqrt{n}) \geq 1 - \frac{1}{c^2}$$

i.e.

$$P_{\mu}(\bar{X}_i - c \sigma/\sqrt{n} \leq \mu \leq \bar{X}_i + c \sigma/\sqrt{n}) \geq 1 - \frac{1}{c^2}$$

Finally take $c = 1/\sqrt{\alpha}$ to obtain $100(1 - \alpha)\%$ confidence interval for μ

$$\left[\bar{X}_i - \frac{\sigma}{\sqrt{\alpha}n}, \bar{X}_i + \frac{\sigma}{\sqrt{\alpha}n} \right]$$
OBSERVATIONS:
* Tchebychev interval is symmetric about sample mean
* Size $2\frac{\sigma}{\sqrt{n}}$ of interval increases in σ^2/n
* There is a tradeoff between coverage probability $\geq 1 - \alpha$ and small size

![Coverage vs. size of Tchebychev confidence interval for mean for a Gaussian sample having known variance.](image)

Figure 140: Coverage vs. size of Tchebychev confidence interval for mean for a Gaussian sample having known variance.

* Tchebychev interval is “distribution free”
* Actual coverage probability may be \gg desired confidence $1 - \alpha$
* Tchebychev intervals are usually excessively large

APPROACH 2: Find exact confidence interval via PIVOT

Recall problem of testing double sided hypotheses for i.i.d. Gaussian r.v.s having known variance

\[H_0 : \mu = \mu_o \]
\[H_1 : \mu \neq \mu_o \]

we found level α GLRT

\[|Q(\bar{x}, \mu_o)| = \frac{\sqrt{n}|\bar{x}_i - \mu_o|}{\sigma} \]

\[\frac{H_1}{H_0} \quad \gamma = N^{-1}(1 - \alpha/2) \]

where we have defined the function

\[Q(\bar{x}, \mu_o) = \frac{\sqrt{n}(\mu_o - \bar{x})}{\sigma}. \]
Note when $\mu = \mu_0$:

1) $Q(X, \mu_0)$ satisfies the following properties
 - it is a monotone function of μ_0
 - it has a probability distribution independent of μ_0 (and σ):

 \Rightarrow such a function $Q(X, \mu_0)$ is called a PIVOT. It has also been called a “root” [2].

2) By design of the threshold $\gamma = N^{-1}(1 - \alpha/2)$ the false alarm probability of the test is

$$P_{\mu_0}(\left|Q(X, \mu_0)\right| > \gamma) = \alpha$$

for arbitrary μ_0.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{false_alarm_level_setting_double_sided_test_mean}
\caption{The false alarm level setting for double sided test mean gives an exact $1 - \alpha$ confidence interval.}
\end{figure}

As P_F is independent of μ_0, μ_0 is just a dummy variable which can be replaced by the generic μ and

$$P_\mu(-\gamma \leq Q(X, \mu) \leq \gamma) = 1 - \alpha.$$

As $Q(X, \mu) = \sqrt{n}(\bar{X} - \mu)/\sigma$ is monotone in μ the following inequalities on Q: $-\gamma \leq Q(X, \mu) \leq \gamma$, are equivalent to the following inequalities on μ: $\bar{X} - \frac{\sigma}{\sqrt{n}} \gamma \leq \mu \leq \bar{X} + \frac{\sigma}{\sqrt{n}} \gamma$. Thus we have found the following EXACT $100(1 - \alpha)$% conf. interval for μ

$$\left[\bar{X} - \frac{\sigma}{\sqrt{n}} N^{-1}(1 - \alpha/2), \bar{X} + \frac{\sigma}{\sqrt{n}} N^{-1}(1 - \alpha/2)\right]$$

OBSERVATIONS

1. By the central limit theorem this interval is accurate for large n even for non-Gaussian case

$$\sqrt{n}(\bar{X} - \mu)/\sigma \rightarrow \mathcal{N}(0, 1), \quad (i.d.)$$
2. Exact interval is symmetric about \bar{X}_i
3. Exact interval is significantly smaller than Tchebychev

$$[T_2 - T_1]_{Tchby} = 2 \frac{\sigma}{\sqrt{\alpha n}} > 2 \frac{\sigma}{\sqrt{n}} N^{-1}(1 - \alpha/2) = [T_2 - T_1]_{Exact}$$

Figure 142: Size vs. (1-confidence level) for exact and Tchebychev intervals.

10.3 CONFIDENCE ON MEAN: UNKNOWN VAR

Objective: find conf. interval on the mean μ based on i.i.d. Gaussian sample $\bar{X} = [X_1, \ldots, X_n]$ with unknown variance σ^2.

APPROACH: Exact confidence interval via pivot

Solution: Motivated by previous example we go back to the double sided hypothesis GLRT for unknown variance

$$H_0: \mu = \mu_o, \quad \sigma^2 > 0$$
$$H_1: \mu \neq \mu_o, \quad \sigma^2 > 0$$

we found level α t-test for Gaussian x_i’s:

$$|Q(\bar{x}, \mu_0)| = \frac{\sqrt{n}|\bar{x}_i - \mu_0|}{s} \overset{H_1}{\underset{H_0}{\geq}} \gamma = T_{n-1}^{-1}(1 - \alpha/2)$$

Therefore, an exact $(1 - \alpha)\%$ confidence interval for μ is

$$\left[\bar{X}_i - \frac{s}{\sqrt{n}} T_{n-1}^{-1}(1 - \alpha/2), \bar{X}_i + \frac{s}{\sqrt{n}} T_{n-1}^{-1}(1 - \alpha/2)\right]$$
10.4 CONFIDENCE ON VARIANCE

Objective: find conf. interval on variance σ^2 based on i.i.d. Gaussian sample $X = [X_1, \ldots, X_n]$ with unknown mean μ.

Solution: Recall the double sided hypothesis GLRT for variance

\[
H_0 : \sigma^2 = \sigma_o^2, \\
H_1 : \sigma^2 \neq \sigma_o^2,
\]

In a previous chapter we found a level α Chi-square test for Gaussian X_i’s in terms of the sample variance s^2:

\[
\frac{(n-1)s^2}{\chi_{n-1}^{-1}(\alpha/2)} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi_{n-1}^{-1}(1-\alpha/2)}
\]

Therefore, an exact $100(1-\alpha)$% confidence interval for σ^2 is

\[
\left[\frac{(n-1)s^2}{\chi_{n-1}^{-1}(1-\alpha/2)}, \frac{(n-1)s^2}{\chi_{n-1}^{-1}(\alpha/2)} \right]
\]

Note: confidence interval for variance is not symmetric about s^2
10.5 CONFIDENCE ON DIFFERENCE OF TWO MEANS

Objective: find conf. interval on the difference $\Delta = \mu_x - \mu_y$ of means in two i.i.d. Gaussian samples $X = [X_1, \ldots, X_{n_1}]$, $Y = [Y_1, \ldots, Y_{n_2}]$

Solution: consider the hypotheses

$$H_0 : \Delta = \Delta_o$$
$$H_1 : \Delta \neq \Delta_o$$

A GLRT of level α would give a confidence interval for Δ similarly to before.

Recall: the t test

$$\frac{\sqrt{n_1 n_2} |x_i - y_i|}{s_2} \begin{cases} H_1 & H_0 \\ > & \leq \end{cases} T_{n-2}(1 - \alpha/2)$$

was previously derived for the double sided hypotheses

$$H'_0 : \mu_x = \mu_y$$
$$H'_1 : \mu_x \neq \mu_y$$

There is a difficulty, however, since Δ does not appear anywhere in the test statistic. In particular

* $\bar{X}_i - \bar{Y}_i$ has mean Δ under $H_0 : \Delta = \Delta_o$

* therefore distribution of t-test statistic above depends on Δ and is not a pivot

However, as $\bar{X}_i - \bar{Y}_i - \Delta$ has mean zero under H_0 and same variance as $\bar{X}_i - \bar{Y}_i$, we can immediately identify the following pivot

$$\frac{\sqrt{n_1 n_2} (\bar{X}_i - \bar{Y}_i - \Delta)}{s_2} \sim T_{n-2}$$

Thus, the left and right endpoints of a $100(1 - \alpha)$% conf. interval on Δ are given by

$$\bar{X}_i - \bar{Y}_i \pm \sqrt{\frac{n}{n_1 n_2}} s_2 T_{n-2}^{-1}(1 - \alpha/2)$$

10.6 CONFIDENCE ON DIFFERENCE OF TWO VARIANCES

Objective: find conf. interval on the ratio

$$c = \frac{\sigma_x^2}{\sigma_y^2}$$

of variances in two i.i.d. Gaussian samples

* $X = [X_1, \ldots, X_{n_1}]$, $Y = [Y_1, \ldots, Y_{n_2}]$

Solution: Recall that the GLRT for double sided $H_1 : \sigma_x^2 \neq \sigma_y^2$ was F-test
Difficulty: distribution of test statistic depends on $c = \sigma_x^2 / \sigma_y^2$

However, as

$$\frac{1}{c} \frac{s_x^2}{s_y^2} = \frac{s_x^2}{s_y^2} / \sigma_x^2 / \sigma_y^2 \sim \mathcal{F}_{n_1-1,n_2-1}$$

we have identified a pivot.

Therefore, a $(1 - \alpha)$% conf. interval on variance ratio $c = \sigma_x^2 / \sigma_y^2$ is given by

$$[T_1, T_2] = \left[\frac{s_x^2}{s_y^2} \mathcal{F}_{n_1-1,n_2-1}(\alpha/2); \frac{s_x^2}{s_y^2} \mathcal{F}_{n_1-1,n_2-1}(1 - \alpha/2) \right]$$

Figure 144: Confidence interval on variance ratio in a pair of Gaussian samples depends on quantiles of F-distribution $\mathcal{F}_{n_1-1,n_2-1}$

10.7 CONFIDENCE ON CORRELATION COEFFICIENT

Objective: find conf. interval on correlation coefficient ρ between two i.i.d. Gaussian samples $X = [X_1, \ldots, X_n]$, $Y = [Y_1, \ldots, Y_n]$ with unknown means and variances.

NOTE: not obvious how to obtain pivot from previously derived GLRT test statistic for testing $H_1: \rho \neq 0$.

Let $\hat{\rho}$ be sample correlation coefficient. Then
\[v = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}}{1 - \hat{\rho}} \right) = \tanh^{-1}(\hat{\rho}) \]

has an asymptotic normal distribution with

\[E_\theta[v] = \tanh^{-1}(\rho) \]
\[\text{var}_\theta(v) = \frac{1}{n - 3} \]

Hence we have a pivot

\[Q(X, \rho) = \frac{\tanh^{-1}(\hat{\rho}) - \tanh^{-1}(\rho)}{1/\sqrt{n - 3}} \sim \mathcal{N}(0, 1) \]

This gives 100(1 − α)% confidence interval on \(\tanh^{-1}(\rho) \)

\[\left[v - \frac{1}{\sqrt{n - 3}} \mathcal{N}^{-1}(1 - \alpha/2), \ v + \frac{1}{\sqrt{n - 3}} \mathcal{N}^{-1}(1 - \alpha/2) \right] \]

Since \(\tanh^{-1}(\cdot) \) is monotone, the left and right endpoints \(T_1, T_2 \) of (1 − α)% confidence interval \([T_1, T_2]\) on \(\rho \) are

\[\tanh \left(v \mp \frac{1}{\sqrt{n - 3}} \mathcal{N}^{-1}(1 - \alpha/2) \right) \]

OBSERVATIONS:

1. Conf. interval is not symmetric
2. Conf. interval prescribes a level α test of double sided hypotheses

$$H_0 : \rho = \rho_o, \quad H_1 : \rho \neq \rho_o$$

which is

$$\phi(x) = \begin{cases} 1, & \rho_o \notin [T_1, T_2] \\ 0, & \rho_o \in [T_1, T_2] \end{cases}$$

Indeed:

$$E_0[\phi] = 1 - P_{\rho_o}(T_1 \leq \rho_o \leq T_2) = 1 - (1 - \alpha) = \alpha$$

10.8 EXERCISES

10.1 Let $\{X_i\}_{i=1}^n$ be an i.i.d. sample with marginal p.d.f. $f(x; \theta) = \theta e^{-\theta x}$, $x > 0$.

(a) Show that the maximum likelihood estimator (MLE) for θ is $\frac{1}{\bar{X}}$, where \bar{X} is the sample mean (you should have previously derived this in hwk 2).

(b) Show that the CR bound $I^{-1}(\theta)$ for θ given $\{X_i\}_{i=1}^n$ is of the form: $I^{-1}(\theta) = \frac{\theta^2}{n}$.

(c) Now, using the fact that for large n the MLE is distributed as approximately $\mathcal{N}(\theta, I^{-1}(\theta))$, show that

$$\frac{1}{\bar{X}} \pm Z(1-\alpha) \sqrt{\frac{1}{n}}$$

is a $(1 - \alpha)$·100% confidence interval for θ, where $Z(p) = \mathcal{N}^{-1}(p) = \{x : \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt / \sqrt{2\pi} = p\}$ is the p-th quantile of $\mathcal{N}(0, 1)$.

10.2 Let $X = [X_1, \ldots, X_n]^T$ be a Gaussian random vector with mean $\mu = [\mu_1, \ldots, \mu_n]^T$ and covariance matrix R_X.

(a) Show that the distribution of $W \overset{\text{def}}{=} (X - \mu)^T R_X^{-1} (X - \mu)$ is Chi-Square with n degrees of freedom (Hint: use square root factor $R_X^{1/2}$ to represent $(X - \mu)$ in terms of a vector of uncorrelated standard Gaussian variates).

(b) Since W has a distribution which is independent of μ and R_X, W is similar to a pivot for scaler μ which can be used to generate confidence regions on μ. Assume $n = 2$ and let R_X be a fixed and known diagonal matrix with eigenvalues λ_1 and λ_2. Show that

$$R \overset{\text{def}}{=} \{\mu : (X - \mu)^T R_X^{-1} (X - \mu) \leq -2 \ln \alpha\}$$

is a $100(1 - \alpha)$% confidence region for the vector μ in the sense that: $P(\mu \in R) = P(W \leq -2 \ln \alpha) = 1 - \alpha$. Draw a concise picture of this confidence region for the case $\mu \in \mathbb{R}^2$. Label and identify all quantities in your picture. What happens to the confidence region as $\lambda_1 \to 0$? Does this make sense?

10.3 This exercise establishes that a pivot always exists when the marginal CDF is strictly increasing. Let $\{X_i\}_{i=1}^n$ be an i.i.d. sample with marginal p.d.f. $f(x; \theta)$ and a CDF $F(x; \theta)$ which is strictly increasing: $F(x + \Delta; \theta + \delta) > F(x; \theta)$, $\Delta, \delta > 0$.

(a) Show that the random variable $F(X_i; \theta)$ has a uniform distribution over the interval [0, 1], and that therefore $-\log F(X_i; \theta)$ has an exponential distribution $f(u) = e^{-u}$, $u > 0$.

(b) Show that the CDF of the entire sample, $\prod_{i=1}^{n} F(X_i; \theta)$ is a pivot for θ. (Hint: the product of monotone functions is monotone).

(c) Show that a $(1 - \alpha) \cdot 100\%$ confidence interval for θ can be constructed since $F(x; \theta)$ is monotone in θ using the result of part (b). (Hint: the sum of n i.i.d. exponential r.v.s with distribution $f(u) = e^{-u}$, $u > 0$ has a Gamma density).

10.4 Use the approach of the previous problem to construct $(1 - \alpha)100\%$ confidence intervals for the following parameters.

