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Abstract

Variational energy minimization techniques for surface reconstruction are implemented by evolving an active surface accord-
ing to the solutions of a sequence of elliptic partial differential equations (PDE’s). For these techniques, most current approaches
to solving the elliptic PDE are iterative involving the implementation of costly finite element methods (FEM) or finite difference
methods (FDM). The heavy computational cost of these methods makes practical application to 3D surface reconstruction burden-
some. In this paper, we develop a fast spectral method which is applied to 3D active surface reconstruction of star-shaped surfaces
parameterized in polar coordinates. For this parameterization the Euler-Lagrange equation is a Helmholtz-type PDE governing
a diffusion on the unit sphere. After linearization, we implement a spectral non-iterative solution of the Helmholtz equation by
representing the active surface as a double Fourier series over angles in spherical coordinates. We show how this approach car
be extended to include region-based penalization. A number of 3D examples and simulation results are presented to illustrate the
performance of our fast spectral active surface algorithms.
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|. INTRODUCTION

Partial differential equations (PDE’s) have been widely applied to solve many computer vision and image
processing problems, such as curvature based contour flow, edge-preserving image smoothing, image regis
tration via deformable models, and image segmentation. The advantages of applying PDE methods to image
analysis have been summarized in [7]. In particular, some of these problems, such as shape from shading
[17], surface reconstruction [35] and active surfaces [12], can be formulated in the framework of energy min-
imization. Variational principles can be applied to find the energy minimizing surface and lead to solving
partial differential equation (PDE) of elliptic type for the minimizing surfgce

Vif—uf =g (1)

whereg is surface derived from the image data, e.g., a noisy edge map. Since direct solution of (1) can be
quite difficult, one can perform successive approximations to (1) over time leading to a sequence of solutions
{f»}n calledactive surfacesMethods which reconstruct surfaces by solving a sequence of PDE’s are known
as variational methods of energy minimization.

This paper is concerned with implementation of fast variational methods for the reconstruction of smooth
star-shaped 3D surfaces. The majority of variational approaches to 3D object reconstruction solve PDE’s on
a rectangular domain, e.g. the planes IR?. Such a 2D representation is natural as a 3D surface is simply
a mappingx : Q — R?, i.e. x(v,w) = (2, (v, w), 2(v, w), z3(v, w)), where(v, w) € Q. These approaches
solve the obtained PDE’s by iterative techniques, such as finite element methods (FEM) and finite difference
methods (FDM). For example, in [10] Cohen used FEM to solve the PDE'’s in active balloons models and
in [37] Xu used FDM to solve the PDE'’s for gradient vector flow. The advantage of FEM methods is their
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geometric flexibility due to their ability to perform local mesh refinement. However, FEM/FDM have met
with difficulties for practical 3D imaging applications. The large number of voxels in 3D images causes
significant growth of computation time which is intolerable in many practical applications.

This paper presents a method for accelerating active surface reconstruction for 3D star-shape objects. We
adopt a polar version of the active balloon framework introduced by Cohen [10]. The surface functions of such
objects and the associated PDE’s can be defined over the unit sffhiegead of a 2D rectangular domain,
whereS? := {(z,y,2) : 2> + y* + z* = 1} in the cartesian coordinate system®r:= {(r,0,¢) : r = 1}
in the spherical coordinate system. With the assumption that the origin has been aligned with the object
center, any star-shaped 3D surface can be naturally modelled by a single valued radial description function,
f(0,¢) : S* — R defined on the unit sphere. Orthogonal functions on the unit sphere, such as spherical
harmonics and double Fourier series have been widely used to decompose the radial dessoptioat
the statistical information on the corresponding coefficients can be used to guide other image processing
tasks, such as deformation analysis [16] and image segmentation [32]. In fact, the radial degargytor
be applied to the wide class of any simply connected (no hole) surface which can be embedded into the
unit sphere. For example, in [6] Brealtdér proposed to parameterize the surfaces of simply connected 3D
objects by defining a continuous, one-to-one mapping from the surface of the original object to the surface
of a unit sphere. The parameterization is implemented via a constrained optimization procedure. In [34],
Tao proposed to build a statistical shape model of cortical sulci by projecting sulci onto the unit sphere and
extracting intersubject variability of the shape of the sulci and of the mean curvature along the sulcal curves.

