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Abstract

We propose a novel statistical manifold modeling ap-
proach that is capable of classifying poses of object cate-
gories from video sequences by simultaneously minimizing
the intra-class variability and maximizing inter-pose dis-
tance. Following the intuition that an object part based rep-
resentation and a suitable part selection process may help
achieve our purpose, we formulate the part selection prob-
lem from a statistical manifold modeling perspective and
treat part selection as adjusting the manifold of the object
(parameterized by pose) by means of the manifold “align-
ment” and “expansion” operations. We show that mani-
fold alignment and expansion are equivalent to minimizing
the intra-class distance given a pose while increasing the
inter-pose distance given an object instance respectively.
We formulate and solve this (otherwise intractable) part se-
lection problem as a combinatorial optimization problem
using graph analysis techniques. Quantitative and qualita-
tive experimental analysis validates our theoretical claims.

1. Introduction
The ability to accurately estimate the pose of generic ob-

ject categories from videos or images is crucial in many ap-
plications such as robotic manipulation, human-object in-
teraction and image indexing. A large literature in this
area has mostly focused on detecting and/or estimating
object poses from the single instance of a rigid object
[25, 20, 3, 13, 14, 16, 26, 5, 11]. In this class of prob-
lems, the object, whose pose one wants to recognize, is al-
ready observed in a training stage. Although these meth-
ods have demonstrated competitive results, the extension
to pose classification of object categories is not trivial.
As Fig. 1 shows, two main issues must be addressed in
category-level pose estimation: (A) Intra-class variability:
the appearance of object instances from a particular view-
point may change dramatically because of changes in il-
lumination conditions, occlusions, shape and appearance

properties; (B) Inter-pose variability: different poses of a
specified object share similar appearance wherein only a
small portion of the object carries key information for pose
discrimination. Obviously, it is critical to simultaneously
minimize the intra-class variability while maximizing the
intra-pose distance for category-level pose estimation. Re-
cent works have leveraged machine learning methods to
classify object pose at categorical level from single images
[32, 7, 19, 29, 31, 12, 23] or videos [21]. While most of
these works mainly focus on the problem of minimizing
intra-class variability (issue A), little attention has been put
to simultaneously tackle both issue A and issue B.

In this paper, we propose a novel statistical manifold
modeling approach that is capable to classify poses of object
categories from video sequences by simultaneously min-
imizing intra-class variability and maximizing inter-pose
variability. We use [21] as a starting point for our work. In
[21] authors show that a more compact and descriptive sta-
tistical manifolds can be learnt from short video sequences
rather than still images, and that these manifolds enable ac-
curate pose classification of object categories. Unlike in
[21], however, where an holistic object pose representation
is used, we follow the intuition that a part based representa-
tion (or pictorial structure or constellation model) [9, 18, 10]
is capable of delivering more design flexibility to handle
intra-class variability, occlusion and background clutter. As
illustrated in Fig. 1(b), careful part selection is indeed the
critical ingredient that allows us to tame intra-class confu-
sion (issue A) and pose ambiguities (issue B) at the same
time. We formulate the informative part selection problem
from a statistical manifold modeling perspective, and treat
part selection as adjusting the manifold structure of the ob-
ject poses by means of an “alignment” and “expansion” op-
eration. As demonstrated in Fig.2(a), wherein each trajec-
tory corresponds to one object instance with varied poses,
manifold alignment and expansion are equivalent to mini-
mizing the intra-class distance given a pose while increasing
the inter-pose distance given an object instance respectively.
We formulate and solve this (otherwise intractable) part se-
lection problem as a combinatorial optimization problem
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Figure 1. (a) Object pose is defined as the camera location (θ, φ) on the viewing sphere from which the object is observed. (b) Two main challenges in
categorical object pose estimation. Issue A(Left column): Due to intra-class variability, different object instances have distinctive appearances given the
same pose. We aim at representing the object pose using parts (e.g., orange part, red part and dark-green part) that minimize the intra-class variability.
Issue B(Right column): Objects observed from different poses may share similar appearance. We wish to find parts (e.g., red part and light-blue part) that
maximize the inter-pose distance. The dark-green parts minimize intra-class variability but not inter-pose distance, thus should not be used to represent the
object.

