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0.1 EIGENFUNCTIONS OF UNDERSPREAD LINEAR SYSTEMS:
THEORY AND APPLICATIONS TO DIGITAL COMMUNI-
CATIONS0

0.1.1 Summary

The knowledge of the eigenfunctions of a linear system is a fundamental issue both
from the theoretical as well as from the applications point of view. Nonetheless,
no analytic solution is available for the eigenfunctions of a general linear system.
There are two important classes of contributions suggesting analytic expressions
for the eigenfunctions of slowly-varying operators: [5], and the references therein,
where it was proved that the eigenfunctions of underspread operators can be ap-
proximated by signals whose time-frequency distribution (TFD) is well localized
in the time-frequency plane, and [7] where a strict relationship between the in-
stantaneous frequency of the channel eigenfunctions and the contour lines of the
Wigner Transform of the operator kernel (or Weyl symbol) was derived for Hermi-
tian slowly-varying operators. In this article, following an approach similar to [7],
we will show that the eigenfunctions can be found exactly for systems whose spread
function is concentrated along a straight line and they can be found in approximate
sense for those systems whose spread function is maximally concentrated in regions
of the Doppler-delay plane whose area is smaller than one.

0.1.2 Eigenfunctions of time-varying systems

The input/output relationship of a continuous-time (CT) linear system is [3]:

y(t) =
∫ ∞

−∞
h(t, τ)x(t− τ)dτ (0.1.1)

where h(t, τ) is the system impulse response. Although throughout this section we
will use the terminology commonly adopted in the transit of signals through time-
varying channels, it is worth pointing out that the mathematical formulation is
much more general. For example, (0.1.1) can be used to describe the propagation of
waves through non homogeneous media and in such a case the independent variables
t and τ are spatial coordinates. Following the same notation introduced by Bello
[3], any linear time-varying (LTV) channel can be fully characterized by its impulse
response h(t, τ), or equivalently by the delay-Doppler spread function (or simply
spread function) S(ν, τ) :=

∫∞
−∞ h(t, τ)e−j2πνtdt, or by the time-varying transfer

function H(t, f) :=
∫∞
−∞ h(t, τ)e−j2πfτdτ .

Since the kernels of LTV systems in general are not self-adjoint, it is not possible
to de�ne the eigenfunctions of a linear system, but we can introduce the so called
left and right singular functions (in the following we will use the term eigenfunction
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only for simplicity, meaning generically the left and right singular functions). In
fact, if the system impulse response is square-integrable, i.e.

∫ ∞

−∞

∫ ∞

−∞
|h(t, τ)|2 dt dτ < ∞, (0.1.2)

then there exists a countable set of singular values λi and two classes of orthonormal
functions vi(t) and ui(t), named right and left singular functions, such that the
following system of integral equations holds true

λiui(t) =
∫ ∞

−∞
h(t, t− τ)vi(τ)dτ, (0.1.3)

λivi(τ) =
∫ ∞

−∞
h∗(t, t− τ)ui(t)dt. (0.1.4)

Inserting (0.1.3) in (0.1.4), we have

λ2
i vi(τ) =

∫ ∞

−∞

∫ ∞

−∞
h∗(t, t− τ)h(t, θ)vi(t− θ)dθdt. (0.1.5)

so that vi(τ) is the eigenfunction of the system whose kernel is

h̃(τ, θ) :=
∫ ∞

−∞
h∗(t, t− τ)h(t, t− θ)dt. (0.1.6)

In practice, there are at least two quite common situations where h(t, τ) is not
square-integrable: i) linear time-invariant (LTI) channels, where h(t, τ) is constant
along t 1; and ii) multipath channels with specular re�ections, where h(t, τ) contains
Dirac pulses. However, to avoid unnecessary complications with di�erent notations
as a function of the integrability assumption, in the following we will keep assuming
(0.1.2), considering the aforementioned exceptions as limiting cases, as in [4].