PDE algorithms on the unit sphere have been widely studied for the numerical simulation of turbulence
and phase transition, weather prediction and the study of ocean dynamics. In 1970’s, spectral methods and
pseudo-spectral methods on the unit sphere emerged as a viable alternative to finite difference and finite
element methods [3], [4], [25]. It is well known that such spectral methods (SM) have unsurpassed accuracy
for boundaryless periodic domains like the unit sphere and enjoy a faster rate of convergence than that of
FDM and FEM for solving PDE’s [15]. To further accelerate run-time without loss in accuracy, Cheong
[9] and Yee [38] have devised less computationally demanding alternatives to the spherical harmonic basis.
These results form our prime motivation for applying fast spectral methods to 3D surface reconstruction with
degraded image-domain information, such as broken or blurred edge maps [19], [10].

Fourier snakes using spherical harmonic representations have been proposed for 3D deformable shape
models by Staib and Duncan [31], ande&ely etal [33]. The Mumford-Shah energy functional [24] was
introduced by Chan to deal with blurred or broken boundary problem [8]. An alternative approach is to
incorporate region-based grey-level information into the reconstruction process [18] and [36]. The work
described in this paper combines and extends these approaches in several novel ways. First, we adopt ¢
different total energy functional from [33] and [24] which accounts for an incomplete edge map by using a
3D Chamfer-like distance function [11] to enforce edge information, and an internal energy which combines
a surface roughness penalty and a grey-scale region-based penalty similar to that used in [13] and [18].
Second, we adopt the variational approach of [10] to minimize the energy functional and we show that the
Euler-Lagrange equations reduce to a non-linear PDE over the unit sphere describing the energy minimizing
surface. Third, temporal evolution of the active surface is obtained directly by linearization of this PDE via
successive approximations. This linearization leads to an evolving surface arising from successive solution
of a sequence of homogeneous Helmholtz PDE’s. Fourth, instead of spherical harmonics we apply the faster
Cheong’s double Fourier series [9] to solve each of these successive Helmholtz PDE’s. These four attributes
are the essence of our fast spectral methods (FSM).

This paper is organized as follows. In the next section, we briefly review the use of PDE’s and variational
principles for surface reconstruction via 3D active surfaces. In Section Ill we describe the general spectral
method on the unit sphere proposed by Cheong. Simulation and experimental results are provided in Section
IV. Finally in Section V we discuss current limitations of the methods and future research directions. The



reader interested in more details and additional applications of surface reconstruction. segmentation, and
registration is referred to the thesis of the first author [22].

[I. PDE’S IN SURFACE RECONSTRUCTION
A. Surface Reconstruction

Let g = ¢(6, ¢) be a noisy radial function defiend in spherical coordinéte8, ¢). We call g the polar
edge map and it is obtained from coarse segmentation of a star-shaped object. The surface reconstructior
problem is to apply some form of regularization to approximate the rough edge;(fiap) by a smooth
function f (6, ¢). Variational approaches to this problem specify the solufi@s a stationary point which
minimizes the energy functional [12], [21]:

B =n [ Y(ho)i0s + [ Z(5i0s, @

whereY measures the distance between the functiand the polar edge magp 7 is a measure of reconstruc-

tion smoothnesg, controls the tradeoff between the faithfulness to the segmentation data and smoothness of
the surface, and()s: is a differential surface element on the unit sphere. The two terms on the right hand
side of (2) represent the faithfulness to the segmentation data, called the data fidelity term, and the regu-
larization penalty, called the smoothness term, respectively. If we define the data fidelity lasnitetric

Y(f,q9) = (f(0,9) — g(0,¢))? the surface reconstruction problemn; E(f, ) is equivalent to penalized

least squares surface fitting. In order to enforce smoothness th&Ztginirequently contains the derivative

of the functionf. For instance/Z can be defined to b&(f) = ||V f||?>, whereV is the gradient operator.

With these choices, the energy functional becomes

B() = [ ulF10.0) = 9(0,0) 40 + [ [V7(0,0)Fd0s ©

To minimize E( f, g) over f one applies the calculus of variations [14] to determine an Euler-Lagrange equa-
tion for a stationary point of the above energy functional. This equation is

Vi —ulf —g)=0. 4)

When specialized to spherical coordinates (4) becomes an elliptic equation of Helmholtz type [2], a fact
that will be used in the sequel. When a time variable is included in the energy minimization functional (3)
the elliptic equation becomes a function over both time and space. When indexed by the time variable the
solutions to (4) are called an evolving surface or active surface.

Although FDM and FEM have been employed to solve the elliptic equation (4) they must be implemented
iteratively at each time point. The FSM approach that will be introduced in Section Il provide a non-iterative
solution and therefore has lower computational complexity. In Section II-B and 1I-C, we will show that a
non-linear PDE similar to (4) can be used to reconstruct 3D star-shaped surfaces with missing or broken
edges. Due to the non-linearity of this PDE we will see that FSM must be implemented sequentially in time
producing an evolving surface.