using graph analysis techniques.
Notice that our problem is conceptually different from

traditional (object) classification problems. In these cases,
inter-class variability must be maximized so as to increase
the margins between a discrete number of classes in the
feature space. In our case, maximizing inter-pose dis-
tance means spreading (inflating) the structure of the man-
ifold which is constructed as a continuous (rather than
discrete) function of the pose parameters. Thus, we ar-
gue that traditional part (feature) selection methods such
as LDA/Fishers Discriminant Analysis [24] (wherein the
between-class scatter matrix is constructed over a discrete
number of classes) are actually not adequate for solving our
problem. Also, our work differs conceptually from previous
work on manifold learning such as [17, 33, 27, 6] where the
primary goal is to recover the structure of the manifold (so
as to facilitate classification and visualization) rather than
modifying the actual structure of the manifold as we seek to
do.

A number of experimental results (on a public dataset
[21] and on an extension of [21]) demonstrate that our meth-
ods increases discrimination power in pose classification
even in presence of large intra-class variability, background
clutter, and occlusions. We show that our method achieves
superior pose classification rate than state-of-the art holistic
approaches [21, 28] as well as benchmark methods based
on feature selection such as LDA/FDA [24].

2. Overview of Our Approach
As Fig. 1 (a) shows, an object pose is defined as a tu-

ple (θ, φ) corresponding to the azimuth and zenith angles.
To estimate the object pose, our input is a video sequence
that captures an object under a certain range of poses, rather

than still images. The video sequence is split into a set of
short video segments and each of them is associated with a
unique pose. Then each video segment is represented by a
collection of parts, which are characterized by the appear-
ance of the surrounding spatial-temporal volumes, called
Spatial-Temporal (ST) parts (Fig.2(b)). In fact, each ST part
contains a sequence of patches, from which we can estimate
a PDF associated with the ST part. This PDF captures the
appearance and geometrical location distribution of patches
within the video. Thus, each patch within the ST part is a
realization of the ST-Part PDF. Then an object pose is mod-
eled as a joint distribution of the parts. Specifically, each
frame of the video segment corresponding to a pose is re-
garded as a realization of the joint distribution of the ST
parts. Consequently, each object PDF will be uniquely as-
sociated with one pose.

In order to distinguish object poses, we design a distance
function based on the Kullback-Leibler divergence between
two pose PDFs. Since an object is represented by a collec-
tion of parts, the KL-distance between two object poses is
based on the joint distributions of parts (Sec.3.1). We then
use the Multi-Dimensional Scaling (MDS) technique [4] to
embed object pose PDFs into a Euclidian space (Sec.4).
Video slices sampled from smooth trajectories on the view-
ing sphere will generally induce smooth manifolds in the
embedding space (Fig.3). In the ideal case, where intra-
class variability, illumination changes and occlusions are
neglected, manifolds from different instances would per-
fectly align with each other, resulting in a 2D manifold pa-
rameterized only by pose (Fig.2(a)). Furthermore, if there
are no appearance ambiguities across different poses (i.e.,
all of the poses are clearly distinguishable), manifolds will
occupy the “largest hypervolume” - i.e., without inward
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Figure 2. (a) Manifold alignment and expansion. Each manifold (a closed trajectory) corresponds to an object instance and it is parameterized by pose. Up:
Manifold of different object instances should be aligned according to poses to minimize intra-class distance. Down: Quasi-symmetric poses usually induce
loops in the manifold space. Expanding manifold of object instance to the largest hyper-volume will facilitate pose classification. (b) Part-based object pose
representation. A long video sequence (left) is decomposed into video segment (center) that is associated with a unique pose. Each video segment consists
of a set of discriminative spatial-temporal parts (right). Each video segment is the realization of a certain object PDF and each ST part is a realization of
certain part PDF.

bends or loops. Unfortunately, this does not happen in prac-
tice (a typical pose manifold is shown in Fig.3, Left).