(a) θ is the parameter in the density $f(x; \theta) = 2\theta x + 1 - \theta$, $0 \leq x \leq 1$, $-1 \leq \theta \leq 1$. Verify your results by numerical simulation for $n = 10$ using Matlab. Note it may be helpful to use Matlab’s polynomial rooting procedure roots.m to find the interval endpoints. Note for this example you cannot use double sided GLRT since the GLRT is degenerate.

(b) θ is the median of the Cauchy distribution $f(x, \theta) = (1 + (x - \theta)^2)/\pi$. Note that numerical integration may be required. Verify your results by numerical simulation for $n = 10$ using Matlab.

10.5 Let $\{x_1, \ldots, x_n\}$ be an i.i.d. sample of a Poisson r.v. with distribution $p_{\theta}(k) = P_\theta(x_i = k) = \frac{\theta^k}{k!}e^{-\theta}$, $k = 0, 1, 2, \ldots$. Use the GLRT derived in Exercise 8.4 to specify a $(1 - \alpha)\%$ confidence interval on θ.

10.6 Let $\{X_i\}_{i=1}^{n}$ be i.i.d. following an exponential distribution $f(x; \theta) = \theta e^{-\theta x}$, $x \geq 0$ with $\theta > 0$.

(a) Derive the GLRT for the test of the hypotheses

$$H_0 : \theta = \theta_0$$

$$H_1 : \theta \neq \theta_0$$

with FA level α (Hint: the sum of n standard (mean = 1) exponential r.v.s is standard Gamma with parameter n).

(b) Using the results of (a) find a $(1 - \alpha)\%$ confidence interval on θ.

End of chapter
11 DETECTION FOR SAMPLED GAUSSIAN WAVEFORMS

We have come to a point where we can now treat the more general case of correlated waveform observations. This arises, for example, when we wish to decide on the mean or variance of Gaussian random process based on its time samples and is the bread and butter of detection for signal processing, control and communications.

We will cover the following:

1. Offline methods:
 * General vector Gaussian problem
 * Detection of non-random signals in noise: matched-filter
 * Detection of random signals in noise: filter-squarer and estimator-correlator

2. Online methods
 * Online detection of non-random signals: causal matched-filter
 * Online detection for nonstationary signals: Kalman filter detector

References
Van Trees [43]
Srinath, Rajasekaran and Viswanathan [40]
Whalen [44]

11.1 OFFLINE METHODS

We have the following setup.

Observation: $\mathbf{X} = [X_1, \ldots, X_n]^T \sim N_n(\mu, \mathbf{R})$

mean: $\mu = E[\mathbf{X}] = [\mu_1, \ldots, \mu_n]^T$

covariance: $\mathbf{R} = ((\text{cov}(x_i, x_j)))_{i,j=1,\ldots,n}$

$$\mathbf{R} = \begin{bmatrix}
\sigma_1^2 & \cdots & \sigma_{1,n} \\
\vdots & \ddots & \vdots \\
\sigma_{n,1} & \cdots & \sigma_n^2
\end{bmatrix}$$

Joint density

$$f(\mathbf{x}; \mu, \mathbf{R}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\mathbf{R})}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mu)^T \mathbf{R}^{-1} (\mathbf{x} - \mu) \right)$$

Consider simple detection problem

$H_0 : \mu = \mu_0$, $\mathbf{R} = \mathbf{R}_0$

$H_1 : \mu = \mu_1$, $\mathbf{R} = \mathbf{R}_1$

Likelihood ratio is
\[\Lambda(x) = \frac{\sqrt{|R_0|} \exp \left(-\frac{1}{2}(x - \mu_1)^T R_1^{-1}(x - \mu_1) \right)}{\sqrt{|R_1|} \exp \left(-\frac{1}{2}(x - \mu_0)^T R_0^{-1}(x - \mu_0) \right)} \]

Giving LRT

\[T(x) = \]

\[\frac{1}{2}(x - \mu_0)^T R_0^{-1}(x - \mu_0) - \frac{1}{2}(x - \mu_1)^T R_1^{-1}(x - \mu_1) \overset{H_1}{\underset{H_0}\succ} \gamma \]

where

\[\gamma = \log \eta + \frac{1}{2} \log \frac{|R_1|}{|R_0|} \]

Interpretation of LRT as distorted “Mahalanobis” distance test:

Define two norms in \(\mathbb{R}^n \)

\[\|z\|_{R_0} = z^T R_0^{-1} z, \quad \|z\|_{R_1} = z^T R_1^{-1} z, \]

Norm \(\|z\|_R \) emphasizes components of \(z \) which are colinear to eigenvectors of \(R \) associated with small eigenvalues

Then MP-LRT takes form of a comparison between weighted distances of \(x \) to \(\mu_0 \) vs. \(\mu_1 \)

\[\|x - \mu_0\|^2_{R_0} - \|x - \mu_1\|^2_{R_1} \overset{H_1}{\underset{H_0}\succ} \gamma' \]

An alternative form of LRT is the quadratic test

\[T'(x) = \frac{1}{2} x^T (R_0^{-1} - R_1^{-1}) x + (\mu_1^T R_1^{-1} - \mu_0^T R_0^{-1}) x \overset{H_1}{\underset{H_0}\succ} \gamma' \]

\[\gamma' = \log \eta + \frac{1}{2} \log \frac{|R_1|}{|R_0|} + \mu_1^T R_1^{-1} \mu_1 - \mu_0^T R_0^{-1} \mu_0 \]
11.1.1 GENERAL CHARACTERIZATION OF LRT DECISION REGIONS

Divide treatment into four cases:
1. $R_0 = R_1$,
2. $R_0 - R_1 > 0$,
3. $R_0 - R_1 < 0$,
4. $R_0 - R_1$ non-singular

Case 1. $R_0 = R_1 = R$:
In this case $T'(x) = a^T x$ is linear function

\[
 a = R^{-1}(\mu_1 - \mu_0),
\]

and decision regions are separated by a hyperplane.

Case 2. $R_0 - R_1 > 0$: (p.d.)
In this case, as $R_0 > R_1$ implies $R_0^{-1} < R_1^{-1}$,
$R_1^{-1} - R_0^{-1} = \Delta_{10}R^{-1} > 0$ (p.d.):

\[
 T'(x) = -\frac{1}{2}(x - b)^T \Delta_{10} R^{-1} (x - b) + c
\]

\[
 b = (\Delta_{10} R^{-1})^{-1}[R_1^{-1} \mu_1 - R_0^{-1} \mu_0]
\]
Figure 147: For equal covariances of a multivariate Gaussian sample the decision regions are separated by a hyperplane (here shown for $\gamma' = 0$ for which a is orthogonal to separating hyperplane).

Hence the H_1 decision region is an ellipsoid

$$X_1 = \left\{ \frac{1}{2}(x - b)^T \Delta_{01} R^{-1} (x - b) < \gamma'' \right\}$$

Case 3. $R_0 < R_1$

In this case

$$R_0^{-1} - R_1^{-1} = \Delta_{01} R^{-1} > 0 \text{ (p.d.)}$$

and

$$T'(x) = \frac{1}{2}(x - b)^T [\Delta_{01} R^{-1}] (x - b) + c$$

$$b = (\Delta_{01} R^{-1})^{-1} [R_0^{-1} \mu_0 - R_1^{-1} \mu_1]$$

So now the H_0 decision region is an ellipsoid

$$X_0 = \left\{ \frac{1}{2}(x - b)^T \Delta_{01} R^{-1} (x - b) < \gamma'' \right\}$$

4. $R_0 - R_1$ not p.d., n.d., or singular

Let $\Delta_{01} R^{-1}$ be defined as above

$$R_0^{-1} - R_1^{-1} =: \Delta_{01} R^{-1}$$

Let $\{\lambda_i\}_{i=1}^n$ denote the eigenvalues of this matrix
Figure 148: For $R_0 > R_1$ the H_1 decision region is the interior of an ellipsoid for testing covariance of a multivariate Gaussian sample.

Figure 149: For $R_0 < R_1$ the H_1 decision region for testing the covariance of a multivariate Gaussian sample is the exterior of an ellipsoid.
Let the signature of $\Delta_{01}R^{-1}$ be the binary vector

$$\bar{b} = [b_1, \ldots, b_n]^T$$

Definition: The signature of a non-singular symmetric matrix B are the signs of its eigenvalues arranged in decreasing order of magnitude.

\Rightarrow If the signature $[b_1, \ldots, b_n]^T$ equals $[1, \ldots, 1]$ then all eigenvalues are positive and B is positive definite.

\Rightarrow If $[b_1, \ldots, b_n]^T$ equals $[-1, \ldots, -1]$ then $-B$ is positive definite.

General representation:

$$[b_1, \ldots, b_n] = [\text{sgn}(\lambda_1), \ldots, \text{sgn}(\lambda_n)]$$

where

$$\text{sgn}(u) := \begin{cases}
1, & u > 0 \\
0, & u = 0 \\
-1, & u < 0
\end{cases}$$

We can rewrite the LRT test statistic as

$$T'(x) = \frac{1}{2}(x - \bar{b})^T[\Delta_{01}R^{-1}](x - \bar{b}) + c$$

$$= b_1 z_1^2 + \ldots + b_n z_n^2 + c$$

where

$$z_i = \lambda_i(x - \bar{b})^T \nu_i$$

and ν_i’s are eigenvectors of $\Delta_{01}R^{-1}$.

Thus each decision region is hyperbolic.

11.1.2 CASE OF EQUAL COVARIANCES

Here $R_0 = R_1 = R$ and LRT collapses to linear test

$$T(x) = \Delta \mu^T R^{-1} x \begin{cases}
H_1 & \frac{H_1}{H_0} > \gamma_1 \\
\end{cases}$$

where $\Delta \mu = (\mu_1 - \mu_0)$

and

$$\gamma_1 = \log \eta + \frac{\mu_0^T R^{-1} \mu_0 - \mu_1^T R^{-1} \mu_1}{\eta}$$
Figure 150: For $R_0 - R_1$ non-singular but neither p.d. nor n.d. the H_1 decision region for testing the covariance of a multivariate Gaussian sample is a hyperboloid.

DETECTOR PERFORMANCE

As the test statistic $T(X)$ is Gaussian suffices to find means

$$E_0[T] = \Delta \mu^T R^{-1} \mu_0$$

$$E_1[T] = \Delta \mu^T R^{-1} \mu_1$$

and variances

$$\text{var}_0(T) = \text{var}_0(\Delta \mu^T R^{-1} X)$$

$$= \Delta \mu^T R^{-1} \text{cov}_0(X) \underbrace{R^{-1} \Delta \mu}_{R}$$

$$= \Delta \mu^T R^{-1} \Delta \mu$$

$$\text{var}_1(T) = \text{var}_0(T)$$

Thus we find

$$P_F = \alpha = 1 - \mathcal{N} \left(\frac{\gamma_1 - E_0[T]}{\sqrt{\text{var}_0(T)}} \right)$$

so that the NP MP-LRT test is
$$\Delta \mu^T R^{-1} x \begin{cases} \text{H}_1 & \sqrt{\Delta \mu^T R^{-1} \Delta \mu} \mathcal{N}^{-1}(1-\alpha) + \Delta \mu^T R^{-1} \mu_0 \\ \text{H}_0 & \end{cases}$$

or equivalently

$$\frac{\Delta \mu^T R^{-1}(x - \mu_0)}{\sqrt{\Delta \mu^T R^{-1} \Delta \mu}} \begin{cases} \text{H}_1 & \mathcal{N}^{-1}(1-\alpha) \\ \text{H}_0 & \end{cases}$$

NOTES:

1. For $\mu_0 \neq 0$: MP test is not UMP w.r.t unknown parameter variations
2. For $\mu_0 = 0$: MP test is UMP w.r.t. constant positive scaling of μ_1

Next find power:

$$P_D = \beta = 1 - \mathcal{N} \left(\frac{\gamma_1 - E_1[T]}{\sqrt{\text{var}_1(T)}} \right)$$

giving ROC curve:

$$\beta = 1 - \mathcal{N} \left(\mathcal{N}^{-1}(1 - \alpha) - d \right)$$

where d is detectability index

$$d = \frac{E_1[T] - E_0[T]}{\sqrt{\text{var}_0(T)}}$$

$$= \sqrt{\Delta \mu^T R^{-1} \Delta \mu}$$

Example 44 Detection of known signal in white noise

$$H_0: x_k = w_k \quad k = 1, \ldots, n$$

$$H_1: x_k = s_k + w_k$$

* $w \sim \mathcal{N}_n(0, \sigma^2 I)$,
* s and σ^2 known

Identify:

$$\mu_0 = 0, \quad \Delta \mu = s, \quad R = \sigma^2 I$$

so that the LRT takes the form of a matched filter
$T(x) = s^T x = \sum_{k=1}^{n} s_k x_k \quad \frac{H_1}{H_0} \gamma$

$\gamma = \sigma^2 \log \eta - \|s\|^2$

GEOMETRIC INTERPRETATION

The LRT can be expressed geometrically as a signal "projection" detector

Projection of x onto s is

$$\hat{x} = s \frac{s^T x}{\|s\|^2} \Pi_s x = s \frac{s^T x}{\|s\|^2} = s \frac{<s, x>}{\|s\|^2} \quad \text{Proj. coef.}$$

Length of this projection is

$$\|\hat{x}\| = \|s\| \left| \frac{s^T x}{\|s\|^2} \right| = |T(x)| \frac{1}{\|s\|}$$

Conclude:

* LRT is a threshold test on the projection coefficient of the orthogonal projection of x onto s
* LRT is threshold test on "signed length" of \hat{x}
* LRT is related to LLS estimator \hat{x} of x given s

PERFORMANCE

Equivalently, for MP test of level α we have

$$\frac{s^T x}{\|s\| \sigma} \overset{H_1}{\underset{H_0}{>}} N^{-1}(1 - \alpha)$$

This test is UMP relative to signal energy $\|s\|^2$

Now compute detectability index:

$$d^2 = \|s\|^2 / \sigma^2 = \sum_{k=1}^{n} \frac{s_k^2}{\sigma^2} =: \text{SNR} \quad (100)$$
Figure 151: MP detector applies a threshold to projection coefficient \(\langle x, s \rangle / \|s\|^2 \) of orthogonal projection of \(x \) onto \(s \), shown here for the case of \(n = 2 \).

Figure 152: MP detector block diagram implemented with a LLS estimator of \(x \).
NOTE:
* detection index is invariant to shape of waveform \(s \).
* detector power only depends on total signal-to-noise ratio (SNR).

Note: two ways to implement optimal detector

Cross-correlator:
Matched Filter:

Example 45 Detection of known signal in non-white noise:

\[
H_0 : x_k = w_k \\
H_1 : x_k = s_k + w_k
\]

\(w \sim \mathcal{N}_n(0, \mathbf{R}) \), \(\mathbf{R} \) not scaled identity.