B. Parametric Active Surfaces on the Unit Sphere

Parametric active surface methods can be applied to simultaneously perform image segmentation and sur-
face reconstruction. Let be a general parametric description of a surfacdih i.e., it is a mapping



x :  — R* where) is a subset olR?. We can represent a propagating surface as a parametric active
surfacex which minimizes the associated energy functiobal

B(x) = / (Paa(x) + [0 V|12 + 81 V]7]) d2 (5)

wherea and$ are parameters controlling the smoothness ahd P, represents a potential function, e.g.

the first term in the right side of (2). The terfg o|Vx||* + 5] V?x||?dS2, which does not depend on the

datag extracted from the image, is called internal energy. The tgyiR.,(x)dQ2, which is computed from

the image data and the parametric surfaces called the external energy. The force generated by the inter-

nal energy discourages excessive stretching and bending of the surface. By suitably designing the function
Puxi(x), the force generated by the external energy can attract the surface towards extracted features of object,
e.g. the edge map or grey level map. The surtadeforms under these two kinds of forces and converges

to a minimizer of the energy function&l. Note that, as compared to (2), the representation (5) of the en-
ergy function is in a more standard form involving regularization parametarsl 5 which multiply the two

surface roughness penalties.

The external force plays an important role in active surface methods. Typically, active surfaces are drawn
towards the desired boundary by the external force which could include one or more of the following com-
ponents: a traditional potential force, obtained by computing the negative gradient of an attraction potential
defined over the image domain [12], [19]; a pressure force, used by Cohen in his balloon model [12], which
could be either expanding or contracting depending on whether the surface is initialized from inside or out-
side of the obect; or a gradient vector flow, used by Xu [37] and obtained by diffusion of gradient of the
edge-map. The role of the external force is to impose sufficient boundary information to extend the capture
range to the initial surface.

Let 7 : R* — IR represent the grey scale image volume to be segmented, {z,,y,, z,} be the set
of all edge points detected ihwhich we call an edge map, andg, (z, y, z)) be the distance from a point

(x,y, z) in the evolving surfacea to the nearest edge point. Specificatlygan be written:d(g, (z,y, z)) 2
Min(y, . .200eq ||(7, Y, 2) — (74,94, 24)||. Figure 1 illustrates these relations. Potential functions designed to
ensure fidelity to the edge map usually have a global minimum at the object boundary. Two common types
of potential functions are:

Puy(x) = i (VI(x)), (6)

Pp)(x) = ha(d(g,x)), (7)
whereh; andh, are functions making’, and Iy, convex at the location of object boundary For instance,
P(x,y,2) = =|VI(z,y,2)]", P(w,y,2) = —|VGo(z,y,2)  I(w,y,2)|* and P(z,y, 2) = 1o belong

to the type ofPy) [1]. In fact, |VI| serves as an edge detector which locates sharp intensity changes in
image . Potential functions of the typ#;) have the disadvantage that the resulting external force has
very small capture range becausg, ~ 0 in homogeneous intensity areas. Potential functions of fype
increase the capture range by attracting the surface to the edge points, e.g. extracted by local edge detector:
Some common choices @ty are P(z,y, z) = d*(g,(z,y,2)), P(x,y,2) = W and P(x,y,z2) =

e~@@.(.v2) [1]. In our experiment, we chos# (g, x), a P»)-type potential function, to generate the
external force for the active surface. This external force will make the active surface evolve towards the
boundary along a path of minimal distance.

In (5), || Vx||? and 3] V2x||* separately control the active surface’s elasticity and rigidity. The regulariza-
tion effect coming fronm||Vx||? can be interpreted as imposing a curvature based flow which has attractive
geometric smoothing properties [20], [26]. A theorem in differential geometry states that any simple closed
curve moving under its curvature collapses to a circle and then disappears [28]. Increasaigs the active
surface resistive to stretching, and introduces an intrinsic bias toward solutions that reduce the surface area.



On the other hand, increasifgmakes the active surface more resistant to tensile stress and bending. To
allow second-order discontinuity in the active surface, wegset0. The equation (5) is then reduced to

Blx) = /Qa||VX||2 + (g, x)d. (®)

For star-shaped surfaces the parameterization is most naturally expressed in an object-centered spherica
coordinate system. As we will see, this representation permits computational acceleration by application of
spectral methods. When there are missing or broken edges the edggimapt specified for all angles
0, ¢ and the data fidelity term in (8) cannot be directly implemented. To deal with this we follow a similar
procedure to that of Cohegtal [11] and use a Chamfer-like distance function to compute the data fidelity
term. Specifically, we define a modified data fidelity term as

d(g,x) =d(g, ) = ||f(0,0) — g;(0,8)]], (9)

whereg; (0, ¢) is defined as the point in the edge mawhich is closest to the point(f, ¢) on the evolving
surface

gf(ea QS) é argmin ||('x!]7yg7zg) - f(ea ¢)(SiH9COS ¢7 SiHQSiH ¢7COS 9)“ - (xo,yo,zo) ’ (10)

(Tg,Yg,29)E€G

and(z,, ¥, z,) represents the coordinates of the object center which is assumed known. The fgpetitn
be referred to as the closest edge map. (see Figure 1).

