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ABSTRACT

A statistical inverse-problem approach is presented for jointly estimating camera blur
from aliased data of a known calibration target. Specifically, a parametric Maximum Like-
lihood (ML) PSF estimate is derived for characterizing a camera’s optical imperfections
through the use of a calibration target in an otherwise loosely controlled environment.
The unknown parameters are jointly estimated from data described by a physical forward-
imaging model, and this inverse-problem approach allows one to accommodate all of the
available sources of information jointly. These sources include knowledge of the forward
imaging process, the types and sources of statistical uncertainty, available prior information,
and the data itself. The forward model describes a broad class of imaging systems based on
a parameterization with a direct mapping between its parameters and physical imaging phe-
nomena. The imaging perspective, ambient light-levels, target-reflectance, detector gain and
offset, quantum-efficiency, and read-noise levels are all treated as nuisance parameters. The
Cramér-Rao Bound (CRB) is derived under this joint model, and simulations demonstrate
that the proposed estimator achieves near-optimal MSE performance. Finally, the proposed
method is applied to experimental data to validate both the fidelity of the forward-models,
as well as to establish the utility of the resulting ML estimates for both system identification
and subsequent image restoration.
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CHAPTER I

Introduction

1.1 Motivation

The prevalence of passive optical imaging sensors is higher today than at any other
time in human history. The UN estimated that the world population at the end of 2015 was
slightly greater than 7.2 billion people [191], and distributed amongst this population was
an even larger number of active mobile phones [85]; most of which included a camera. This
statistic does not include dedicated consumer imaging devices, commercial cameras, and so
forth. The data collected by these systems is not the best possible representation of the scene.
Inherent physical limitations, as well as manufacturing imperfections, both limit the ultimate
image fidelity. By understanding the physical relationships between the environment, the
imaging system, and the collected data, one can make improved inferences about the sensor,
the scene, or both simultaneously. This work is about a systematic approach for making
these types of inferences, as well as understanding the limitations imposed on them by
uncertainties from the environment and imaging system.

The physical relationship between the scene and the collected data is represented through
a forward imaging model. This model describes the imaging process in terms of physical
optics; starting from light leaving the scene and terminating in data collected from the sensor
array. Image reconstruction from the collected data is said to result from an inverse-problem
because one is attempting to invert this forward imaging process. All inference problems
from data collected on physical systems share this structure, and if one is explicit about
the forward mode, assumptions exploited by the inverse-problem approach are clarified.
Furthermore, expressions for the stochastic data allow the application of standard statistical
estimation techniques for solving the resulting inverse-problems.

Another motivation for using a statistical inverse-problem approach is the use of
information-theoretic tools to fundamentally addressing questions of solubility. By ex-
pressing the quantities of interest as an estimation problem over a stochastic data model, one
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may use information-theoretic techniques to establish lower bounds on estimation accuracy.
Such bounds apply to the data model itself, and thus are independent of the methods used to
construct estimators. The utility of these bounds is twofold: First, a problem can be declared
insoluble if the level of error ensured by the bound is unacceptable from an engineering
perspective. Second, the accuracy of specific estimators can be compared to lower-bounds
to quantify the potential for future improvements.

Finally, and perhaps most importantly, this work lays a groundwork for improved image
restoration approaches. Model-based image reconstruction has been a topic of interest since
at least the 1950’s, and interest was renewed with the widespread availability of digital
cameras in the 1990’s [49, 50, 55–57, 89, 90, 108, 124, 139, 140, 148, 168, 185, 193, 194,
210]. A review of the history, as well as current state-of-the-art, in image restoration can be
found in [127, 133]. The fidelity of the underlying imaging model fundamentally limits the
effectiveness of image restoration techniques, yet the literature has disproportionately studied
scene reconstruction under assumed imaging models as opposed to sensor model-fidelity
under assumed scene models. This work emphasizes the later through the construction
of a flexible, and physically motivated, forward imaging model. One’s ability to infer the
unknown parameters within this model is studied through the joint Maximum Likelihood
(ML) estimator of the parameters assuming a known calibration target. The Cramér-Rao
Bound (CRB) is derived, and simulations demonstrate that the proposed estimator can
achieve near-optimal MSE performance. The proposed method is applied to experimental
data to validate both the fidelity of the forward-models, as well as the applicability of the
resulting ML estimates for both system identification and subsequent image restoration
applications.

1.2 Overview of Incoherent Imaging

In passive image formation, a continuous scene is typically illuminated by an incoherent
light source, and the reflected electromagnetic radiation is sensed through a coherent
interference process first described by Ernst Abbe in 1873 [1]. When the object being imaged
is a sufficient distance from the physical collection aperture, the impinging radiation may
be treated as a planar wavefront undergoing Fraunhofer diffraction at the sensor’s aperture
[77]. Optical elements are used to coherently interfere the electromagnetic field to form
an image, and that modern sensors measure this image using a semi-conducting medium.
Imperfections in these optics result in wavefront distortions that manifest themselves as
a blur at the detection plane. The spatial sampling rate of the wavefront depends on the
physical configuration of the detector, but this rate is often beneath the Nyquist sampling rate
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given the optics, and when this is the case, aliasing occurs. Furthermore, the photo-electric
effect and dark current induced by biasing of the semi-conducting material causes the signal
to contain a filtered Poisson component [64, 172], and thus the measurement apparatus is
inherently uncertain. Finally, thermal noise from the read-out electronics adds a filtered
Gaussian component to the signal prior to it being recorded.

In addition to being intrinsically uncertain, incoherent imaging is wavelength-dependent.
Diffraction at the sensing aperture, optical lenses, and the detector itself all exhibit chromatic
effects. Given a common optical path, aliasing at the detector is a wavelength-dependent
phenomenon. It is also common practice to use chromatically selective filters at the detection
plane to simultaneously collect multi-channel color images. These filters are usually spatially
distributed, and thus the wavelength-dependent channels do not coincidently sample the
scene. A consequence of this chromatic dependency, high-fidelity forward models must
accommodate these effects.

While the majority of modern digital imaging systems undergo these basic steps, the
relationship between the sensor’s physical configuration and the mathematical description
of the operators that describe the imaging process is typically unknown. An accurate
description of a system’s incoherent Point-Spread Function (PSF) is fundamental to image
reconstruction, especially reconstruction from aliased data [49, 127]. A PSF model based
on a description of the optical system’s wavefront aberrations is useful in image formation
because it parsimoniously describes the space of PSF’s likely to be encountered [136, 164],
but rapidly becomes essential when datasets are fundamentally a function of changes in
these aberrations. Intentionally introducing such changes is the basis of phase-diversity
imaging [75, 97, 142, 186], and unintentional changes serve as the basis for depth-from-
defocus techniques, certain 3D shape reconstruction algorithms, and even sophisticated
image restoration approaches [58, 103, 120]. These application areas all motivate the
characterization of imaging systems through a physical wavefront description of their blur.

1.3 Main Challenges of System Identification

The main challenges of system identification all revolve around the inherent complexity
of incoherent imaging. One must construct models that accurately reflect the physical
phenomena of interest while simultaneously maintaining tractability. A physically accurate
forward model that is too complex to be part of an inverse-problem formulation is not
useful in making inferences from image data. Conversely, overly simplistic models that
do not capture key physical effects may not adequately describe the physical devices they
aim to explain. These models must also include the degrees-of-freedom inherent in their
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physical counterparts. Consider, for example, a camera model that does not fundamentally
accommodate changes in focus. A camera description under such a model would have
limited utility because changes in the device that altered this parameter would render the
description invalid. Modern cameras permit changes in their aperture, focus, exposure time,
and gain, therefore accommodating these degrees of freedom is of particular import. Finally,
the implicitly defined estimators that provide the quantities of interest must be solvable.
Even if solutions are known to exist, one must also identify a practical means at finding
them. This thesis makes contributions toward each of these key challenges.

The most direct means of characterizing an imaging system is by explicitly measuring
its transfer function, but direct wavefront sensing approaches require modification, or partial
disassembly, of the sensor [73]. In many situations, this is not possible, and even when
disassembly can be performed, it is difficult to know if the reassembly process has altered
the state of the sensor. This desire for nondestructive testing procedures has led to an interest
in inverse-problem formulations using canonical sensor outputs.

Methods that estimate blur directly from a sensor’s measurements can be broadly
categorized by how much information is known about the scene being imaged, and what
type of data is used in the subsequent inverse estimation problem. When an inverse-problem
approach makes very weak assumptions about the scene, it is referred to as a “blind”
approach (cf. [25, 62, 87, 99, 101, 102, 167]). By contrast, “non-blind” or “known-object”
methods [8, 21, 36, 44–46, 83, 87, 101, 115, 141, 144, 155, 169, 178, 213] leverage more
stringent assumptions on prior scene knowledge. Most approaches are neither entirely blind
nor wholly non-blind, but this categorization is both useful and relatively easy to apply in
practice. Furthermore, these two categories of blur estimation procedures typically target
different use cases. When one only anticipates intrinsic camera blur, blur fundamentally due
to properties or imperfections of the imaging device itself, non-blind estimation techniques
provide the benefit of improved accuracy brought about by the additional knowledge of
the calibration object. On the other hand, when one anticipates extrinsic blur, blur caused
by relative motion between the camera and the scene, this additional blur is usually better
addressed by blind approaches because prior knowledge of the scene is often unavailable
when the extrinsic blurring occurs. While the two classes of techniques are often studied
independently, they are not mutually exclusive, and one can in principle use them in
conjunction with each other.

Blind methods inherently require either more data than non-blind techniques or depend
on strong a priori assumptions. Most single-frame methods attempt to exploit the existence
of sharp edges in the latent unblurred scene, as these often exist due to the projection of
multiple 3D objects into the 2D imaging plane. A common implicit approach is to leverage
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assumptions on the object gradients. For example, Fergus [62] uses a variational Bayes
approach that assumes a Gaussian mixture distribution, Chan exploits a Laplacian prior
[10, 30], and Kotera uses heavy-tail priors [106]. The sparsity of the occurrence of such
edges can also be exploited in the gradient space [167]. One can identify edges using
convolutional edge detectors [101], Hough transform techniques [199], or patch priors [183].
An alternative approach is to forgo explicit latent scene assumptions altogether for those
learned indirectly from a training set (cf. [116]). Finally, one should note the significant
overlap between this body of work and the blind deconvolution literature [26, 32]. A key
feature that distinguishes the references above from the blind deconvolution literature is the
author’s preeminent treatment of the blur as a quantity of interest. Comparing the relative
merits of blind blur identification techniques is significantly hampered by the difficulty
of verifying the validity of their underlying assumptions a posteriori, and without strong
assumptions, blind deconvolution is fundamentally ill-posed. For these reasons, this work
emphasizes intrinsic camera blur estimation from known objects.

Known-object approaches exploit the presence of a calibration target to aid in blur
identification, yet despite this additional information, accurate system characterization
remains a challenging problem. One way of classifying previous approaches is through the
restrictions they place on the calibration object. Imaging a point source results in a direct
measurement of the PSF, and Grisan [83] has achieved very accurate results by replacing
the traditional wavefront sensor inside an adaptive optics control loop with a direct signal
processing approach. The inherent challenge in using a point source, however, is that
the informative region within the collection array becomes small as the PSF approaches
the diffraction limit. This results in a lower signal-to-noise ratio (SNR) than comparable
extended object approaches. Imaging an ideal edge, commonly referred to as a knife-
edge object because of the use of razors in lab experiments, provides an extended object
whose measured response asymptotically becomes an integration of the PSF along the
edge direction as both the edge and field-of-view become large. Reichenbach [155] and
Claxton [36] both use a knife-edge object within a continuous-to-discrete imaging model to
characterize digital imaging devices. Each of the authors notes the additional complications
brought about by sensor aliasing effects, and attempt to mitigate this issue through registering
and averaging multiple measurements. Exploiting larger patches within the collected data
helps to overcome SNR challenges, and numerous authors have considered pseudo-random
regions with a known power spectral. Gaussian [144] and uniform distributed targets [21]
are natural choices; however, once again, aliasing complicates the analysis. Backman
[8] generalized these ideas to allow targets with zeros in the power spectrum. Discretely
generated random targets naturally exhibit these gaps, and Backman suggests that they can
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be carefully designed to mitigate difficulties associated with aliasing. Delbracio [46] helped
justify the use of pseudo-random targets by showing that Bernoulli distributed objects permit
near-optimal PSF recover, and Mosleh [131] was later able to demonstrate a reliable PSF
recovery framework based on these ideas. Mosleh’s approach, like other contemporary
work (cf. [46, 87, 101]) is also able to accommodate arbitrary calibration objects. The
early pioneering work by Pavlovic [141] is also notable not only because it incorporates
arbitrary calibration targets, but also because it was one of the earliest approaches to use
a continuous-to-discrete forward imaging model. Previous work has identified many of
the key challenges in system identification, yet satisfactory solutions applicable to modern
hardware remains a significant challenge.

The trade-off between model fidelity and computational tractability for the fundamen-
tally continuous-to-discrete forward imaging process remains a substantial challenge in
system identification. Early attempts to quantify an optical system’s ability to form images
emphasized metrics derived relative to the aforementioned known objects under a contin-
uous imaging model [27, 163]. While the author’s were undoubtedly aware of the impact
finite-sized photocells had on final resolving capability of the sensor, these issues were
treated as secondary effects. Subsequent signal-processing approaches emphasized image
restoration over optical physics [109], leading to discrete-to-discrete models between the
scene and collected data. Reichenbach and Pavlovic [141, 155] focused on the importance
of continuous-to-discrete models, which naturally leads to questions surrounding the impact
of aliasing at the detector. Nevertheless, tractable blur modeling and estimation remained
the primary concern, and aliasing was either omitted [141, 144] or addressed indirectly
[8, 155] within forward models. The push to achieve practical system characterization
techniques lead researchers toward computationally simpler discrete-to-discrete imaging
models [45, 101, 131]. Under these models performance bounds were derived demonstrat-
ing the fundamental tractability of the inverse-problem [46, 87, 190], but wavefront blur
descriptions, diffraction effects, and detector effects remain largely unaddressed.

The use of simplified forward models and image priors has led to reliable blur estimation
strategies (c.f. [45, 101, 131]), however, these models do not maintain a direct correspon-
dence between the physical system configuration and forward-modeling parameters. For
example, most imaging devices have an adjustable focus setting, yet the aforementioned
blur estimation strategies do not use imaging models that succinctly capture this effect.
As a consequence, a change in focus leads to an altogether different system description
despite the tight correspondence between the sensor before and after the focus change. A
corresponding argument can be made for imaging aperture (pupil diameter). Diffraction at
the aperture induces a blur that is distinct from defocus, yet without modeling this effect
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directly, it is difficult to distinguish the source of imaging system non-idealities. Such
modeling limitations restrict the utility of simplified models when such perturbations are
expected, and these concerns motivate maintaining a direct correspondence between the
imaging physics and inference model when possible.

1.4 Contributions

A statistical inverse-problem approach is presented for jointly estimating camera blur
from aliased data of a known calibration target. Specifically, a parametric Maximum Like-
lihood (ML) PSF estimate is derived for characterizing a camera’s optical imperfections
through the use of a calibration target in an otherwise loosely controlled environment.
The unknown parameters are jointly estimated from data described by a physical forward-
imaging model, and this inverse-problem approach allows one to accommodate all of the
available sources of information jointly. These sources include knowledge of the forward
imaging process, the types and sources of statistical uncertainty, available prior information,
and the data itself. The forward model describes a broad class of imaging systems based on
a parameterization with a direct mapping between its parameters and physical imaging phe-
nomena. The imaging perspective, ambient light-levels, target-reflectance, detector gain and
offset, quantum-efficiency, and read-noise levels are all treated as nuisance parameters. The
Cramér-Rao Bound (CRB) is derived under this joint model, and simulations demonstrate
that the proposed estimator achieves near-optimal MSE performance. Finally, the proposed
method is applied to experimental data to validate both the fidelity of the forward-models,
as well as to establish the utility of the resulting ML estimates for both system identification
and subsequent image restoration.

This work extends existing known-object system identification techniques though its
explicit incorporation of physical modeling within the continuous-to-discrete forward model.
By contrast, Delbracio [45] also obtains accurate sub-pixel PSF estimates with performance
bounds, but takes a model-free estimation approach. First, this work uses a phase-screen
description of the optics to parameterize the PSF under a Fraunhofer diffraction assumption.
Many previous approaches have not explicitly modeled diffraction effects [8, 21, 36, 45,
87, 101, 115, 131, 141, 144, 213], or modeled it only in conjunction with defocus [178].
Second, the proposed approach explicitly models aliasing. Aliasing is common amongst
commercial devices, and previous approaches have either ignored this effect [8, 21, 83,
87, 115, 141, 144, 178, 213], or address it in an incomplete way [36, 45, 101]. Notably,
Joshi [101] and Delbracio [45] both explicitly model aliasing, but only accommodate
integer downsampling factors. Third, the proposed technique explicitly models charge-
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coupled detector effects. Very few previous works (cf. [178]) have accommodated the
intensity-variant uncertainty that is inherent when measuring electromagnetic fields using
semi-conductors. This work accounts for this source of uncertainty. Taken together, the
resulting high-fidelity forward model accurately reflects the physics of imaging with modern
digital devices and accommodates the main sources of uncertainty in the resulting data
while maintaining computational tractability. Furthermore, the physically motivated forward
model is inherently modular, and thus can be adapted to study numerous questions that are
not directly addressed by this document. To summarize, the main contributions of this thesis
are:

• A flexible, physically-motivated, high-fidelity, forward-imaging model is developed
for digital imaging.

• An approach for joint PSF and camera-pose estimation in the presence of aliasing is
presented.

• CRB bounds for the joint-estimation approach are derived that are applicable to any
calibration object.

• A bootstrap test for global convergence is presented, enabling joint PSF estimation in
the presence of large wavefront aberrations.

• The forward model and inverse-problem approach are validated through laboratory
experiments, and their utility is demonstrated in the context of image restoration using
commercial devices.