Optimal detector

\[
T(x) = \frac{s^T \mathbf{R}^{-1} x}{\sqrt{s^T \mathbf{R}^{-1} s}} \quad \frac{H_1}{H_0} > \mathcal{N}^{-1}(1 - \alpha)
\]

Q. How to modularize detector?

A. transform to the white noise case via preprocessing with matrix \(\mathbf{H} \)

Produces white noise measurements

\[
\tilde{x} = \mathbf{H} : x
\]

We will require matrix filter \(\mathbf{H} \) to have properties:
1. \(\text{cov}_0(\tilde{x}) = \text{cov}_1(\tilde{x}) = \mathbf{I} \) ⇒ whitening property
2. \(\mathbf{H} \) is invertible matrix: ⇒ output remains sufficient statistic

MATRIX FACTORIZATION

For any symmetric positive definite covariance matrix \(\mathbf{R} \) there exists a positive definite square root factor \(\mathbf{R}^{\frac{1}{2}} \) and a positive definite inverse factor \(\mathbf{R}^{-\frac{1}{2}} \) which satisfy:

\[
\mathbf{R} = \mathbf{R}^{\frac{1}{2}} \mathbf{R}^{\frac{1}{2}}, \quad \text{and} \quad \mathbf{R}^{-1} = \mathbf{R}^{-\frac{1}{2}} \mathbf{R}^{-\frac{1}{2}}.
\]

There are many possible factorizations of this type. We have already seen the Cholesky factorization in Chapter 6 which yields upper and lower triangular factors. Here we focus on a symmetric factorization given by the eigendecomposition of \(\mathbf{R} = \mathbf{U} \mathbf{D} \mathbf{U}^T \), where

* \(\mathbf{D} = \text{diag}(\lambda_i) \) are (positive) eigenvalues of \(\mathbf{R} \)
* \(\mathbf{U} = [\nu_1, \ldots, \nu_p] \) are (orthogonal) eigenvectors of \(\mathbf{R} \)
Figure 153: Matrix prewhitener H applied to x renders the transforms contours of the multivariate Gaussian density to concentric circles (spherically symmetric).

As $U^TU = I$

$$R = UDU^T = UD^{\frac{1}{2}}D^{\frac{1}{2}}U^T = UD^{\frac{1}{2}}U^T UD^{\frac{1}{2}}U$$

Therefore we can identify

$$R^{\frac{1}{2}} = UD^{\frac{1}{2}}U^T.$$

Furthermore, since $U^{-1} = U^T$ we have

$$R^{-\frac{1}{2}} = UD^{-\frac{1}{2}}U^T$$

which satisfy the desired properties of square root factors and are in addition symmetric.

Using square root factors the test statistic can be rewritten as

$$T(x) = \frac{s^T R^{\frac{1}{2}} R^{\frac{1}{2}} x}{\sqrt{s^T R^{\frac{1}{2}} R^{\frac{1}{2}} s}}$$

$$= \frac{s^T \tilde{x}}{\|\tilde{s}\|}$$

Where \tilde{x}, \tilde{s} are transformed vectors

$$\tilde{x} = R^{-\frac{1}{2}}x, \quad \tilde{s} = R^{-\frac{1}{2}}s$$

Now we see that

$$E_0[\tilde{X}] = 0, \quad E_1[\tilde{X}] = \tilde{x}, \quad \text{cov}_0(\tilde{X}) = \text{cov}_1(\tilde{X}) = I$$

so that problem is equivalent to testing for a signal in white noise of unit variance.
Detectability index for non-white noise:

Note: \(d^2 = \| \tilde{s} \|^2 = \tilde{s}^T R^{-1} \tilde{s} \).

Remark

No longer is detection performance independent of shape of \(s \).

OPTIMAL SIGNAL DESIGN FOR NON-WHITE NOISE:

Constraint: \(\| s \|^2 = 1 \)

Maximize: \(d^2 = s^T R^{-1} s \)

Solution: Rayleigh quotient theorem specifies:

\[
\frac{s^T R^{-1} s}{s^T s} \leq \frac{1}{\min_i \lambda_i^R}
\]

\(\lambda_i^R \) = an eigenvalue of \(R \).

Furthermore

\[
\frac{s^T R^{-1} s}{s^T s} = \frac{1}{\min_i \lambda_i^R}
\]

when \(s \) is (any) minimizing eigenvector of \(R \) (there will be multiple minimizing eigenvectors if more than one eigenvalue \(\{ \lambda_k \} \) equals \(\min_i \lambda_i^R \)). The intuition here is that the best signal vector points in the direction of signal space that has the lowest noise power; hence maximizing the SNR over the set of fixed energy signals.

Example 46 Application: (Real) Signal detection in a sensor array
Figure 155: The optimal signal which maximizes detectability is the eigenvector of noise covariance \mathbf{R} with minimum eigenvalue.

Figure 156: Sensor array receiving signal wavefront generates spatio-temporal measurement.
The k-th snapshot of p-sensor array output is a multi-channel measurement:

$$x_k = a \ s + v_k, \ k = 1, \ldots, n$$

or equivalently we have $p \times n$ measurement matrix

$$X = [x_1, \ldots, x_n]$$

* a: array response vector
* v_k: Gaussian $\mathcal{N}_p(0, \mathbf{R})$, known spatial covariance \mathbf{R}
* s: deterministic signal amplitude

Three cases of interest:
1. Detection of known signal amplitude
2. Detection of positive signal amplitude
3. Detection of non-zero signal amplitude

Case 1: Known signal amplitude

$$H_0 : s = 0, \ k = 1, \ldots, n$$
$$H_1 : s = s_1, \ k = 1, \ldots, n$$

Approach: reduce to single-channel problem via coordinate rotation

As a, \mathbf{R} are known, we can transform the array to one with

* spatially uncorrelated noise (\mathbf{R} diagonal)
* signal energy present only in first channel.

Define the $p \times p$ matrix \mathbf{H}:

$$\mathbf{H} = \left[\frac{1}{\tilde{a}} \ \mathbf{R}^{-\frac{1}{2}} a, \nu_2, \ldots, \nu_p \right]$$

where

* $\tilde{a} = \sqrt{a^T \mathbf{R}^{-1} a}$
* ν_i orthonormal vectors orthogonal to $\mathbf{R}^{-\frac{1}{2}} a$ (found via Gramm-Schmidt)

Then

$$\mathbf{H}^T \mathbf{R}^{-\frac{1}{2}} \mathbf{a} = \begin{bmatrix} \tilde{a} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \tilde{a} \ \mathbf{e}_1$$

Now as $\mathbf{W} = \mathbf{H}^T \mathbf{R}^{-\frac{1}{2}}$ is invertible, the following is equivalent measurement
Figure 157: Transformation of Gaussian multichannel problem to a Gaussian single channel problem is a two step procedure. First a whitening coordinate transformation $R^{-\frac{1}{2}}$ is applied to measurements $x = as + n$ (joint density in original coordinates is shown in left panel) which makes noise component n i.i.d. (transformed measurements have joint density with spherically symmetric constant contours shown in middle panel). Then a pure rotation (unitary matrix) H is applied to the transformed measurements \tilde{x} which aligns its signal component $R^{-\frac{1}{2}}as$ with the first coordinate axis (right panel).

\[
\tilde{X}_k = WX_k,
\]
\[
= sW\tilde{a} + W\tilde{V}_k,
\]
\[
= s_1\tilde{a} e_1 + \tilde{V}_k
\]

where \tilde{V}_k's are i.i.d. zero mean Gaussian with identity covariance

\[
\text{cov} (\tilde{V}_k) = WRW^T = H^T R^{-\frac{1}{2}}RR^{-\frac{1}{2}} H = H^TH = I
\]

Matrix representation

\[
\tilde{X} = s_1 \tilde{a}e_1^T + \tilde{V}
\]

where \tilde{V} is a $p \times n$ matrix of i.i.d. $N(0,1)$'s

Note properties:
* all rows of $\tilde{X} = WX$ are independent
* only first row $\tilde{X}_{1*} = e_1^T \tilde{X}$ depends on s_1

Therefore LR only depends on the first row \tilde{X}
\begin{align*}
\Lambda(\tilde{X}) &= \frac{f(\tilde{X}_{1s}, \tilde{X}_{2s}, \ldots, \tilde{X}_{ns}; s = s_1)}{f(\tilde{X}_{1s}, \tilde{X}_{2s}, \ldots, \tilde{X}_{ns}; s = 0)} \\
&= \frac{f(\tilde{X}_{1s}; s = s_1)}{f(\tilde{X}_{1s}; s = 0)} \prod_{i=2}^{p} \frac{f(\tilde{X}_{is}; s = s_1)}{f(\tilde{X}_{is}; s = 0)} \\
&= \frac{f(\tilde{X}_{1s}; s = s_1)}{f(\tilde{X}_{1s}; s = 0)} = \Lambda(\tilde{X}_{1s})
\end{align*}

Thus we have reduced the problem to equivalent hypotheses that a (row) vector measurement \(\tilde{z}^T = \tilde{X}_{1s} \) contains a constant signal in i.i.d. Gaussian noise of variance 1

\[H_0 : \tilde{z} = \tilde{\nu} \quad \Leftrightarrow \quad H_0 : z_k = \tilde{\nu}_k \]

\[H_1 : \tilde{z} = s_1 \tilde{a} + \tilde{\nu} \quad \Leftrightarrow \quad H_1 : z_k = s_1 \tilde{a} + \tilde{\nu}_k \]

The LRT follows immediately from our previous work in detection of constant signal \(\mu = s_1 \tilde{a} \)

\[s_1 \tilde{a} \gtrless_{\tilde{z}_i}^{H_1} \sqrt{n} \frac{H_1}{H_0} \gamma \]

Or, as \(\tilde{a} \) is positive, the final form of the LRT is

\[T(z) = \sqrt{n} \tilde{z}_i \gtrless_{\tilde{H}_0}^{H_1} \mathcal{N}^{-1}(1 - \alpha) \quad s_1 > 0, \]

\[\sqrt{n} \tilde{z}_i \gtrless_{\tilde{H}_1}^{H_0} - \mathcal{N}^{-1}(1 - \alpha) \quad s_1 < 0, \]

The power of the test is determined by the detectibility index

\[d = \frac{|E[\hat{Z}_i|H_1]|}{\sqrt{\text{var}(\hat{Z}_i|H_0)}} = \sqrt{n} \frac{|s_1 \tilde{a}|}{\sqrt{n}} = \sqrt{n} \frac{|s_1|}{\sqrt{a^T R^{-1} a}} \]

We can express LRT in original coordinates by identifying

\[\tilde{z}^T = \tilde{X}_{1s} = \tilde{e}_i^T \tilde{X} = \tilde{e}_i^T \bar{W} X \]

\[\underbrace{\frac{1}{\sqrt{a^T R^{-1} a}}}_{\tilde{e}_i^H} \underbrace{a^T R^{-\frac{1}{2}} R^{-\frac{1}{2}} X}_{H^T R^{-\frac{1}{2}}} \]

\[\underbrace{\frac{1}{\sqrt{a^T R^{-1} a}}}_{\tilde{e}_i^H} a^T R^{-1} X \]
Figure 158: LRT for detecting presence of a spatio-temporal signal implemented with whitening and coordinate rotation preprocessing.

and the identity

\[z_i = (\hat{z}^T 1) \frac{1}{n} \]

to obtain \((s_1 > 0)\)

\[T(\hat{z}) = \frac{1}{\sqrt{n}a^T \mathbf{R}^{-1} a} a^T \mathbf{R}^{-1} X_1 \begin{cases} \mathcal{N}^{-1}(1 - \alpha), & H_1 > H_0 \end{cases} \]

OBSERVATIONS
1. The LRT above is UMP w.r.t. any positive amplitude \(s_1\)
2. A modified LRT is UMP w.r.t. any negative amplitude \(s_1\)
3. The detectibility index

\[d = \sqrt{n} |s_1| \frac{\sqrt{a^T \mathbf{R}^{-1} a}}{\text{ASNR}} \]

depends on normalized array SNR = ASNR

⇒ ASNR depends only on \(||a||\) when noise \(n_k\) is spatially white \((\mathbf{R} = \sigma^2 \mathbf{I})\).
4. Coherent interferers can severely degrade performance

Case 2: Unknown signal amplitude
Figure 159: LRT for detecting presence of a spatio-temporal signal implemented without coordinate transformation preprocessing.

\[H_0 : s = 0, \ k = 1, \ldots, n \]
\[H_1 : s \neq 0, \ k = 1, \ldots, n \]

No UMP exists!

Solution: double sided GLRT

\[|T(z)| = \sqrt{n|z_i|} = \underbrace{\frac{H_1}{H_0}}_{\gamma} \mathcal{N}^{-1}(1 - \alpha/2) \]

1. Implementation of GLRT via signal subspace projection:
 Projection of \(\hat{z} \) onto \(s = n^{-1} \mathbb{1} \) is

\[
\hat{z} = \left[\frac{s s^T}{\|s\|^2} \right] \Pi_s z
\]

\[
= s \frac{s^T \hat{z}}{\|s\|^2}
\]

* \(\Pi_s \) = signal subspace projection operator

Length of \(\hat{z} \) is
\[\|\hat{z}\| = \|z\| \left| \frac{s^T \hat{z}}{\|s\|^2} \right| \]
\[= |\hat{z}_1| \frac{1}{\|z\|} \]
\[= |\hat{z}_1| \]

Conclude:

* GLRT is a threshold test on the length of the orthogonal projection of \(\hat{z} \) onto span(\(s \))

2. Implementation of GLRT via "noise subspace" projection:

Recall orthogonal decomposition

\[\hat{z} = \Pi_s \hat{z} + \left[I - \Pi_s \right] \hat{z} \]

* \(\Pi_s \) = signal subspace projection operator
* \(I - \Pi_s \) = noise subspace projection operator

With this we can express GLRT as

\[|\hat{z}_1|^2 = |\Pi_s \hat{z}|^2 = |\hat{z}|^2 - \| \left[I - \Pi_s \right] \hat{z} \|^2 \]

\[H_1 \quad \gamma' \]
\[H_0 \]
Figure 161: GLRT detector block diagram implemented via signal subspace projection.

Figure 162: GLRT detector block diagram implemented via noise subspace projection.
11.1.3 CASE OF EQUAL MEANS, UNEQUAL COVARIANCES

Here \(\mu_0 = \mu_1 = \mu \) and LRT collapses to purely quadratic test

\[
T(x) = (x - \mu)^T[R_0^{-1} - R_1^{-1}](x - \mu) \stackrel{H_1}{\gtrless} \gamma
\]

where \(\gamma = 2 \ln \eta \). Note that for convenience we have chosen to absorb the factor 1/2 in the log likelihood ratio into the threshold \(\gamma \).

Analysis will be simplified by prefiltering to diagonalize \(R_0^{-1} - R_1^{-1} \)

\(\Rightarrow \) Require prefilter to perform simultaneous diagonalization

![Diagram](image)

Figure 163: Illustration of simultaneous whitening of two Gaussian data sets, or equivalently simultaneous diagonalization of two p.d. matrices as a two stage procedure. First one of the matrices is diagonalized and scaled to have identical diagonal elements via appropriate coordinate transformation (superposition of the constant contours of the two densities is shown on left panel along with the result of the coordinate transformation in middle panel). Then a unitary transformation is applied to diagonalize the other matrix without affecting the transformed first matrix (constant contours of the two densities shown on right panel).

PERFORMANCE ANALYSIS

Under \(H_0 \) reexpress \((x - \mu)^T[R_0^{-1} - R_1^{-1}](x - \mu) \)

\[
T(X) = (X - \mu)^T[R_0^{-1} - R_1^{-1}][X - \mu] = Z^T \sim N_n(0, I)
\]

Now let \(R_0^{\frac{1}{2}}R_1^{-1}R_0^{\frac{1}{2}} \) have eigendecomposition

\[
R_0^{\frac{1}{2}}R_1^{-1}R_0^{\frac{1}{2}} = U_0^T C U_0
\]
* U_0 orthogonal matrix of eigenvectors
* $C = \text{diag}(c_1, \ldots, c_n)$ diagonal matrix of eigenvalues.

$$T(X) = \frac{(U_0 Z)^T}{\mathcal{N}_n(0,I)} [I - C] \frac{(U_0 Z)}{\mathcal{N}_n(0,I)}$$

$$= n(1-c) \sum_i \frac{Z_i^2(1-c_i)}{\sum_j(1-c_j)}$$

where

$$\overline{(1-c)} = n^{-1} \sum_i (1-c_i)$$

There are two cases to consider: $0 < c_i < 1$ vs $c_i > 1$. Note that consideration of $c_i = 0$ is not required since we have assumed that R_1 and R_0 are positive definite matrices.