Observing that there is a strong correlation between the
manifold structure and pose estimation accuracy (namely
having good alignment and expansion of the manifold is
equivalent to decreasing intra-class variability and increas-
ing inter-pose distance), we propose a methodology that al-
lows us to model the manifolds so as to increase the dis-
crimination power of our classification scheme. In prac-
tice, we model the manifold structure by selecting ST parts,
such that (1) manifolds of different object instances are best
“aligned” at any given pose; (2) manifolds associated with
each object instance are “expanded” as much as possible.
This is well illustrated in Fig.2(a). The process of “align-
ment” and “expansion” are formulated mathematically as a
combinatorial optimization problem by jointly optimizing
two cost functions, which correspond to the problems of
decreasing intra-class variability and increasing inter-pose
distance respectively (Sec.4.2). We solve this otherwise un-
tractable optimization problem using graph analysis tech-
niques Sec 4.3).

3. Probabilistic Modeling of Pose Dissimilarity
Let Vi be a video sequence capturing an object instance

i of a given category as the camera moves along a trajectory
on the viewing sphere. As Fig.2(b) shows, this video se-
quence is temporally split into N video segments, and each
of them is associated with one unique object pose j, thus
Vi = {Oji }Nj=1. Furthermore, each Oji is decomposed into
a collection of ST-parts Oji = {Q

i,j
k }Kk=1, and each ST-part

Q consists of two variables (A,X) modeling part appear-
ance (e.g., raw pixel intensity values, SIFT descriptor, etc.)
and geometry (e.g., part position, size and aspect ratio) re-
spectively. As a result, we define the probability density

function (PDF) of object i observed at pose j as a joint dis-
tribution of the appearance and geometry of ST parts. For-
mally, it is defined as,

P ji = P ji ({Qk}
K
1 ) (1)

= P ji (A1, . . . , AK , X1, . . . , XK) = P ji (A,X), (2)

where A = (A1, . . . , AK) and X = (X1, . . . , XK). The
collection of object pose PDFs P ji for j = 1, ..., N forms a
trajectory Ti in a high dimensional manifold parameterized
by object pose j.

3.1. Object Pose Dissimilarity Measure

Given two object pose realizations Oji and Onm (associ-
ated with object instances i and m respectively), as well as
their corresponding PDFs P ji and Pnm, we define the dis-
similarity between two poses as the Kullback-Leibler diver-
gence between two distributions P ji and Pnm,

D(Oji , O
n
m) = DKL(P

j
i ||P

n
m) = DKL(P

j
i (A,X)||Pnm(A,X)) (3)

Claim 1. Given (3) the distance between two object poses
Oji and Onm can be computed as,

D(Oji , O
n
m) = EX(DKL(P

j
i (A|X)||Pnm(A|X))) (4)

+DKL(P
j
i (X)||Pnm(X)).

Proof: see [22] for details.
We further assume that part appearance A is condition-

ally independent given the geometry X of the parts, and that
part correspondence between Oji and Onm is known. Thus
the mapping between Qi,jk to Qm,nk is known. Then we can
derive the following proposition,
Claim 2. If A1, . . . , AK are independent given X and a
one-to-one part correspondence fmap(Q

i,j
k ) = Qm,nk exists,



the following equation holds,

EX(DKL(P
j
i (A|X)||Pmn (A|X))) (5)

= EX(

K∑
k=1

DKL(P
j
i (Ak|X)||Pnm(Ak|X))),

where P ji (Ak|X) is the conditional PDF of part Ak given
X. Proof: see [22] for details.

Integrating Claim 1 and 2, the distance between two ob-
ject poses is,

D(Oji , O
n
m) = EX{

K∑
k=1

DKL(P
j
i (Ak|X)||Pnm(Ak|X))} (6)

+DKL(P
j
i (X)||Pnm(X)).

The second term in (6) (“geometry” term) is modeled
as a 4 × K dimensional Gaussian distribution correspond-
ing to the normalized location, size and aspect ratio of all
the parts in the image. The KL-divergence between them
can be solved analytically. The PDFs in the first term (“ap-
pearance” term) is modeled non-parametrically. It can be
estimated from a sequence of patches of the corresponding
ST-part using kernel density estimation techniques similar
to [21]. The pairwise KL-divergence is then calculated ac-
cordingly.

In practice, since the cardinality of parts may vary across
two instances i andm, we utilize the “normalized” symetric
KL-Divergence to measure the distance,

D̂(Oji , O
n
m) =

1

S
DKL sym(P ji , P

n
m) (7)

where DKL sym(P,Q) = DKL(P ||Q)+DKL(Q||P ), and
S is the number of parts shared by Oji and Omn .