0.1.3 Systems with spread function confined to a straight line

If the spread function is con�ned to a line, i.e.
S(ν, τ) = g(τ)δ(ν − f0 − µτ), (0.1.8)

the singular functions are chirp signals, i.e.

vi(t) = ejπµt2ej2πfit (0.1.9)
ui(t) = ejπµt2ej2πfitej2πf0t = vi(t)ej2πf0t. (0.1.10)

1The LTI case as well as a large class of time-varying systems exhibiting some sort of stationarity
can be dealt with by requiring the following integrability condition

lim
T→∞

1

T

Z T/2

−T/2
dt

Z ∞

−∞
|h(t, τ)|2dτ < ∞, (0.1.7)

instead of (0.1.2).
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In fact, the impulse response corresponding to (0.1.8) is
h(t, τ) = g(τ)ej2πµτtej2πf0t (0.1.11)

and, substituting (0.1.11) and (0.1.9) in (0.1.3) we get

λiui(t) = ej2πf0tej2πfitejπµt2Gµ(fi) = Gµ(fi)ej2πf0tvi(t), (0.1.12)

where Gµ(f) is the Fourier transform (FT) of gµ(t) := g(t)ejπµt2 . We can verify
that (0.1.12) is satis�ed if ui(t) is given by (0.1.10) and λi = Gµ(fi). It is also
straightforward to check that the two classes of functions vi(t) and ui(t) are orthog-
onal. Interestingly, the contour lines of |H(t, f)| coincide with the instantaneous
frequency of the eigenfunctions. In fact, the transfer function associated to (0.1.8)
is H(t, f) = G(f−µt)ej2πf0t, where G(f) denotes the FT of g(τ), so that |H(t, f)| is
constant along lines of equation f = µt+fi, which coincides with the instantaneous
frequency of the right singular functions. Furthermore, if f0 = 0, i.e. S(ν, τ) is
maximally concentrated along a line passing through the origin, the left and right
singular functions are simply proportional to each other and we can talk of eigen-
functions and eigenvalues. Finally, it is worth noticing that if the spread function
is mainly concentrated inside a rectangle of area Bmaxτmax ¿ 1, thus µτ2

max ¿ 1
and |H(t, fi + µt)| = |G(fi)| ≈ |Gµ(fi)|, so that the modulus of the i-th eigenvalue
coincides approximately with the absolute value of the channel transfer function
evaluated over the curve given by the eigenfunctions' instantaneous frequency.

In the following, we will show how these results can be generalized, albeit in
approximate sense, to the more challenging case where the spread function is not
con�ned to a straight line. But, before considering the more general case, it is
worthwhile to remark that the model (0.1.8) encompasses three examples of systems
commonly encountered in the applications, namely i) time-invariant systems, where
S(ν, τ) = g(τ)δ(ν), which corresponds to µ = 0 and thus to having, as well known,
sinusoidal eigenfunctions; ii) multiplicative systems, where S(ν, τ) = C(ν)δ(τ),
which corresponds to µ = ∞ and thus to Dirac pulses as eigenfunctions; iii) com-
munication channels a�ected by two-ray multipath propagation, each ray having its
own delay and Doppler frequency shift, i.e.

S(ν, τ) =
1∑

q=0

hqδ(ν − νq)δ(τ − τq) or h(t, τ) =
1∑

q=0

hqe
j2πfqtδ(τ − τq). (0.1.13)

In such a case, the eigenfunctions are chirp signals having di�erent initial frequen-
cies, but all with the same sweep rate µ = (f1 − f0)/(τ1 − τ0), which depends on
the channel delay and Doppler parameters.

0.1.4 Analytic models for the eigenfunctions of underspread chan-
nels

We extend now the analysis to systems whose spread function has a support, in the
delay-Doppler domain, with small, but, di�erently from the previous case, non-null
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area. Interestingly, this case encompasses all current digital communication systems.
The aim of the ensuing analysis is to show that if S(ν, τ) is mainly concentrated
around the origin of the Doppler-delay plane, along one of the two axes but not
along both, the main result derived above can be generalized, even though only in
approximate sense.