1.5 Limitations

This dissertation aims to develop and explore a simple model capable of addressing the
aforementioned physical effects. Potential limitations of the proposed model are as follows.
First, the imaging system’s blur is assumed to be spatially invariant, and like many previous
works [45, 104, 131] spatially variant blurring is only addressed by applying the proposed
approach locally throughout the field of view. Second, lens distortions such as “barrel” or
“pincushion” effects are not modeled. Third, multi-channel (color) systems are addressed,
but, these channels are assumed to be well approximated by a narrow-band approximation
at their center wavelengths. Fourth, each sensor element is assumed to be identical. In
principle, one could jointly estimate non-uniformity effects due to inter-element variations,
but such a modification would undoubtedly require multi-frame data. This work applies to
multi-frame data, but an emphasis is placed on single-channel results to ease the exposition
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of an already complex topic. These limitations can all be addressed within the proposed
framework, but have been left for future work.

Similarly, broad-band or panchromatic channels are conceptually a straightforward
modification to the proposed model, but the details of such an extension would undoubtedly
uncover new challenges. Finally, many systems also do not provide raw-data access, and
when this is the case, any compression algorithms should be directly modeled in the forward
operator. The impact of compression can be large relative to many of the effects considered in
this work, but this challenge remains unaddressed. The proposed inverse-problem approach
fundamentally depends on a sequence of operators that are non-linear in their parameters,
and in principle, each of these limitations can be addressed using the same approach taken
throughout the dissertation. In practice, these would all be substantial extensions to this
work. These issues highlight the vast amount of effort needed to bridge the gap between the
contributions made by this dissertation and the tools currently available.

1.6 Document Overview

The emphasis of this dissertation is system identification from a known calibration target.
Given a calibration target, described through its relative reflectance, the problem of joint
camera-pose and blur is explored through the development of the necessary components
of the aforementioned inverse-problem framework. Chapter II develops a high-fidelity,
physically-motivated, forward imaging model by describing image acquisition though a
series of constituent physical processes. This physical imaging model is compared and
contrasted with previous approaches from the literature. The constituent mathematical
operators necessary to implement the forward imaging model are then developed, and
the problem of system identification is formulated in terms of these models. Finally, the
general philosophical approach leading to this mathematical formulation is discussed, and
an overview of the optimization tools used in its solution described.

In Chapter III the Maximum Likelihood (ML) estimator and Cramér-Rao Bound (CRB)
are derived for the resulting joint inverse-problem. The implicit estimator is stated in terms
of the solution to a non-linear, non-convex optimization problem. The identifiability of the
resulting estimator is addressed for small deviations of the unknowns, and bias-variance
trade-offs are explored using the uniform CRB. Despite finite sample sizes, the solutions
are shown to be essentially unbiased given small deviations of the parameters, and these
conclusions are verified through simulation.

Chapter IV revisits the question of identifiability in the context of large parameter
deviations and the impact of low SNR. The physics of the imaging process ensure that large
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parameter deviations can occur under reasonable imaging conditions. This implies that these
questions must be answered if one is to develop a practical inverse-problem approach. The
issue of spurious estimates converging to inconsistent roots of the log-likelihood is explicitly
addressed through the development of a new bootstrap test for global convergence. This test
is used in conjunction with a heuristic for identifying candidate wavefront solutions based
on minimizing the L1-norm of the induced deviation of the Point-Spread Function (PSF).
Taken together, this results in a practical approach for high-fidelity system identification
in the presence of aliasing, and this technique is verified through simulation. Finally, the
efficacy of the proposed approach is demonstrated through experiments performed using a
commercial camera, and estimation performance is compared with the CRB.

Chapter V discusses ongoing and future work related to the general inverse-problem
framework. At its core, this dissertation is based on exploiting knowledge of the physical
imaging process within an inverse-problem framework to develop substantially improved
techniques for imaging. Chapter V illustrates how one can extend these ideas to build
estimation methods that exploit fiducials rather than wholly known objects. A relaxation
of the known-object model is used to derive a new inverse-problem approach applicable
to edges within a scene, and the resulting estimator is demonstrated through a hardware
experiment. In doing so, this chapter takes one additional step toward blind methods while
demonstrating the flexibility of the proposed inverse-problem approach.

Publications associated with this work are:

• Joel W. LeBlanc, Brian J. Thelen, and Alfred O. Hero. Testing for local minima of
the likelihood using reparameterized embeddings. Mathematical Imaging and Vision

(In Review), 2019

• Joel W. LeBlanc, Brian J. Thelen, and Alfred O. Hero. Joint camera blur and pose
estimation from aliased data. J. Opt. Soc. Am. A, 35(4):639–651, Apr 2018

• Brian J. Thelen, John R. Valenzuela, and Joel W. LeBlanc. Theoretical performance
assessment and empirical analysis of super-resolution under unknown affine sensor
motion. J. Opt. Soc. Am. A, 33(4):519–526, Apr 2016
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CHAPTER II

Problem Setup

2.1 Introduction

This chapter develops a physics-based forward model that is applicable to commercial
incoherent imaging devices, and describes the methodology that will be used to invert
the resulting equations. The desire to use the models to make inferences about the world
as measured through commercially available sensors precludes many of the simplifying
assumptions that have historically been made for mathematical convenience. The models
proposed in this chapter are more complex than traditional approaches, but also directly tied
to the underlying physical processes. This proximity leads to better traceability of modeling
assumptions, a clearer description of the impact of physical unknowns, and ultimately results
in a more flexible framework. For clarity, the model development is broken into 3 broad
sections. Section 2.2 discusses the model components in relationship to the physical imaging
processes; the forward model. Section 2.3 compares previous techniques to this physical
motivated approach, and Section 2.4 discusses the individual modeling components used
to implement the forward model. Given such a framework, inference problems regarding
modeled physical parameters can be explicitly stated in terms of the solution to a statistical
estimation problem.

2.2 Physical Processes

All incoherent imaging devices may be modeled in terms of the physical processes that
constitute image acquisition. A scene reflects and radiates light toward an imaging device
that records a function of the impinging electric field as observed through a finite physical
aperture. Behind the aperture of a typical imaging device, a series of optical elements
attempt to form an image of the apparent emitted intensity onto a detector. Throughout this
work, the measured electric fields will be assumed to have been emitted from an object plane
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at some unknown distance from the sensor, and the intervening medium between the object
plane and the sensor may attenuate the electric field, but otherwise has no effect. After
passing through the optical device, the object plane is re-imaged onto a semi-conducting
detector that measures the time-averaged intensity of the field over a small series of small,
spatially-extended, sensors. Figure 2.1 illustrates this basic configuration.

Object

Detector

Imaging Device

Optical Axis

Sensing
Aperture

Optical
Elements

{
Figure 2.1: An overview of the basic sensing process involved in optical digital imaging.

2.2.1 Object Model

The object, or scene, is modeled as a 2D plane relative to the camera’s optical axis, with
each point within the plane possibly emitting radiation. For the purposes of this work, we will
not distinguish between reflected and emitted light. The sensor is assumed to only measure
the time- and spatially-averaged intensity of the field and thus the objects description needn’t
include polarization information. Many sensors, however, do collect light from multiple
wavelengths, so the object will be described through the spatial- and wavelength-dependent
distribution of energy over the object plane f (x,y,λ ). Object modeling assumptions of this
nature are ubiquitous within the physical imaging community (c.f. [58, 69, 77, 145, 184]).

2.2.2 Imaging Geometry

The imaging geometry is described through the relationship between the object and
detection planes, assuming an ideal imaging device (pin-hole camera).An ideal imaging
device is defined as a device that measures a projection of the object plane onto the detector
plane.This relationship is mathematically described as the relative orientation between the
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object plane and its ideal projection onto the detection plane. Figure 2.2 illustrates this
imaging geometry, where the origin of the system is the camera center, and the optical axis
is defined as the line orthogonal to the detector plane that passes through the origin.This
idealized projective camera model will serve as the starting point for describing less ideal
systems.The excellent texts by Hartley and Zisserman [91], Prince [145], Szeliski [184],
and Shapiro [165], as well as the references therein, provide a good overview of both the
mathematics behind this model as well as its application within common computer vision
problems.

Object 
Plane

Detector 
Plane

Camera
Center

Optical
Axis

Figure 2.2: Illustration of the key elements defining the projective relationship between the
object and detection planes.

The imaging geometry is characterized by a description of the isomorphism formed
between the object and detector planes, where points between the planes coincide if they are
collinear with the origin. The description of the isomorphism is characterized by a 3×3
matrix acting on a homogeneous representation of the points within the reference planes.
That this representation is unique, follows from the fundamental theorem of projective
geometry. In this geometry, points in homogeneous space represent lines in R3 passing
through the origin via the equivalence relation

xxx def
=




x1

x2

x3


 : xxx≡ kxxx ∀k ∈K (2.1)

where K is a division ring (R\{0} for the rest of this discussion). Thus we have an imbed-
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ding R2 7→
{
R3 \000

}def
= P2; the real projective plane. This embedding naturally separates

points into two classes through the incidence relation. Sets of points satisfying the relation
are collinear, and thus any of these points is sufficient to define a line. As one would expect,
two distinct points define a line, and any two distinct lines intersect at exactly one point.
Furthermore, parallel lines intersect at ideal points (points at infinity). In this way, the
perspective plane induces stronger symmetries that the Euclidean plane by mapping points
onto lines, and lines onto planes, through the center.

{[
x1 x2

]T
}
7→
{[

x1 x2 1
]T
}

“Ordinary points” (2.2)
{[

x1 x2 0
]T
}

“Ideal point” (2.3)

The ideal points are the complement of the image of the embedding, and represent the set
of intersections of parallel lines. These points form a line themselves that is commonly
referred to as the horizon.

The group element xxx describes the line x1x+ x2y+ x3 = 0 in R3, with the point ppp lying
on the line iff xxxT ppp = 0. Two such lines xxx and yyy intersect at the point xxx× yyy, and similarly
the intersection of ppp and qqq is given by ppp× qqq. This duality between points and lines is a
fundamental property of the perspective plane (a special case of a cyclic group of order 2),
and will greatly simplify our calculations.

Perspective transforms are defined as the set of transforms mapping lines onto lines in
P2, thus the set of all linear transforms in the space.

yyy =VVV xxx : VVV ∈ R3, |VVV | 6= 0 (2.4)

The equivalence relation implies that {VVV} is an 8-dimensional space, and w.l.o.g. it will
be assumed that VVV 33 = 1. Thus, given a vector describing the 8-degrees of freedom in VVV ,
an ideal imaging system is the unique projection of the function f (x,y,λ ) into the detector
plane. A set of subgroups to this class of transformation that are commonly used in imaging
are discussed in the appendices.

Next consider two important transformations; transformations of the global coordinate
system, and transformations of a projective mapping with respect to a change in the detector
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plane ordinate system. A transformation of the global ordinate system is given by

yyy =VVV LLL−1
︸ ︷︷ ︸
Transform

LLLxxx︸︷︷︸
Ordinates

(2.5)

where LLL is any invertible transform. More commonly, however, one wishes to relabel the
ordinates within the image (or object) plane. This is useful because it is often numerically
inconvenient to treat the origin as lying in the center of an image despite the fact that image
samples are typically indexed by row and column. Such transformations are also necessary
for finding separable (“chipped”) representations of global transformations. This second
situation arises when one wish to process a sub-region of an image under a common global
description of the imaging geometry.

A simple way to think about coordinate transforms is as a through a similarity transfor-
mation. Suppose one has a relationship between two planes in euclidean space described by
yyy =VVV xxx, and it is desirable to relabel one (or both) spaces via ỹyy = LLLyyyy, and x̃xx = LLLxxxx, then the
new transformation is given by

LLLyyyy = ṼVV LLLxxxx “Transformed space” (2.6)

∴ yyy = LLL−1
y ṼVV LLLxxxx =⇒ VVV = LLL−1

y ṼVV LLLx (2.7)

In the context of imaging with an ideal camera, one has the additional constraint that LLLy = LLLx

because the data and the object are coupled via physical space. This implies that a relabeling
of either the data or the object via a transformation LLL results in

yyy = LLL−1ṼVV LLL︸ ︷︷ ︸
Transform

xxx︸︷︷︸
Ordinates

. (2.8)

2.2.3 Optical System

The optical system is composed of a series of lenses and/or mirrors that attempt to re-
image the object plane onto a physical detector. This system is constructed to approximate
the aforementioned ideal camera while simultaneously using finite apertures to ensure
sufficient light collection. The modeling fidelity needed to compliment the type of wavefront-
estimation techniques proposed in this work cannot be achieved though typical blur models
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applied to the geometric description from a pin-hole camera (c.f. [113]). At the other extreme
is physical ray-tracing approaches that lead to computationally challenging expressions
for the optical wavefront in terms of a very precise material description of the imaging
system [19]. While exquisitely precise, such approaches require a physical description of the
imaging system that is rarely available. This work will apply a blur description resulting from
the generalized imaging model proposed by Goodman [77], coupled with a corresponding
geometric optics model. This approach is based on a Fraunhofer diffraction approximation,
explicitly accounts for the finite imaging aperture, but only models the aggregate effects
of the optical elements through a description of their action on a reference sphere passing
though an entrance and exit-pupil. This 2-port model results is a space-invariant description
of the Point-Spread Function (PSF) in terms of the deviations of the optical wavefront from
a reference sphere measured in the exit-pupil. This blur model is then applied to a geometric
description of the camera that is also based on an entrance- and exit-pupil description, and
which allows for these two apertures to be of differing sizes. This is necessary if one is
interested in modeling non-telecentric devices.

Figure E.1 illustrates the key elements of this generalized imaging model, as well as the
relationships to the relevant camera and lens parameters. The aggregate impact of the optical

r1

s1

1
r

+
1
s

=
1
f

Dout

In-Focus System Actual System

Exit Pupil

Entrance Pupil

P

P0

Din

mp =
Dout

Din

r2

s2

(1�mp) f

(1/mp �1) f

Figure 2.3: Diagram and relevant parameters needed to relate a physical camera to the
generalized imaging model.
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system is described in terms of its effect on a spherical reference wavefront entering thought
the entrance-pupil and exiting through the exit-pupil. The diameters of these pupils, assumed
to be circular unless specified otherwise, are denoted by Din and Dout . The entrance- and
exit-pupils are the images of the aperture stop as seen from the object- and image- side of
the optical system respectively. The entrance- and exit- principal planes, denoted P and P′,
in conjunction with the effective focal length f , determines the geometric properties of the
camera. These planes are positioned orthogonal to the optical axis where the Gaussian lens
formula (E.1) is valid [93].

1
r
+

1
s
=

1
f
, (2.9)

This implies that for the purposes of ray-tracing, the two principal planes behave as through
they where collocated.

The size of entrance and exit-pupils, along with their positions relative to the principal
planes, can be determined by considering how light passes through the system when focused
at infinity. When focused at infinity, taking the limit as r→ ∞ in (E.1), the beam of light
passing through the entrance-pupil intersects P with a diameter of Din and converges to
a point on the optical axis at a distance s = f behind P′. In practice, the entrance-pupil
diameter is often specified in terms of the system’s “F-Number”, defined to as f # = f/Din.
Applying a similar calculation using a plane-wave emitted from the detector gives the
diameter of the exit-pupil. The pupil magnification of the system is determined by the ratio
of exit- to entrance-pupil diameters mp = Dout/Din. Applying the law of similar triangles to
a plane-wave entering the system reveals that the exit principal plane is located a distance
(1−mp) f in front of the exit-pupil. By tracing a plane-wave through the system in the
opposite direction one finds that the entrance principal plane P lies a distance (1/mp−1) f in
front of the entrance-pupil. These relative relationships are summarized in Figure E.1, and
entirely specify the imaging geometry in terms of common camera parameters.

The aggregate PSF resulting from diffraction at the aperture stop and imperfections in the
optics may be described in terms of the deviations of the optical wavefront from a reference
sphere measured in the exit-pupil [77]. A key feature of this model is that it accounts for
these effects without requiring explicit knowledge of the layout or materials of the optical
elements. In fact, the lens system needn’t ever even form an image of the exit pupil for this
technique to be applicable. These deviations are represented by a single complex function
that describes changes in the reference sphere’s intensity through its magnitude, and relative
temporal advances or delays through its phase. Before proceeding it is helpful to introduce
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the following standard notation.

h(x,y)def
= Point Spread Function (PSF)

H(wx,wy)
def
= Optical Transfer Function (OTF)

C(wx,wy)
def
= Coherent Transfer Function (CTF)

M(wx,wy)
def
= Modulation Transfer Function (MTF)

A(wx,wy)
def
= Shaded aperture function

Ψ(wx,wy)
def
= Aperture phase function

All of these quantities are sometimes used to describe this single complex function, and
their relationships to one another are given as follows

h(x,y) = F−1{H(w̃x, w̃y)
}

(2.10)

= c0
∣∣F−1{C(w̃x, w̃y)

}∣∣2 (2.11)

M(w̃x, w̃y) =
∣∣H(w̃x, w̃y)

∣∣ (2.12)

C(w̃x, w̃y) = A(w̃x, w̃y)exp
[

j2π
λ

λre f
Ψ(w̃x, w̃y)

]
(2.13)

w̃ def
=

λ
λre f

w (2.14)

where c0 is a normalizing constant that ensures the PSF integrates to 1, the 2π in the
exponent of the CTF implies that phase errors are being represented in units of waves, and
the ratio λ/λre f accounts for the scaling between the wavelength being used to represent the
optical system and the wavelength where the linear forward model is being evaluated. Our
preferred description of the blur will be through the magnitude and phase decomposition
given by A and Ψ.