Equation (8) can now be rewritten as:

B() = [ ol VIR +(f = 0P 0 (1)

Although equation (11) is analogous to equation (3), its associated Euler-Lagrange equation is not the same
as (4). Sincegy; is a non-linear function of, the calculus of variations leads to a more complicated Euler-
Lagrange equation:

aVif—f=—(f— gf)a—gjf — 95, (12)

wheredg,/0f is a suitably defined variational of the closest edge map as a function of the evolving surface.
While it would be worthwhile to explore conditions for existence of this variational we will sidestep this issue
by making the approximatioft f — gf)%—-"ﬂ < gy in (12). This approximation can be justified in cases that
the edge surfacg; encloses a large region and tlfas close tog;. To apply FSM in Section II-D, the elliptic

PDE (12) will have to be linearized so that it becomes a homogeneous Helmholtz-type PDE.

C. Region-based Penalization

Traditional parametric and geometric active surfaces solely rely on the local edge detector to slow surface
propagation. These methods do not use any region-based or volume-based information in the image. Such
active surfaces can only segment and reconstruct objects whose boundaries are well defined, e.g. by the
magnitude gradienfVI| of the image. For objects with blurred or broken boundaries, traditional active
surfaces may extrude through holes in boundary. In [8] Chan proposed to use a Mumford-Shah energy
functional [24] to deal with this “boundary leakage” problem. Other approaches [18] and [36] explicitly
include region-based information into the segmentation. We use the same method as in [8] to incorporate
the region-based information into the energy functional of 3D parametric active surface. The region-based



information is introduced as an additional penalty function. Define a new external energy funétjgfal
associated witlf as:

Ewl(f) = v ( / (I — uin)?dV + / (I — uout)2dV)
inside( f) outsidé )

f(0,9) B(I)
= 7 / / (I—uin)zrzdr+/ (I—uout)zrzdr dQge |, (13)
52 r=0 f(0,9)

wherel = I(r,6,¢) is the gray level intensity of the 3D imag®,/) represents the boundary (assumed
spherical for simplicity) of the image volume, angl andue, are the mean intensities in the interior of the
evolving surfacef and outsidef respectively.

Ui — finside(f) 1dv A foutside(f) 1dv
™~ vol(insidg f))’ %™ vol(outsidg f))

(14)

Here the denominators in (14) are the volumes inside and outside the evolving surface. With the assumption
that the image intensity is nearly homogeneous inside and outside the object boundary, the new external
energy functional (13) has the same minimizer as (11), which is the surface of the object. The functional
(13)can be adjoined to the Lagrangian (11) by aggregating the integral§“aver

Bg) = [ falViP+-op+

f B(I)
y [ / (I — win)?r2dr + / (I - uout)2r2dr] }d952 (15)
0 f

which is called the region-penalized energy functional.

Next calculus of variations is applied to obtain the necessary condition for minimization of this penalized
Lagrangian

oV = (f = gL = ZE) = x(.1) =0, (16)
where
din f
ST = P = e = (U0 = o] + 250 [0 = wa)ir
" B(I)
+2(55;Ut)/f r2(I — uou)dr, (17)
and
% _ f52 fzf(f)dQSz — Uijn Surf(f) (18)
5f vol(insidg(f)) ’
OUout _ fsz fzj(f)dQS2 — Uout Surf(f) (19)
5f vol(outsidé f)) ’

and surff) = f52 f2dQg- is the surface area of the evolving surface.