CASE 1: $0 < c_i < 1$ for all i

Here

$$\overline{(1-c)} > 0$$

so we can absorb it into into threshold γ

This gives MP level α test in terms of orthogonalized measurements z_i

$$\sum_i \frac{z_i^2(1-c_i)}{\sum_j(1-c_j)} \begin{cases} H_1 & P_{H_1} \geq \chi^{-1}_{n,1-c}(1-\alpha) \\ H_0 & \chi^{-1}_{n,1-c}(1-\alpha) \end{cases}$$

Finally, retracing our steps to the original observables we have the implementable level α LRT test

$$(x - \mu)^T (R_0^{-1} - R_1^{-1})(x - \mu) \begin{cases} H_1 & P_{H_1} \geq a\chi^{-1}_{n,1-c}(1-\alpha) \\ H_0 & \chi^{-1}_{n,1-c}(1-\alpha) \end{cases}$$

Here $a = \sum_{i=1}^n (1-c_i)$ and $\chi^{-1}_{n,1-c}$ is the CDF of Chi-square-mixture r.v. with n degrees of freedom and mixture parameter vector

$$1-c = [1-c_1, \ldots, 1-c_n]^T$$

(Johnson, Kotz and Balakrishnan [17, Sec. 18.8]).

It remains to find the power:

In a similar manner, under H_1 we can express

$$T(X) = (X - \mu)^T R_1^{-\frac{1}{2}} [R_1^{-\frac{1}{2}} R_0^{-1} R_1^{-\frac{1}{2}} - I] R_1^{-\frac{1}{2}} (X - \mu)$$

$$= (U_1 Z)^T [C^{-1} - I](U_1 Z)$$
Figure 164: For $c \leq c_i < 1$, threshold of test between two multivariate Gaussian models with identical means but unequal covariances is determined by quantile of Chi-square-mixture p.d.f.

Figure 165: An implementation of the MP-LRT for equal means unequal covariances using orthogonal prefilter U_0 obtained from eigendecomposition: $R_0^{-1}R_1^{-1}R_0^2 = U_0^T C U_0$, where C is diagonal.
\[= n(1/c - 1) \sum_i \frac{Z_i^2(1/c_i - 1)}{\sum_j(1/c_j - 1)} \]

where \(U_1 \) in the above is an orthogonal matrix.

As \((1/c - 1) > 0 \), we easily obtain power as:

\[\beta = 1 - \frac{\chi_{n,1/c-1}(\rho \chi_{n,1-c}^{-1}(1 - \alpha))}{\chi_{n,1/c-1}(1 - \alpha)} \]

where

\[\rho = \frac{(1 - c)}{(1/c - 1)} \]

Figure 166: For \(c \leq c_i < 1 \) ROC of test between two multivariate Gaussian models with identical means but unequal covariances is determined by upper quantiles of pair of Chi-square-mixture p.d.f.'s

CASE 2: \(c_i > 1 \) for all \(i \)

Here we have \((1 - c) < 0 \) and the constant in the test can be absorbed into threshold only with change of the inequalities.

Obtain the MP level \(\alpha \) test in \(z_i \) coordinates

\[\sum_i \frac{z_i^2(1 - c_i)}{\sum_j(1 - c_j)} H_0 < H_1 \Rightarrow \chi_{n,1-c}^{-1}(\alpha) \]

and, using similar arguments as before, we obtain power curve

\[\beta = \frac{\chi_{n,1/c-1}(\rho \chi_{n,1-c}^{-1}(\alpha))}{\chi_{n,1/c-1}(1 - \alpha)} \]
Case 3, where some c_i’s satisfy the condition in Case 1 and others satisfy that of case 2 is more complicated as we end up with a Chi-squared difference in our test statistic.

11.2 APPLICATION: DETECTION OF RANDOM SIGNALS

Example 47 Detection of shift in variance of white noise

\[H_0 : x_k = w_k \]

\[H_1 : x_k = s_k + w_k \]

\(w_k \sim \mathcal{N}(0, \sigma_w^2) \): zero mean white noise

\(s_k \sim \mathcal{N}(0, \sigma_s^2) \): zero mean white noise

\(w_k, s_k \) uncorrelated

Now

\[R_0 = \sigma_w^2 I, \quad R_1 = (\sigma_s^2 + \sigma_w^2) I \]

and

\[R_0^{-1} - R_1^{-1} = \frac{\sigma_s^2}{\sigma_s^2 + \sigma_w^2} \frac{1}{\sigma_w^2} I \]

Hence, defining

\[\text{SNR} = \frac{\sigma_s^2}{\sigma_w^2} \]
c_i is the constant

$$c_i = \frac{\sigma_w^2}{\sigma_w^2 + \sigma_s^2} = 1/(1 + \text{SNR})$$

$$1 - c_i = \text{SNR}/(1 + \text{SNR})$$

$$1/c_i - 1 = 1/\text{SNR}$$

$$\rho = \frac{(1-c_i)/(1/c_i - 1)}{1/(1 + \text{SNR})}$$

Note the SNR is defined differently in the case of a zero mean stochastic signal and a non-zero mean deterministic signal (100).

INTERPRETATION: $1 - c_i$ is the temporal “coherency function” (SNR normalized to interval $[0, 1]$) of the signal w.r.t. the measurement

$$\kappa := \frac{\sigma_s^2}{\sigma_w^2 + \sigma_s^2} = \frac{\text{SNR}}{1 + \text{SNR}}$$

Thus LRT reduces to

$$T(x) = \frac{\kappa}{\sigma_w^2} \sum_{k=1}^{n} x_k^2 \begin{cases} H_1 & > \gamma \\ H_0 & \lessgtr \end{cases}$$

Which reduces to the Chi-squared test (“energy detector”)

$$T'(x) = \sum_{k=1}^{n} \frac{x_k^2}{\sigma_w^2} \begin{cases} H_1 & > \chi_n^{-1}(1 - \alpha) \\ H_0 & \lessgtr \end{cases}$$

NOTE: relation between Chi-square-mixture and Chi-square CDF’s when $1 - c_i = \text{constant}$

$$\chi_{n,1-c_i} = n^{-1}\chi_n$$

Power curve reduces to

$$\beta = 1 - \chi_n \left(\frac{1}{1 + \text{SNR}} \chi_n^{-1}(1 - \alpha) \right)$$

Example 48 *Detection of uncorrelated non-stationary signal in noise*

$H_0 : x_k = w_k$

$H_1 : x_k = s_k + w_k$

$w_k \sim \mathcal{N}(0, \sigma_w^2(k))$: uncorrelated noise samples

$s_k \sim \mathcal{N}(0, \sigma_s^2(k))$: uncorrelated signal samples
w_k, s_k uncorrelated

In this case

$$R_0 = \text{diag}(\sigma^2_w(i)), \quad R_1 = \text{diag}(\sigma^2_s(i) + \sigma^2_w(i))$$

and

$$R_0^{-1} - R_1^{-1} = \text{diag} \left(\frac{\sigma^2_s(i)}{\sigma^2_s(i) + \sigma^2_w(i)} \frac{1}{\sigma^2_w(i)} \right)$$

where κ_i is time varying coherency function

$$\kappa_i = \frac{\sigma^2_s(i)}{\sigma^2_s(i) + \sigma^2_w(i)}$$

is

Hence, MP-LRT of level α reduces to

$$\frac{1}{\bar{\kappa}} \sum_{k=1}^{n} \kappa_k \frac{x_k^2}{\sigma^2_w(k)} \frac{H_1}{H_0} = \chi^2_{n-1}(1 - \alpha)$$

or equivalently in terms of the original $T(x)$

$$T(x) = \sum_{k=1}^{n} \kappa_k \frac{x_k^2}{\sigma^2_w(k)} \frac{H_1}{H_0} \gamma = \bar{\kappa} \chi^2_{n-1}(1 - \alpha)$$

Special case of white noise: $\sigma^2_w(k) = N_o/2$

$$\sum_{k=1}^{n} \kappa_k x_k^2 \frac{H_1}{H_0} \gamma = \frac{N_o}{2} \bar{\kappa} \chi^2_{n-1}(1 - \alpha)$$

TWO USEFUL INTERPRETATIONS

Assume white noise for simplicity (we know that we can simply prewhiten by $1/\sigma^2_w(k)$ if non-white w_k).

1. **“MEMORYLESS” ESTIMATOR CORRELATOR IMPLEMENTATION**

Rewrite test statistic as

$$\sum_{k=1}^{n} \hat{s}_k x_k \frac{H_1}{H_0} \gamma$$

where \hat{s}_k is LLMSE estimator of s_k given x_k
Figure 168: LRT for detecting independent zero mean non-stationary Gaussian signal in non-stationary Gaussian noise.

Figure 169: Memoryless estimator correlator implementation of LRT for non-stationary uncorrelated signal in white noise. Note prewhitening operation $1/\sigma_w^2$ precedes the estimator correlator.
\[\hat{s}_k = \frac{\sigma_s^2(k)}{\sigma_s^2(k) + \sigma_w^2} x_k = \kappa_k x_k \]

2. “MEMORYLESS” FILTER-SQUARER IMPLEMENTATION

Rewrite test statistic as

\[
\sum_{k=1}^{n} y_k^2 \begin{array}{c} H_1 \\ \gtrless \\ H_0 \end{array} \gamma
\]

where \(y_k \) is defined as

\[y_k = \sqrt{\frac{\sigma_s^2(k)}{\sigma_s^2(k) + \sigma_w^2}} x_k = \sqrt{\kappa_i} x_k \]

![Diagram](image)

Figure 170: Memoryless filter squarer implementation of LRT for non-stationary uncorrelated signal in white noise.

POWER OF MEMORYLESS ESTIMATOR CORRELATOR:

as above

\[\beta = 1 - \chi_{n,1/c-1}(\rho \chi_{n,1-c}^{-1}(1 - \alpha)) \]

where

\[c_i = \frac{\sigma_w^2}{(\sigma_s^2(i) + \sigma_w^2)} = 1 - \kappa_i \]

\[\rho = \frac{\sum_i \kappa_i}{\sum_i \kappa_i/(1 - \kappa_i)} \]
To a good approximation, at high SNR it can be shown that ROC depends on n, N_o, $\sigma_s^2(i)$ only through the following three SNR moments

\[
SNR^{(1)} = \frac{1}{\sigma_w^2} \sum_{i=1}^{n} \sigma_s^2(i)
\]

\[
SNR^{(2)} = \left(\frac{1}{\sigma_w^2} \right)^2 \sum_{i,j=1}^{n} \sigma_s^2(i)\sigma_s^2(j)
\]

\[
SNR^{(3)} = \left(\frac{1}{\sigma_w^2} \right)^3 \sum_{i,j,k=1}^{n} \sigma_s^2(i)\sigma_s^2(j)\sigma_s^2(k)
\]

Example 49 Offline detection of w.s.s. signal in white noise

Assume a window of n samples of a zero mean w.s.s. process x_k are available to test

- $H_0 : x_k = w_k$, $k = 0, \ldots, n - 1$
- $H_1 : x_k = s_k + w_k$, $k = 0, \ldots, n - 1$

where

* w_k: Gaussian white noise with PSD $P_w(\omega) = N_o/2$

* s_k: zero mean w.s.s. Gaussian signal with known autocorrelation function $r_s(k) = E[s_ls_{l-k}]$

* w_k, s_k uncorrelated

The $n \times n$ covariance matrices under H_0 and H_1 are

\[
R_0 = R_w = \sigma_w^2 I, \quad R_1 = R_s + \sigma_w^2 I
\]

where $R_s = ((r_s(l - m)))_{l,m=1}^{n}$ is an $n \times n$ p.d. Toeplitz matrix and $\sigma_w^2 = N_o/2$.

We know that MP-LRT is of form

\[
T(z) = z^T (R_0^{-1} - R_1^{-1})z \quad \overset{H_1}{\gtrless} \quad \eta \quad \overset{H_0}{\lesssim}
\]

However, in this form, the detector is not implementable for large n due to the need for to perform the R_s matrix inversion. An alternative, for large n, is to invoke a “spectral decomposition” of the Toeplitz matrix R_s, sometimes known as the Grenander representation, pursued below.

Define E the $n \times n$ unitary “DFT matrix” with n columns e_k given by

\[
e_k = [1, e^{i\omega_k}, \ldots, e^{i\omega_k(n-1)}]/\sqrt{n}
\]

$j = \sqrt{-1}$, and $\omega_k = k/2\pi \in [0, 2\pi)$, $k = 0, \ldots, n - 1$, is the k-th radian frequency. Let $\tilde{x} = [\tilde{x}_1, \ldots, \tilde{x}_n]^T$ denote the vector of (\sqrt{n}-normalized) DFT coefficients associated with $x = [x_1, \ldots, x_n]^T$:

\[
\tilde{x} = E^H x.
\]
Then as $\mathbf{E}\mathbf{E}^H = \mathbf{I}$, we can represent the LRT statistic as

$$\mathbf{z}^T(\mathbf{R}_0^{-1} - \mathbf{R}_1^{-1})\mathbf{z} = [\mathbf{E}^H\mathbf{z}]^H(\mathbf{E}^H\mathbf{R}_0^{-1}\mathbf{E} - \mathbf{E}^H\mathbf{R}_1^{-1}\mathbf{E})[\mathbf{E}^H\mathbf{z}]$$

$$= \mathbf{z}^H(\frac{1}{\sigma^2_w} \mathbf{I} - \mathbf{E}^H\mathbf{R}_1^{-1}\mathbf{E})\mathbf{z}$$ \hspace{1cm} (101)

Now, remarkably, for large n the matrix $\mathbf{E}^H\mathbf{R}_1^{-1}\mathbf{E}$ is approximately diagonal, i.e. the DFT operator \mathbf{E} diagonalizes the covariance matrix. To show this we first state a theorem:

Spectral approximation Theorem [5]: For any positive definite Toeplitz matrix $\mathbf{R} = ((r_{i-j}))_{i,j=1}^n$

$$\mathbf{E}^H\mathbf{R}\mathbf{E} = \text{diag}(\text{DFT}_{r}(\omega_k)) + O(1/n)$$

where $\text{DFT}_{r}(\omega_k) = \sum_{k=-n+1}^{n-1} r_k e^{-j\omega_k}$ is the k-th coefficient of the discrete fourier transform (DFT) of the sequence $r = \{r_{-n+1}, \ldots, r_0, \ldots, r_{n-1}\}$, and $O(1/n)$ is a term that goes to zero at rate $1/n$. This implies that for large n the eigenvectors of \mathbf{R} are the DFT vectors and the eigenvalues are the DFT coefficients of the distinct elements of \mathbf{R}.