2.2.4 Detection

For digital imaging devices, the intensity of the continuous electromagnetic wavefront
impinging upon the detector plane is typically measured through an electrically biased
semi-conducting substrate [172]. A series of detectors arranged on a focal plane array each
measure the total energy received over their spacial support, the integration time, as well as
their spectral sensitivity. Many modern multi-channel devices utilize a Bayer-filter, named
after American scientist Bryce Bayer [11], to simultaneously collect multi-wavelength data.
This is achieved by applying differing color (wavelength selective) filters throughout the
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sensor. The filters are usually collocated in blocks that are repeated throughout the larger
aggregate array. A camera using a Bayer filter is able to simultaneously collect multiple
spectral bands at the cost of spatial resolution. Figure 2.4 illustrates part of a commonly
used Bayer pattern, along with the corresponding elements for two of its four channels.
Currently 2×2 patterns are most commonly used, however, some systems employ larger

1 3

2 4

1 3

2 4

1 3

2 4

1 3

2 4

(a)

1 1

1 1

(b)

2 2

2 2

(c)

Figure 2.4: (a) 4 Blocks of a 2x2 Bayer pattern with each of the 4 data channels numbered
and the corresponding object channels are indicated through the use of color, (b) Elements
of channel 1, (c) Elements of channel 2

patterns with possibly overlapping bands in wavelength. The detector model will assume
a regular grid of rectangular pixels within a larger Bayer block, but will permit arbitrary
orderings of an arbitrary number of channels. The term “pixel” is used to indicate a single
contiguous active silicon region. Each of the Bayer pattern blocks is assumed to be identical,
and a data channel is defined to be the collection of pixels in a common position within their
associated Bayer blocks. Notice that single-channel sensors may be treated as a special case
of this more general detector model.

Now consider the relationship between the detector geometry, the impinging wavefront,
and the data. In practice, the active silicon regions may not entirely fill a pixel’s physical
support. When this is the case, we say that the pixel has a fill-factor ff that is less than one.
Figure 2.5 illustrates this situation along with the other key measurements that parameterize
how a detector’s geometry influences the discrete data resulting from a measurement of the
continuous electromagnetic field. Using these definitions, a Bayer pattern can be described
by an m1×m2 matrix MMM, whose size corresponds to the size of the Bayer filter, and whose
entries correspond to the object channel associated with the data channel referenced by the
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Figure 2.5: Key dimensions for determining the detector sample rate sr, element sampling
rate relative to Nyquist RN , pixel pitch pp, and element fill-factor ff

(
ff ≈ 50% as shown

)

row and column indices. For example, the detector illustrated in Figure 2.4 would result in

M def
=

[
2 1
3 2

]
, (2.15)

where we have chosen, without loss of generality, to label the object channels in RGB (Red,
Green, Blue) order.

The spatial sampling rate of the electromagnetic field may be expressed in terms of the
geometric parameters shown in Figure 2.5. The electromagnetic field striking the sensing
aperture is band-limited by the aperture stop in the pupil, and the associated cutoff frequency
f̃c is given in terms of Din and f for monochromatic light with a wavelength of λ as [77]

f̃c =
Din

2λ f
. (2.16)

The maximum bandwidth of the spatial variation of the intensity of the electric field at the
detector is thus given by

fc =
Din

λ f
. (2.17)

For a polychromatic system, it’s convenient to describe the common physical aperture-stop
in units of a reference wavelength λre f that is equal to the smallest detectable wavelength. By
convention, the sampling rate of the polychromatic detector is described by RN ; the rate that
individual detector sensing elements sample the intensity variation of the optical wavefront
relative to its Nyquist rate at λre f (see Figure 2.5). For example, a system with RN = 1/3 has
individual sensing elements that will measure the intensity variation of the component of the
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electric field at λre f at 1/3 the Nyquist rate. Continuing with our aforementioned example,
the reference wavelength will be associated with the blue channel (λre f ≈ 450 nm), and due
to the Bayer pattern and complete channel isolation, the collected data ultimately be at 1/6

the Nyquist rate. The green and red channels measure longer wavelengths of light through a
common physical aperture, and thus will sample their respective components of the electric
field at slightly faster rates relative to the Nyquist rate for the corresponding wavelengths.
The sampling rate along the ith direction of the detector plane may be written in terms of RN

and λre f as

sr,i(λ ) =
RNλ

miλre f
. (2.18)

This relative sampling rate is independent of the corresponding sampling fill-factor s f ,i,
which is a function of both the per-element fill factor ff as well as the size (in pixels) of the
Bayer filter. This aggregate sensing fill factor along the ith direction is given by

s f ,i =
ff

mi
. (2.19)

Letting pp represent the pixel pitch, RN can be expressed in terms of the physical camera
parameters as

RN =
λre f f

2ppDin
(2.20)

Taken together, these parameters provide a complete geometric description of how the
detector samples the intensity of the electromagnetic field.

Finally, consider the statistical aspects of the sensing process. The absorption of the
electromagnetic field by the photo-sensitive region of the detector results in the scattering of
electrons from the valance band into the conduction band [172], and this electron flow is
detected by an electric circuit. The electron generation process is Poisson distributed with a
rate parameter that is proportional to the intensity of the impinging electric field [64]. The
proportionality constant is known as the quantum efficiency of the device, and is effected by
unwanted generation of electron-hole pairs (dark current) in the detector. The electronics
that measure the induced current flow also produce a gaussian distributed signal (read-noise).
From a signal processing perspective, dark current is indistinguishable from an addition
bulk illumination (stray-light), or even self emission. Furthermore, read-noise levels are
typically a function of the bias of semiconducting material (the gain) as well as the ambient
temperature. Because these external factors are rarely reported with collected data, it will
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be necessary to model them to ensure a correct absolute scaling of the noise distribution.
In this work, the aggregate effect of these unknowns is accounted for through an unknown
affine transformation of a normalized representation of the scene radiance along with an
explicit estimate of the read-noise variance. This allows the lexicographically ordered data
ddd to be written in terms of a continuous-to-discrete linear mapping AAA(θθθ) acting on the scene
f (x,y) as follows

ddd = P{AAA(θθθ)◦ [c1 f (x,y)+ c2]}+N
(
000,σ2

r III
)

(2.21)

where P is the Poisson operator, and AAA will depend on the unknowns θθθ in a non-linear
way. The expression (2.21) is written with c1, c2, and σr explicitly called out for clarity, but
it should be understood that these values are members of θθθ . The particular form of AAA is
addressed in Section 2.4.

2.3 Previous Approaches

Section 2.2 describes the physical imaging process of a digital camera, and is sufficiently
flexible to allow for joint estimation of the nuisance parameters likely to be unknown
outside of a laboratory setting. Depending on which parameters are treated as unknowns,
this forward model can be used to solve numerous problems in optical imaging. The
current work, however, will focus on the estimation of blur and camera-pose using a known
calibration target and possibly aliased data. Price [144] also considered the problem of
blur estimation in limited-control environments, and is one of the only a few researches to
also apply a continuous-to-discrete forward-model (cf. [141, 211]). Price, however, only
considered the impact of blur on the data, and did so over a much more restrictive set of
blurring functions. Our more general parameterization, through an unknown phase function
in the exit-pupil (2.10)-(2.14), is made possible because of the explicit modeling of the
band-limiting effects of the aperture-stop. Of the existing discrete-to-discrete approaches,
Strong [178] uses a blur model based on Fraunhofer diffraction, but only considers defocus.
Like previous works [21, 45, 46, 101], the model accommodates an unknown imaging
perspective with respect to the calibration target. Of these works, however, only Delbracio
[45] and Joshi [101] consider aliasing, and neither do so in conjunction with a diffraction-
based optics model. None of these previous works account for the intensity-dependent
variations caused by the physics of the detection process, and as a result, these models are
unable to provide estimates of the read-noise variance. Finally, this work accommodates
chromatic effects, including the impact of using a Bayer filter [11]. Jointly optimizing over
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the resulting high-fidelity model leads to substantially better system characterization, and
direct modeling the physical imaging processes ensures the technique is flexible enough to
accommodate a broad class of imaging systems.

2.4 Forward Model Components

This section further develops the forward modeling components necessary to implement

the physical effects outlined in Section 2.2. Some of the constituent processes that compose
AAA(θθθ) from (2.21) commute, and this fact will be exploited to produce a series of operators
that are mathematically equivalent to a more naive implementation, but that are faster and
more accurate from a numerical perspective. The discrete representation of continuous
objects, especially as they pertain to edge-effects, is also addressed. The resulting model
describes the lexicographically ordered observations ddd in terms of fff ; a discrete lexicograph-
ically ordered description of the continuous object over a finite support. The action of AAA(θθθ)
is then described in terms of the constituent operator series TTT ◦SSS◦BBB◦WWW , where conceptually
WWW represents a warp, BBB a blur, SSS a resampling, and TTT spatial truncation.

A direct description of the forward imaging model for the jth frame and kth channel can
be written in matrix form as

AAA j,k = TTT SSS(sssr)WWW det(MMM,RN)BBBdet
(
sssr,sss f

)
BBBopt(ααα,λk)WWW pos

(
vvv j
)
, (2.22)

where WWW det describes the geometric transform associated with the sensor’s Bayer pattern,
BBBdet describes the blur induced by sampling the wavefront using a detector with finite
spatial support [17], BBBopt accounts for the optical blur induced by wavefront distortion from
the optical system [77], and WWW pos describes the geometric transform that accounts for the
camera pose relative to the object [91]. These operators are parameterized by sssr, a vector
describing the sampling rate, sss f , a vector defining the aggregate fill-factor, ααα , a vector
that parameterizes the blur, λk, the optical wavelength of the kth channel, and vvv j, a vector
parameterizing the camera pose during the jth frame. In the remainder of this section it
will be shown that WWW det represents a translation that commutes with any blur operator. This
follows from the fact that both pure translation and blur are diagonalized by the Fourier
transform. As a consequence, this series of physical effects can be implemented by the
simpler aggregate series TTT SSS(sssr)BBB

(
sssr,sss f ,ααα

)
WWW
(
vvv j,MMM,RN

)
.
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2.4.1 Object Model

The continuous object model f (x,y,λ ) described in Section 2.2.1 is represented by a
discrete lexicographically ordered vector fff supported over a toroid defined through a regular
grid of points. The elements of this vector represent independent sources of radiation in both
space and wavelength. The object is assumed to be circularly symmetric (represented over
a toroid), and is only observed over a smaller circumscribed sub-region Y that represents
the projection of the observation support X into the object plane. Figure 2.6 illustrates this
situation where dots are used to show elements within fff . A light dashed line represents
the circularly symmetric boundary, and the dark region shows the support of observations
when projected into the object plane. Recall from Section 2.2.2 that the transformation

Object Support

Observation Support

f1

f2

f3

Y

Figure 2.6: The continuous object is represented though a regular grid of points defined over
a toroid, with observations only occurring a smaller circumscribed subset.

between xxx ∈X and yyy∈ Y is described by a perspective transformation matrix VVV acting on the
points described through a homogeneous coordinate representation; yyy =VVV xxx. For every point
within the larger object support, the continuous object is defined through a Fourier series
whose coefficients are given by its finite representation fff (c.f. [76] Chapter 3). The use of a
toroidal support in conjunction with a Fourier basis allows both the continuous object and
its continuous Fourier transform to be computed efficiently and exactly though the Discrete
Fourier Transform (DFT). That the object support extends beyond Y, the projection of the
observations into the object plane, models the influence of unobserved object content, and
allows these unknowns to be directly accommodated.

Extending the object model beyond the support of the adjoint of the idealized pinhole
camera model introduces a guard region that resolves the incongruity between the toroidal
support assumption needed to ensure a finite continuous representation of both the intensity
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and its Fourier transform, as well as the Euclidean plane assumption used in Sections 2.2.1
and 2.2.2. Referring to Figure 2.6, one can see that this object model indeed describes a
region beyond the field-of-view of the sensor. For the forward model to be valid, this must
always be the case. In practice, however, two questions naturally arise. Given sampled data,
how should one form its continuous extension, and what is the associated Fourier transform?

2.4.2 Application to Image Recovery and Guard Banding

We illustrate the object modeling approach through an image recovery application.
Consider the common practice of tapering as a bias reduction technique in spectral estimation.
Tapering measured data unequivocally reduces the information available for subsequent
processing tasks. This result follows immediately from the data processing inequality [37, p.
32] for processing data generated from a random process (e.g. images obeying the forward
model 2.21). Following the proof given by Cover, suppose one is interested in inferring
some underlying statistical quantity X given a measurement D. If a non-trivial taper is
applied resulting in G = g(D), then a Markov chain is formed X ↔ D↔ G where

I(X ;G) = I(X ;D,G)− I(X ;D|G) (2.23)

This implies information is lost in any taper where I(X ;D|G) > 0. It also implies that
a necessary and sufficient condition for preventing information loss is to ensure that X

and D given G are conditionally independent. Letting g be a function that maps D into G

which also preserves D through the canonical mapping is clearly a sufficient condition for
preventing information loss. This result immediately suggests the construction of a model
whose support exceeds the observed data because bias reduction can be achieved through
extrapolation, which has the potential to preserve all the information of the measured data.

The harmonic nature of the Fourier basis, in conjunction with the desire for a discrete
representation, suggests the use of a toroidal object support (c.f. [195]). In light of the data
processing inequality, the only remaining question is how the available data ought to be
extrapolated. Considering the uncertainty principle [16, 173], and the fact that one does not
expect a natural scene to be “temporally” concentrated, a natural goal is to minimize the
bandwidth of the overall signal subject to the observed data. This objective function is given
in 1D by

Λ( f (x)) =
∫

(w−w0)
2 ∣∣ f̂ (w)

∣∣2dw, (2.24)

where w0 is a free variable related to where one labels the origin of the frequency axis. The
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signals of interest are always real, implying
∣∣ f̂
∣∣2 is a symmetric positive function about zero.

If follows from symmetry, that the minimizer with respect to w0 is given by w0 = 0. By
absorbing w into the modulus, and applying Parseval’s theorem [82, 138], this objective
function can be seen to be equivalent to minimizing the integrated squared derivative over
the circle.

Λ( f ) =
∫ ∣∣w f̂ (w)

∣∣2dw (2.25)

=
∫ ∣∣∣∣

∂ f (x)
∂x

∣∣∣∣
2

dx (2.26)

This is a classic measure of roughness [88, 152], and a member of the more general class of
functions

Rm( f ) =
∫ (∂ m f

∂xm

)2

dx. (2.27)

Thus, one can interpret the class of functions that minimize this objective function as the
maximally smooth periodic extensions of the data subject to the support limitations. Taking
a viewpoint common in physics [128], one might note that the non-commutable induced
differential operators associated with the tangent-space of the Heisenberg group are related
by first-order differentiation, also suggesting the use of m = 1 in (2.27). From this viewpoint,
maximizing the smoothness of the continuous extension is equivalent to minimizing the
unobserved member of the two incompatible observables.

Given a set of observations x̃ ∈ RM, whose support is a subset of x ∈ RN , edge effects
are mitigated through the data-dependent extension given by the sub-problem

x̂xx = argmin
xxx

1
2
‖WWWFFFxxx‖2 s.t. (2.28)

TTT xxx− x̃xx = 000, (2.29)

where FFF is the Fourier transform operator, WWW is a diagonal matrix of weights, and TTT : RN 7→
RM is a spatial truncation operator. “WWW” is commonly used to represent weighting matrices,
and its distinction from the aforementioned warping operator should be clear from context.
Let UUU : RN 7→ RN−M be the canonical mapping from RN to the null-space of TTT T TTT . Then
TTT T , and UUUT form a partition on RN as shown in Figure 2.7. Back-substituting results in an
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RN

RM x = UT u+T T x̃

RN−M

Tx̃ uU

Figure 2.7: Partitioning of xxx

equivalent unconstrained optimization problem

ûuu = argmin
uuu

Λ(uuu) (2.30)

= argmin
uuu

1
2

∥∥WWWFFF
(
UUUT uuu+TTT T x̃xx

)∥∥2
(2.31)

The non-commutability of the space and frequency truncation operators preclude a closed
form solution, but even for large systems the problem is efficiently solved using quasi-newton
techniques. The necessary gradient is given by

∂Λ

∂uuu
=UUUFFFHWWW 2FFF

(
UUUT uuu+TTT T x̃xx

)
. (2.32)

Figure 2.8 illustrates this technique used to find the minimal bandwidth pad for a
typical image. Noting that extrapolation and interpolation on a toroid are in fact the same,
Figures 2.9-2.12 show the technique applied with a more general time-truncation operators.
In all cases, the results provide the expected behavior, but do so while exactly preserving
the observations, and therefore address the aforementioned edge-effect issue (bias) without
unnecessarily destroying the information content in the observations. The examples over
more general truncation operators illustrate that this method achieves our aim of bias
mitigating , but does so based on a reasonable criterion.

Viewing the minimal bandwidth objective as a prior, we say that this approach is
reasonable to the extent that it is predictive of the missing observations. It should also
be noted that the proposed approach directly optimizes the objective over the continuous
manifold, is unique as a consequence of the convexity of the resulting objective function,
and may be efficiently computed ( 3X slower than bicubic interpolation [105] for examples
shown).

Continuous, and more recently smooth, function extension is a classical problem that
has been well studied. Well known results include Urysohn’s Lemma, the Tietze Extension
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Figure 2.8: Example of padding using the proposed technique.
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Figure 2.9: General in-painting example using the proposed approach.

Theorem, and the Whitneys Extension Theorem. More recently, Fefferman addressed the
problem of smooth function extension through a series of related works [59–61]. Chan [29]
and Chui [33] study a number of smooth function extension techniques, and provide bounds
on their performance. Chui [34] goes on to study multi-resolution function extensions in RN

using a local harmonic basis. This work is clearly related to the proposed technique, however,
using a local basis over RN rather than a global basis over TN results in substantially different
algorithms. Hoang [96] discusses the implementation details of the technique suggested
in [33, 34], and provides a performance comparison. The image inpainting literature (see,
e.g. [22], and the references therein) is another related field distinguished by its more
aggressive use of heuristics, with the aim of creating images that appear natural to the human
observer. While this work has a subtly different aim, the ideas are close enough to warrant a
comparison. A number of inpainting approaches [34, 43, 51, 54, 117] are compared to the
proposed smooth function extension in Appendix A.