First of all, proceeding as in [5], we de�ne the absolute moments of S(ν, τ) as

m
(k,l)
S :=

∫∞
−∞

∫∞
−∞ |ν|k|τ |l|S(ν, τ)|dνdτ∫∞

−∞
∫∞
−∞ |S(ν, τ)|dνdτ

. (0.1.14)

We say that a system is underspread if all the products m
(i,j)
S m

(k,l)
S of order i + j +

k + l ≥ 2, where the indices are such that there is at least the product of a non null
moment along τ times a non null moment along ν, are �small�. This de�nition is not
rigorous, but its meaning will be clari�ed within the proof of the main statement
of this section. Since the partial derivatives of H(t, f) can be upper bounded as
follows ∣∣∣∣

∂Hk+l(t, f)
∂tk∂f l

∣∣∣∣ ≤ (2π)k+lm
(k,l)
S

∫ ∞

−∞

∫ ∞

−∞
|S(ν, τ)|dνdτ, (0.1.15)

if S(ν, τ) has small moments, H(t, f) must be a smooth function in at least one
direction.

In the following we show that, if the system is underspread, the singular function
associated to the i-th singular value can be approximated by the following analytic
function

vi(t) :=
Ki(t)∑
m=1

vi,m(t) :=
Ki(t)∑
m=1

ai,m(t)ejφi,m(t), (0.1.16)

where i) the instantaneous phase φi,m(t) is such that the corresponding instanta-
neous frequency fi,m(t) := φ̇i,m(t)/2π of vi,m(t) is one of the real solutions of

|H(t, fi,m(t))|2 = λ2
i , ∀m; (0.1.17)

ii) the amplitude ai,m(t) is approximately constant and di�erent from zero only
within the time interval where |H(t, fi,m(t))|2 = λ2

i admits a real solution, and its
value is such that vi(t) has unit norm; Ki(t) is the number of solutions of (0.1.17),
for each λi and t.

The existence of a real solution for fi,m(t) of (0.1.17) implies that the singu-
lar values λi must be bounded in the following interval: mint,f |H(t, f)| ≤ λi ≤
maxt,f |H(t, f)|. Between these two boundaries, not all values of λi are possible:
The only admissible values are the ones that allow the eigenfunctions to be or-
thonormal and respect Heisenberg's uncertainty principle, similarly to the area rule
suggested in [7].

From (0.1.17) we notice that the instantaneous frequencies of the system eigen-
functions coincide with the contour lines of |H(t, f)|. Typically, the contour plots
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are closed curves and then Ki(t) is usually an even integer. In general, we have
veri�ed numerically that if there are more closed curves corresponding to the same
eigenvalue λi, the multiplicity of the eigenvalue is equal to the number of closed
curves corresponding to λi, with each closed curve giving rise to one eigenfunction.

We show now under which approximations, the function vi(τ), as given in
(0.1.16), is a solution of (0.1.5). Exploiting the system linearity, we compute the
output yi,m(t) corresponding to each m-th component vi,m(t) in (0.1.16) and then
we exploit the superposition principle to derive the output corresponding to vi(t). In
our proof, we assume that the support of h(t, τ) along τ is small2. As a consequence,
for each value of τ , the product h∗(t, t− τ)h(t, θ) in (0.1.5) assumes signi�cant val-
ues only for small values of both t − τ and θ. We can thus expand vi,m(t − θ) in
(0.1.5), around τ and keep only the lower order components

vi,m(t− θ) ≈ ai,m(τ)ejφi,m(τ)ejφ̇i,m(τ)(t−θ−τ), (0.1.18)

having used a �rst order approximation for φi,m(t− θ) and a zero-th order approxi-
mation for ai,m(t− θ). Substituting (0.1.18) into (0.1.5) and invoking the principle
of stationary phase [6] to derive an approximate analytic expression of the integral,
we get the m-th output term

yi,m(τ) ≈ ai,m(τ)ejφi,m(τ)

∫ ∞

−∞

∫ ∞

−∞
h∗(t, t− τ)h(t, θ)e−jφ̇i,m(τ)θejφ̇i,m(τ)(t−τ)dθdt

= ai,m(τ)ejφi,m(τ)

∫ ∞

−∞
h∗(t, t− τ)H(t, fi,m(τ))ejφ̇i,m(τ)(t−τ)dt. (0.1.19)