Proof of spectral approximation theorem:

It suffices to show that DFT matrix \mathbf{E} asymptotically diagonalizes \mathbf{R}, i.e.

$$\mathbf{z}_k^H\mathbf{R}\mathbf{z}_l = \begin{cases} \text{DFT}_{r}(\omega_k), & k = l \\ 0, & o.w. \end{cases}$$

So let’s write out the quadratic form explicitly

$$\mathbf{z}_k^H\mathbf{R}\mathbf{z}_l = n^{-1}\sum_{p=0}^{n-1}\sum_{m=0}^{n-1} e^{-j\omega_k p} e^{j\omega_l m} r_{p-m}$$

Next we rearrange the summation a bit

$$\mathbf{z}_k^H\mathbf{R}\mathbf{z}_l = n^{-1}\sum_{m=0}^{n-1} e^{j(\omega_l-\omega_k)m} \sum_{p=0}^{n-1} e^{-j\omega_k(p-m)} r_{p-m}$$

Now we make a change of indices in the summations $m \to t \in \{1, \ldots, n\}$ and $m - p \to \tau \in \{-n, \ldots, n\}$ to obtain

$$\mathbf{z}_k^H\mathbf{R}\mathbf{z}_l = \sum_{\tau=-n+1}^{n-1} r_\tau e^{-j\omega_k \tau} \sum_{t=0}^{n-1} e^{j(\omega_l-\omega_k)t} g_n(\omega_l-\omega_k)$$

where $g_n(u) = n^{-1}(e^{ju}/2 \sin(u(n+1)/2)/\sin(u/2) - 1)$. Now, as $n \to \infty$, the term $g_n(\omega_l-\omega_k)$ converges to a discrete delta function:

$$\lim_{n \to \infty} g_n(\omega_l-\omega_k) = \delta_{k-l}$$

and so, assuming appropriate conditions allowing us to bring the limit under the summation, we have the large n approximation

$$\mathbf{z}_k^H\mathbf{R}\mathbf{z}_l = \sum_{\tau=-n+1}^{n-1} r_\tau e^{-j\omega_k \tau} \delta_{k-l} = \text{DFT}_{r}(\omega_k)\delta_{k-l}$$
which establishes the spectral approximation.

Applying the spectral decomposition theorem to the Toeplitz matrix \(R_1^{-1} = [R_s + \sigma_w^2 I]^{-1} \) (the inverse of a Toeplitz matrix is Toeplitz) we obtain

\[
E^H R_1^{-1} E = \text{diag}_k \left\{ \frac{1}{P_s(\omega_k) + \sigma_w^2} \right\} + O(1/n)
\]

where \(P_s(\omega_k) \) is the power spectral density associated with \(s_k \), i.e., the DFT of \(\{r_s(-n+1), \ldots, r_s(n-1)\} \). We have from (101) the following form of the MP-LRT test statistic (recall that \(\sigma_w^2 = N_o/2 \))

\[
T(x) = \tilde{x}^H \left(\frac{1}{\sigma_w^2} I - E^H R_1^{-1} E \right) \tilde{x}
\]

\[
= \frac{2}{N_o} \tilde{x}^H \text{diag} (\kappa(\omega_k)) \tilde{x}
\]

where \(\kappa(\omega) \) is the spectral coherency function

\[
\kappa(\omega) = \frac{P_s(\omega)}{P_s(\omega) + N_o/2}
\]

Expressing the quadratic form as a sum we obtain the equivalent large \(n \) form for the MP-LRT

\[
T(x) = \frac{2}{N_o} \sum_{k=0}^{n-1} \frac{P_s(\omega_k)}{P_s(\omega_k) + N_o/2} |\tilde{x}_k|^2 1/n \overset{H_1}{\underset{H_0}{>}} \gamma
\]

where, as before, \(\gamma \) is the level \(\alpha \) threshold

\[
\gamma = \kappa \chi_{n,\kappa}(1 - \alpha)
\]

and \(\{\sqrt{n} \tilde{x}_k\} \) are the DFT coefficients of the observations. The quantity \(|\tilde{x}_k|^2 1/n \) is known as the Periodogram estimate of the PSD of \(x_k \).

IMPLEMENTATION ISSUES

Using the duality between convolution in the time domain and multiplication in the frequency domain, identify the test statistic as:

\[
T(x) = \frac{2}{N_o} \sum_{k=0}^{n-1} \frac{P_s(\omega_k)}{(S(\omega_k))^*} \tilde{x}_k \tilde{x}_k^* = \frac{2}{N_o} \sum_{k=0}^{n-1} \hat{s}_k x_k,
\]

where \(\hat{s}_k \) is the inverse DFT of \(\hat{S}(\omega_k) \).

Implementation 1: Estimator correlator:

Absorbing \(N_o/2 \) into the threshold, the MP-LRT can be written as

\[
\sum_{k=0}^{n-1} \hat{s}_k x_k \overset{H_1}{\underset{H_0}{>} \gamma} = \frac{N_o}{2} \kappa \chi_{n,\kappa}(1 - \alpha)
\]
\[\hat{s}_k = h_{\text{MMSE}}(k) \ast x_k \]

and \(h_{\text{MMSE}}(k) \) is the Wiener filter with transfer function

\[H_{\text{MMSE}}(\omega) = \frac{P_s(\omega)}{P_s(\omega) + N_0/2} \]

Figure 171: Estimator correlator implementation of LRT for w.s.s. signal in white noise. (Error in figure: the summer before ‘\(\Sigma \)’ at bottom right should be a multiplier.

Alternatively use

Parseval’s theorem: if \(f(k) \Leftrightarrow F(\omega_k) \) are DFT pair then

\[n^{-1} \sum_{k=-\infty}^{\infty} |F(\omega_k)|^2 = \sum_{k=0}^{n-1} |f(k)|^2 \]

Implementation 2: filter-squarer

\[\sum_{k=0}^{n-1} y_k^2 \begin{cases} H_1 \geq \gamma = \frac{N_0}{2} \chi_{n,n}^2(1 - \alpha) \end{cases} \]

where

\[y_k = h_k \ast x_k \]

and \(h_k \) has transfer function
11.3 Detection of Non-Zero Mean Non-Stationary Signal in White Noise

Now consider

\[H_0 : x_k = w_k \]

\[H_1 : x_k = s_k + w_k \]

* \(w_k \sim \mathcal{N}(0, \sigma_w^2) \): white noise
* \(s_k \sim \mathcal{N}(\mu_k, \sigma_s^2(k)) \): uncorrelated signal samples
* \(w_k, s_k \) uncorrelated

Recall general formula for nonequal means and covariances for LRT

\[
H(\omega) = \sqrt{\frac{\mathcal{P}_s(\omega)}{\mathcal{P}_s(\omega) + \mathcal{N}_o/2}}
\]

ROC: identically to previous example

\[
\beta = 1 - \chi_{n,1/c-1}(\rho\chi_{n,1-c}^{-1}(1 - \alpha))
\]

except now \(c = [c_1, \ldots, c_n] \) is

\[
c_i = (\mathcal{N}_o/2)(\mathcal{P}_s(\omega_i) + \mathcal{N}_o/2)
\]

Figure 172: Filter squarer implementation of LRT for w.s.s. signal in white noise.
$T(x) = \frac{1}{2}x^T[R_0^{-1} - R_1^{-1}]x + (\mu_1^T R_1^{-1} - \mu_0^T R_0^{-1})x \overset{H_1}{\underset{H_0}{\gtrless}} \gamma$

For present case $\mu_0 = 0$, R_1 and R_0 are diagonal and LRT statistic reduces to

$$T(x) = \frac{1}{2\sigma_w^2} \sum_{k=1}^{n} \frac{\sigma_s^2(k)}{\sigma_s^2(k) + \sigma_w^2} x_k^2 + \sum_{k=1}^{n} \frac{1}{\sigma_s^2(k) + \sigma_w^2} \mu_k x_k$$

$$= \frac{1}{2\sigma_w^2} \left(\sum_{k=1}^{n} \kappa_k x_k^2 + 2 \sum_{k=1}^{n} (1 - \kappa_k) \mu_k x_k \right)$$

It is easily shown (see exercises) that this LRT is equivalent to the test

$$\sum_{k=1}^{n} \frac{\sigma_s^2(k)}{\sigma_s^2(k) + \sigma_w^2} (x_k - \mu_k)^2 + 2 \sum_{k=1}^{n} \mu_k x_k \overset{H_1}{\underset{H_0}{\gtrless}} \gamma' \quad (104)$$

This test can be implemented by a combination of estimator-correlator and matched filter.

PERFORMANCE:

The test statistic is now distributed as a noncentral Chi-square-mixture under H_0 and H_1 and analysis is somewhat more complicated (Johnson, Kotz and Balakrishnan [17, Sec. 18.8]).

Figure 173: Estimator correlator plus matched filter implementation of LRT for non-zero mean w.s.s. signal in white noise. (Note: the “summer” with inputs $x_k - \mu_k$ and \hat{s}_k should be a multiplier)
11.4 ONLINE IMPLEMENTATIONS OF OPTIMAL DETECTORS

Objective: perform optimal detection at each sampling time $n = 1, 2, \ldots$ based only on past observations $0 < k \leq n$

\[
H_0: x_k = v_k \\
H_1: x_k = s_k + v_k
\]

Figure 174: *Online detection seeks to develop optimal detector for each time instant n based only on past measurements.*

11.4.1 ONLINE DETECTION FOR NON-STATIONARY SIGNALS

Objective: decide between the presence of either of two random signals based on finite past $0 < k \leq n$

\[
H_0: x_k = s_0(k) + w_k \\
H_1: x_k = s_1(k) + w_k
\]

where

v_k: non-stationary zero mean Gaussian noise

$s_0(k), s_1(k)$: non-stationary zero mean Gaussian signals with known state space representations
Recall: general MP-LRT is of form

\[T(x) = x^T \left[R_0^{-1} - R_1^{-1} \right] x < \frac{H_1}{H_0}, \gamma \]

Difficulty: growing memory in \(n \) makes computation of \(T(x) \) impractical

Solution 1: Online dual Kalman signal selector

Solution 2: Online signal detector via Cholesky

11.4.2 ONLINE DUAL KALMAN SIGNAL SELECTOR

Let \(\eta_0 \) and \(\eta_1 \) denote vectors of innovations generated by Kalman filters matched to \(H_0 \) and \(H_1 \), respectively.

![Diagram of Dual Kalman Filters]

We know that

\[\eta_0 = A_0 \tilde{x}, \quad \eta_1 = A_1 \tilde{x} \]

\[R_0 = A_0^{-1} R_{\eta_0} A_0^{-T}, \quad R_1 = A_1^{-1} R_{\eta_1} A_1^{-T} \]

where

* \(A_0, A_1 \) are lower triangular matrices of prediction coefficients

* \(R_{\eta_0}, R_{\eta_1} \) are diagonal matrices of prediction error variances
Recall important property of innovations:
\[\eta(k) = x(k) - \hat{x}(k|k-1) = x(k) - \hat{s}(k|k-1) \]
* \[E[\eta(k)] = 0 \]
* \[\text{var}(\eta(k)) = \mathbf{c}^T \mathbf{R}_\xi(k, k-1) \mathbf{c} + \sigma_v^2 \] is minimum prediction error variance
* \[\left\{ \frac{\eta(k)}{\sqrt{\text{var}(\eta(k))}} \right\} \] is white
* \[[\eta_1, \ldots, \eta_n]^T \sim \mathcal{N}(0, \text{diag}(\text{var}(\eta(k))))I \]

Using innovations representation we can re-express LR statistic:

\[
T(x) = \mathbf{x}^T \left[(\mathbf{R}_0^{-1} - \mathbf{R}_1^{-1}) \mathbf{c} \right] = \mathbf{x}^T \left[\mathbf{A}_0^T \mathbf{R}_{\eta_0}^{-1} \mathbf{A}_0 - \mathbf{A}_1^T \mathbf{R}_{\eta_1}^{-1} \mathbf{A}_1 \right] \mathbf{c}
\]

Or, LRT reduces to

\[
T(x) = \sum_{i=1}^{n} \frac{\eta_0^2(i)}{\text{var}(\eta_0(i))} - \sum_{i=1}^{n} \frac{\eta_1^2(i)}{\text{var}(\eta_1(i))} \frac{H_1}{H_0} < \gamma
\]

where, level \(\alpha \) threshold is time varying. For example if \(\mathbf{R}_0^{-1} > \mathbf{R}_1^{-1} \)

\[
\gamma = n(1-c) \chi^2_{n,1-c}(1 - \alpha)
\]

Special Case: SIGNAL DETECTION IN WHITE NOISE

Here \(s_0(k) \) is zero and \(v_k \) is white

\[
H_0 : x_k = v_k
\]
\[
H_1 : x_k = s_1(k) + v_k
\]

and
* \(\hat{s}_0(k|k-1) = 0 \)
* \(\eta_0(k) = x_k \)
\[x_k \rightarrow \text{KF 1} \rightarrow \eta_1(k) \rightarrow (\cdot)^2 \rightarrow \Sigma \rightarrow \nabla \rightarrow H_1 \]

\[\nabla \rightarrow \text{KF 0} \rightarrow \eta_0(k) \rightarrow (\cdot)^2 \rightarrow \Sigma \rightarrow \nabla \rightarrow \Sigma \rightarrow H_0 \]

\[\eta_1(k) \rightarrow \eta_0(k) \rightarrow -\]

Figure 176: Dual Kalman filter implementation of state space signal selector.

Figure 177: Trajectory of dual Kalman filter implementation of state space signal selector. Note that the threshold is a function of time. If the number of samples \(n \) is random then the threshold of the test must be set by the method of repeated tests of significance.
Thus MP-LRT simplifies to a “measured energy” vs. “Kalman residual” detector

\[T(x) = \frac{1}{\sigma_v^2} \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} \frac{\eta_1^2(i)}{\text{var}(\eta_1(i))} \]

\[H_1 > H_0 \gamma \]

\[\text{Note} \quad R_0^{-1} - R_1^{-1} = R_v^{-1} - [R_s + R_v]^{-1} \]

\[= [R_s + R_v]^{-\frac{1}{2}} R_s^{\frac{1}{2}} R_v^{-1} R_s^{\frac{1}{2}} [R_s + R_v]^{-\frac{1}{2}} \]

\[> 0 \]
Hence we can apply the Cholesky decomposition

\[R_0^{-1} - R_1^{-1} = L^T P L \]

* \(L \) is lower triangular matrix of “backward predictor coefficients”

* \(P \) is diagonal matrix of “backward predictor error variances”

Now apply Cholesky decomposition to \(T(x) \)

\[
\begin{align*}
T(x) &= \frac{1}{2} x^T (R_0^{-1} - R_1^{-1}) x \\
&= \frac{1}{2} x^T [L^T P L] x \\
&= \frac{1}{2} [L x]^T P [L x] \\
&\leq \frac{1}{2} \sum_{i=1}^{n} \sigma_i^2 y_i^2
\end{align*}
\]

or we have representation

\[
T(x) = \frac{1}{2} \sum_{i=1}^{n} \sigma_i^2 y_i^2
\]

Figure 179: On-line implementation of non-stationary signal detector via using Cholesky factor \(L \).

The MP level \(\alpha \) test is simply
\[
\sum_{i=1}^{n} \sigma_i^2 y_i^2 \begin{cases} \geq H_1 & H_0 \end{cases} \gamma_n = n(1-c) \chi_{n,\alpha}^{-1}(1-\alpha)
\]

where \(\sigma_i^2\) and \(\kappa = n(1-c)\) are computed offline. Note that while we can generate a recursion for the test statistic, a recursion for the threshold \(\gamma_n\) is not available.