The bandlimited nature of imaging ensures that a bandlimited continuous object model
is sufficient for solving inverse problems. For computational reasons, we require both a
finite object representation and a finite representation of that object’s Fourier transform.
These requirements immediately suggest that we are interested in the center of a discrete
Heisenberg group. This group structure will, however, imply a continuous object defined over
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Figure 2.10: Example reconstruction from 50% of the data using the proposed approach.
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Figure 2.11: Example reconstruction from 25% of the data using the proposed approach.

a toroid, and this must be reconciled with our plane-to-plane imaging geometry. This section
proposes a resolution by defining the object over a toroidal support that exceeds the support
of the adjoint of the idealized pinhole camera model used to define the plane-on-plane
imaging geometry. What results is an implicit guard-band in the continuous object model
that accommodates these differences while maintaining the necessary finite representations.
In the absence of measurements, a minimum bandwidth extension is proposed, and this
extension is shown to be unique and computationally efficient to estimate. Section 2.4.5
expands upon these ideas in the context of upsampling, downsampling, and aliasing. This
section also explicitly defines the mappings between discrete object representations and
their implied continuous forms.

2.4.3 Warp Operator (WWW )

Given a continuous object f (x,y,λ ) represented though fff , the warping operator WWW is an
8 degree-of-freedom projective transformation parameterized through the 3×3 matrix VVV ,
and describes the mapping of fff from the object plane into an imaging plane. This situation
is illustrated in Figure 2.2. The space of continuous objects representable by a finite Fourier
series is not closed under perspective transformations, so the warping operator must be
carefully constructed to simultaneously maintain object fidelity and computational efficiency.
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Figure 2.12: Example reconstruction from 10% of the data using the proposed approach.

This is achieved though a carefully controlled bicubic interpolation operator acting on fff . Let
QQQ be the unique separable bicubic interpolation operator that achieves O

(
n3) convergence

[105], and vvv a vector that encodes the degrees of freedom within VVV as given in Appendix C,
then the approximation to the exact perspective transform of the continuous object may be
written as

WWW (vvv)◦ f (x,y,λ )def
= f (x(vvv) ,y(vvv) ,λ ) (2.33)

≈ QQQ(x(vvv) ,y(vvv)) fff , (2.34)

where the coordinates in the right-hand side of (D.1) are given in terms of their homogeneous
representations by (2.8). This approximation can be made sufficient due to the band limiting
nature of the camera’s entrance pupil, and its fidelity can be precisely controlled by ensuring
the object is sufficiently upsampled with respect to vvv.

The band-limiting nature of a cameras aperture-stop, in conjunction with the Nyquist
sampling theorem, allows the discrete circulant representation of the object to be adequate
if the sampling grid is sufficiently fine. From the perspective of the camera, one can work
backwards from (E.1) to establish that the Ground Sample Distance (GSD) in the object
plane is given by

GSD = (R− f )
pp

f
. (2.35)

Applying the definition of RN , one finds that the Nyquist rate of the object plane with respect

to the sensor is given by GSD/RN . This analysis, however, does not account for possible
geometric transformations acting on a pre-defined object. One could imagine a sufficiently
strong transformation (say a magnification), that causes a particular object representation to
become inadequate with respect to the camera pose parameterization vvv. Specifically, given
on object represented at the Nyquist rate with respect to a sensor configuration we require
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that

min
xxx∈X

σ (1)
([

VVV−1(vvv)
]

1:2,1:2

)

∣∣∣
[
VVV−1(vvv)

]
3,1:2 xxx+1

∣∣∣
≤ 1

γ
≤ 1, (2.36)

where σ (1)(·) is the maximum singular value, and γ is an engineering safety factor that
ensures the bicubic interpolation sufficiently approximates sinc interpolation. The sampling
rate requirement imposed by (2.36) requires that the local change in topology induced by
the warping operator compresses the object representation by a factor of at least γ for every
point and every direction vector in Y. In practice, letting γ = 2 results in a reasonable
compromise between computational efficiency and accuracy. Figure 2.13 shows the optimal
bicubic interpolation kernel [105], as well as the magnitude of its transfer function in the
frequency domain. The magnitude of the transfer function shown in (b) motivates the use of
γ = 1/2, and illustrates the impact of alternative choices of γ .
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Figure 2.13: Optimal bicubic interpolating kernel (a) and its corresponding frequency
response (b).

The use of homogeneous coordinates in (D.2), in conjunction with the fact that the
warping operator acting on fff is a matrix function of two vector arguments that are themselves
functions of a vector argument vvv, make the derivative of this operator w.r.t. vvv somewhat
unusual. For completeness, details of this derivative are given in Appendix D.

For clarity, consider the application of (D.2) where the camera perspective parameteriza-
tion vvv contains only a single degree of freedom describing rotation about the center of the
object description . Defining the origin of the object plane to be at the center of the object
representation is very natural, but requires the use of the similarity transform given in (2.8).
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The associated 3×3 perspective transformation is given by

VVV 45◦ =




0.70711 0.70711 −Nr+1
2

−0.70711 0.70711 −Nc+1
2

0 0 1


 , (2.37)

where the discrete object representation is Nr ×Nc and is indexed by a grid of natural
numbers. The code for implementing this situation is shown below, and Figure 2.14 shows
the corresponding image and its gradient with respect

1 % Simple warping demonstration
2 load( ’clown’, ’X’);
3 theta = pi /4;
4 [imgWarp,imgWarpDeriv] = warp2D(X,theta);
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Figure 2.14: Action of a 45◦ rotation operator and the associated derivative

2.4.4 Blur Operator (BBB)

Conventional imaging systems contain at least two sources of blur. The first is related to
the diffraction effects induced by a finite imaging aperture, and the second is from recording
the continuous electromagnetic field using individual detector elements of finite physical
dimension. Additionally, the proposed camera model accommodates imperfections in the
individual optical elements through an aggregate description of the wavefront-aberrations
they induce. Unless otherwise noted, each of these three effects will be represented by
the aggregate blur operator BBB(ααα), where it is understood that this corresponds to the more
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precise set of operators

BBB(ααα)
def
= BBBdet

(
sssr,sss f

)
BBBopt(ααα,λ ) (2.38)

with BBBdet representing the detector blur as a function of the sampling-rate relative to Nyquist
sssr, and the detector fill-factor sss f . BBBopt represents the blur induced by optical aberrations
modeled in the exit pupil. Recall that the relationship between the Point Spread Function
(PSF) and wavefront aberration description in the exit pupil Ψ(ααα) is given at a particular
wavelength λ by (2.10). The resulting PSF is convolved with a band-limited representation
of the image of the object at the detector plane to determine the field intensity at each
sensing element. Recall also that this PSF description is given in terms of normalized spatial
frequency variable (2.14), or equivalently, a normalized spacing in the detector plane. A
sequence simple of examples is provided at the end of this section.

The ratio λ/λre f accounts for the scaling between the wavelength being used to represent
the optical system, and the wavelength where the model is being evaluated. The reference
wavelength must be smaller than the smallest wavelength of light collected by the system to
ensure the exit-pupil representation is not aliased.

The forward camera model is flexible enough to support an arbitrary finite wavefront
aberration description, however, a Zernike basis [214] is commonly used because it has
been shown to parsimoniously represent common manufacturing errors [164]. This basis
is orthonormal over the unit circle, and given in polar coordinates in terms of the integral
indices m, n as

Zm
n (ρ,θ) =

{
Nm

n R|m|n (ρ)cos(mθ) m≥ 0

−Nm
n R|m|n (ρ)sin(mθ) m < 0

}
s.t. (2.39)

R|m|n (ρ) =
(n−|m|)/2

∑
k=0

(−1)k(n−1)!
k!bn+|m|/2− kc! bn−|m|/2− kc!ρn−2k (2.40)

Nm
n =

√
2(n+1)
1+δ (m)

, (2.41)

where δ (·) is the Kronecker delta function, m≤ n, and n−|m| is even. In this decomposition,
n describes the highest order of the radial polynomial and m describes the azimuthal
frequency. By convention, the basis functions are ordered according to a single index
over the natural numbers (the Noll ordering [136]), allowing the overall wavefront to
be parameterized by the vector ααα . A consequence of the orthonormality of the Zernike
basis is that when one approximates a continuous wavefront using these functions, each
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subsequent term minimizes the RMS error of the wavefront description up to that radial
order and azimuthal frequency. It is common practice to use all azimuthal frequencies up to
a particular radial order, and continuous wavefronts are often expressed up to radial order
10 (55 terms) [66]. Navarro [134] discusses of the impact of the number of Zernike modes
on modeling fidelity as a function of the aperture amplitude function. The first few Zernike
basis functions are shown in Figure 2.15. An analysis of this optical modeling approach to a
thin lens is given by Welford [201, Chap. 12].

Z�1
1 Z1

1

Z0
0

Z�2
2 Z0

2 Z2
2

Z�3
3 Z�1

3 Z1
3 Z3

3

Coma/
Trefoil

Astigmatism/
Defocus

Tip/Tilt

Piston

Figure 2.15: First 10 Zernike basis functions as defined by (2.39) along with their common
names

The circulant object model allows the PSF to be efficiently applied in the Fourier domain,
however, the autocorrelation function implicit in (2.10) must still be evaluated numerically.
For the purposes of this work, it will be necessary to distinguish between PSF variations
resulting from wavefront descriptions that differ by only 1×10−3 Waves RMS (WRMS).
This accuracy requirement places lower limits on the size of the discrete representation of
the coherent transfer function (2.13), and for computational reasons, also mandates the use
of a shaded aperture approximation. These two issues are addressed in the Appendices F
and G respectively.

The detector blur BBBdet models the deviations from an ideal impulse response brought
about by sampling a continuous signal with individual sensing elements of finite physical
support. Before considering the transfer function in terms of the physical camera parameters,
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it is helpful to recall the following property of the Fourier transform.

1
2π

∞∫

−∞

rect(t)e− jwtdt =
1√
2π

sinc
( w

2π

)
(2.42)

sinc(x)def
=

sin(πx)
πx

(2.43)

rect(x)def
=

{
1 , |x| ≤ 1/2

0 , Otherwise

}
(2.44)

The final form of the detector transfer function is separable, so it is sufficient to study the
1D transfer function. Referring to Figure 2.5, one can see that the final form of the detector
transfer function for a single data channel can be computed by applying the Fourier scaling
property to account for the sampling rate, and an energy scaling to accommodate the inactive
regions. Applying these two requisite factors, given by (2.18) and (2.19), one finds that the
transfer function in the ith direction is given by

Bdet,i
(
w,sr,i,s f ,i

)
=

s f ,i

sr,i
sinc

(
w

2πsr,i

)
. (2.45)

By construction, this transfer function is centered on the data channel to which it refers.
Jointly accommodating multiple, simultaneous, data channels requires one to account for
their positions relative to one another. This is precisely WWW det in (2.22), and its description in
homogeneous coordinates relative to λre f is given by

VVV det(kd) =




1 0
−∆kd ,1

RN

0 1
−∆kd ,1

RN

0 0 1


 , (2.46)

where kd is the kth data channel, and ∆kd ,i is its offset from the upper-leftmost channel in the
Bayer filtering block along the ith direction. It is sometimes useful to express Hdet,i entirely
in terms of physical sensor quantities. Substituting from RN from (2.20) one finds

Bdet,i
(
w,sr,i,s f ,i

)
=

2 ff ppDin

f λ
sinc

(
2wmi ppDin

2π f λ

)
(2.47)

To make the previous section more concrete, consider the PSF associated with a narrow-
band RGB system that is represented at half its minimum wavelength.
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1 % Generate a 3−channel narrow−band RGB system
2 psfOpt = getPSFOptions;
3 psfOpt.lambdaVec = [650 550 450]; % in nm
4 psfOpt.lambdaRef = 225; % 2X oversampled grid
5 psfOpt.aberVec = 0;
6 psfOpt.broadband = false ;
7

8 psfSize = [1024 1024];
9 [psf , ctf , config ] = getPSF(psfSize ,psfOpt );

The resulting aperture functions in the exit pupil are shown in Figure 2.16a. Due to the use
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Figure 2.16: Apertures for a narrow-band RGB system sampled at λre f in the exit pupil, and
the associated 2X oversampled narrow-band PSFs.

of a common reference wavelength, one can easily see the relative scaling of the pupil with
respect to the color of light passing through the system. The reference wavelength is half that
of the smallest wavelength of light, and we say that such a system is oversampled by a factor
of 2. It is understood that the actual oversampling amount for any particular wavelength
will be at least this large. Similarly, the PSF representation is said to be oversampled by a
factor of 2 (relative to the Nyquist rate for the reference wavelength) where the PSF at any
individual wavelength is once again oversample by at least this amount.

Now consider the addition blur imposed by collecting this PSF on an ideal ( ff = 1,
sr,i = 1, s f ,i = 1), 3-channel detector. In practice this could be achieved with beam-splitters
and 3 geometrically identical detectors that have each been doped to respond equally within
their respective bands.
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1 % Account for an ideal 3−detector system
2 f f = 1;
3 s f = f f ;
4 for chanInd = 1:3
5 s r = psfOpt.lambdaVec(chanInd)/psfOpt.lambdaRef;
6 HDet (:,:, chanInd) = sampleTransfer ( psfSize , s r , s f );
7 end
8 psf2 = real ( ifft2 ( fft2 (psf ).∗HDet)); % real for round−off

The difference between the PSF collected on this system and an ideal delta-function detector
is imperceptible to the human eye and shown in Figure 2.17b. Similarly, consider an ideal
Bayer detector using a common RGGB pattern ( ff = 1, sr,i = .5, s f ,i = .5).

1 % Account for an ideal Bayer system
2 BayerPatternSize = [2 2];
3 s f = f f ./ BayerPatternSize ;
4 for chanInd = 1:3
5 s r = psfOpt.lambdaVec(chanInd )./( psfOpt.lambdaRef∗BayerPatternSize);
6 HDet2 (:,:, chanInd) = sampleTransfer ( psfSize , s r , s f );
7 end
8 psf3 = real ( ifft2 ( fft2 (psf ).∗HDet2));

The individual pixel geometries of the Bayer detector are the same as the 3 sensor system,
but one can see in Figure 2.17c that the PSF differs substantially due to the compromise
between spatial and frequency resolution.
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Figure 2.17: Comparison between the PSF of a 3-channel monochromatic system (a), and
the PSF for the same system when collected 3 ideal single-channel detectors (b), or an ideal
4-channel Bayer detector (c).
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2.4.5 Sampling Operator (SSS)

Many imaging systems, including most commercially available cameras, are under-
sampled with respect to the optical wavefront they measure. Section 2.4.1 developed a
discrete representation for continuous bandlimited signals, which given the band-limiting
nature of the sensors aperture, is sufficient for describing the object being imaged. The
sampling operator SSS allows one to model the effects of sampling this class of continuous,
bandlimited, signal at rates different from its canonical representation. This section builds
upon the signal description by providing a general mathematical formulation for sampling,
interpolation, differentiation, and integration of this class of signals.

The purpose of this mathematical formulation is for modeling the types of bandlimited
signals that result from collecting data using finite sensing apertures. Such collections
always result in band-limited measurements; a concept that fundamentally involves a Fourier
description of the signal in question. Furthermore, any system only collects a finite number
of measurements, and this mandates the use of discrete signal representations. This mandate
pushes us away from the traditional, analysis-based, perspective of harmonic analysis
[20],[48] and toward a group-theoretic viewpoint [159],[188]. By basing our model on these
much more fundamental mathematical structures, an enormous body of work can be utilized
to establish properties of the signal model.

Let {(ti, fi)}n
i=1 be a uniformly spaced series of N measurements on an interval [a,b] that

is contained within a periodic domain whose fundamental period is given by T = N
N−1 (b−a).

It follows immediately that the sample spacing is given by ∆ = T/n, and without loss of
generality, let t1 = 0. The relationship between these samples some periodic continuous
extension fc(t) is shown in Figure 2.18. If ∀i one associates the coordinates ti with a member

�

T

fc(t)

f1

f2

fn

tt1 tn = b

Figure 2.18: Continuous periodic extension of a signal sampled over the toroid.

of Zn
def
= Z/nZ, the ordinates fi with a member of the field C, then the signal can be thought
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of as a point in the usual complex vector space. Zn is an additive finite abelian group, and its
character is defined as the homomorphism to the multiplicative group of non-zero complex
numbers χ : Zn 7→ C×.

χ(a+b) = χ(a)χ(b) ∀a,b ∈ Zn (2.48)

Notice that χ(na) = χ(a)n = χ(0) = 1, implying that the values of χ are the n-roots of
unity. It follows immediately that this map is given by

χ(a) = e2π ja/n, (2.49)

and the associated character group is simply Ẑn
def
= {χ0,χ1, . . . ,χn−1}. By constructing the

usual complex vector-space over this character group as well, the Discrete Fourier Transform
(DFT) can be seen to be the mapping Fn : L2(Zn) 7→ L2(Zn

)

(Fn f )(a) = ∑
a∈Zn

f (a)〈−a , a〉 s.t. a ∈ Zn (2.50)

= ∑
a∈Zn

f (a)〈χ(−a) , a〉 (2.51)

= ∑
a∈Zn

f (a)e−2π jaa/n (2.52)

The scaling in this definition of the DFT has intentionally been chosen to be consistent with
the DFT implementation within FFTW1 to simplify the translation to software. This abstract
view of the Fourier transform is useful because it motivates replacing the underlying groups
to establish new mathematical objects with similar properties, and this idea will be exploited
to find a natural extension of the observed samples to a continuous function. The completely
general construction is provided in Rudin [159] theorem 1.2.2, and details associated with
the discussion that follows can be found in B.

From a group-theoretic perspective, the original aim of identifying discrete representa-
tions to continuous bandlimited signals with a set of convenient properties becomes much
simpler. Let fff nnn be the vector of measurements, and a discrete representation of a continuous
bandlimited signal fc(t) through the mapping Mn : C(Zn) 7→ C(T). Let R(Zn) be the real-
valued members of C(Zn), and similarly, R(T) the real-valued members of C(T). Then the
following desirable properties will drive our construction of the continuous signal extension.