3.2. Object Parts Extraction

Given a video segment, different segmentation proce-
dures, such as [1][8], can provide salient regions which can
be used as parts. In this work we adopt a simpler strategy
and extract parts by dividing the video segments (frame)
into a regular grid and associate each grid element to an ST
part. This strategy has a number of advantages: i) it solves
the problem of establishing the corresponding parts across
different video segments; parts are in correspondence if they
have the same grid index (i.e.,spatial location). ii) It is very
efficient; iii) we can decouple the effect of segmentation
from our part selection algorithm. Notice, however, that our
proposed approach is general and can handle parts extracted
by any segmentation algorithm (as long as part correspon-
dence across video segments is provided). Note that given
an ST-part Qijk , Ak is the appearance of the corresponding
grid element, X captures the grid index (i.e., part location)
and grid element aspect ratio.

4. Manifold Modeling for Pose Estimation
Given a number of training object instances i =

1, ...,M , we form a set of trajectories Ti in the manifold
parameterized by pose j. Our goal is to align the trajecto-
ries such that the pose distance D(Oji , O

j
m) is minimized

for each pair of object instances i 6= m and for each pose
j = 1, ..., N . This will result in reducing intra-class vari-
ability. Meanwhile, we seek to expand each trajectory Ti
such that D(Oji , O

n
i ) is maximized for each i = 1, ...,M

and j 6= n. We argue this will result in increasing inter-
pose distance for each object instance.

4.1. Euclidean Space Embedding

Due to the high dimensionality of the object pose repre-
sentation P (Oji ), we propose to embed each trajectory into
a Euclidean space Rd where d is much smaller than the orig-
inal dimensionality. This has two key benefits: 1) the com-
putation of each DKL(P,Q) distance becomes much more
efficient; 2) It is much easier to visualize results. Moreover,
it is possible to observe the topological properties of each
trajectory as a function of the object pose (see fig. 3). Note
that the actual degree of freedom is essentially regularized
by the parameters θ, ϕ. We use MDS [4] to embed object
pose PDFs into a Euclidean space. As demonstrated in [2]
such embedding is able to preserve the KL divergence in the
original embedding. We indicate this embedding by fe(∗).

4.2. Manifold Alignment and Expansion

Given a part based representation as introduced in Sec.
3, our goal is to select descriptive parts so as to align the
trajectories in the manifold (reduce intra-pose variability)
as well as discriminative parts so as to expand the trajecto-
ries (increase inter-pose distance). Note that unlike general
feature selection algorithms (such as Fisher’s Discriminant
Analysis), our optimization must be applied on the smooth
manifold parameterized by pose, as opposed to over a dis-
crete number of k classes.

Specifically, given a training set of object poses O =
Oji , i = 1, ...,M, j = 1, ..., N , we extract a set of ST-parts
F from them. We seek to select an informative part set F̂
from F . The part selection is formulated as follows,

argmin
F̂⊂F

N∑
j=1

∑
(i1,i2)∈P1

||xji1 − x
j
i2
||−λ

M∑
i=1

∑
(j1,j2)∈P2

||xj1i − x
j2
i ||

(8)
where xji = fe(P

j
i ) is an embeded image of PDF P ji in the

embedded space, λ > 0 is a factor that indicates the relative
importance of these two terms, P1 contains all pairs of ob-
ject instances for pose j (i1, i2 = 1, ...,M ) except i1 = i2,
and P2 contains all pairs of object poses of object instance
i (j1, j2 = 1, ..., N ) except j1 = j2. ‖ · ‖ is a l2-norm
in the Rd Euclidean space. Notice it approximates the KL
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Figure 3. Reconstructed manifolds of the 7-car dataset. Each trajectory, which consists of a sequence points corresponding to object pose PDFs, is
associated with one object instance (identified by a unique color). The trajectories demonstrates the smooth transition between neighbor poses as the camera
moves(here, a video sequence, taken by moving a camera around one object instance, is uniformly split into short segments corresponding to different
poses).Left: Manifold reconstructed using holistic pose model [21]. Notice that the trajectories are not aligned. Right: Manifold reconstructed based on
part-based model with part selection. After part selection, the trajectories from different object instances are well aligned and expanded.

divergence in the original embedding. The left term mini-
mizes the intra-category variability. Specifically, points cor-
responding to different object instances under similar poses
will be close to each other. This term guarantees the gener-
alization power of our method as it penalizes parts that do
not generalize well across different object instances. The
right term attempts to maximize the inter-pose distance (i.e.,
distance between points on the same trajectory). This prop-
erty guarantees the discriminative power of our algorithm
and prevents the manifold from collapsing into a trivial sin-
gle cluster. It penalizes non-discriminative trivial parts.