In many cases \(y_i\) can be generated by a “lumped” Kalman filter matched to a state observation model

\[
x_k' = s_k' + v_k'
\]
\[
s_k' = C_k \nu_k
\]
\[
\nu_{k+1} = D_k \nu_k + E_k w_k'
\]
synthesized such that the measurement covariance satisfies

\[
R_{x'} = R_0^{-1} - R_1^{-1}
\]

11.5 STEADY-STATE STATE-SPACE SIGNAL DETECTOR

Assume:

* State model for \(s_1\) is LTI
* measurement noise \(v_k\) is w.s.s.
* limiting state error covariance matrix \(R_\xi(\infty)\) is non-singular
* Kalman filter is in steady state \((n\) large)

Then, as innovations are w.s.s., the MP-LRT statistic can be written

\[
T(x) = \frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2 - \frac{1}{2\var(\eta_1)} \sum_{i=1}^{n} \eta_i^2(i) \begin{cases} \geq H_1 & H_0 \end{cases} \gamma
\]

Or, using asymptotic innovations variance, we have MP test

\[
\sum_{i=1}^{n} x_i^2 - \frac{\sigma_v^2}{\sigma_a^2 + \sigma_v^2} \sum_{i=1}^{n} \eta_i^2(i) \begin{cases} \geq H_1 & H_0 \end{cases} \gamma
\]

APPROXIMATE GLRT FOR UNKNOWN MEASUREMENT NOISE VARIANCE

We can implement an approximate GLRT to handle the case where the variance of the observation noise \(\sigma_v^2\) is unknown. For this case the GLR statistic is
\[
\Lambda_{GLR} = \max_{\sigma_v^2 > 0} \left(\sigma_v^2 + \sigma_s^2 \right)^{-n/2} \exp \left(-\frac{1}{2(\sigma_v^2 + \sigma_s^2)} \sum_{i=1}^{n} \eta_1^2(i) \right) \frac{\max_{\sigma_v^2 > 0} \left(\sigma_v^2 \right)^{-n/2} \exp \left(-\frac{1}{2\sigma_v^2} \sum_{i=1}^{n} x_i^2 \right)}{\max_{\sigma_v^2 > 0} \left(\sigma_v^2 \right)^{-n/2} \exp \left(-\frac{1}{2\sigma_v^2} \sum_{i=1}^{n} x_i^2 \right)}
\]

Of course the denominator is maximized for

\[
\sigma_v^2 = n^{-1} \sum_{i=1}^{n} x_i^2
\]

and, as for the numerator, we proceed by an iterative approximation. First neglect the dependence of \(\eta_1 \) on \(\sigma_v^2 \). Then the numerator is maximized for

\[
\hat{\sigma}_v^2(n) = n^{-1} \sum_{i=1}^{n} \eta_1^2(i) - \sigma_s^2
\]

Now generate \(\eta_1(n + 1) \) from the Kalman Filter having parameters \(A, b, c \) and \(\hat{\sigma}_v^2 \). In this way we obtain an approximate GLRT which is implemented by comparing the ratio of two variance estimators to a threshold. Note that the numerator and denominator of the test statistic are dependent so this is not an F-test.

\[
\frac{\hat{\sigma}_v^2}{\hat{\sigma}_n^2} = \frac{\sum_{i=1}^{n} x(i)^2}{\sum_{i=1}^{n} \eta_1^2(i)} \begin{cases} H_1 & \text{if } \frac{\sum_{i=1}^{n} x(i)^2}{\sum_{i=1}^{n} \eta_1^2(i)} > \gamma \\ H_0 & \end{cases}
\]

Figure 180: *Approximate steady-state GLRT signal detector for unknown measurement noise*

In analogous manner, for the GLRT signal selector we obtain
11.6 EXERCISES

11.1 Let \(x = [x_1, \ldots, x_n]^T \) be \(n \) samples of a waveform. It is of interest to test the two hypotheses

\[
H_0 : x = ay + w \\
H_1 : x = s + ay + w
\]

where \(w \) is zero mean Gaussian white noise, \(\text{cov}(w) = \sigma^2 I \), \(s \) and \(y \) are known waveforms, and the scalar constant \(a \) is unknown.

(a) Assuming that \(a \) is a Gaussian r.v. with zero mean and variance \(\sigma_a^2 \) derive the MP LRT (with threshold) to test \(H_0 \) vs. \(H_1 \). Assume that \(a \) is independent of \(w \). Is this a UMP test for the case that the signal shape \(s/\|s\| \) is known but its energy \(\|s\|^2 \) is unknown? How about when signal shape \(y/\|y\| \) is known but \(\|y\|^2 \) is unknown?

(b) Under the assumption on \(a \) of part (a) find the detectibility index \(d \) which controls the ROC curve. Assume that \(\|s\| \leq 1 \). Show that the ROC curve is optimized (maximum \(d \)) when the signal \(s \) is orthogonal to the interferer \(y \) but is otherwise arbitrary (Hint: you might want to use the Woodbury matrix identity).

(c) Assuming that \(a \) is a deterministic unknown constant, repeat parts (a) and (b) for the GLRT of \(H_0 \) vs. \(H_1 \).

11.2 Let \(x_k, k = 1, \ldots, n \) be a segment of a discrete time random process. It is desired to test whether \(x_k \) contains a harmonic component (sinusoidal signal) or not

\[
H_0 : x_k = w_k \\
H_1 : x_k = A\cos(\omega_0 k + \psi) + w_k
\]
where w_k is zero mean Gaussian white noise with acf $r_w(k) = N_0/2\delta_k$, $\omega_o = 2\pi l/n$ for some integer l, A is a deterministic amplitude, and ψ is a uniform phase over $[0, 2\pi]$. The random phase of the sinusoid and the noise samples are independent of each other.

(a) Show that under H_1 the auto-correlation function of x_k is $E[x_k x_{l-k}] = r_x(k) = A^2/2 \cos(\omega_o k) + N_0/2\delta_k$ and derive the PSD P_x.

(b) Derive the MP LRT with threshold and implement the MP LRT as an estimator correlator and a filter squarer. (Hint: as ψ is uniform and $f_1(x|\psi)$ is a Gaussian p.d.f. $f_1(x) = (2\pi)^{-1} J_0(2\pi) f_1(x|\psi) d\psi$ is a Bessel function which is monotone in a test statistic which under H_0 is distributed as a Chi-square with 2 df, i.e exponential.)

(c) Show that the MP LRT can also be implemented as a test on the periodogram spectral estimator $P_{per}(\omega_o) = \frac{1}{n} |DFT\{x_k\}_{\omega = \omega_o}|^2$ where $DFT\{x_k\}_\omega = \sum_{k=1}^{n} x_k e^{-j\omega k}$ is the DTFT of $\{x_k\}_{k=1}^{n}$, $\omega \in \{2\pi l/n\}_{l=1}^{n}$.

11.3 Find the GLRT for the previous problem under the assumption that both A and ω_o are unknown (Hint: as no closed form solution exists for the MLE’s of A and ω_o you can leave your answer in the form of a “peak detector” block diagram).

11.4 Derive the “completion of the square” result (Eq. 104) in section 11.3.

11.5 A sensor is placed on a North Atlantic oil derick at a particular spatial location to monitor the mechanical state of the structure. When the mechanical state is “normal” the sensor produces a measurement which follows the state space model:

$$
x_k = s_k + v_k
$$

$$
s_{k+1} = as_k + w_k
$$

$k = 0, 1, \ldots$. A model for impending failure of the mechanical structure is that a shift in the damping constant a occurs. Assuming the standard Gaussian assumptions on the dynamical model under both normal and failure modes, the detection of impending failure can be formulated as testing between

$$
H_0 : a = a_o
$$

$$
H_1 : a \neq a_o
$$

where $a_o \in (-1, 1)$ is known.

(a) Implement the MP test of level α for the simple alternative $H_1 : a = a_1$, where $a_1 \neq a_0$, with a pair of Kalman filters. If you solved Exercise 6.14 give explicit forms for your filters using the results of that exercise.

(b) Now treat the general composite case above with your favorite method, e.g. LMP or GLRT. Take this problem as far as you can by making simplifying assumptions starting with assuming steady state operation of the Kalman filters.

11.6 Available for observation are n time samples $X(k)$,

$$
X(k) = \sum_{i=1}^{p} \alpha_i g_i(k - \tau_i) + W(k), \quad k = 1, \ldots, n
$$

where $W(k)$ is a zero mean Gaussian white noise with variance $\text{var}(W(k)) = \sigma^2_w$, α_i, $i = 1, \ldots, p$, are p i.i.d. zero mean Gaussian random variables with variance σ^2_α, and $g_i(u)$, $i = 1, \ldots, p$, are p known time functions over $u \in (-\infty, \infty)$. The α_i and $W(k)$ are uncorrelated and p is known. Define K as the $p \times p$ matrix of inner products of the g_i’s, i.e. K has entries $\kappa_{ij} = \sum_{k=1}^{n} g_i(k - \tau_i) g_j(k - \tau_j)$.
(a) Show that the ML estimator of the τ_i's involves maximizing a quadratic form $y^T[I + \rho K]^{-1}y - b$ where $y = [y_1, \ldots, y_p]^T$ is a vector of p correlator outputs $y_i(\tau_i) = \sum_{k=1}^{n} x(k) g_i(k - \tau_i)$, $i = 1, \ldots, p$, $b = b(\tau)$ is an observation independent bias term, and $\rho = \sigma_a^2/\sigma_w^2$ is the SNR (Hint: express log-likelihood function in vector-matrix form and use a matrix inverse (Woodbury) identity). Draw a block diagram of your ML estimator implemented as a peak picker, i.e. a variable filter applied to the data over which you seek to maximize the output.

(b) Now consider the detection problem

$$H_0 : X(k) = W(k)$$

$$H_1 : X(k) = \sum_{i=1}^{p} \alpha_i g_i(k - \tau_i) + W(k)$$

For known τ_i's derive the LRT and draw a block diagram of the detector. Is the LRT UMP for unknown τ_i's? How about for known τ_i's but unknown SNR σ_a^2/σ_w^2?

(c) Now assume that the τ_i's are unknown and that the α_i's are also unknown and non-random. Show that in the GLRT the maximization over the α_i's can be performed explicitly. Draw a block diagram of the GLRT implemented with a thresholded peak picker over the τ_i's.

End of chapter
In the last chapter we covered the testing of simple hypotheses in the multivariate Gaussian model. In this chapter we consider the same model but with composite hypotheses. We focus on the GLRT for several useful canonical detection problems in this Gaussian multi-channel model.

Figure 182: GLR detector from multi-channel Gaussian measurements.

OUTLINE
* Double sided GLRT for equality of vector mean
* Double sided GLRT for equality two vector means
* Double sided GLRT for independence of samples
* Double sided GLRT for whiteness of samples
* Confidence regions for vector mean

REFERENCES
Morrison [27]

12.1 THE MULTIVARIATE GAUSSIAN MODEL

The measurements are a set of n i.i.d. p-dimensional Gaussian vectors, each having mean vector μ and $p \times p$ covariance R:

$$X_i = \begin{bmatrix} X_{i1} \\ \vdots \\ X_{ip} \end{bmatrix}, \quad i = 1, \ldots n$$
For notational convenience we denote the measurements by a random $p \times n$ measurement matrix

$$X = [X_1, \ldots, X_n]$$

This matrix has the following properties:

* $\{X_i\}_{i=1}^n$: independent Gaussian columns ($n \geq p$)
* $\mu = E[\theta X_i]$: mean vector
* $R = \text{cov}_\theta(X_i)$: covariance matrix ($p \times p$)

The jpdf of the Gaussian matrix X has the form

$$f(X; \mu, R) = \left(\frac{1}{2\pi p |R|}\right)^{n/2} \exp \left(-\frac{1}{2} \sum_{i=1}^n (X_i - \mu)^T R^{-1} (X_i - \mu) \right)$$

$$= \left(\frac{1}{2\pi p |R|}\right)^{n/2} \exp \left(-\frac{1}{2} \sum_{i=1}^n \text{trace} \left\{ (X_i - \mu)(X_i - \mu)^T R^{-1} \right\} \right)$$

$$= \left(\frac{1}{2\pi p |R|}\right)^{n/2} \exp \left(-\frac{n}{2} \text{trace} \{ \hat{R}_\mu R \} \right)$$

where we have defined the $p \times p$ covariance estimator

$$\hat{R}_\mu = n^{-1} \sum_{i=1}^n (X_i - \mu)(X_i - \mu)^T$$

$$= \frac{1}{n} (X - \overline{\mu}^T)(X - \overline{\mu}^T)^T$$

12.2 Double Sided Test of Vector Mean

$$H_0 : \mu = \mu_o, \ R > 0$$

$$H_1 : \mu \neq \mu_o, \ R > 0$$

$$\Lambda_{GLR} = \frac{\max_{\mu R > 0} f(X; \mu, R)}{\max_{R > 0} f(X; \mu_o, R)}$$
Now, it is easily seen that

$$\max_{\mu, R > 0} f(X; \mu, R) = \max_{R > 0} f(X; \overline{X}, R)$$

where the column sample mean is

$$\overline{X} = n^{-1} \sum_{i=1}^{n} X_i = X_1 \frac{1}{n}$$

Therefore, we can rewrite GLRT as

$$\Lambda_{GLR} = \max_{\mu, R > 0} f(X; \mu, R) \overline{X} \max_{R > 0} f(X; \mu_0, R)$$

FACT: for any vector $\mathbf{t} = [t_1, \ldots, p]^T$

$$\max_{R > 0} \left\{ |R|^{-n/2} \exp \left(-\frac{n}{2} \text{trace} \left\{ \hat{R}_R^{-1} \right\} \right) \right\} = |\hat{R}_t|^{-n/2} e^{-n^2/2}$$

and the maximum is attained by

$$R = \hat{R}_t = n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T$$

Proof:

The maximizing R also maximizes

$$l(R) = \ln f(X; \mathbf{t}, R) = \frac{n}{2} \ln |R| - \frac{n}{2} \text{trace} \left\{ \hat{R}_R^{-1} \right\}$$

Define the transformed covariance \tilde{R}

$$\tilde{R} = \hat{R}_t^{-1/2} R \hat{R}_t^{-1/2}$$

Then, since

$$\text{trace} \{AB\} = \text{trace} \{BA\}, \quad |AB| = |BA| = |B| |A|$$
\[l(\hat{R}) = -\frac{n}{2} \left(\ln |\hat{R}^{1/2} \tilde{R} \hat{R}^{1/2}| + \text{trace}\left\{ \hat{R}^{1/2} \tilde{R}^{-1} \hat{R}^{-1/2} \right\} \right) \]

\[= -\frac{n}{2} \left(\ln |\hat{R}| + \text{trace}\left\{ \hat{R}^{-1} \right\} \right) \]

\[= -\frac{n}{2} \left(\ln |\hat{R}| + \ln |\tilde{R}| + \text{trace}\left\{ \hat{R}^{-1} \right\} \right) \]

\[= -\frac{n}{2} \left(\ln |\hat{R}| + \sum_{j=1}^{p} \ln \tilde{\lambda}_j + \sum_{j=1}^{p} \frac{1}{\tilde{\lambda}_j} \right) \]

Where \(\{\tilde{\lambda}_j\} \) are the eigenvalues of \(\tilde{R} \).

Hence the maximizing \(R \) satisfies for \(j = 1, \ldots, p \)

\[0 = \frac{d}{d\tilde{\lambda}_j} l(\hat{R}) \]

\[= -\frac{n}{2} \left(\frac{1}{\tilde{\lambda}_j} - \frac{1}{\tilde{\lambda}_j^2} \right) \]

so that the maximizing \(\tilde{R} \) has identical eigenvalues

\[\tilde{\lambda}_j = 1, \quad j = 1, \ldots, p \]

Implication: the maximizing \(\tilde{R} \) is an orthogonal (unitary) matrix \(U \).

But since \(\tilde{R} \) is also symmetric the only possible solution is the identity \(I \).