D. PDE Linearization

Comparing equation (16) with (4), it is clear that the Euler-Lagrange equation (16) is no longer a homoge-
neous Helmholtz PDE due to two factors: gk)is non-linear inf, 2) the additive region-based penalization
termz is not linear inf. The same issue was encountered in [18] and the authors circumvented the problem
by implementing an iterative approach which lineariegout the surface computed in the previous step fol-
lowed by update propagation. Update propagation is a kind of successive approximation scheme for which,
at iterationn + 1, we updatef,, in terms of the past iteratg, (¢, ¢'), if f,.1 for (¢', ¢’') has not yet been
computed, and a partial updafte,, (¢', ¢'), if f..1 for (¢',¢') has been computed. This succesive approxi-
mation idea can be similarly applied to (16) to transform it to of a homogeneous linear Helmholtz equation.
Combining all the non-linear terms in the PDE into a single term and moving this term to the right side of the
equation, (16) can be rewritten as:

0
aV2f — f=~2(f,1) = (f — w)%ﬁ — gy (20)

Invoking the assumed dominance conditjofi — gf)%ifﬂ < gy, and replacing the right hand side of (20)
with the value off,,, we obtain a linearized homogeneous Hemholtz equation

av2fn+1 - fn+1 - 7Z(fna]) —Gf- (21)

This evolution equation bears some similarity to the surface evolution equations used in FDM, e.g.,

fuvse = Fi+ 0V, = (= 910 = L) = el D) (22)

whereAt is the FDM time step which indexes the sequqgnce of evolving surfaces.

[1l. FAST 3D SPECTRAL APPROACH

As we have discussed in the introduction, FDM [37] and FEM [12] have been used to solve the Euler-
Lagrange equations associated with active surfaces. However, all of these methods have difficulties for 3D
images due to the inherently large required grid sizes. Spectral methods for solving PDE’s over a 2D rectan-
gular domain are renowned for their faster rate of convergence and higher accuracy as compared to iterative
FEM and FDM. These SM approaches take advantage of symmetries by transforming the equation into the
spectral domain. They only requite(N?log N) operations for a 2D problem on/& x N grid. It was
Simchony who first applied SM to solve Poisson equations on 2D rectangles for computer vision problems
[30]. Although similar methods for solving PDE’s over the unit sphere have been used in numerical weather
prediction and the study of ocean dynamics [9], [38], to the best of our knowledge, we are the first to propose
applying them to 3D computer vision problems.

When the PDE (21) is expressed in spherical coordinates, the use of basis functions, such as spherical har-
monics (SH), double Fourier series (DFS) and Chebyshev polynomials, has attractive features. An instructive
comparison of these functions is given by Boyd in [4]. Due to the spherical geometry, conditions must be
imposed on the basis functions to ensure that the approximated radial fufieti@hits corresponding deriva-
tives are continuous at the poles. For more discussions of the pole problem, readers are refered to [5]. The
SH basis can easily handle this pole problem because of properties of the associated Legendre functions.
However the Legendre functions also make the computation of SH representations the most computationally
intensive among the three aforementioned basis sets. On the other hand, the DFS can give comparable accu
racy and are more easily computed. Furthermore, use of the fast fourier transform (FFT) can accelerate the
computation of DFS.



As far as we know Yee [38] was the first to apply truncated double Fourier series to solve Poisson-type
equations on a sphere. However, Yee’s algorithm had the deficiency of not properly enforcing continuity
at the spherical poles. Recently, Cheong proposed a new method which is similar to Yee’s method, but
directly enforces continuity at the poles and leads to increased accuracy and stability for time-stepping PDE
solution procedures [9]. In the following sections, we discuss our application of Cheong’s spectral method
for solving the Helmholtz equations associated with computing active surfaces. Notige ith&qg. (4)

V2f—u(f—g) =0andain Eq. (21)aV2f — (f —gs)(1— ) = ( can be unified by identifying = 1/ .

A. The Spectral Method

Here we briefly describe the spectral method proposed by Cheong. The elliptic equitiop(f—g) = 0
is a Helmholtz equation. The Laplacian operaron the unit sphere has the form:

2_ 1 8(sm98)+—1 8—2
L 90’ sin?0 0%¢

(23)

We assume the value of functignandg are given on the grif¥;, ¢x), 0; = 7(j +0.5)/J and¢;, = 27k/ K,
whereJ and K are the number of data points along the latitude and longitude angles. We can expand the
functiong, and similarly forf, in a truncated Fourier series in longitude with truncation ingiexe.g.,

M

9(0,8) = D gm(0)em* (24)

m=—M

whereg,, () is the complex Fourier coefficient given by, (0) = = LS L 9(6, gp)e %%, ¢ = 27k /K and
K = 2M. Equation (4) can then be written as an ordinary differential equation:

1 d d m?
— [sinfp— - — — 2
g (OG0 )) = S £0) = 1 (6) = (0] (25)
The latitude functiory,,(¢) andg,,(#) can be further approximated by the truncated sine or cosine functions,
gm(0;) = S G cos b, m=0 (26)
gm(0;) = Zizl Gn,m Sin NG;, oddm

gm(0;) = ) gumsinf;sinnd;, evenm # 0.