1. Mn(Rn)⊂ R(T)
1http://www.fftw.org
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2. ∀ fff nnn ∈ Cn, ∃ggg ∈ Cn : Mn(ggg) =
∫ t

0 [(Mn( fff ))(s)]ds

3. ∀ fff nnn ∈ Cn, ∃ggg ∈ Cn : Mn(ggg) = ∂
∂ t [(Mn( fff ))(t)]

4. ∀m > n, Mn(Cn)⊂Mm(Cm)

Property (1) says that real representations always map to real continuous extensions, while
the (2) and (3) ensure that the space of representable signals is closed under integration
and differentiation. Property (4) requires the finite signal space to form a flag. Specifically,
given two representations fff mmm and gggnnn satisfying (4), the upsampling operator is defined to
be Um,n : Um,n ◦ fff mmm = gggnnn. An application of the Pontryagin duality theorem to the previous
abstract description of the Fourier transform immediately suggests the natural form of Mn,
and with one caveat, the desired properties will all follow from basic results in Fourier
analysis. Specifically, for all representable continuous functions fc(t), let n∗ be the smallest
integer such that fc(t) ∈Mn∗

(
Cn∗), then properties (1)-(3) will not hold when n∗ is even,

and fc(t) is represented by fff ∈ Cn∗ . This situation, however, can be easily remedied by
applying property (4) and the upsampling operator to express fc(t) though a slightly larger
finite representation.

Transform Domain Dual
Discrete Fourier Transfrom Zn Zn
Fourier series T Z
Discrete-time Fourier transform Z T
Fourier transform R R

Table 2.1: Relationship between common instantiations of the Fourier transform and the
group structure of their corresponding domains.

The Pontryagin duality theorem states that every locally compact abelian group is the
dual of its dual group, and as a consequence, a discrete group implies a compact dual and
visa versa. Table 2.1 indicates commonly used versions of the Fourier transform as well as
the group structures associated with their domain and dual. To treat fff nnn as samples from a
continuous signal, and maintain basic properties of the DFT in the continuous extension, one
must then support it on Z in the dual domain. The discrete Fourier series has precisely this
property, implying that the association between the finite observations and their continuous
extension can be viewed in the dual domain as the mapping γ : Zn 7→ Z. Thus the structure
of the natural continuous extension is then given by

fc(t) =
1
n

n−1

∑
a=0

(Fn fn)(a)e2π jγ(a) t
T . (2.53)
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To help identify γ , first consider n = 1. For property (1) to hold given (2.53) it im-
mediately follows that γ(0) = 0. More generally, the conjugate symmetry of the DFT of
real-valued signals in conjunction with property (1) implies that the set γ(Zn) must be closed
under the modular additive inverse. The necessary use of a modular additive inverse is made
clearer by considering fc(t) evaluated at the observed samples

fc

(
aT
n

)
=

1
n

n−1

∑
a=0

(Fn fn)(a)e2π j γ(a)
n a (2.54)

By choosing a minimum-bandwidth description of the observations, closure under the
modular additive inverse can be replaced with the usual additive inverse and the constraint
that |γ(a)| ≤ n/2. Notice, however, that the Nyquist frequency component is its own additive
inverse, implying that property (1) cannot be met under the construction given by (2.53)
because this frequency component lacks a conjugate pair. Addressing this issue by allocating
the measured at the Nyquist frequency between the corresponding conjugate pair in Z will be
addressed in the next section. This fully specifies γ up to the sign of the Nyqusist frequency
for n even. This choice is arbitrary because the exponent in (2.54) will be one of ±π ja,
however, this work will follow the engineering convention of treating even length signals as
having more negative than positive frequency components. Thus γ is given by

{γ(a)}n−1
a=0 =

{
0,1, . . . ,

⌊
n−1

2

⌋
,−
⌊n

2

⌋
,−
⌊n

2

⌋
+1, . . . ,−1

}
, (2.55)

which is simply the identity mapping where those values greater than n/2 have been replaced
with their value less n. Substituting this definition of γ and (2.52) into (2.54), one can easily
verify that fc interpolates {(ti, fi)}n

i=1

fc

(
aT
n

)
=

1
n

n−1

∑
a=0

∑
a′∈Zn

f
(
a′
)

e−2π j a
n a′e2π j γ(a)

n a (2.56)

= ∑
a′∈Zn

f
(
a′
) 1

n

n−1

∑
a=0

e−2π j a
n a′e2π j γ(a)

n a (2.57)

= ∑
a′∈Zn

f
(
a′
) 1

n

n−1

∑
a=0

〈
e2π j γ(a)

n a , e2π j a
n a′
〉

(2.58)

= ∑
a′∈Zn

f
(
a′
) 1

n

n−1

∑
a=0

〈
e2π j a

n a , e2π j a
n a′
〉

(2.59)

= f (a) , (2.60)
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where (2.59) follows from (2.58) by the fact that γ(a)≡ a mod n, and the desired result is
a consequence of the complex exponentials forming an orthonormal basis.

For n odd, one can easily verify that properties (1)-(4) hold under the continuous exten-
sion defined through (2.53) and (2.55). When n is even, one can see from the magnitudes
of (2.55) that introducing an additional term will not alter the bandwidth of the continuous
extension. Therefore, the problem of identifying the desired continuous extension reduces
to the problem of determining the upsampling operator Un,n+1 for n even.

Let w(a) = 2πγ(a) t/T be the frequencies associated with the Fourier series of a real
function fc with two discrete representations of length n and m, with m > n and n even. This
situation is illustrated in Figure 2.19. Equating the continuous basis functions from (2.53),

Fourier Domain

w
w0 = 0

w1

wm

wn/2

wm�(n/2�2)

wn/2+1

wm�(n/2�1)

Line spectra locations for cardinality     representationm
Line spectra locations for cardinality     representationn

wn/2+1 = �p

Figure 2.19: Illustration of the splitting of the energy at the line spectra corresponding to
w(n/2+1) for a length n representation of fc(t) (n even) when upsampling to m > n

one finds that the two discrete representations correspond to a common fc(t) if and only
if they each sample the continuous function uniformly over T (T = n∆n = m∆m), and the
corresponding DFT coefficients have the following relationships

(Fm f )(a) = (Fn f )(a) ∀|γ(a)|< n/2 (2.61)

∑
|γ(a)|=n/2

(Fm f )(a) = (Fn f )(n/2+1) (2.62)

(Fm f )(a) = 0 ∀|γ(a)|> n/2 (2.63)

This implies that for the two finite representations to correspond to the same continuous
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function, the upsampling operator must appropriately zero-pad the shorter signal in the
Fourier domain with an exception at the Nyquist frequency. Let the two terms on the LHS of
(2.62) be denoted by c1 = r1e jθ1 and c2 = r2e jθ2 . Then from (2.62), c1+c2 = (Fn f )(n/2+1).
Hermitian symmetry implies r1 = r2 and θ1 ≡ −θ2 mod 2π , and combining these two
constraints results in a single remaining degree of freedom.

c1 = r1e jθ1 and c2 = r1e− jθ1 s.t. r1 =
(Fn f )(n/2+1)

2cos(θ1)
(2.64)

A natural additional constraint is to require that both the continuous extension and the
observations contain the same amount of energy at the Nyquist frequency. Notice that the
orthogonality of the characters (2.49) implies that this same constraint will hold for every
other frequency. This additional constraint implies |c1 + c2|2 = |c1|2 + |c2|2, from which
one finds that 2ℜ{c1c∗2}= 0, or equivalently, that θ1−θ2 ≡ π

2 mod π . Incorporating this
new constraint determines the continuous representation up to a single bit.

r1 = r2 =
(Fn f )(n/2+1)√

2
(2.65)

(θ1,θ2) ∈
{(π

4
,−π

4

)
,
(
−π

4
,
π
4

)}
when θ1,θ2 ∈ [−π,π) (2.66)

∴ c1 = (Fn f )(n/2+1)
1± j

2
, c2 = (Fn f )(n/2+1)

1∓ j
2

(2.67)

These two solutions correspond to interpreting the frequency components that aliased to
the Nyquist frequency as corresponding to the basis function cos(πa)− sin(πa) (positive
sign in c1), or cos(πa)+ sin(πa). Figure 2.20 shows 10 randomly drawn real values, and
the two real continuous functions that are consistent with these 10 samples assuming they
corresponded to a real, critically sampled, continuous function with period 11. Obviously
the generation of this figure did not involve forming the entire continuous function, however,
the upsampling operator allows one to compute a set of m > n points that exactly coincide
with samples from the continuous function as given by the Fourier synthesis equation acting
on the DFT coefficients corresponding to the length n representation. For the remainder of
this work, the positive sign will be taken in c1.

Under this signal model, the upsampling operator Um,n is linear and precisely equivalent
to the sampling operator SSS when upsampling. Let SSSU be the matrix representation of the
upsampling operator, and FFFn the DFT matrix associated with a signal of length n, then

SSSU =
M
N

FFFH
MUUUFFFN , (2.68)
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Figure 2.20: A real, discrete, signal sampled critically with an even number of samples
along with both of its consistent implied continuous functions.

The structure of UUU is indicated in Figure 2.21, where the identity matrices are replicating
the existing spectral lines, and the familiar zero-padding is explicitly called out as a band of
zeros. Notice that the “n mod 2” is simply 1 when n is odd and 0 otherwise, and the general
form of (c1, c2) from (2.67) is given for both odd and even length signals by

(c1,c2) =

{ (
1+ j

2 , 1− j
2

)
N even

(0, 0) N odd

}
. (2.69)

The adjoint follows immediately from the transpose of this matrix form. Downsampling,
and the multi-dimensional extensions, all follow in a straightforward manner from classical
signal processing concepts [48, 146, 147].

Figure 2.22 illustrates the use of these concepts to alias a two dimensional image. The
sharp edges most clearly exhibit the aliasing phenomena, however, one can also see that
impact of aliasing is predominately a local effect. The function fftResampleN implements
periodic, band-limited resampling with and without aliasing (the sampling operator) as well
as the associated derivatives and adjoints for N-Dimensional signals.

1 % Simple aliasing demonstration
2 load( ’cameraMan’,’X’);
3 imgAlias = fftResampleN(X,[100 100], ’−alias’ );
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Figure 2.21: Cartoon illustrating the key blocks in the matrix representation of the upsam-
pling operator UUU in the Fourier domain. The block of zeros corresponding to the familiar
zero-padding in the Fourier domain is explicitly called out.
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Figure 2.22: Action of the sampling (aliasing) operator taking an image form (a) 256×256
to (b) 100×100
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2.5 Statistical Inverse-Problem Approach

This work takes a statistical inverse-problem approach to estimating sensor and environ-
mental parameters from measured data. The estimation questions are said to be part of an
inverse-problem because information regarding the unknown parameters is only observed
through its influence on the output of a forward process; the data. A statistical inverse-
problem approach to parameter estimation is one which properly accounts for all of the
available sources of information in the generation of the estimates. This includes knowledge
of the forward processes, the types and sources of statistical uncertainty, available prior
information, and the data itself.

Strictly speaking, a model of the physical process is inverted, rather than the process
itself. This model is known as the forward model, and in most modern inverse-problem
approaches, is actually composed of two models. Using the terminology of Rosenblueth
and Wiener [157], the forward model always includes a formal or intellectual model. This
“symbolic assertion in logical terms” is an abstract description of the forward process
such as that described in Sections 2.2 and 2.4. When such a model does not permit a
closed form solution, a material model is also needed. Today, these are generally computer
simulations. The associated material model for this work has been implemented in the
computer language MATLABr, and key components corresponding to the formal model
have been demonstrated throughout this chapter. When closed form solutions are unavailable,
the inverse-problem solution is expressed as an optimization problem in terms of the material
model. This situation is illustrated in Figure 2.23.

MeasurementsPhysical 
Processes

Forward Model

physics-based

Parameter
Estimate

Measurement
Estimate

Objective
Function

OptimizationUpdate

Prior
Knowledge

Figure 2.23: Inverse problem flow diagram showing the relationship between modeling
components (green) and physical processes (gray)
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All inverse-problems share this common structure, even when they are not explicitly
stated in such formal terms. The benefit of expressing inverse-problems within a formal
framework is that it more clearly delineates the underlying assumptions and problem struc-
ture. Outside of the pedagogical benefits, this modular approach simplifies the application
of standard statistical and optimization techniques for studying inverse-problem solutions.
To clarify this point, consider the distinction between prior information and regularization.
Prior information, or a priori information about the distribution of an unknown parameter,
typically results in an additional penalty term in the objective function that expresses infor-
mation gained through an assumption that is believed to be true. The proposed framework
readily accommodates the incorporation of such information. Regularization, on the other
hand, is any alteration of the structure shown in Figure 2.23 for the purpose of changing
the posterior distribution of the unknowns. Regularization is often used to generate point
estimates in ill-posed problems; those which are not fundamentally well described by point
estimates (c.f. [151]).

Unlike prior information, which makes a clear and scientifically verifiable assertion
about the unknowns, regularization is often subtle, and indicative of an inverse problem
with open questions. As an example, consider the common practice of using stopping
criteria in the optimization stage of inverse-problems. Sometimes these criteria are simply
an acknowledgment of the diminishing returns associated with increased estimate precision,
and yet other times they are used to fundamentally alter the distribution of the estimates. In
the latter case, application of standard statistical tools becomes difficult, and regularization
obfuscates underlying questions regarding the forward model and/or objective function.
Because of these difficulties, regularization should only be used when its impact on the
posterior estimate distribution is well understood.

For the specific problem of camera system-identification from a known calibration target,
one seeks to estimate the camera’s aggregate wavefront imperfections (blur) as described by
their Zernike coefficients in the pupil ααα . This estimation is performed subject to a set of
unknown nuisance parameters {c1,c2,c3,c4,σr,vvv}. The variables c1 and c2 accommodate
an unknown radiance level emanating from the object, c3, c4, and σr account for the
unknown detector gain, offset, and read-noise level respectively, and the vector parameter vvv

accounts for the unknown imaging geometry between the camera and the calibration target.
Assuming the data is a single image of the calibration target, one can expand (2.21) in
terms of the operators described in Section 2.4 to express the statistical distribution of the
lexicographically ordered data under the formal model as

d = c3P{T SBBB(ααα)WWW (vvv)(c1 fff + c2)}+ c4 +N
(
0,σ2

r
)

(2.70)
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Grouping the unknowns into a single vector θθθ , the formal description of the maximum
likelihood estimate can be written in terms of the log-likelihood function `(·) as

θ̂θθ = argmin
θθθ
−`(ddd|θθθ) s.t. (2.71)

c1 ≥ 0, c2 ≥ 0, c3 ∈ [0,1] , σr > 0. (2.72)

This formal statement of the solution is itself an optimization problem in terms of a material
model. The next two chapters address the practical challenges of finding such solution(s),
and their study their properties.

2.6 Non-Linear Optimization

This section provides a brief introduction to large-scale unconstrained optimization,
with special attention paid to preconditioning and solver initialization. Such techniques are
invaluable in engineering, and the estimators presented in this work will be generated using
this class of techniques. More details regarding this approach to large-scale, non-convex
optimization may be found in [135, Chapters 2-3,6,8-9] and the references therein.

Given an objective function mapping a set of variables onto R, one is often interested in
finding

xxx∗ = argmin
xxx

f (xxx) s.t. xxx ∈ RN . (2.73)

Under mild conditions on f it can be shown that xxx∗ is locally unique. This section is
concerned with efficiently determining a sequence {xxxk} such that limk→∞ {xxxk}= xxx∗ given
xxx0 sufficiently close to xxx∗. Assuming f ∈ C2, a necessary condition on xxx∗ is

ggg(xxx∗)
def
= ∇ f (xxx∗) = 0 (2.74)

GGG(xxx∗)
def
= ∇

2 f (xxx∗) : sssT GGG(xxx∗)xxx≥ 0 ∀s ∈ RN (2.75)

Thus the local derivative is zero (xxx∗ is a stationary point) and the curvature is positive in any
direction (GGG(xxx∗) is positive definite).

Given the requirement of continuous 2nd derivative, it is natural to locally model the
unknown function through its Taylor-series expansion because this simple expansion involves
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the objective function value as well as both of the terms involved in the optimality criteria.

f
(

xxx(k)+δδδ
)
= f (k)+δδδ T ggg(k)+

1
2

δδδ T BBB(k)δδδ s.t. (2.76)

ggg(k) def
= ∇ f

(
xxx(k)
)

(2.77)

BBB(k) def
= ∇

2 f
(

xxx(k)
)

(2.78)

≈ GGG(k)
(

xxx(k)
)

(2.79)

where the superscript k indicates the kth element in a sequence of evaluations. This has
historically been the approach to such problems (citations here), and remains so to this day
(citations here). Though many variations exist, nearly all approaches share the same basic
structure shown in Figure 2.24

Find Step Direction

Line Search

Check Termination

Update Knowledge

Yes

No

Exit

Figure 2.24: Basic structure of quasi-Newton optimization methods

2.6.1 Quasi-Newton Direction Updates

For high-dimensional problems, (2.76) becomes prohibitively expensive to evaluate due
to the large amount of memory needed to represent the Hessian, however, this same equation
clearly couples changes in δδδ (a change in xxx) to changes in γγγ (a change in ggg). This is known
as the secant condition, and is given by

γγγ(k) = B̄BB(k)δδδ (k) (2.80)

B̄BB(k)
=

1∫

0

BBB
(

xxx(k)+θδδδ (k)
)

dθ .
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In other words, one should be able to infer from the derivatives how to move in the high-
dimensional space without explicitly forming the entire Hessian. In fact, when we implicitly
update the Hessian approximation through a set of rank-two updates using previous observa-
tions of the function value and gradient, what results is the Broyden update family, given
by

BBB(k+1) = BBB(k)−
BBB(k)δδδ (k)

(
δδδ (k)

)T
BBB(k)

(
δδδ (k)

)T
BBB(k)δδδ (k)

+
γγγ(k)

(
γγγ(k)
)T

(
δδδ (k)

)T
γγγ(k)

+θ (k)www(k)
(

www(k)
)T

(2.81)

www(k) =

√(
δδδ (k)

)T
BBB(k)δδδ (k)


 γγγ(k)
(

δδδ (k)
)T

γγγ(k)
− BBB(k)δδδ (k)

(
δδδ (k)

)T
BBB(k)δδδ (k)


 . (2.82)

Using these expressions, one can define the change in xxx implied by the local structure which
has been itself implied by previous observations. Thus all we need to do is be able to
differentiate the objective function with respect to the unknowns, and apply the action of
this transformation to determine the next search direction. This is not a trivial task by any
means, but it can be done, and what results is an efficient approach for solving non-linear
optimization problems over high-dimensional spaces. The popular BFGS technique is a
member of the Broyden family of updates with θ (k) = 0 in (2.81). The method is named after
Charles Broyden, Roger Fletcher, Donald Goldfarb and David Shanno who independently
discovered the approach. A graphical example of convergence using the Broyden update is
shown in Figure 2.25. In this example each dot represent a point evaluated by the solver,
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Figure 2.25: An example of the BFGS technique applied to a low-dimensional non-linear
problem.
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where unconnected points indicate those rejected by the line-search. The total number
of function evaluations can typically be dramatically reduced through preconditioning;
applying problem specific knowledge to the search procedure.