The objective function (8) is a multi-objective combina-
torial optimization problem. Following the lexicographic
ordering formulation [15], we approximate the multi-
objective optimization problem as a set of sub-problems,
namely,

argmin
F ′⊂F

N∑
j=1

∑
(i1,i2)∈P1

||xji1 − x
j
i2
|| (9)

argmin
F ′′⊂F ′

−
M∑
i=1

∑
(j1,j2)∈P2

||xj1i − x
j2
i || (10)

In fact, we solve the problem of (8) by sequentially solving
its the sub-problems (9) and (10).

4.3. Part Selection by Graph-Based Ranking

We further decompose the part selection problem in (9)
into N independent local optimization subproblems corre-
sponding to N poses. Specifically, assuming Fj to be the
part set extracted from all M object instances under the

same pose j, we aim to solve the following problem,

argmin
F ′

j⊂Fj

M∑
(i1,i2)∈P1

||xji1 − x
j
i2
|| (11)

Consequently, we obtain F ′ = {F ′j}Nj=1. Similarly, we de-
compose the problem of (10) intoM local optimization sub-
problems corresponding to M instances as follows,

argmin
F ′′

i ⊂Fi

N∑
(j1,j2)∈P2

−||xj1i − x
j2
i || (12)

where Fi ⊂ F ′ contains all parts which are extracted from
all N poses of object instance i and selected by (11) (i.e., in
F ′). Thus, the final selected parts F ′′ = {F ′′i }Mi=1, which
is an approximate set of F̂ in Eq. 8. We observe that for
the two local combinatorial optimization problems (11) and
(12), the search space is 2|Fi| and 2|Fj | respectively, which
increases exponentially with the number of instance/pose
labels. Therefore, searching for an exact optimal answer is
still intractable when |Fi| and |Fj | become large.

The search space can be reduced by ranking parts
according to their “descriptiveness” and “discrimination”
power. Specifically, given a pose j, we want to select the
most descriptive parts, which are shared across different ob-
ject instances; while given a object instance i, we expect
to select most discriminative parts (i.e., uncommon parts
across poses), which can help distinguish poses. Both prob-
lems can be solved by the same ranking scheme described
bellow. The idea is to seek to select “good” parts greedily
by local parts ranking. This greedy strategy works well for
our problem.

For a given pose j (object instance i), we build a
Part Similarity Graph (PSG) Gj = (Vj , E,W ) (Gi =
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Graph-based Ranking Graph-based Ranking

Figure 4. Part Similarity Graph. Left: PSG ranks all the parts from varied instances given a fixed pose. High-ranked nodes are shared across different
instances and useful to minimize intra-class variability. Right: PSG ranks all the parts from varied poses given a certain object instance. Low-ranked nodes
are less shared across different pose, so they can help maximize the inter-pose distance.

(Vi, E,W )), where Vj is a set of vertices corresponding
to parts extracted from all object instances under pose j
(Vi is the part set for all poses of instance i). E is an
edge set and W is the associated weight matrix, where
wst = exp(−αDKL(Qs, Qt)) for parts Qs and Qt. Given
such a graph G, we would like to measure the relative “im-
portance” of the vertices (i.e., the centrality of vertex within
a graph). Intuitively, an “important” vertex is the one that is
more similar to other vertices (thus having higher central-
ity). For graph Gj , the importance of a vertex is consistent
with the descriptiveness of its corresponding part. Hence,
by ranking the importance of vertices we can select descrip-
tive parts from Vj . On the other hand, for graph Gi, an “im-
portant” vertex is the one that is less discriminative since it
is similar to more parts from different poses. The ascending
ranking of importance also provides a way to select most
discriminative parts from Vi.