Equations (24)-(26) constitute Cheong’s method and an efficient procedure for calculating the spectral co-
efficientsg, ,, can be found in [9]. After substitution of (26) into (25), we obtain an algebraic system of
equations in Fourier space:

(n—1)(n—-2)+pn n? +2m? + p (n+1)(n+2)+p
4 fn—Z,m - ffn,m + 4 fn+2,m
[1 = + ! ] 0, or odd (27)
= Hl79n—2m — 39nm ~9n+2,m|, M = U,
K 49 2, 29 , 49 +2,
and
nn—1)+p n? +2m? + pu nn+1)+p
ifnflm - —fn,m + ifrwrlm
4 2 4
1 1 1
= :U’[_gn—Q,m Gnm + _gn+2,m]a m even7£ 0 (28)

4 ~opdmm Ty



wheren = 1,3,---,J —1foroddn,n = 2,4,---,.J forevenn if m # 0andn =0,2,---,.J — 2 for even
n,n=1,3,---,J—1foroddn if m = 0. Equations (27) and (28) imply that the components of even and
oddn are uncoupled for any given. These equations can be rewritten in matrix format,

Bf=Ag (29)

whereB and A are matrices of sizé/2 x .J/2 with tridiagonal components only,andg are column vectors
whose components are the expansion coefficienfs, &) andg,,(6). For example, the system (29) for odd
n looks like the following:

b1,m 1 f1,m
as b3,m C3 f3,m

aj-3 bJ73,m Cj—3 fJf?),m
aj—1 bel,m fJfl,m

2 -1 gl,m
-1 2 -1 93,m

-1 2 -1 97-3m
-1 2 gi—1,m

The procedure to solve the equation (4) can now be made explicit: First, we computéhe spectral
components of(f, ¢) by double Fourier series expansion. Then the right hand side of (29) is calculated to
obtain the column vectgy, = Ag. Finally, the tridiagonal matrix equatiddf = g, is solved andf (0, ¢)
is obtained by inverse transform #f ,,, via formulas (24) and (26) witb,, ,, and g( ¢) replaced byf,,
and f (0, ¢), respectively. Notice that the Poisson equafitty = g is just a special case of the Helmholtz
equation, so that a slight modification in the above algorithm will also give the solution to homogeneous
Poisson equations. Other homogeneous elliptic equations, such as biharmonic equations can also be solve
by this spectral method.

Using the spectral method described above to solve the PDE (21) we propose the following evolution
algorithm for implementing our fast spectral method

FSM Active Surface Algorithm

Initialize the evolving surface with a sphere of radius c.
Compute gy, (0,¢) and update the RHS of (21) with fn and gy.;
Solve the PDE  aV?f,11 — fut1 =v2(fa, I) — g5, for  f,41 to update the surface;

Compute the error, Ent1 = \/ = Ei:ol(fn(?}fk)_fnﬂ(gjm»Z

If  e,.1 >threshold, go back to 2, else end.

akr whPE

In the above algorithmy and+~ are chosen in advance to control the tradeoff between surface fidelity to
the edge map and surface smoothness.

B. Complexity and Accuracy Analysis

Consider an elliptic equation with a grid size®fx N on unit sphere. The FDM solver requires a total of
N? variables with matrix sizeV? x N2. A crude Gauss elimination method will requitd N°®) operations
and the Gauss-Siedel relaxation will requi?éN*) operations to converge. The number of operations might
be reduced t@(N3), if the algorithms can exploit matrix sparseness. However, using the results of [9], the



computational complexity of FSM is onlp(N?log N). The objective in this subsection is to evaluate and
compare FDM, FEM and FSM PDE solvers for the one iteration of the evolving surface algorithm, i.e., for
solution of the Helmholtz equation (21) on the sphere.

To compare the complexity of FSM and FEM on the sphere, we implemented a "cubed-sphere” FEM algo-
rithm similar to that of Ronchi [27]. The method is based on a decomposition of the sphere into six identical
regions, obtained by projecting the sides of a circumscribed cube onto a spherical surface. A composite
mesh can then be generated for the FEM PDE solver. In Table I, we list the CPU times of FSM and FEM
for solving the Helmholtz equation on the sph&féf — ¢f = ¢, whereg is a random polar function and
e = 100. In Table Il, theL, errors of the two methods are listed for solving the Poisson equ&tign= g.

We choosey = 3sin(26) cos(¢) as the force function so that the analytical solutfoa —0.5 sin(26) cos(¢)

can be used for accuracy analysis of the two methods. It can be seen that the spectral method is not only faste
than the "cubed-sphere” FEM but also more accurate than the "cubed-sphere” FEM. These comparisons were
implemented on a Sun-Blade 100 Unix machine under MATLAB.