2.6.2 Preconditioning and Transformation Invariance

It is desirable to find optimization methods that are invariant under affine transformations
of the search space. This property not only makes intuitive sense (i.e. redefining a search
variable from meters to centimeters should not fundamentally alter how the search is
performed), but is also a prerequisite for “preconditioning”. Preconditioning is the process
of altering the objective function such that the surrogate function can be more easily
minimized while still relating in a known way to the original objective function. To begin,
consider the set of affine transformations

T : RN → RN (2.83)

x̃xx = T (xxx) (2.84)

= AAA(xxx−bbb) (2.85)

where AAA is invertible. Then one gets

x = T−1(x̃xx) (2.86)

= AAA−1x̃xx+bbb (2.87)

f̃ (x̃xx) = f
(
T−1(x̃xx)

)
(2.88)

= f (xxx) (2.89)

where x̃xx and f̃ are the transformed (preconditioned) vector and objective function respec-
tively. The relationship of the derivatives of this new function to the original can be found
by differentiating.

∇ f (xxx) = AAAT
∇ f̃ (x̃xx) (2.90)

∇
2 f (xxx) = AAAT

∇
2 f̃ (x̃xx)AAA (2.91)

A search method is defined to be invariant w.r.t. T iff

x̃xxk = T (xxxk) =⇒ x̃xxk+1 = T (xxxk+1) ∀k (2.92)
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Preconditioning of such a method then becomes a matter of finding transformations that
minimized the differences between the presumed initial hessian (typically I), and that of
the surrogate objective function. Preconditioning is also useful because it can be used to
remove a subspace of a problem. This happens when the natural parameterization leads to
an invariance which can be removed prior to solving. Doing so lowers the effective search
dimension, simplifying the overall optimization problem. The previous discussion can be
extended to handle this case by redefining the class of transformations as follows

T : RN → RM M ≤ N (2.93)

x̃xx = T (xxx) = AAA(xxx−bbb) (2.94)

and the inverse operator is defined as the minimum L2 norm expansion about b. Therefore,

T−1 : RM→ RN (2.95)

T−1(x̃xx)def
= AAA†

Lx̃xx+bbb (2.96)

where AAA†
L and AAA†

R are the minimum norm left and right inverses respectively

AAAAAAT (AAAAAAT)†

︸ ︷︷ ︸
AAA†

R
def
= Right Inverse

= IIIM (2.97)

(
AAAT AAA

)†
AAAT

︸ ︷︷ ︸
AAA†

L
def
= Left Inverse

AAA = IIIN . (2.98)

The fact that this is a minimum norm solution about bbb follows from the fact that AAA†
LAAA is a

projection operator onto the complement of the null-space of AAA. Applying the inverse to the
forward operator one gets

T−1(T (xxx)) = AAA†
LAAAxxx−AAA†

LAAAbbb+bbb (2.99)

= AAA†
LAAAxxx+

(
III−AAA†

LAAA
)

bbb (2.100)

which is the projection of xxx into the null-space complement of AAA, with the projection of bbb into
the null-space of AAA added back. This obviously minimizes the norm of the representation
of xxx through x̃xx about bbb when AAA†

L is defined to be the minimum L2 projector. When AAA†
L

is not uniquely defined, one zeros the left singular values of any matrix that satisfies the
left-inverse definition over the null-space complement.

53



The aforementioned relationships between the derivatives of the original objective
function and its surrogate remain unchanged, however, it is more natural to think of the
surrogate in terms of the original function because it is of a lower dimension. For this reason
T is referred to as the “preconditioner,” because it moves the problem into a space with a
dimensionality less than or equal to the original problem while simultaneously normalizing
the hessian. Thus one may write

∇ f̃ (x̃xx) = AAA−T
R ∇ f (xxx) (2.101)

∇
2 f̃ (x̃xx) = AAA−T

R ∇
2 f (xxx)AAA†

R (2.102)

The hessian is symmetric and non-negative definite, implying that its SVD may be
written

∇
2 f (xxx) =VVV ΣΣΣVVV T (2.103)

where VVV ∈RN×M and ΣΣΣ ∈RM×M. Equating the result to 2.91 and setting ∇2 f̃ (x̃xx) = I results
in

AAA = ΣΣΣ
− 1

2VVV T (2.104)

∴ AAA−T
R = ΣΣΣ

1
2VVV T (2.105)

In practice we always want to work in the space with the lowest possible dimension, and
this implies that the most natural way to specify a preconditioner is as the transformation
from the unconditioned space to the preconditioned one. Equation (2.105) suggests the
rotational invariance of the preconditioned space and the utility of the SVD representation.
For example, when only AAA is provided one can write

AAA =UUUΣΣΣVVV T =⇒ AAA† =VVV ΣΣΣ
−1UUUT (2.106)

For the purposes of preconditioning, UUU is unimportant because an arbitrary rotation will not
effect the solver. In practice, however, one must be careful to properly rotate the starting
value xxx0 within the preconditioned space.
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2.6.3 Initial Step

The problem of initial step length selection arises in a number of contexts during a
search. The first is truly an initial step, and the problem of interest may be formulated as

Given: {xxx0, f0,ggg0} (2.107)

Find: x̂xx = argmin
xxx
‖xxx− xxx∗‖2

2 (2.108)

The standard solution to this problem has been motivated by an assumption of “perfect
preconditioning”, that is, to assume that the hessian is the twice identity matrix. Making this
assumption results in

x̂xx =−1
2

ggg0 (2.109)

To see why this is the case, consider the minimizer of the quadratic approximation of f

about xxx0

f (xxxk +δ )≈ qk(δ ) = fk +δ T gggk +
1
2

δ T BBBkδ (2.110)

Assuming GGGk is Positive Definite (P.D.), one can find the minimizer by differentiating with
respect to δ and setting the result equal to zero. Doing so results in

000 = ggg0 +
1
2
(
GGG0 +GGGT

0
)

δ (2.111)

∴ δ =−2
(
GGG0 +GGGT

0
)−1

ggg0 (2.112)

This implies that “perfect conditioning” is being defined as a problem where the precon-
ditioner causes the hessian to be 2IIIn×n, or perhaps more initiatively, causes the leading
coefficient of the quadratic term to be 1. This implies that the gradient both points in the
correct direction, and does so with a magnitude that is related to the distance to xxx∗ in a
known way.

Let’s now consider two relaxations on this rather stringent assumption based on the use
of “non-expert” advice. Here “non-expert” advise is defined as advise that will likely be
given by someone not knowledgable in optimization theory or the underlying structure of
their particular objection function. To do this, we will view finding the initial step as an
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estimation problem under a stochastic framework. That is

Given {xxx0,γ} , { f0,ggg0} (2.113)

Find x̂xx = argmin
xxx

E
[
‖x̂xx− xxx∗‖2

2

]
(2.114)

where γ is some non-expert supporting information. The initial function value and gradient
are separated to emphasis the fact that they are inferred by the algorithm after {xxx0,γ} are
given. To begin, assume the initial step should be made along the steepest-descent direction.

x̂xx = xxx0 +α(−ggg0) s.t. α > 0 (2.115)

The risk associated with this step is given by

R[α,xxx∗] = α2gggT
0 ggg0 +2αgggT

0 E[(xxx∗− xxx0)]+E
[
‖xxx∗− xxx0‖2

]
(2.116)

The assumption that the −ggg0 is a “good” direction implies that it points into the quadrant of
xxx∗ and thus

sgn(−ggg0)[i] = sgn(E[xxx∗− xxx0])[i] ∀i (2.117)

∴ (−ggg0)
T E[xxx∗− xxx0] = |ggg0|T |E[xxx∗− xxx0]| (2.118)

Using this fact, and differentiating w.r.t α we get

αmin =−
E
[
gggT

0 (xxx∗− xxx0)
]

gggT
0 ggg0

(2.119)

=
|ggg0|T |E[xxx∗− xxx0]|

gggT
0 ggg0

(2.120)

∴ x̂xx = xxx0−
|ggg0|T |E[xxx∗− xxx0]|

gggT
0 ggg0

ggg0 (2.121)

This implies that a minimum risk step can be made if the user provides γ = |E[xxx∗− xxx0]|.
The advise is “non-expert” in the sense that the quantity is very intuitive, “The expected
deviation of each of the individual parameters.”2 This initial step also provides a number of
good properties; it never perturbs any of the parameters beyond their expected deviation, and
the length of the step is automatically adjusted according to how well the relative scaling of
the derivative corresponds to the relative scaling of the expected deviations.

2Users have great difficulty when the |·| is inside the expectation
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Now let’s revisit the same problem where we no longer trust the magnitude of the
derivative, but rather trust only its sign.

x̂xx = xxx0 +δ s.t. sgn
(
δ[i]
)
=−sgn

(
ggg0[i]

)
∀i (2.122)

As before, we are concerned with minimizing the risk of the initial step

R[δ ,xxx∗] = δ T δ −2δ T E[(xxx∗− xxx0)]+E
[
‖(xxx∗− xxx0)‖2

]
(2.123)

Here we are defining “trust” in sgn(ggg0) through the assumption

sgn(xxx∗− xxx0)[i] = sgn(−ggg0)[i] ∀i (2.124)

Using this fact, and differentiating the risk w.r.t. δ gives

|δmin|= |E[xxx∗− xxx0]| (2.125)

∴ x̂xx = xxx0− sgn(ggg0)�|E[xxx∗− xxx0]| (2.126)

Once again we find that the same information is needed, and this identifies the largest step
that could have been taken when we did trust the direction of the gradient.

57



CHAPTER III

System Identification with Known Objects

3.1 Introduction

Optical imaging systems are designed to produce data that is highly correlated with the
scene being imaged, but the collected data is not the best possible representation of the
physical scene. Diffraction caused by the finite sensing aperture, lens imperfections, and
physical limitations of the detector, all result in deviations from an ideal camera-model. By
understanding the physical relationships between the environment, the imaging system, and
the collected data, one can more effectively use available measurements to make inferences
about the sensor, the scene being imaged, or both. This chapter presents a systematic
approach for making these types of inferences, as well as understanding the limitations
imposed on them by uncertainties from the environment and the imaging system.

A statistical inverse-problem approach is presented for jointly estimating camera blur
from aliased data of a known calibration target. The estimation is said to be part of an inverse-
problem, because information regarding the unknown parameters is only observed through
their influence on the output of a forward process; the data. A statistical inverse-problem
approach to parameter estimation is one that properly accounts for all of the available sources
of information in the generation of the estimates. This includes knowledge of the forward
processes, the types and sources of statistical uncertainty, available prior information, and
the data itself.

An accurate description of a system’s incoherent Point-Spread Function (PSF) is fun-
damental to image reconstruction, especially reconstruction from aliased data [49, 127]. A
PSF model based on a description of the optical system’s wavefront aberrations is useful

in image exploitation because it parsimoniously describes the space of PSF’s likely to be
encountered [136, 164], but rapidly becomes essential when one is interested in processing
datasets that contain changes in these aberrations. Intentionally introducing such changes is
the basis of phase-diversity imaging [75, 97, 142, 186], and unintentional changes serve as
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the basis for depth-from-defocus techniques, certain 3D shape reconstruction algorithms,
and even sophisticated image restoration approaches [58, 103, 120]. These application
areas all motivate the characterization of imaging systems through a physical wavefront
description of their blur.

Direct wavefront sensing approaches require modification, or partial disassembly, of the
sensor [73], and this has led to interest in less invasive approaches. Figure 3.1 illustrates a
recent attempt to measure a Nikon D7000 and Nikkor lens using a wavefront interferometer.
The large number of surfaces and various optical coatings prevented the interferometer from

(a) Camera In Device (b) Fringe Pattern

Figure 3.1: Failed attempt to measure a complex imaging system using an interferometer by
retro-reflecting off the detector.

making a reliable measurement. Removing the camera body to measure only the lens was
also unsuccessful because the lens automatically stops down its aperture when disconnected
from the body. While disappointing, these complications serve to reinforce the value of
techniques that can be applied using only measured data.

Blur estimation approaches that depend only on collected data can be broadly separated
into blind and non-blind procedures. Blind techniques attempt to estimate the PSF directly
from an unknown image, and often focus on per-collection variations such as camera shake
or object motion [62, 167, 207, 211]. If the object is treated as the principle quantity of
interest, these techniques are also referred to as blind deconvolution [25, 62, 67, 87, 99,
101, 106, 119, 156]. Blind approaches are naturally less effective at estimating system
imperfections, but are necessary when one expects collection-dependent variations in the
PSF. By contrast, non-blind methods have the potential to more accurately characterize the
system through the exploitation of additional scene knowledge. This class of techniques has
traditionally sought to exploit either sharp edges [36, 87, 101], or use random targets with
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a known power-spectra [8, 21, 45, 115, 141, 144]. In this chapter, a physically motivated,
statistical inverse-problem approach is taken toward system identification using known
calibration objects.

The proposed approach differs from existing known-object calibration techniques in
a number of ways. First, the camera’s PSF is parameterized through a series of physical
blur sources under a Fraunhofer diffraction assumption. By contrast, most previous work
has not modeled diffraction effects [8, 21, 36, 45, 87, 101, 115, 141, 144, 213], or modeled
only defocus [178]. Second, the proposed approach explicitly models aliasing. Modern
commercial devices are often aliased, and previous approaches have either ignored this
effect [8, 21, 87, 115, 141, 144, 178, 213], or address it in an incomplete way [36, 45, 101].
Joshi [101] and Delbracio [45] both explicitly model aliasing, but only accommodate integer
downsampling factors. Third, the proposed technique explicitly models key detector effects.
To the author’s knowledge, no previous work has explicitly addressed the impact of Bayer
filters, and very few [178] have accommodated the intensity variant uncertainty that is
inherent when measuring electromagnetic fields using semi-conductors [64]. Taken together,
the resulting high-fidelity forward-model accurately reflects the physics of imaging with
modern digital devices, and accommodates the main sources of uncertainty in the resulting
data.

The remainder of this chapter is organized as follows. In Section 3.2 a rigorous, physics-
based, forward-imaging model is proposed for estimating camera blur from a known cali-
bration target. This model accommodates unknown ambient light levels, target reflectance,
imaging perspective, detector gain and offset, quantum-efficiency, and read-noise variance.
The forward model also accounts for diffraction due to the sensing aperture, detector fill-
factors, aliasing, and the use of chromatic filters (Bayer patterns [11]). Section 3.3 utilizes
the forward imaging model within a statistical inverse-problem framework to simultaneously
estimate the unknown camera parameters from only the collected data. The ML estimator
is shown to be essentially unbiased through the calculation of the bias-sensitivity index
[95], and under moderate lighting conditions, achieves wavefront-estimation performance
within 2dB RMS of the Cramér-Rao Bound (CRB). This corresponds to PSF estimates with
less than 1% error under the L1 norm, and wavefront estimates under 0.01 Wavelengths
RMS (WRMS) subject to the identifiability conditions discussed in Section 3.6. Section 3.7
discusses practical considerations related to calibration target construction, and simulation
experiments are described in Section 3.8 that demonstrate the efficacy of the proposed
approach.
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3.2 Forward Imaging Model

Using the physical processes described in Section 2.2, and the modeling components
developed in Section 2.4, one can accurately describe forward imaging process of a modern
digital camera. This model treats the imaging geometry, optical blur, sensor gain and offset,
scene illumination, and read-noise variance all as unknowns. The known calibration target
at a particular wavelength λ is represented by the vector fff . This model is described at
a single wavelength to ease exposition, however, it is easily extended to polychromatic
case. Extending the previous ideas to accommodate the collection of J frames, one can
model the unknown relationship between the object plane and the imaging plane through
the vector of perspective parameters vvvT =

[
vvvT

1 , . . . ,vvv
T
J
]T . The unknown aberrations in the

optical wavefront are modeled by ααα , a vector of Zernike wavefront coefficients in the exit
pupil. The constants c1 and c2 account for the scaling between calibration-target units
(typically reflectance) and photons, while c3 and c4 account for the sensor gain and offset
respectively. These constants will sometimes be represented together as ccc. The process of
measuring light intensity with a semiconductor results in a Poisson process [172] that is
further subject to normally distributed read-noise parameterized by its variance σ2

r . Letting
n f represent the number of elements in fff , the distribution of the J lexicographically ordered
data frames may be expressed in terms of these two independent statistical processes as

ddd = c3P
{

diag
({

TTT SSSBBB(ααα)WWW
(
vvv j
)}J

j=1

)(
111J⊗ IIIn f

)
(c1 fff + c2)

}
+ c4 +N

(
000Jn f ,σ

2
r IIIJn f

)

(3.1)

where WWW is the warping operator, BBB is the blur operator, SSS is the sampling operator, TTT is
the spatial truncation operator. The relationship between the physical processes, and these
mathematical operators, is shown in Figure 3.2. Because the number of photons received is
large under typical conditions [35], one may model the data as normally distributed where
both the mean and variance are functions of the unknowns.

ddd ∼N(µµµ(vvv,ααα,ccc) ,ΣΣΣ(vvv,ααα,ccc,σr)) (3.2)

µµµ(vvv,ααα,ccc) = c3diag
({

TTT SSSBBB(ααα)WWW
(
vvv j
)}J

j=1

)(
111J⊗ IIIn f

)
(c1 fff + c2)+ c4 (3.3)

= c3HHH(vvv,ααα)(c1 fff + c2)+ c4

ΣΣΣ(vvv,ααα,ccc,σr) = diag
(
c2

3HHH(vvv,ααα)(c1 fff + c2)+σ2
r
)

(3.4)

The data model described by (3.2) is a consequence of the key physical processes
involved in imaging with a digital camera, and an identification of those parameters likely to
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Figure 3.2: Diagram illustrating key elements of the physical imaging process. The cor-
responding block diagram relates physical processes to the mathematical operators, and
corresponding unknowns, used to model them.

be unknown at the time of data acquisition. Collectively, we will refer to these unknowns
as θθθ =

[
vvvT , αααT , cccT , σr

]T , where the aberration parameters ααα are of primary interest, and
the remaining unknowns are considered nuisance parameters; parameters not of immediate
interest, but nevertheless must be estimated because of their influence the data distribution.
Jointly estimating over the resulting high-fidelity model leads to substantially improved
system characterization, and the direct modeling approach ensures the technique is applicable
to a broad class of imaging systems. The difficulty in using the model proposed by (3.2)
is that both the mean and covariance of the data are highly non-linear functions of the
unknowns. This unfortunate property of the data model accurately reflects the nature of the
forward imaging process, and therefore cannot be avoided.