After a few algebraic manipulations involving the Taylor's series expansion of both
h(t, t − τ) and H(t, f) around τ in their �rst argument and summing over m, we
get

y(τ) ≈ λ2
i vi(τ) +

Ki∑
m=1

∞∑

k,l=0︸︷︷︸
k,l 6=0

H
(k,0)
t,f (τ, fi,m(τ))H(l,k+l)∗

t,f (τ, fi,m(τ))
(−j2π)k+lk! l!

ai,m(τ)ejφi,m(τ),

(0.1.20)
where H

(k,l)
t,f (t, f) := ∂k+lH(t, f)/∂tk∂f l. This equation shows that vi(τ), as given

in (0.1.16), is (approximately) the eigenfunction associated to the eigenvalue λ2
i if

the perturbation, given by the second term of the right-hand side of (0.1.20), is small
with respect to λ2

i vi(τ). From (0.1.20), we notice that the perturbation is equal to
the sum of complex functions given by the product of the partial derivatives of
the system transfer function, evaluated along the curve where the modulus of the
transfer function is constant. Furthermore, each term in the perturbation contains

2If this assumption is not true, to respect our main assumption about the concentration of the
spread function, the spread of S(ν, τ) along ν must be very small. In such a case, using duality
arguments, we can derive equivalent results working with the spectrum of the eigenfunctions.
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at least the �rst order derivative with respect to both time and frequency. Therefore,
the perturbation is small with respect to the �rst term in (0.1.20) if the transfer
function is smooth in at least one direction, i.e. time or frequency. Hence, the
analytic model (0.1.16) is valid only for underspread systems, i.e. systems whose
transfer function has small partial derivatives, by virtue of (0.1.15), in at least one
direction. Furthermore, since the energy of the �rst term is λ4

i , the approximation
error is smaller for the highest eigenvalues.

Since so many approximations have been used to justify the analytic model
(0.1.16), it is necessary to check the validity of such approximations. Given the
crucial role played by the instantaneous frequency in the de�nition of the system
eigenfunction and the interplay of time and frequency, the analysis of the time-
frequency distribution (TFD) of the system eigenfunctions plays a fundamental
role as a validation tool. Since the validation is necessarily numerical, we start
deriving the equivalent discrete-time (DT) system corresponding to the continuous-
time (CT) relationship (0.1.1). Speci�cally, we consider the system obtained by
windowing h(t, τ) in time and in frequency. Assuming that the input signal x(t)
has a spectrum con�ned within the bandwidth [−1/2Ts, 1/2Ts], we can express x(t)
as

x(t) =
∞∑

k=−∞
x[k]sinc(π(t− kTs)/Ts), (0.1.21)

where x[k] := x(kTs) and1/Ts is the sampling rate. Sampling the continuous time
system output y(t) at the same rate 1/Ts

3, we get the equivalent discrete-time I/O
relationship

y[n] := y(nTs) =
∞∑

k=−∞
h[n, n− k]x[k], (0.1.22)

where h[n, k] denotes the equivalent DT impulse respeonse, de�ned as

h[n, n− k] :=
∫ ∞

−∞

∫ ∞

−∞
sinc(π(nTs − θ)/Ts)sinc(π(θ − τ − kTs)/Ts)h(θ, τ)dτdθ.

(0.1.23)
Equation (0.1.22) is the DT counterpart of (0.1.1). Assuming that h[n, k] has �nite
support over k, i.e. the channel is FIR of order L, and parsing the input sequence
into consecutive blocks of size R, the discrete-time model leads directly to the
matrix I/O relationship y(n) = H(n)x(n), where H(n) is the P × R channel
matrix, with P = R + L, relative to the n-th transmitted block, whose (i, j) entry
is {H(n)}i,j = h[nP + i, i − j], whereas x(n) := (x[nR], . . . , x[R + R − 1])T and
y(n) := (y[nP ], . . . , y[nP + P − 1])T are the input and output blocks.