Therefore

\[I = \tilde{R} = \hat{R}^{1/2} \tilde{R} \hat{R}^{-1/2} \]

giving the maximizing \(R \) as

\[R = \hat{R} \]

Note: We have just shown that

1. MLE of \(R \) for known \(\mu = \mu_o \) is

\[\hat{R}_\mu = n^{-1} \sum_{i=1}^{n} (X_i - \mu_o)(X_i - \mu_o)^T \]

\[^{0}\text{If } U \text{ is orthogonal then } U^H = U^{-1}. \text{ If in addition } U \text{ is symmetric then } U = U^T = U^{-1} \text{ so that } U = I. \]
2. MLE of \mathbf{R} for unknown μ is

$$\hat{\mathbf{R}}_{\hat{\mu}} = \hat{\mathbf{R}} = n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T$$

Plugging these ML solutions back into GLRT statistic

$$\Lambda_{GLR} = \left(\frac{|\hat{\mathbf{R}}_{\hat{\mu}}|}{|\hat{\mathbf{R}}|} \right)^{n/2} = \left(\left| \hat{\mathbf{R}}_{\hat{\mu}} \hat{\mathbf{R}}^{-1} \right| \right)^{n/2}$$

Now using

$$\hat{\mathbf{R}}_{\hat{\mu}_0} = \hat{\mathbf{R}} + (\bar{X}_i - \hat{\mu}_o)(\bar{X}_i - \hat{\mu}_o)^T$$

we have the equivalent GLRT ($\Lambda_{GLR} = (T(\mathbf{X}))^{n/2}$)

$$T(\mathbf{X}) = \left| \mathbf{I} + (\bar{X}_i - \hat{\mu}_o)(\bar{X}_i - \hat{\mu}_o)^T \hat{\mathbf{R}}^{-1} \right|$$

$$= \left| \mathbf{I} + \hat{\mathbf{R}}^{-\frac{1}{2}}(\bar{X}_i - \hat{\mu}_o)(\bar{X}_i - \hat{\mu}_o)^T \hat{\mathbf{R}}^{-\frac{1}{2}} \right| \begin{array}{c} H_1 \begin{array}{c} \geq \gamma \end{array} \end{array} \begin{array}{c} H_0 \begin{array}{c} < \gamma \end{array} \end{array}$$

SIMPLIFICATION OF GLRT

Observe: $T(\mathbf{X})$ is the determinant of the sum of a rank 1 matrix and the identity matrix

$$T(\mathbf{X}) = \left| \mathbf{I} + \sum_{j=1}^{p} \lambda_j \right|$$

where λ_j are the eigenvalues of the matrix.

IMPORTANT FACTS:

1. Eigenvectors of $\mathbf{I} + \mathbf{A}$ are identical to eigenvectors of \mathbf{A}

2. Eigenvectors of $\mathbf{A} = \mathbf{u} \mathbf{u}^T$ are
\[\nu_1 = \frac{1}{\|u\|} = \hat{\mathbf{R}}^{-1/2}(\mathbf{X}_i - \mu_o) \frac{1}{\sqrt{(\mathbf{X}_i - \mu_o)^T \hat{\mathbf{R}}^{-1}(\mathbf{X}_i - \mu_o)}} \]

\[\nu_2, \ldots, \nu_p \quad \text{determined via Gramm-Schmidt} \]

3. Eigenvalues of \(\mathbf{I} + \mathbf{A} \) are

\[\lambda_1 = \nu_1^T (\mathbf{I} + \mathbf{A}) \nu_1 = 1 + (\mathbf{X}_i - \mu_o)^T \hat{\mathbf{R}}^{-1}(\mathbf{X}_i - \mu_o) \]

\[\lambda_2 = \ldots = \lambda_p = 1 \]

Thus we have GLRT

\[T(\mathbf{X}) = \prod_{j=1}^{p} \lambda_j = 1 + (\mathbf{X}_i - \mu_o)^T \hat{\mathbf{R}}^{-1}(\mathbf{X}_i - \mu_o) \]

Or, equivalently, the GLRT has form of Hotelling’s \(T^2 \) test

\[T^2 := n(\mathbf{X}_i - \mu_o)^T S^{-1}(\mathbf{X}_i - \mu_o) \]

where \(S \) is the (unbiased) sample covariance

\[S = \frac{1}{n-1} \sum_{k=1}^{n} (\mathbf{X}_k - \bar{\mathbf{X}}_i)(\mathbf{X}_k - \bar{\mathbf{X}}_i)^T \]

FACT: Under \(H_0 \), Hotelling’s \(T^2 \) is distributed as a \(T^2 \) distributed r.v. with \((p, n-p)\) d.f. [27, 33]

Level \(\alpha \) test is therefore

\[T^2 := n(\mathbf{X}_i - \mu_o)^T S^{-1}(\mathbf{X}_i - \mu_o) \]

REMARKS

1. The Hotelling \(T^2 \) test is CFAR since under \(H_0 \) its distribution is independent of \(\mathbf{R} \)

2. The \(T^2 \) statistic is equal to a F-statistic within a scale factor

\[T^2 = \frac{p(n-1)}{n-p} F_{p,n-p} \]
3. An equivalent test is therefore

\[T^2 := n(X_i - \mu_o)^T S^{-1}(X_i - \mu_o) \overset{H_1}{\gtrless} \frac{p(n - 1)}{n - p} F_{p,n-p}(1 - \alpha) \]

12.3 Test of Equality of Two Mean Vectors

Two i.i.d. independent vector samples \(n_1 + n_2 = n \)

\[X = [X_1, \ldots, X_{n_1}], \ X_i \sim N_p(\mu_x, R) \]

\[Y = [Y_1, \ldots, Y_{n_2}], \ Y_i \sim N_p(\mu_y, R) \]

To test

\[H_0 : \mu_x - \mu_y = \Delta, \ R > 0 \]

\[H_1 : \mu_x - \mu_y \neq \Delta, \ R > 0 \]

Combining elements of the derivation of scalar two population case and the previous vector mean example:

Find GLRT

\[\sqrt{\frac{n_1 n_2}{n}} (Y_i - X_i - \Delta)^T S_2^{-1}(Y_i - X_i - \Delta) \overset{H_1}{\gtrless} \frac{T_{p,n-p-1}(1 - \alpha)}{\overset{H_0}{\Delta}} \]

(105)

where we have defined the pooled sample covariance

\[S_2 = \frac{1}{n - 2} \left(\sum_{i=1}^{n_1} (X_i - \hat{\mu})(X_i - \hat{\mu})^T + \sum_{i=1}^{n_2} (Y_i - \hat{\mu})(Y_i - \hat{\mu})^T \right) \]

In analogy to the paired t-test of Sec. 9.5, the test (105) is called the multivariate paired t-test.

12.4 Test of Independence

\(n \) i.i.d. vector samples

\[X = [X_1, \ldots, X_n], \ X_i \sim N_p(\mu, R) \]

To test

\[H_0 : R = \text{diag}(\sigma_j^2) \]
\(H_1 : \mathbf{R} \neq \text{diag}(\sigma_j^2) \)

with mean vector \(\mu \) unknown

\[
\Lambda_{\text{GLR}} = \frac{\max_{\mathbf{R} \neq \text{diag}, \mu} f(\mathbf{X}; \mu, \mathbf{R})}{\max_{\mathbf{R} = \text{diag}, \mu} f(\mathbf{X}; \mu, \mathbf{R})} = \frac{\max_{|\mathbf{R}| > 0} |\mathbf{R}|^{-n/2} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} (\mathbf{X}_k - \mathbf{X}_i)^T \mathbf{R}^{-1} (\mathbf{X}_k - \mathbf{X}_i) \right)}{\max_{\sigma_j^2 > 0} \left(\prod_{k=1}^{p} \sigma_k^2 \right)^{-n/2} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} \frac{1}{\sigma_k^2} \| \mathbf{X}_k - \mathbf{X}_i \|^2 \right)}
\]

Using previous results

\[
\Lambda_{\text{GLR}} = \left(\frac{\prod_{j=1}^{p} \sigma_j^2}{|\mathbf{R}|} \right)^{n/2} \frac{H_1}{H_0} \gamma
\]

where we have the variance estimate for each channel (row) of \(\mathbf{X} \)

\[
\sigma_j^2 := \frac{1}{n} \sum_{k=1}^{n} (\mathbf{X}_k - \mathbf{X}_i)_j^2
\]

For \(n \) large we can set \(\gamma \) by using Chi-square asymptotics

\[
2 \ln \Lambda_{\text{GLR}} \frac{H_1}{H_0} \gamma' = \chi_{p(p-1)/2}^{-1}(1 - \alpha)
\]

Calculation of degrees of freedom \(\nu \):

\(\nu = \# \) parameters fixed under \(H_0 \)

1. \(p^2 - p = p(p-1) \) off diagonals in \(\mathbf{R} \)
2. \(1/2 \) of these off diagonals are identical

\(\Rightarrow \nu = p(p-1)/2 \)

\subsection{12.5 TEST OF WHITENESS}

\(n \) i.i.d. vector samples

\(\mathbf{X} = [\mathbf{X}_1, \ldots, \mathbf{X}_n], \mathbf{X}_i \sim \mathcal{N}_p(\mu, \mathbf{R}) \)

To test
\[H_0 : \mathbf{R} = \sigma^2 \mathbf{I} \]
\[H_1 : \mathbf{R} \neq \sigma^2 \mathbf{I} \]

with mean vector \(\mu \) unknown

\[\Lambda_{GLR} = \frac{\max_{\mathbf{R} \neq \sigma^2 \mathbf{I}} f(\mathbf{X}; \mu, \mathbf{R})}{\max_{\mathbf{R} = \sigma^2 \mathbf{I}} f(\mathbf{X}; \mu, \mathbf{R})} \]
\[= \frac{\max_{\sigma^2 > 0} |\mathbf{R}|^{-n/2} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} (\mathbf{X}_k - \overline{\mathbf{X}}_i)^T \mathbf{R}^{-1} (\mathbf{X}_k - \overline{\mathbf{X}}_i) \right)}{\max_{\sigma^2 > 0} (\sigma^{2p})^{-n/2} \exp \left(-\frac{1}{2\sigma^2} \sum_{k=1}^{n} \|\mathbf{X}_k - \overline{\mathbf{X}}_i\|^2 \right)} \]

Or we have (similarly to before)

\[\Lambda_{GLR} = \left(\frac{\hat{\sigma}^{2p}}{|\hat{\mathbf{R}}|} \right)^{n/2} \begin{cases} H_1 & \text{if } \gamma' < \gamma \\ H_0 & \text{else} \end{cases} \]

where

\[\hat{\sigma}^2 := \frac{1}{np} \sum_{k=1}^{n} \|\mathbf{X}_k - \overline{\mathbf{X}}_i\|^2 \]
\[= \frac{1}{p} \text{trace} \{ \hat{\mathbf{R}} \} \]

and we have defined the covariance estimate

\[\hat{\mathbf{R}} := \frac{1}{n} (\mathbf{X} - \overline{\mathbf{X}}_i 1^T)(\mathbf{X} - \overline{\mathbf{X}}_i 1^T)^T \]

PERFORMANCE

For \(n \) large set \(\gamma \) using Chi-square asymptotics

\[2 \ln \Lambda_{GLR} \begin{cases} H_1 & \text{if } \gamma' < \gamma' \\ H_0 & \text{else} \end{cases} \]

Calculation of degrees of freedom \(\nu \):
\[\nu = \# \text{ parameters fixed under } H_0 \]
1. \(p(p + 1)/2 \) elements on diagonal and upper triangle of \(R \)

2. All \(p \) diagonal elements are identical under \(H_0 \)

\[\Rightarrow \nu = p(p + 1)/2 \quad - 1 \]

Equivalent form of test

Test of "ratio of arithmetic mean to geometric mean":

\[
\left(\Lambda_{GLR} \right)^{2/(np)} = \frac{\hat{\sigma}^2}{|R|^{-1/p}} = \frac{p^{-1} \sum_{i=1}^{p} \lambda_i^{R}}{\prod_{i=1}^{p} \left(\lambda_i^{R} \right)^{1/p}} \begin{cases} H_1 & > \gamma \\ H_0 & < \gamma \end{cases}
\]

12.6 CONFIDENCE REGIONS ON VECTOR MEAN

Recall: from the level \(\alpha \) double sided test of vector mean we know

\[
P_{\theta} \left(n(\bar{X}_i - \mu_o)^T S^{-1} (\bar{X}_i - \mu_o) > T_{p,n-p}(1 - \alpha) \right) = \alpha
\]

where \(\theta = [\mu, R] \).

Equivalently

\[
P_{\theta} \left(n(\bar{X}_i - \mu_o)^T S^{-1} (\bar{X}_i - \mu_o) \leq T_{p,n-p}(1 - \alpha) \right) = 1 - \alpha
\]

This is a “simultaneous confidence statement” on all elements of mean vector \(\mu \) for unknown covariance \(R \) given measurement \(X \)

\[\Rightarrow (1 - \alpha)\% \text{ confidence region on } \mu \text{ is the ellipsoid} \]

\[\{ \mu : n(\bar{X}_i - \mu)^T S^{-1} (\bar{X}_i - \mu) \leq T_{p,n-p}(1 - \alpha) \} \]

12.7 EXAMPLES

Example 50 *Confidence band on a periodic signal in noise*

\[x_k = s_k + v_k \]

* \(s_k = s_{k+nT_p} \): unknown periodic signal with known period \(T_p \)
Figure 183: Confidence region for all elements of mean vector μ is an ellipsoid

Figure 184: Confidence ellipsoid gives “marginal” confidence intervals on each element of $\mu = [\mu_1, \ldots, \mu_p]^T$
Figure 185: Multiple uncorrelated measurements of a segment of a periodic signal.

* \(v_k \): zero mean w.s.s. noise of bandwidth \(1/(MT_p) \) Hz

Step 1: construct measurement matrix

\[
X_i = [x_{1+(i-1)MT_p}, \ldots, x_{T_p+(i-1)MT_p}]^T
\]

Step 2: find conf. intervals on each \(s_k \) from ellipsoid

\[
[(\overline{X_i})_k - l_k \leq s_k \leq (\overline{X_i})_k + u_k]
\]

Example 51 CFAR signal detection in narrowband uncalibrated array

\(k \)-th snapshot of \(p \)-sensor array output:

\[
x_k = a_s + v_k, \quad k = 1, \ldots, n.
\]

* \(a \): unknown array response (steering) vector
* \(v_k \): Gaussian \(\mathcal{N}_p(0, \mathbf{R}) \) array noise vector with unknown spatial covariance \(\mathbf{R} \)
* \(s \): unknown deterministic signal amplitude

Objective: detect presence of any non-zero signal amplitude at level \(\alpha \)

\[
H_0 : s = 0, \quad k = 1, \ldots, n
\]

\[
H_1 : s \neq 0, \quad k = 1, \ldots, n
\]
Figure 186: Confidence band on signal over one signal period.

Figure 187: Sensor array generates spatio-temporal measurement.
This is equivalent to

$$H_0 : E[X_i] = \mu = 0, \quad R > 0$$

$$H_1 : E[X_i] = \mu \neq 0, \quad R > 0$$

For which we know:

* level α GLRT is the Hotelling T^2 test
* confidence region for $\mu = a$ is an ellipsoid.

Figure 188: Confidence region for array response vector as is an ellipse in 2D.

12.8 Exercises

12.1 Extend the multivariate paired-t test derived in Sec. 12.3 to the case where $x_i \sim \mathcal{N}(\mu_x, R_x)$ and $y_i \sim \mathcal{N}(\mu_y, R_y)$ for the case that the two covariance matrices R_x and R_y may be unequal and are unknown. How many degrees of freedom does the asymptotic Chi-square distribution have?

12.2 In Example 51 the optimal CFAR detector for a scalar signal s viewed from a p-sensor array output with array response a and noise v_k. In this problem we extend this to CFAR detection of multiple (m) scalar signals $s = [s_1, \ldots, s_m]$ following the observation model:

$$x_k = As + v_k, \quad k = 1, \ldots, n$$

where $A = [a_1, \ldots, a_p]$ is an unknown $p \times m$ matrix and v_k are i.i.d. $\mathcal{N}(0, R)$ random vectors with unknown covariance R. Derive the GLRT for this problem. How many degrees of freedom does the asymptotic Chi-square distribution have?
12.3 Consider the same model as (106) but assume that \(s \) is a Gaussian distributed random variable and \(a \) and \(R \) are unknown. Derive the GLRT.