3.3 Maximum Likelihood Estimation

Using the forward model (3.2)-(3.4), the goal is to characterized by the unknown
wavefront aberrations ααα from the aliased data ddd by jointly estimating with respect to the
nuisance parameters {vvv,ccc,σr}. The log-likelihood function for the collected data is given in
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terms of the unknowns θθθ =
[
vvvT , αααT , cccT , σr

]T by

`(ddd|θθθ) =−1
2

aaaT diag(bbb)−1 aaa− 1
2

111T
Jn f

ln(bbb)− Jn f

2
ln (2π) (3.5)

aaa(θθθ) = ddd− c3HHH(vvv,ααα)(c1 fff + c2)− c4 (3.6)

bbb(θθθ) = c2
3HHH(vvv,ααα)(c1 fff + c2)+σ2

r . (3.7)

The log-likelihood expression (3.5) follows immediately from the fact that the data is jointly
normal. Notice, however, that the mean and covariance are each affine functions of the
calibration object fff , and non-linear in the unknowns θθθ . The dependency of aaa and bbb on
parameter vector θθθ has been suppressed in (3.5) to improve readability.

The joint ML estimator associated with (3.5) may be written as a constrained non-linear
optimization problem. Assuming one chooses fff to be a linear function of the targets
reflectance, the non-negativity of the intensity of the electromagnetic field emanating from
the object ensures that c1 and c2 are non-negative. The model treats the signal impinging
the detector as being in units of photons, and this implies 0≤ c3 ≤ 1. Finally, the read-noise
variance must be positive, and under these constraints the joint ML estimator becomes

θ̂θθ = argmax
θθθ

`(ddd|θθθ) s.t. c1 ≥ 0, c2 ≥ 0, 0≤ c3 ≤ 1 and σr ≥ 0 (3.8)

The foundation of our approach for solving for this estimator will be the class of quasi-
Newton optimization techniques described in Section 2.6. When paired with modern line-
search approaches [4, 79, 129, 130, 135, 205], quasi-Newton methods provide an efficient
way of identifying locally optimal solutions. This chapter will address identifiability and
fundamental information bounds for this estimation problem assuming one is able to identify

the neighborhood of the true solution. The next chapter will build upon these ideas to
explicitly address the problem of global convergence. As both the optimization techniques,
and evaluation of the Cramér Roa bound, depend on the gradient of the log-likelihood
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function, it is provided below

∇θθθ `(ddd;θθθ) =
J

∑
j=1

(
aaa j

bbb j

)T




c1c3∇vvv
(
HHH j fff

)T

c1c3∇ααα
(
HHH j fff

)T

c3
(
HHH j fff

)T

c3111T
n f

c1
(
HHH j fff

)T
+ c2

111T
n f

000T
n f




T

− (3.9)

1
2

J

∑
j=1

(
1
bbb j
−
(

aaa j

bbb j

)2
)T




c1c2
3∇vvv
(
HHH j fff

)T

c1c2
3∇ααα

(
HHH j fff

)T

c2
3
(
HHH j fff

)T

c2
3111T

n f

2c3
(
c1HHH j fff + c2

)T

000T
n f

2σr111T
n f




T

,

where HHH jjj = TTT SSSBBB(ααα)WWW
(
vvv j
)

is the component of HHH associated with the jth frame such that
HHH = diag

({
HHH j
}J

j=1

)(
111J⊗ IIIn f

)
, and aaa j, bbb j are similarly defined. Details of the derivation

of these gradients is provided in Appendix I.

3.4 Cramér-Rao Bound

The Fisher information matrix describes one’s fundamental ability to estimate a set
of unknowns, and characterizes the influence of the nuisance parameters on the resulting
estimation problem. Given the complexity of the forward imaging model (3.2), and the large
number of unknowns, it is not reasonable to assume that the MAP estimator will converge to
a useful solution. To help answer this question we compute Cramèr-Rao Bound (CRB). This
bound establishes lower limits on the performance of the set of minimum variance unbiased
estimators, and given the asymptotic unbiasedness of the maximum likelihood estimator, this
bound also often establishes limits on its mean squared error. In Section 3.8 it will be shown
that when the specific optimization problem given by (3.8) is started in the neighborhood
of the true solution, the proposed estimator is essentially unbiased. In the context of this
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problem, essentially unbiased implies that a bias-variance trade-off cannot be exploited to
yield an estimator resulting in a substantial improvement in wavefront estimation accuracy.
Specifically, in Section 3.8 it will be demonstrated that use of the bias-gradient [95], in
conjunction with the Fisher information matrix, leads to a biased estimator with whose
wavefront estimation performance is increased by less than 1×10−4 WRMS of phase error.

The Fisher information matrix JJJ is given by the negative expected curvature of the
log-likelihood about the true unknown parameters

JJJ def
=−Eθθθ ,ddd

[
∇

2L(ddd;θθθ)
]

(3.10)

The subsequent bound on the MSE matrix is then given by

Eθθθ ,ddd

[(
θ̂θθ −θθθ

)(
θ̂θθ −θθθ

)T
]
≥ JJJ−1 (3.11)

where ≥ implies that the difference of the MSE and inverse information matrices is positive
definite. When prior information is available, the information matrix can be decomposed
into two matrices; one term containing the contribution of information from the data, and a
second term containing the contribution from the prior. Specifically,

JJJ = JJJD + JJJP (3.12)

where

JJJD =−Eddd,θθθ
[
∇

2LLL(ddd|θθθ)
]

(3.13)

JJJP =−Eθθθ
[
∇

2LLL(θθθ)
]

(3.14)

In the current blur estimation setting, prior information will not be available, so an emphasis
will be placed on estimation bounds brought about entirely by the data-dependent term.

The data is jointly normal with mean and covariance each nonlinear functions of the
unknowns. In this situation the Fisher Information is given by [9]

[JJJD]i j =
∂µµµT

∂θθθ i
ΣΣΣ
−1 ∂µµµ

∂θθθ j
+

1
2

tr
(

ΣΣΣ
−1 ∂ΣΣΣ

∂θθθ i
ΣΣΣ
−1 ∂ΣΣΣ

∂θθθ j

)
(3.15)
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Expanding the second term of Equation 3.15 in terms aaa and bbb one gets

tr
(

ΣΣΣ
−1 ∂ΣΣΣ

∂θθθ i
ΣΣΣ
−1 ∂ΣΣΣ

∂θθθ j

)
(3.16)

= tr
[

diag
(

1
bbb

)
diag(∇θibbb)diag

(
1
bbb

)
diag

(
∇θ jbbb

)]
(3.17)

=

(
∇θibbb

bbb

)T (∇θ jbbb
bbb

)
. (3.18)

By similarly substituting into the first term, and collecting the results in matrix form one
may write

JJJD = (∇θ aaa)T diag(bbb)−1
∇θ aaa+

1
2

(
∇θ bbb

111T
nθ
⊗bbb

)T (
∇θ bbb

111T
nθ
⊗bbb

)
, (3.19)

where nθ is the total number of elements in θθθ . The necessary constituent derivatives are
given through the expressions

∇θ aaa =−c1c3∇θ HHH fff −




000(nv+nα )×Jn f

c3 (HHH fff )T

c3111T
Jn f

c1 (HHH fff )T + c2

111T
Jn f

000T
Jn f




T

(3.20)

∇θ bbb = c1c2
3∇θ HHH fff +




000(nv+nα )×Jn f

c2
3 (HHH fff )T

c2
3111T

Jn f

2c3 (c1HHH fff + c2)
T

000T
Jn f

2σr111T
Jn f




T

(3.21)

[∇HHH fff ]( j,:) = TTT SSS
[
BBB(ααα)∇WWW

(
vvv j
)

fff +∇BBB(ααα)WWW
(
vvv j
)

fff
]

(3.22)

This form of the CRB is particularly useful because it highlights the relationship between
the key terms aaa and bbb, and the data-component of the Fisher information matrix. Given the
potentially large size of the object representation with aliased systems, in conjunction with
the multi-frame formulation, memory efficiency is essential for practical implementations.
By identifying the relationships between the aforementioned terms and the individual
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data frames, a computationally efficient way to compute Equation 3.19 can be identified.
Decomposing the constituent terms in a manner similar to Equation 3.5, one may write

aaa = vec
({

ddd j− c3HHH j (c1 fff + c2)− c4
}J

j=1

)
(3.23)

= vec
({

aaa j
}J

j=1

)
(3.24)

bbb = vec
({

c2
3HHH jjj (c1 fff + c2)+σ2

r
}J

j=1

)
(3.25)

= vec
({

bbb j
}J

j=1

)
(3.26)

ΣΣΣ
−1 = diag

({
bbb�−1

j

}J

j=1

)
(3.27)

which leads the very intuitive result regarding the statistical independence of the individual
frames

JJJD =
J

∑
j=1

[
∇aaaT

j ΣΣΣ
−1
j ∇aaa j +

1
2

∇bbbT
j ΣΣΣ
−2
j ∇bbb j

]
(3.28)

In this expression the differentials are partitioned in the natural way

∇aaa j
def
= [∇aaa](( j−1)n f+1:( j−1)n f ,:) (3.29)

with a similar expression for ∇bbb j. One can further simplify the computations by exploiting
the natural boundaries in the parameters. To do this, begin by writing

∇·=
[

∇vvv(·) ∇ααα(·) ∇ccc(·) ∇σr(·)
]

(3.30)

from which it follows that

∇aaa =−




CCCT
v

CCCT
α

CCCT
c1

CCCT
c2

CCCT
c3

CCCT
c4

000T
Jn f×1




T

∇bbb = c3




CCCT
v

CCCT
α

CCCT
c1

CCCT
c2

2CCCT
c3

000T
Jn f×1

2σr
c3

CCCT
c4




T

(3.31)
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Combining this result with the separability along the frame boundaries allows one to write

CCCv
(Jn f×nv)

= diag
({

c1c3∇v j

(
HHH j
)

fff
}J

j=1

)
(3.32)

CCCα
(Jn f×nα)

= vec
({

c1c3∇α
(
HHH j
)

fff
}J

j=1

)
(3.33)

CCCc1

(Jn f×1)
= vec

({
c3HHH j fff

}J
j=1

)
(3.34)

CCCc2

(Jn f×1)
= c3111Jn f (3.35)

CCCc3

(Jn f×1)
= vec

({
c1HHH j fff + c2

}J
j=1

)
(3.36)

CCCc4

(Jn f×1)
= 111Jn f (3.37)

Note that Equation 3.28 may be interpreted as weighted inner-products of these terms. By
exploiting their commonality, the data component of the Fisher information matrix can be
computed using scalar multiples of inner-products taken over only 9 unique terms, plus the
ones vector. The relationship between these terms and the necessary blocks within the FIM
is given in Figure 3.3. By constraining the number of times a constituent term of the CRB
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Figure 3.3: Connectivity of the bipartite graph relating FIM blocks to is underlying sufficient
statistics

may enter/exit memory, one can reduce the overall memory footprint to around 10 times
that of the Nyquist sampled object size. The result of this optimization is the prescription
for computing the FIM in the 3 stages shown in Figure 3.4 and implemented in the file
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Figure 3.4: Graphical description of the computational stages used to compute the FIM in
a memory efficient fashion. Each computational stage is represented as a bipartite graph
between the FIM terms (blue), and the terms sufficient for its calculation (black). The
transition of an items color to green indicates it is no longer needed for future calculations.

By numerically evaluating the FIM, one finds that the problem of wavefront estimation
using the proposed model is well-posed under reasonable imaging conditions. Furthermore,
the CRB suggests that the PSF can in theory be estimated with great accuracy.
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3.5 Bias Sensitivity

Using the Uniform Cramér-Rao bound (CRB), this section establishes that the implicitly
defined estimator given by (3.8) both reliable, and essentially unbiased, with a bias sensitivity
index less than 1×10−3. While asymptotically unbiased, the use of a finite-size observation
ensures that any non-trivial estimator will incur some bias over any single experiment. Given
such an estimator, small, otherwise insignificant biases, can result in the unbiased CRB
being an unreliable measure of overall performance [177]. In this section we apply the
uniform Cramér-Rao bound, and its associated bias-sensitivity index [94, 95], to establish
that the unbiased CRB derived in Section 3.4 is a reliable predictor of estimator performance.
The validity of these findings are further confirmed through a direct Monte-Carlo study of
the proposed estimator’s bias and variance described in Section 3.8.

The uniform CRB provides a way to study the reliability of the unbiased CRB in the
presence of a small estimator bias. Given an observation ddd, whose probability density
function fD(ddd;θθθ) is a function of a vector-valued unknown θθθ , let ŷ = ŷ(D) be an estimate of
some function of interest yθθθ : ΘΘΘ 7→ R. The squared error of this estimator can be described
through its bias bθ = Eθ [ŷ]− yθθθ , and variance σ2

θθθ = Eθθθ

[
(ŷ−mθθθ )

2
]
, where mθθθ = Eθθθ [ŷ].

The bias-variance plane, however, is not a particularly useful description of estimator
performance because for a given θθθ one can always define an estimator whose bias and
variance are simultaneously zero. Furthermore, the ensemble average of an estimator’s bias
over ΘΘΘ may be non-zero. This fixed component can be corrected without knowledge of
θθθ , and thus does not fundamentally contribute to overall performance. For these reasons,
Hero [94] suggests the use of the uniform CRB and its associated δσ -plane description of
estimator error.

The δσ -plane describes estimator performance through a bound on the length of the
bias-gradient δθθθ = ‖∇bθθθ‖CCC ≤ 1, and the square root variance σθθθ =

√
σ2

θθθ . The bias-gradient
length is defined with respect to a symmetric, positive-definite matrix CCC that permits one
to define ellipsoidal neighborhoods consistent with expected parameter variation. This
length is unaffected by a fixed bias, and for an estimator whose Fisher information matrix is
guaranteed to exist, uniquely specifies the unremovable component in the local neighborhood
of the parameter of interest up to an additive constant. For this reason, it is a more direct
measure of the error trade-off we wish to study. Furthermore, when the Fisher information
exists, the uniqueness of the bias-gradient as a descriptor of the unremovable bias component
depends only on the differentiability of bias gradient. This quantity is always differentiable
so long as the raw second moment of the estimator Eθθθ

[
ŷ2] is finite ([100] Lemma 7.2), thus

the approach is very broadly applicable.
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The widely known unbiased version of the Cramér-Rao bound [41, 70, 153] extends nat-
urally to accommodate the biased estimator ŷ of yθθθ [192]. Let JJJYYY be the Fisher information
matrix (FIM) associated with the parameters of interest, then

σ2
θθθ ≥ [∇mθθθ ]

T JJJ−1
YYY [∇mθθθ ] (3.38)

= [∇yθθθ +∇bθθθ ]
T JJJ−1

YYY [∇yθθθ +∇bθθθ ] . (3.39)

For the remainder of this discussion the FIM is assumed to be positive definite; however,
this result can be further generalized to accommodate singular information matrices [95].
The primary limitation of this result is that it depends on the entire bias gradient, and one
rarely has prior knowledge of this quantity. The uniform Cramér-Rao bound [94] extends
these ideas by allowing one to study estimator reliability in the δσ plane. The bound applies
uniformly over a neighborhood delineated by the norm of the bias gradient, and provides a
direct approach for accessing bias sensitivity.

Consider the bias sensitivity of any individual aberration parameter. To ease the exposi-
tion, assume without loss of generality that this is the first element in the vector of unknowns
θθθ 1. Let bbb1 be the bias vector associated with this parameter, and eeei the indicator vector
associated with the ith element. Then plugging into (3.39) one gets the following variance
bound in terms the bias gradient

Varθθθ

[
θ̂θθ 1

]
≥ [eee1 +∇bbb1]

T JJJ−1 [eee1 +∇bbb1]︸ ︷︷ ︸
Bb1(θθθ)

(3.40)

≥ min
bbb1:‖∇bbb1‖CCC≤δ

Bb1(θθθ) (3.41)

≥ min
ddd:‖ddd‖CCC≤δ

[eee1 +ddd]T JJJ−1 [eee1 +ddd]
︸ ︷︷ ︸
Bbbb1(θθθ ,δ )

. (3.42)

Notice that Bbbb1(θθθ ,0) is by definition the unbiased CRB, and thus the relative improvement
attainable by a biased estimator subject to the bias-gradient constraint is given by

∆Bbbb1(θθθ ,δ ) =
Bbbb1(θθθ ,0)−Bbbb1(θθθ ,δ )

Bbbb1(θθθ ,0)
. (3.43)

As such, this quantity is a direct measure of the bias sensitivity of the unbiased CRB. For any
particular θθθ and δ ≥ 0,

√
Bbbb1(θθθ ,δ ) bounds the achievable estimator error. An estimator

that achieves this bound can only reduce its variance at the cost of an increased bias gradient
and visa-versa. The slope of Bbbb1(θθθ ,δ ) evaluated at δ = 0 is known as the bias sensitivity
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index [94]. Large values of this quantity indicate that the unbiased CRB is not a reliable
predictor of estimator performance even when the estimator’s bias is small.