The discrete time counterpart of (0.1.3) and (0.1.4) is the singular value decom-
position (SVD) of the channel matrix H(n), i.e. H(n) = U(n)Λ(n)V H(n), that

3We assume that 1/Ts is large enough to respect the Nyquist principle for the system output
y(t); this means that, if we take into account the bandwidth increase due to the transit through a
time-varying system, 1/Ts is strictly larger than the bandwidth of x(t).
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allows us to write
U(n)Λ(n) = H(n)V (n), or HH(n)U(n) = V (n)Λ(n), (0.1.24)

where the columns of U(n) and V (n) are the left and right channel singular vectors
associated to the singular values contained in the diagonal matrix Λ(n).

To check the validity of model (0.1.16), we proceed through the following steps.
Given the impulse response h(t, τ) of the CT system, i) we build the channel ma-
trix H(n) of the equivalent DT system; ii) we compute the SVD of H(n); iii) we
compute the TFD of the right and left singular vectors associated to the generic
singular value λi; and iv) we compare the energy distribution of these TFD with
the contour plot of |H(t, f)| corresponding to level λi. We used as a basic tool to
analyze the signals in the time-frequency domain the Smoothed Pseudo-Wigner-
Ville Distribution (SPWVD) with reassignment, introduced in [1], for its property
of having low cross terms without degrading the resolution. We considered as a test
system a communication channel a�ected by multipath propagation, thus described
by the CT impulse response

h(t, τ) =
Q−1∑
q=0

hqe
j2πfqtδ(τ − τq),

where each path is characterized by the triplet of amplitude hq, delay τq and Doppler
shift fq. We generated the amplitudes hq as independent identically distributed
(iid) complex Gaussian random variables with zero mean and unit variance (the
Rayleigh fading model), and the variables τq and fq as iid random variables with
uniform distribution within the intervals [0, ∆τ ] and [−∆f/2, ∆f/2], respectively.
An example, relative to a multipath channel composed of Q = 12 paths, with
∆τ = 4Ts and ∆f = 4/NTs, N = 128, is reported in Fig. 1 where we show: a) the
mesh plot of |H(t, f)|, b) two contour plots of |H(t, f)| corresponding to the levels
λ16 (dashed line) and λ32 (solid line); c) the contour plot of the SPWVD of v16; d)
the contour plot of the SPWVD of v32.

It is worth noticing how, in spite of the rather peculiar structure of the contour
plots of |H(t, f)|, the SPWVD's of the two singular functions are strongly concen-
trated along curves coinciding with the contour lines of |H(t, f)| corresponding to
the associated singular values, as predicted by the theory.

It is also interesting to observe the bubble-like structure of the two SPWVD's.
Indeed this behavior is quite common, because in general the contour lines of the
time-varying transfer function are typically closed curves.

Before concluding this section, it is also important to provide some physical in-
sight to justify the rather peculiar behavior of the channel eigenfunctions. Indeed,
the bubble-like structure is perfectly functional to guaranteeing two of the funda-
mental properties of the eigenfunctions, namely orthogonality and system modes
excitation. In fact, by construction, (0.1.16) and (0.1.17) insure that the instanta-
neous frequency curves of singular functions associated to distinct eigenvalues do
not intersect. Therefore, if the WVD's of the eigenfunctions associated to distinct
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Figure 1: Comparison between contour lines of |H(t, f)| and TFD's of channel singular vectors -
a) |H(t, f)|; b) contour lines of |H(t, f)| corresponding to levels λ16 (dashed line) and λ32 (solid
line); c) SPWVD of v16; d) SPWVD of v32.
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eigenvalues are well concentrated along their instantaneous frequency curve (i.e.
if their amplitude modulation is negligible), the scalar product of their WVD's is
null and thus, by virtue of Moyal's formula, the eigenfunctions are orthogonal, as
required. Considering now the modes of the system, we know that the unit energy
input signal that maximizes the output energy is the right singular function asso-
ciated to the highest singular value. Now, if we combine this basic property with
the model given in (0.1.16) and (0.1.17), we can conclude that, not surprisingly,
the input signal which maximizes the output energy is the signal whose energy is
concentrated in the time-frequency region where the channel time-varying transfer
function is maximum.