To rank the importance of vertices within a graph, we ap-
ply Eigenvector Centrality, which is defined as the principal
eigenvector of a stochastic adjacency matrix derived from
weight matrix. Let W ′ be the column normalized matrix of
W (which measures the similarity between parts), then the
PartRank (PR) can be iteratively defined as,W ′∗PR = PR
(PR is a vector containing an importance value for each
vertex). Since, it requires a strong connected graph (to en-
sure that the principal eigenvalue be 1). Thus, a dumping
factor d (d > 0.8) is introduced. Thus, PR can be com-
puted as,W ′∗PR+(1−d)v = PR where v = [1/n]n×1,n
is the number of parts.

Fig.4 demonstrates the process of parts ranking for part
selection. The left panel shows a selection of the most de-
scriptive parts (which appear consistently across different
object instances) for good generalization. By conducting
this process for all poses j = 1, . . . ,M , we obtain a subset
of parts F ′ that meet criteria in (11). The right panel illus-
trates the selection of discriminative parts to better distin-
guish poses of an object instance. We select less important

parts that are highly discriminative for pose distinguishing.
We repeat this process for all object instances and find F ′′,
which is then used to estimate the pose in testing. We use
PageRank technique [30] to greedily obtain the F ′′ in Eq.
12.

4.4. Recognizing novel object poses

After part selection, we obtain a descriptive and discrim-
inative training part set F ′ = {Qi}T1 with each Qi =
{(Ai, Xi), Ci} where Ci is the pose label. Now, given a
novel video segments Ot with unknown object pose, we
first extract ST-parts {Qts}S1 by deviding the video seg-
ments into a grid as explained in sec 3.2. Then the pose
of Ot is estimated by K-Nearest Neighbor classifier as,
Ĉ = argmaxC

∑S
s=1

∑K
k=1 I

k
s , where Iks is an indicator

function which is equal to 1 if the pose label of the k-th near-
est part in F ′ is C. Note that once we have the manifold,
many machine learning techniques can be adopted to do the
classification/estimation task. Here we focus on the 1-NN
classifier, because although simple, 1NN’s performance is
directly related to the manifold structure, which makes it
more interesting in our case.

5. Experiments
5.1. Synthetic Car Dataset

We first test our proposed algorithm on the synthesized
car dataset available from [21]. This dataset contains 10
computer generated car instances with variation in shape
and texture. Images with pose labels are available for dif-
ferent azimuth (0◦ − 360◦) and zenith (0◦ − 40◦) angles.
We generate our object parts by dividing object into even
sized blocks and regard each block as a part. As a base-
line comparison, we test [21] with the best reported feature
configuration (Edge map + SIFT). In both cases, we use the
object bounding box provided by [21] to localize the ob-
ject, and normalize our images into unit size to remove the
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Figure 5. (a) 8-pose confusion table for the new car dataset. (b) Pose estimation error for different poses. (c) 8-pose accuracy for the new car dataset with
different part configuration. (d) 8-pose accuracy w.r.t occlusion parts.

bias in the bounding box size. We use a 1 Nearest Neigh-
bor classifier and consolidate the result as a 1 v.s. 32 pose
(8 azimuth by 4 zenith poses) classification problem. By
adopting our proposed part selection procedure, we are able
to increase the overall accuracy of [21] (88.9%) by 10% and
achieve nearly perfect classification (99.7%). See [22] for
the confusion table and comparison of the manifolds.

5.2. Pose estimation on real dataset

We then test our algorithm on the real world car
dataset introduced in [21]. This dataset contains video
sequences capturing different object instances following a
semi-sinusoidal trace on the viewing sphere. We also in-
troduce one new PC mouse and stapler datasets, along with
three new car instances with higher intra-class variability,
all with pose annotations. To the best of our knowledge,
this is the most complicated video dataset for categorial ob-
ject continuous pose recognition from videos. We follow
the scheme proposed in [21] to build the training/testing
datasets by equally dividing the video sequences into short
slices. We then use the leave one instance out cross valida-
tion scheme to estimate novel poses.