12.4 Consider the same scalar model as (106) but now assume that \(a \) is known while the noise covariance \(R \) is unknown. Derive the GLRT.

12.5 Extend the analysis of the previous problem to the multiple signal case (107) when \(A \) has columns of sinusoidal form:

\[
a_k = [1, \cos(2\pi f_k), \ldots, \cos(2\pi f_k(p - 1))]^T, \quad k = 1, \ldots, m
\]

while the noise covariance \(R \) is unknown. Derive the GLRT (you may assume that the \(a_k \)'s are orthogonal if you wish).

End of chapter
13 TESTING DISTRIBUTION OF A RANDOM SAMPLE

The testing of goodness of fit of a candidate distribution function to a data sample is a very important problem that we briefly treat here. We will cover the following:

* Empirical distributions and histograms
* Kolmogorov-Smirnov Test
* GLRT
* Pearson Chi-square

REFERENCES

* Bickel&Doksum [3]
* Mood&etal [26]

13.1 EMPIRICAL DISTRIBUTIONS

$X = [X_1, \ldots, X_n]^T$ an i.i.d. sample from unknown cumulative distribution function (CDF)

$F = \{F(x) : x \in \mathbb{R}\}$

$F(x) = P(X_i \leq x)$

OBJECTIVE: To test the hypotheses

$H_0 : F = F_0$

$H_1 : F \neq F_0$

where F_0 is a known reference distribution (e.g. $\mathcal{N}(0,1)$)

APPROACH: use empirical CDF

The empirical distribution is defined as the random staircase function

$\hat{F}_n(x) = \frac{\#X_i \leq x}{n}$

$= \frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, u]}(X_i)$

13.1.1 DISTRIBUTION OF EMPIRICAL CDF

NOTE: Sequence $Y_i := I_{(-\infty, x]}(X_i), i = 1, \ldots, n$, is Bernoulli
Figure 189: The empirical distribution is a staircase function

\[P(Y_i = 1) = p = P(X_i \leq x) = F(x) \]

\[P(Y_i = 1) = 1 - F(x) \]

Hence

\[n\hat{F}_n(x) = \sum_{i=1}^{n} Y_i \sim B(n, p) \]

where \(B(n, p) \) is the Binomial distribution with parameters \(n, p = F(x) \).

In particular we have:

\[E_F[\hat{F}_n(x)] = p = F(x), \quad \text{unbiased} \]

\[\text{var}_F(\hat{F}_n(x)) = p(1-p)/n, \quad \text{consistent} \]

13.2 KOLMOGOROV-SMIRNOV TEST

Since \(\hat{F}_n \) is unbiased and consistent estimator of \(F(x) \) this suggests the test

\[T_n(X) = \max_x |\hat{F}_n(x) - F_0(x)| \]

\[\begin{array}{c}
\begin{array}{c}
H_1 \\
H_0
\end{array}
\end{array} \gtrless \gamma \]
Figure 190: Kolmogorov-Smirnov test statistic

Figure 191: Kolmogorov-Smirnov test statistic in transformed domain
NOTE: by Strong LLN’s

* $T_n \to 0$ (w.p.1) under H_0

* $T_n \to \delta > 0$ (w.p.1) under H_1

REMARKABLE CFAR PROPERTY:

Distribution of T_n under H_0 does not depend on F_0 if F_0 cts!

Proof

Define the inverse $F_0^{-1}(u), u \in [0, 1]$

$$F_0^{-1}(u) = \{x : F(x) = u\}$$

Then, as mapping $F_0(x) = u$ is 1-1

$$T_n = \max_x |\hat{F}_n(x) - F_0(x)|$$

$$= \max_{u \in [0,1]} |\hat{F}_n(F_0^{-1}(u)) - F_0(F_0^{-1}(u))|$$

$$= \max_{u \in [0,1]} |\hat{F}_n(F_0^{-1}(u)) - u|$$

Now, under H_0

$$n\hat{F}_n(F_0^{-1}(u)) \sim B(n, p)$$

with

$$p = P_0(X_i \leq F_0^{-1}(u)) = F_0(F_0^{-1}(u)) = u$$

so that distribution of T_n is independent of F_0 under H_0. \hfill \Box

The H_0 distribution K_n of T_n is tabulated [3, Table IX]. Therefore level α double sided test of $F = F_0$ is

$$\max_x |\hat{F}_n(x) - F_0(x)| \overset{H_1}{\underset{H_0}{\gtrless}} K_n^{-1}(1 - \alpha)$$

13.2.1 CONFIDENCE BAND FOR CDF

From double sided level α test we have

$$P_0 \left(\max_x |\hat{F}_n(x) - F_0(x)| > K_n^{-1}(1 - \alpha) \right) = \alpha$$
This is equivalent to

\[
1 - \alpha = P_0 \left(\max_x |\hat{F}_n(x) - F_0(x)| \leq K_n^{-1}(1 - \alpha) \right)
\]

\[
= P_F \left(\max_x |\hat{F}_n(x) - F(x)| \leq K_n^{-1}(1 - \alpha) \right)
\]

\[
= P_F \left(|\hat{F}_n(x) - F(x)| \leq K_n^{-1}(1 - \alpha), \text{ all } x \right)
\]

which gives \textbf{simultaneous confidence intervals} for CDF \(F(x)\) over \(x\)

\[
\left[\hat{F}_n(x) - K_n^{-1}(1 - \alpha) \leq F(x) \leq \hat{F}_n(x) + K_n^{-1}(1 - \alpha) \right], \text{ all } x
\]

\[\text{Figure 192: Simultaneous confidence intervals give confidence band for CDF}\]

\[\text{NOTE: This confidence band is not as useful near tails of distribution } F \text{ since the band will always include values less than 0 or greater than 1.}\]

\[\text{The Kolmogorov-Smirnov test can be extended to test equality of the CDF’s of two populations (two sample test of equal distribution) [15]}\]

\[\text{* } \underline{x} = [x_1, \ldots, x_{n_1}]^T\]

\[\text{* } \underline{y} = [y_1, \ldots, y_{n_1}]^T\]

\[
T_n(\underline{x}, \underline{y}) = \max_x |\hat{F}_{n_1}(x) - \hat{F}_{n_2}(x)| \quad \overset{H_1}{\underset{H_0}{\gtrless}} \quad K_{n_1, n_2}(1 - \alpha)
\]

\[\text{where } K_{n_1, n_2}(p) \text{ is the } p-\text{th quantile the } H_0 \text{ distribution of } T_n.\]

\[\text{DEFICIENCIES OF KS APPROACH}\]
1. Confidence bands are not useful near tails
2. \(F_0 \) must be known exactly
3. Does not apply to estimated \(F_0 \) having “nuisance parameters”
e.g., \(F_0(x) = F_0(x; \mu, \sigma^2) = N(\mu, \sigma^2) \), unknown mean \(\mu \) and variance \(\sigma^2 \)
No general techniques exist for finding \(H_0 \) distribution for

\[
T_n(\hat{\mu}, \hat{\sigma}^2) = \max_x |\hat{F}_n(x) - \hat{F}_0(x; \hat{\mu}, \hat{\sigma}^2)|
\]

13.3 GLRT USING HISTOGRAM

Step 1. Specify a partition of range of \(X_i \) into \(M \) disjoint cells

\((-\infty, a_1), (a_2, a_3), \ldots, (a_{M-2}, a_{M-1}), (a_{M-1}, \infty)\)

Step 2. Define theoretical histogram \(\underline{p} = [p_1, \ldots, p_M]^T \)

\[
p_1 = P(X_i \in (-\infty, a_1)) = F(a_1)
p_2 = P(X_i \in (a_1, a_2]) = F(a_2) - F(a_1)
\vdots
p_M = P(X_i \in (a_{M-1}, \infty)) = 1 - F(a_{M-1})
\]

\[
\sum_{k=1}^{M} p_k = 1
\]

Figure 193: Theoretical histogram
Step 3. Test the following hypotheses on theoretical histogram

\[
H_0: p = p_0 \\
H_1: p \neq p_0
\]

where \(p_0 \) is a known reference

APPROACH: use empirical histogram

\[
\hat{p} = [\hat{p}_1, \ldots, \hat{p}_M]^T
\]

where

\[
\hat{p}_k = \frac{\#X_i \in \text{cell } k}{n}, \quad \sum_{k=1}^{M} \hat{p}_k = 1
\]

Figure 194: Empirical histogram

13.3.1 DISTRIBUTION OF HISTOGRAM

Define

\[
N_k = \# X_i \text{ falling in } k\text{-th cell}
\]

Then \(\sum_{k=1}^{M} N_k = n \) and \(N = [N_1, \ldots, N_M]^T \) is multinomial distributed
\[P(N_1 = n_1, \ldots, N_M = n_M; \mathbf{p}) = \frac{n!}{n_1! \cdots n_M!} p_1^{n_1} \cdots p_M^{n_M} \]

13.3.2 GLRT AND KL DISTANCE

GLR test statistic is simply

\[
\Lambda(N) = \max_{\mathbf{p} \neq \mathbf{p}_0} \left\{ \frac{p_1^{N_1} \cdots p_M^{N_M}}{p_01^{N_1} \cdots p_0M^{N_M}} \right\} = \prod_{k=1}^{M} \left(\frac{\hat{p}_k}{P_{0k}} \right)^{N_k}
\]

where \(\hat{p} \) is the MLE of \(p \) for a multinomial sample derived in Exercise 21 of Chapter 4

\[
\hat{p} = \left[\frac{N_1}{n}, \ldots, \frac{N_p}{n} \right], \quad \text{Empirical Histogram!}
\]

An equivalent GLR test statistic is

\[
T(N) = 2 \ln \Lambda(N) = 2 \sum_{k=1}^{M} N_k \ln \left(\frac{\hat{p}_k}{P_{0k}} \right) = 2n \sum_{k=1}^{M} \hat{p}_k \ln \left(\frac{\hat{p}_k}{P_{0k}} \right),
\]

where the factor 2 is introduced in anticipation of invoking the large \(n \) sample theory (recall (88)) for the GLRT log likelihood ratio. This gives final form for our GLRT

\[
T(N) = 2n \text{KL}(\mathbf{p}_0, \hat{\mathbf{p}}) \overset{H_1}{\gtrsim} \gamma \overset{H_0}{\lesssim} \gamma \tag{108}
\]

* \(\gamma = \chi_{M-1}^{-1}(1 - \alpha) \) gives level \(\alpha \) test (large \(n \))

* \(\text{KL}(\mathbf{p}_0, \hat{\mathbf{p}}) \) is the **Kullback Liebler information**

Properties of KL: for \(p, q \) two discrete distributions of a r.v. \(X_i \)

\[
\text{KL}(p, q) > 0, \quad p \neq q
\]

\[
\text{KL}(p, q) = 0, \quad p = q
\]

\[
\text{KL}(p, q) = \text{convex in both arguments}
\]
Note: KL is not a true distance measure between p and q as it is not symmetric.

13.3.3 GLRT FOR CLOSE ALTERNATIVES

Assume that under H_1: $p - p_0$ is small

Then for large n: $\hat{p}_i - p_0$ is small under H_0 and H_1

\Rightarrow use $\ln(1 + u) = u - u^2/2 + o(u^2)$ on

$$KL(p, \hat{p}) = - \sum_{k=1}^{M} \hat{p}_k \ln \left(\frac{1}{\hat{p}_k} \left(\frac{p_0k}{\hat{p}_k} - 1 \right) \right)$$

$$= \sum_{k=1}^{M} \hat{p}_k \left(\frac{\hat{p}_k - p_0k}{\hat{p}_k} \right) + \frac{1}{2} \sum_{k=1}^{M} \hat{p}_k \left(\frac{\hat{p}_k - p_0k}{\hat{p}_k} \right)^2 + o(\Delta^2)$$

$$= \frac{1}{2} \sum_{k=1}^{M} \left(\frac{\hat{p}_k - p_0k}{p_0k} \right)^2 p_0k + o(\Delta),$$

where $\Delta = \hat{p}_k - p_0k$.

Thus our GLRT (108) is asymptotically equivalent to Pearson’s Chi-square test

$$n \sum_{k=1}^{M} \left(\frac{\hat{p}_k - p_0k}{p_0k} \right)^2 p_0k \sim \begin{cases} H_1 & > \chi_{M-1}^{-1}(1 - \alpha) \\ H_0 & < \chi_{M-1}^{-1}(1 - \alpha) \end{cases}$$

In practice the Pearson Chi-square test is much more frequently used than the exact GLRT.

13.4 CONFIDENCE BAND FOR CDF

From double sided GLRT test we know that the following holds for large n

$$P_0 \left(2n \ KL(p, \hat{p}) < \chi_{M-1}^{-1}(1 - \alpha) \right) = 1 - \alpha$$

We thus have $100(1 - \alpha)\%$ confidence region for theoretical histogram p

$$\left\{ p : KL(p, \hat{p}) < \frac{1}{2n} \chi_{M-1}^{-1}(1 - \alpha) \right\}$$

Note:

* Smallest size region occurs when cells are chosen to have approximately equal probability

* The region is better than KS confidence region (e.g. $p_k < 0$ and $p_k > 1$ are excluded)
Figure 195: KL confidence band on histogram

Figure 196: KS confidence band on histogram

Figure 197: L^2 distance between two densities f_0, f_1.

13.5 TESTING FOR GAUSSIAN DISTRIBUTION

Consider the case where \(f_0(x) = \mathcal{N}(\mu, \sigma^2) \) where \(\mu, \sigma^2 \) are unknown. For cell boundaries \(a_0, a_1, \ldots, a_M \), \(a_0 = -\infty \) and \(a_M = \infty \), define the \(\mu, \sigma^2 \)-dependent theoretical histogram \(p_0 = [p_{01}, \ldots, p_{0M}]^T \), where

\[
p_{0k} = p_{0k}(\mu, \sigma^2) = \int_{a_{k-1}}^{a_k} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx
\]

The objective is to test:

\[
H_0 : p = p_0(\mu, \sigma^2), \quad \text{for any } \mu, \sigma^2
\]
\[
H_1 : p \neq p_0(\mu, \sigma^2), \quad \text{for any } \mu, \sigma^2
\]

We easily find the GLRT by maximizing numerator and denominator of the likelihood ratio over the two unknown parameters \(\mu, \sigma^2 \):

\[
\Lambda(N) = \frac{\max_{\mu, \sigma^2} \{p_{01}^{N_1} \cdots p_{0M}^{N_M}\}}{\max_{\mu, \sigma^2} \{p_{01}^{N_1}(\mu, \sigma^2) \cdots p_{0M}^{N_M}(\mu, \sigma^2)\}}
\]

\[
= \prod_{k=1}^{M} \left(\frac{\hat{p}_k}{p_{0k}(\hat{\mu}, \hat{\sigma}^2)} \right)^{N_k}
\]

or equivalently

\[
2 \ln \Lambda(N) = 2nKL(\hat{p}_k, p_{0k}(\hat{\mu}, \hat{\sigma}^2)) \overset{H_1}{\gtrless} \overset{H_0}{\gamma}
\]

where
* \hat{p}_k is histogram as before

* $\hat{\mu}, \hat{\sigma}^2$ are MLEs based on empirical and theoretical histograms

$$[\hat{\mu}, \hat{\sigma}^2] = \arg\max_{\mu, \sigma^2} \left\{ \sum_{k=1}^{M} N_k \ln p_{0k}(\mu, \sigma^2) \right\}$$

* $\gamma = \chi_{M-3}^{-1}(1 - \alpha)$ for large n.

End of chapter
14 BIBLIOGRAPHY

References