TABLE |
CPUTIME OF SPECTRALHELMHOLTZ SOLVERS BASED ONFSM AS COMPARED TO THE” CUBED-SPHERE FEM SOLVER

Number of grid points| CPU time (sec)
FSM FEM FSM | FEM
16 x 16 6x6%x6 | 2.0E-2| 3.4E-1
32%x32 | 6x13%13 | 5.0E-2| 6.4E-1
64x64 | 6x26+x26| 1.3E-1| 1.3

128 x128 | 6 %52 %52 | 3.8E-1| 3.6

TABLE 1l
L> ERRORS FOR THEPOISSON SOLVERS BY THE SPECTRAL METHOD BASED ON DOUBLEOURIER SERIES AND THE
"CUBED-SPHERE FEM

Number of grid points L, error
FSM FEM FSM FEM
16 % 16 6%6%6 1.3E-2 | 4.9E-2
32%x32 | 6x13%x13 | 5.6E-11| 1.8E-2
64x64 | 6%26x26 | 8.5E-15| 9.9E-3
128 x 128 | 6 %« 52 % 52 | 4.5E-15| 6.4E-3

To compare FSM to FDM it suffices to inspect Table IIl, which is derived from Shen [29]. Shen performed
a numerical experiment which applied spectral methods and the FDM to solve the same Helmholtz equation
on the sphere. The CPU time comparison in Table Il indicates that the spectral method based on double
Fourier expansion is significantly more efficient when compared with the spectral method based on spherical
harmonics and the algorithm based on FDM. The experiments done by Merill in [23] gave similar results.
Notice that Shen’s spectral methods have runtimes that are faster than those reported for our spectral method
One possible and reasonable explanation is that his methods were implemented on different platforms using
different implementation codes (Shen used Fortran while we used MATLAB).

IV. APPLICATIONS

In the Section we illustrate the FSM active surface method for simulated and real 3D image volumes.



TABLE Il
CPUTIME FORHELMHOLTZ SOLVERS ON THE SPHERE (FROM SHEN [29])

N=M 32 48 64 96 128 192 256
Spherical harmonics 6.2E-3 1.7E-2 3.7E-2 .12 28 119 3.06

Fourier | 6.6E-3 1.4E-2 2.3E-2 53E-2 9.0E-2 .24 .42

Fourier Il 7.1E-3 1.5E-2 24E-2 6.0E-2 .11 27 .46
FISHPACK(FDM) | 6.8E-3 3.1E-2 6.9E-2 .13 27 .65 1.22

A. Surface Reconstruction

We first performed experiments to compare reconstructions of a sphere and an ellipsoid in order to illus-
trate the role of the regularization parameter= 1/u. We simulated the effect of isotropic segmentation
noise by adding circular Gaussian segmentation noise to the spherical harmonic coefficients. In Figure 2, the
reconstruction error is plotted versus the valug: #br two shapes. The horizontal line represents the stan-
dard deviation of the segmentation noise. The figure shows that for the simple spherical shape, which only
contains a single SH frequency component, the valyesifould be as small as possible in order to filter out
segmentation noise, while for a shape containing higher spatial frequencies, such as the ellgismidg be
optimized to control the tradeoff between denoising and matching high spatial frequencies. Note also that as
the standard Euclidean norm of the gradient is adopted to enforce smoothness, a spherical surface minimizes
the energy function for, = 0. When the edge map is derived from an ellipsoidal surface the optimum value
of 4 lies betweenl0! and102. If x is too small the evolving surface is overly attracted to the mismatched
spherical shape. On the other hand i§ too high, the segmentation noise dominates the reconstruction. One
possible method for improving accuracy is to use prior information to induce more suitable shape attractors,
e.g., implementing a weighted norm on the evolving surface gradient.

The optimum value of: not only changes with different shapes, but also with different segmentation noise
levels. In our second experiment, we investigated changes in the standard deviation of the segmentation noise
for an ellipsoidal shape. Figure 3 shows thahould be smaller for low SNR segmentation data than for high
SNR segmentation data, which is as expected. Three reconstructions of the ellipsoid are presented in Figure
4. As previously described, the perceived goodness of fit of the final reconstructed surfaces is determined by
the value ofy.