0.1.5 Optimal waveforms for digital communications through LTV
channels

Let us consider one of the most interesting applications of the theory described
above, i.e. the transmission of information symbols s[k] through an LTV channel.
In Article 13.2, for example, it is shown how to convert the channel dispersiveness,
possibly in both time and frequency domains, into a useful source of diversity to be
exploited to enhance the SNR at the receiver. Here we show that if the transmitter
is able to predict the channel time-varying transfer function, at least within the next
time slot where one is going to transmit, it is possible to optimize the transmission
strategy and take full advantage of the diversity o�ered by the channel dispersiveness
(see e.g. [2] for more details).

Considering a channel with approximately �nite impulse response of order L,
we can parse the input sequence in consecutive blocks of K symbols and insert
null guard intervals of length L between successive blocks to avoid inter-block in-
terference. If the symbol rate is 1/Ts, the time necessary to transmit each block
is KTs. For each i-th block, we must consider the channel hi(t, τ) obtained by
windowing h(t, τ) in time, in order to retain only the interval [iKTs, (i + 1)KTs],
and in frequency, keeping only the band [−1/2Ts, 1/2Ts]. The optimal strategy for
transmitting a set of symbols si[k] := s[iK + k], k = 0, . . . ,K − 1, in the presence
of additive white Gaussian noise (AWGN), is to send the signal [4]

xi(t) =
K−1∑

k=0

ci,ksi[k]vi,k(t) (0.1.25)

where vi,k(t) is the right singular function associated to the k-th eigenvalue of the
channel response hi(t, τ) in the i-th transmit interval and ci,k are coe�cients used
to allocate the available power among the transmitted symbols according to some
optimization criterion [2]. Using (0.1.3), the received signal is thus

yi(t) =
∫ ∞

−∞
hi(t, τ)xi(t− τ)dτ + w(t) =

∑

k

ci,kλi,ksi[k]ui,k(t) + w(t), (0.1.26)

where ui,k(t) is the left singular function associated to the k-th singular value of
hi(t, τ) and w(t) is AWGN. Hence, by exploiting the orthonormality of the func-



tions ui,k(t), the transmitted symbols can be estimated by simply taking the scalar
products of y(t) with the left singular functions, i.e.

ŝi[m] =
1

λi,mci,m

∫ ∞

−∞
y(t)u∗i,m(t)dt = s[m] + wi[m], (0.1.27)

where the noise samples sequence wi[m] :=
∫∞
−∞ w(t)u∗i,m(t)dt constitutes a sequence

of iid Gaussian random variables. In this way, the initial LTV channel, possibly
dispersive in both time and frequency domains, has been converted into a set of
parallel independent non-dispersive subchannels, with no intersymbol interference,
and the symbol-by-symbol decision is also the maximum likelihood detector.

Most current transmission schemes turn out to be simple examples of the general
framework illustrated above. For example, in communications through �at fading
multiplicative channels, whose eigenfunctions are Dirac pulses, the optimal strategy
is time division multiplexing. By duality, the optimal strategy for transmitting
through linear time-invariant channels is orthogonal frequency division multiplexing
(OFDM). Interestingly, in the most general case (of underspread channels), the
optimal strategy consists in sending symbols through channel-dependent bubble-
carriers.

0.1.6 Conclusion

The analytic model for the eigenfunctions of underspread linear operators shown in
this article, albeit approximate, shows that the energy of the system eigenfunctions
is mainly concentrated along curves coinciding with the level curves of the system
transfer function. This property, for whose validation the analysis of the system
eigenfunctions' TFD plays a fundamental role, provides a general framework to
interpret some current data transmission schemes and, most important, gives a new
perspective to envisage the optimal waveforms for transmissions over time-varying
channels.

Pictorially speaking, if we draw a parallelism between time-frequency repre-
sentations and musical scores, we may say that the eigenfunctions of underspread
systems give rise to a polyphonic texture which reduces to monophonic lines only
in the simple case of systems whose spread function is concentrated on a straight
line. In the most general case, we have a polyphony of ascending and descending
melodical lines which run in order to create bubbles whose shape is dictated by the
contour lines of the system transfer function.
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