Our classification accuracy is shown in Fig. 6 and in
Fig.5, where the reconstructed manifold is shown in Fig.3.
As shown in Fig. 6, our algorithm achieves 5%−20% better
performance and outperforms [21] consistently under dif-
ferent classification granularity. This improvement in ac-
curacy is indeed related to the quality of the reconstructed
manifold. As shown in Fig.3, the original manifold is able
to capture trajectories indicating the pose transition foro sin-
gle object instance; however, looked as a whole, manifolds
from different object instances are quite scattered and or-
derless. The manifold constructed by our proposed method
shows clearly the common structure shared with different
object instances.

Fig.5(a) shows the confusion table for the new car
dataset on 8-pose classification. As shown in the figure,
most errors occur in neighboring poses and opposite poses
(due to the intrinsic symmetry of car). Fig.5(b) compares

our pose estimation error with [21], which demonstrates
that our part-based model achieves less estimation error for
all given poses. Fig.5(c) shows the performance of our
model with different part decompositions. As shown in
the figure, classification accuracy goes up as we divide the
whole object into finer parts, and when the parts becomes
too small, it looses descriptive power and the performance
goes down again. Another common issue with object de-
tection and pose estimation algorithms is the occlusion of
object parts. We test this by replacing some parts inside the
object bounding box with random background patches and
show the accuracy in Fig.5(d). As shown in the figure, our
algorithm is robust to part occlusions.

Comparison with FDA. To distinguish our problem
from general feature selection problems and illustrate the
power or our algorithm, we discretize our video segments
into 8 poses and treat our problem as an 8-class classifica-
tion problem. The within-class scatter matrix and between-
class scatter matrix is calculated as

SW =
∑
φ

((Dφ,φ
p,m))p,m, SB =

∑
φ

∑
θ

((Dφ,θ
p,m))p,m,

. Features are selected by solving the generalized eigen-
value problem maxu

uT Λu
uT Σu

. The best 8-pose classification
accuracy for FDA is 55%, which is worse than both the
Holistic model(77.4%) and our part-based model(83.7%).
This indicates the challenges in our part-selection problem.
The reason that FDA is not working well is: (1) FDA as-
sumes that classes are discretized (and data are clustered
in each class); whereas in our case the transition between
neighboring poses is smooth; (2) FDA’s learned optimal
part configuration is fixed for all poses, while our algorithm
is able to select different configurations according to differ-
ent poses.

Comparison with Spatial Pyramid Matching. To
compare with the state-of-the-art classification algorithms
on single frames, we adopted the Spatial Pyramid Matching
framework proposed in [28]. We generate a 4-level pyramid
with 100 codewords (the best configuration in our case) for



(%)
Dataset [21] Ours [21] Ours [21] Ours [21] Ours
Cars [6] 84.5 90.4 75.7 82.3 71.8 78.0 51.5 62.6

Cars [6] + new 77.4 83.7 68.9 73.2 65.1 67.3 43.9 47.0
Mouse new 61.8 68.6 56.4 62.9 46.1 62.9 31.8 45.4
Staple new 64.0 82.6 50.6 72.1 45.9 69.8 27.9 51.8

8-pose 12-pose 16-pose 32-pose

Figure 6. Pose classification accuracy. Comparison with [21] shows
that our method outperforms [21] consistently under different classifica-
tion granularity.

individual frames and perform leave one instance out testing
on each frame. Histogram intersection kernel is used as dis-
tance measure. The 1-Nearest Neighbor classification result
for 8-pose is 72.5%, worse than the Holistic model(77.4%)
and our part-based model(83.7%). This justifies our mo-
tivation of using videos and information divergence as op-
posed to images.

6. Conclusion and Future Work
In this paper, we propose a novel framework for object

pose estimation on a category level. We treat an object pose
as a collection of spatial-temporal parts. By modeling each
ST part as a probabilistic PDF, we further represent an ob-
ject pose as a joint distribution of part PDFs. We then use
statistical manifold to model all the object poses in the pose
space by MDS embedding. By adjusting the structure of
the manifolds, we demonstrate we can simultaneously max-
imize the inter-pose distance and minimize the intra-class
variability. In order to adjust the structure of the manifolds
on the training data set, we choose a graph-based technique
to rank all the parts and select the informative ones, which
can produce well aligned and expanded manifolds. Finally,
the selected informative parts are used to recognize the pose
of an unknown instance. Our method achieves the state-of-
the-art results on a publicly available data set.
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