B. 3D Parametric Active Surfaces
B.1 Active Surface with Region-based Penalization

The region-based penalization method described in Section Il was applied, in conjunction with the FSM
active surface algorithm, to a synthesized 3D image to show the advantage of leakage prevention. An ellipsoid
is contained in 28 x 128 x 64 image. One side of the ellipsoid boundary has been blurred with a linear filter,

a single slice of which is shown in Figure 5. The set of edgemaps of the blurred 3D image is shown in Figure
6 and were derived from the blurred image by the Canny edge detector implemented with the MATLAB
function edge(). Both the blurred grey-level image and the set of extracted edgemaps were then used to
drive our penalized active surface algorithm . Figure 7(a) shows that without region-based penalty, severe
leakage of the surface occurs in the vicinity of the blurred boundary. Figure 7(b) illustrates the positive effect
of region-based penalization. In this experiment, we chose10® andy = 5a. The penalization in each
direction is proportional tg?2.



B.2 Liver Shape Extraction

In this experiment, we applied the FSM active surface algorithm (without region-based penalty) to 3D
human liver extraction from an actual thoracic X-ray CT scan. The X-ray CT image was obtained as a stack
of 2-D image slices each of si2é6 x 256. Double Fourier series were used to expand the radial function of
a 3D sphere initialized inside the liver volume. The edge maps were again obtained by Canny filtering. The
CT slices and the corresponding edgemaps are shown in Figure 8.

As in the ellipsoidal surface reconstruction experiment, the center of the liver was estimated in advance.
Although it was not implemented in our experiment, dynamic center estimation could in principle be applied
as the surface evolves. The surface was initialized as a sphere inside the liver. The initial radius was set to
half of the distance from the origin to the edge point closest to 4 A 64 grid was used for the 3D active
surface. At thexth iteration, the closest edge may) is determined frony,, andg as explained in Section II-

D. The elliptic equation was then solved to propagate the active surface to the new pfsitioBecause the
boundary information extracted by local edge detector has been integrated into the PDE, the average distance
from the evolving surface to its convergent limit is within one pixel after anikgrations.

Figure 9 shows a slice of the final 3D surface obtained with different values\&Whena = 103, the sur-
face is over regularized and overly attracted to a spherical surface by the isotropic smoothness penalty. When
a = 1075, the regularization effect is so weak that the final surface is virtually unregularized. Empirically,
it appears thatr = 10~ yields the closest match to the true outline of the liver. This further emphasizes
the importance of studying the effect of the regularization paranaeter final accuracy. Finally, Fig. 10(a)
shows the under-regularized final active surface while (b) shows the final surface with) .

V. CONCLUSIONS

In this paper, we have discussed the formulation of 3D surface reconstruction using spectral active surfaces
with edge penalties implemented in spherical geometry. The spectral method uses double Fourier series as
orthogonal basis to solve a sequence of elliptic PDE’s over the unit sphere. Compared to the complexity
of O(N?3) for iterative time domain (FDM) balloon methods, the complexitydfV? log N) for spectral
methods is significantly lower. Our experiments demonstrated fast convergence of edge penalized spectral
active surfaces for simulated edge maps and those derived from actual 3D thoracic CT scans. We extended
the 3D spectral active surface methods to region-based penalty functions allowing the surface to account for
grey-scale variations and control leakage at blurred boundaries. The choice of active surface regularization
parameters requires further study. A limitation of the spectral method is that it requires a regular sampling
grid and thus cannot incorporate local mesh refinement in the region of large curvatures. Another limitation is
the requirement of star-shaped objects. We believe that a hybrid spectral/finite-element method that provides
the advantages of each should be explored to alleviate these difficulties.
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Fig. 1. A grey level imagé, the set of edge pointsdetected inf, a propagating contoyf (parameterized in polar coordinates),
and the distancé(g, f) between the propagating contour and its nearest edge point.
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Fig. 2. Standard deviation of reconstruction error vs. regularization parametdr/ . for different shapes.
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(a) segmentation data

©p=10°

(d) p = 10

Fig. 4. Final reconstruction of an ellipsoid for different values of regularization parametet /.
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Fig. 5. 2D slices of a 3D edge-blurred Ellipsoid

(h) 0] 0) (k)

Fig. 6. 2D edgemaps of the blurred 3D image containing the ellipsoid in Fig. 5.
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(a) No Volumetric Penalization (b) With Volumetric Penalization

Fig. 7. Segmentation comparison between FSM active surface algorithm with and without volumetric penalization for edge blurred
image. Only a single slice of the full 3D segmented object is shown.
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Fig. 8. CT slices of 3D thoracic image volume and the corresponding edge maps

(a) Initialization b)a=10"7 ©a=10"* (da=10"°

Fig. 9. Single slice of final surface (5 iterations) of FSM active surface algorithm implemented with different values of the
regularization parameter = 1/p.
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(a) Local edge detector

Fig. 10. Comparison of 3D shape extraction results. (a) Local edge detector without surface reconstruction; (b) result of FSM

active surface reconstruction algorithm after 5 iterations with regularization parameten—*.