Computation of the uniform CRB, and the associated bias sensitivity index, depends
upon solutions to the constrained quadratic optimization problem described in (3.42). Fig-
ure 3.5 illustrates the minimizing vector dddmin geometrically in terms of the unique point of
intersection between the contour where the bias-gradient norm achieves its limit δ and the
associated contour of the quadratic such that the gradients of these contours are collinear
with opposing signs. Solving for this point algebraically using the method of Lagrange

d1
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Q(d)
def
= [e1 +d]T J�1 [e1 +d]
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Figure 3.5: A plot of constant contours of the quadratic objective function and associated
maximum bias-gradient constraint involved in computing the uniform CRB.

multipliers one finds

dddmin(λ ) =−CCC−1
[
CCC−1 +λJJJ

]−1
eee1 (3.44)

λ :dddT
min(λ )dddmin(λ ) = δ 2 (3.45)

Recall that dddmin is the bias-gradient that minimizes the biased CRB over all bias vectors
satisfying the constraint ‖∇bbb1‖CCC ≤ δ . It follows immediately that the associated bound is
given by

Bbbb1(θθθ ,δ ) = [eee1 +dddmin]
T JJJ−1 [eee1 +dddmin] . (3.46)

A more computationally efficient form of the couple equations (3.44)-(3.45) is derived
in terms of the eigendecomposition of the inverse Fisher information matrix relative to
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CCC. Following [95], let BBB = CCC−
1
2 FFF−1CCC−

1
2 with ξξξ i and βi an associated eigenvector and

eigenvalue pair. Then one can sweep out the uniform CRB curve
(
δ ,Bbbb1

)
in terms of λ by

evaluating

δ 2 =
n

∑
i=1

β 2
i

(λ +βi)
2

∣∣∣eeeT
i CCC

1
2 ξξξ i

∣∣∣
2

(3.47)

Bbbb1(θθθ ,δ ) =
n

∑
i=1

λ 2βi

(λ +βi)
2

∣∣∣eeeT
i CCC

1
2 ξξξ i

∣∣∣
2
. (3.48)

Evaluating the uniform CRB for the defocus parameter of an optical system whose
total aberration strength is 0.25 WRMS based on data collected on a detector that is 2.5
times undersampled in each linear dimension, one finds that the unbiased CRB estimate
is a reliable predictor of overall estimator performance. Figure 3.6 shows the uniform
CRB computed from the expressions (3.47)-(3.48). Note that the unbiased CRB is given
by the intersection of the bound with the y-axis, and the associated bias sensitivity is the
gradient evaluated at this point (less than 1×10−3). This suggests that the overall estimator
uncertainty will not be sensitive to small biases. This conclusion is confirmed through direct
measurement of the estimator bias based on a larger ensemble of simulation experiments is
described in Section 3.8.
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Figure 3.6: Uniform CRB for the defocus parameter of a system with an overall aberration
strength of 0.25 WRMS based 6.25 times undersampled data.
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3.6 Identifiability

The estimation problem proposed in (3.8) in terms of a non-linear optimization prob-
lem is non-identifiable. This identifiability problem is related to the fact that globally

the log-likelihood function does not provide a one-to-one map between possible system
parameterizations and likelihood values given an observation despite the fact that locally the
Fisher information matrix is not singular. The proposed formulation almost always results
in a positive definite Fisher information matrix implying that locally the estimation problem
is well behaved. Globally, however, there exist alternative parameterizations associated with
any local minima of the negative log-likelihood function with equal likelihood. Given a
sufficiently ambiguous calibration target (e.g. a checker board), ambiguities will clearly
enter through the perspective parameters vvv. This ambiguity is well understood, and generally
found not to be an issue in practice [21, 46, 101]. The mapping between a wavefront
description of a sensor’s blur and its PSF is a non-injective surjective function. This implies
that the sub-problem of estimating only blur through a wavefront-parameterization is itself
non-identifiable. The remainder of this section addresses identifiability with respect to these
parameters. It is shown that the specific problem of interest is set-identifiable, and that the
cardinality of this set is at most 2. This set is also characterized such that given either of the
two optimal solutions, the other can immediately be identified.

Phase retrieval, the recovery of a function from the modulus of its Fourier transform,
has 3 types of ambiguities collectively known as the trivial associates [160]. Recovering
a blur’s wavefront description from intensity measurements is a type of phase retrieval
problem known as wavefront sensing [65], and generally this body of literature in interested
in solutions outside this set. Using the PSF description given by (2.10) and (2.13), if
C(www) = A(www)e jΨ(www) is a wavefront sensing solution then the trivial associates are given by

1. c1C(www) s.t. c1 ∈ C, |c1|= 1

2. C∗(−www)

3. C(www+∆∆∆) s.t. ∆∆∆ ∈ R2, supp[C(www+∆∆∆)] = supp[C(www)].

For a Zernike basis description of the wavefront’s phase (2.39)-(2.41), the first trivial
associate corresponds to the span of Z0

0 . Knowledge of this Zernike coefficient is equivalent
to knowledge of the phase of the received light, and for this reason it is typically omitted
when estimating blur. The second trivial associate represents a rotation of the phase-screen
by 180◦, and this introduces at most one additional wavefront solution when the even part
of the phase-scene is non-zero. The third trivial associate does not introduce alternative
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solutions due to the support constraints imposed by the physical aperture. Thus wavefront
estimation from a single intensity measurement is set-identifiable only up to a set of at least
two.

Aside from the trivial associates, 2D phase retrieval is known to be essentially unique
[92, 160]. Hayes showed that outside of this set, discrete phase retrieval problems of
dimensionality ≥ 2 are essentially unique, and gave a complete description of the measure
zero set of alternate solutions. Sanz [160, 161] provides a similar theorem for the continuous
problem, although in this case, a complete characterization of the alternative space of
functions remains elusive.

The present application requires estimation though a computer simulation of the forward
model, and thus the results of Hayes ensure identifiability up to a set of cardinality two
with probability 1. This result, however, is asymptotic in the sense that the definition
of identifiability does not account for the uncertainty inherent in estimation from a finite
collection of noisy measurements. For the practitioner, a more relevant question is the
detectability of convergence to a local rather than global solution. In chapter IV, this
problem is directly addressed through the development of a global estimation procedure.
Simulation experiments suggest that global convergence is achievable under the SNRs
consistent with a well lit calibration object (see Figure 4.16), and global convergence is also
demonstrated through experimental results.

3.7 Calibration Target Construction

The proposed inverse-problem approach for blur estimation is agnostic to the specific
calibration target used, however, this does not imply that all targets result in data containing
the same level of information regarding the unknowns. In this section a novel, self-similar,
calibration target is proposed which yields highly-informative calibration data over a wide
range of imaging geometries. In addition to the targets many convenient properties, the
previously derived Cramér-Rao bound is used to demonstrate that this new target is funda-
mentally more informative than commonly used calibration objects. In doing so, this section
also illustrates how the CRB can be applied to check the information of existing objects.

A Sierpinski pre-carpet [5] is proposed as a calibration target because of its scale
invariance and large spectral support. These two properties ensure a large spatial-bandwidth
over a broad range of imaging geometries. This strictly self-similar fractal target is composed
of white squares on a black background, and is the natural analog to the cantor set over a 2D
plane. Beginning with a black square (the support of the final target), a white square of 1/3

its side-length is removed from the center. This process is then repeated for each remaining
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black square, and the result of each such iterate is a Sierpinski pre-carpet of order n. An
example of an order 4 pre-carpet is shown in Figure 3.7. Such a target maintains the sharp

Figure 3.7: Sierpinski pre-carpet of order 4

edges, corners, and large flat regions desired by many practitioners, while also providing a
uniform and nearly scale invariant power-spectrum. The target enables superior estimation
performance relative to traditionally used objects, and is relatively insensitive to imaging
geometry. A further benefit of this calibration target is that it is constructed over a low-rank
Haar basis. Modern computer displays use this same basis, namely square pixels, making
the target ideally suited for projection from digital displays. An example of estimation using
data collected this way is given in Section 3.8.

The physical size of the target best suited for calibration is determined by the optical
resolution of the sensor along with the minimum available feature size. Assuming a circular
aperture, the diffraction limited PSF is given by a Bessel function of the first kind. Mapping
this into a discrete representation of the image plane, the distance between nulls in the PSF
is given by 2z1RN , where z1 is the first positive zero of J1(x), and RN is the ratio of sensors
sampling to the Nyquist rate. Defining the minimal “printer” resolution as Pres one can solve
for the minimal supported imaging range

z1
λ
D

Rmin =
1

Pres
=⇒ Rmin =

D
z1λPres

(3.49)

This minimal range is valid for an arbitrary target, however, the pre-carpets are only defined
for integer orders. Assuming one desires to image the entire object, this places an additional
restriction on the minimal range. The pre-carpet order is related to the number of elements
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via

3N = # elements (3.50)

Nmax = log3 # elements (3.51)

= log3

(
ppDminSd

z1λ fL

)
(3.52)

where Sd represents the size of the detector (a 2 element tuple), and Nmax is not yet restricted
to Z+. Adding this restriction results in the updated (restricted) expression for Rmin

Rmin =
2D

z1λPres
exp [ln (3)(Nmax−bNmaxc)] , (3.53)

where bNmaxc is then the maximum pre-carpet order supported by both the object medium
and the optical system. The maximum experiment range is then only limited by ones ability
to generate large targets, and desire to fill a substantial portion of the field of view.

Other benefits aside, Sierpinski pre-carpets are a fundamentally a better choice for
system identification than traditional objects due to their increased information content
relative to the unknown blur parameters. To demonstrate this, consider a monochromatic
optical system is simulated with 0.15 waves of wavefront aberration. The incoming light
is sampled by a 228×228 focal-plane with a 60% quantum efficiency that under-samples
the impinging wavefront by a factor of 2. Overall, the sensor averaged 1 count for every
41 photons received, and had a sensor bias of 18 counts. Two such frames were used to
exercise the multi-frame formulation, however, similar performance is observed with single-
frame data given a commensurate increase in signal level. The read noise was adjusted
to achieve the desired SNR, which was defined as the expectation over the image of the
standard deviation of noise free signal divided by the aggregate standard deviation of the
noise (read + Poisson). The two frames differed by 5% in magnification, 5◦ of rotation,
and had small perspective and translational misalignments. The information content of
an order 5 Sierpinski pre-carpet is compared to the more tradition tri-bar target shown in
Figure 3.8. The read-noise was used to vary the overall quality of the data, and Figure 3.9
shows the wavefront-error lower bound vs noise level for each of the two targets. This plot
illustrates that other things being equal, the Sierpinski target provides more information
toward estimating the unknown parameters, however, the informational difference between
the two calibration objects is small. This experiment also demonstrates how the forward
imaging model and CRB formulation can be used to evaluate the informational content of
any proposed calibration target to ensure that it is sufficient for a particular estimation task.
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Figure 3.8: Standard tri-bar target
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3.8 Simulation Experiments

Simulation experiments were performed to compare performance of the proposed esti-
mator in the neighborhood of the true solution to the information-theoretic limits defined by
the Cramér-Rao bound. Results of these experiments are also used to study the estimators
bias. Given a matched model, and assuming convergence to the neighborhood of the true
solution, the proposed estimator is shown to be within 2dB of the CRB. It is also demon-
strated that under typical imaging conditions, even modest data sizes result in a negligible
amount of estimator bias. Finally, a the bias-gradient and Fisher information matrix are
used to construct an improved estimator. Such estimators, however, are shown not provide a
substantial improvement in estimated wavefront accuracy.

Data was generated from the model given by (3.1) over a range of SNR’s. For all
experiments, the wavefront aberration strength was 0.25 WRMS, and the detector was
2.5 times undersampled in each linear dimension. The SNR, defined here to the standard
deviation of the noise-free scene divided by the standard deviation of the total noise, was
adjusted by increasing or decreasing read-noise levels. An order 5 Sierpinski carpet was
used as the calibration target, and for this object the lighting environment and exposure times
were such that approximately 2.05×105 photons were received per pixel. The detector gain
and offset were chosen so that the final recorded data was centered, and filled 70% of a
typical 8-bit dynamic range. These gain and offset parameters resulted in an expectation of
approximately 2000 photons/count. Figure 4.15 shows the true object alongside a sequence
of data frames at varying SNRs generated under these conditions. Figure 3.11 shows the
total RMS estimator error and bias compared to the Cramèr-Rao bound when the estimator
is started in the neighborhood of the true solution. The Marèchal criterion, the level of
RMS wavefront aberration where a system can reasonably be considered diffraction limited
[18, 123], is also shown as a point of reference. From these two plots one can conclude
that when global convergence is achieved, the estimator is nearly unbiased, and achieves a
total RMS error within approximately 2dB of the Cramèr-Rao bound. This level of error
corresponds to wavefront estimation errors on the order of 1×10−3 WRMS under model
matched conditions.

The near unbiasedness of the estimator was also quantified though calculations of the
bias sensitivity index associated with the uniform Cramèr-Rao bound [95]. Under moderate
lighting conditions, the measured bias sensitivity index was of the order of 1×10−4, and
while use of the bias-gradient direction in conjunction with the Fisher information matrix
did lead to a biased estimator with lower overall MSE, these improvements correspond to
less than 1×10−4 WRMS of phase error.
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Figure 3.10: The true object (a) is shown alongside a series of data frames generated with
all parameters fixed other than the SNR. The read-noise standard deviation corresponding to
(b)-(d) were 0.68, 1.41, and 7.15 counts respectively.

3.9 Conclusions & Ongoing Work

A joint-estimation algorithm is presented that for robust system identification from under-
sampled and misaligned data in loosely controlled environments. Despite the relatively large
body of literature regarding the use of calibration targets for this purpose, to the author’s
knowledge this is the first time information-theoretic lower bounds have been computed
for this problem over such a complete model. These bounds suggest that the problem is
“solvable”, to the accuracies needed by modern restoration approaches, if one is able identify
the neighborhood of the true solution. Simulation results show that under a matched model,
the proposed technique is able to recover the wavefront to within 2dB of the CRB under
moderate SNR conditions.

Studies regarding the sensitivity of this method to model mismatches are still ongoing.
Shortly after the failed attempt to compare the proposed technique to wavefront interfero-
metric measurements (see Figure 3.1), a simpler differential experiment was performed. In
this experiment an iPad 2’s rear-facing camera was used to collect two sets of data, each
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Figure 3.11: Total wavefront estimation error (a) and bias (b) shown as a function of SNR
for initial estimates within 0.01 waves RMS of the true 0.25 wave RMS perturbation.

containing an order 5 pre-carpet displayed on an LCD screen. The two datasets differed by
a near 90◦ rotation of the sensor, and estimation was independently performed over each
dataset without use of this prior information. 55 Zernike polynomials, excluding the piston,
tip, and tilt were used to describe the optical wavefront. Based on the aperture diameter and
detector size, the sensor was estimated to be sampled just under half the Nyquist rate at a
wavelength of 550 nm. The band was assumed to be 100 nm wide with uniform sensitivity.
One of the collected frames is shown in Figure 3.12, and the resulting wavefront estimates
are shown in Figure 3.13. The overall wavefront errors were estimated to be 0.072 and 0.076
waves respectively, with defocus and spherical errors dominating the wavefront. This is
consistent with a well calibrated device containing an anti-aliasing filter. The asymmetrical
terms were consistent with the rotation of the device, and after registration, the residual
difference between the two estimates was around 0.01 of a wavelength. While this experi-
ment cannot speak to the absolute accuracy of the method, the results are consistent with
the predicted outcomes. Like many small mobile devices, the iPad also JPEG compresses
collected imagery before saving it to memory. This experiment was performed over the
compressed data, suggesting at least some level of robustness to this mismatch. These very
encouraging results motivated the improvements given in the next chapter, as well as the
development of a more definitive hardware experiment.
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Figure 3.12: Example data-frame collected with iPad 2
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Figure 3.13: iPad2 wavefront estimates
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CHAPTER IV

Point Spread Function Identification Under Large
Aberrations

4.1 Introduction

The maximum likelihood estimator (3.8) is stated in terms of an optimization problem
over the likelihood function, which in our case is a non-convex function. Gradient descent
techniques can result in convergence to stationary points that are local, but not necessarily
global, optima. This challenge arises because two relatively large wavefront aberration
descriptions can result in a set of Point Spread Functions (PSFs) that are similar when
viewed on the scale of the detector’s sampling element. Given a sufficiently large set of
wavefront aberrations, two PSFs with similar diffusion patterns can have disparate wavefront
descriptions. As a result, one cannot expect the true solution to lie within the basin of
attraction of an aberration-free system. This problem could be addressed using global
optimization strategies, but such approaches are rarely applied to high-dimensional problems
because of the severe computational demands. This chapter develops a new strategy for
identifying globally optimal solutions that is compatible with standard gradient-descent
techniques. The efficacy of this approach is demonstrated through both simulation and
hardware experiments.

Section 3.6 established that the ML estimator contains at most 2 optimal solutions,
but the non-convexity of (3.8) potentially admits additional local minima. Given a PSF h,
described through its phase-screen Ψ, there exist alternative solutions of the form Ψ̃=Ψ+β
that result in a PSF h̃ with dispersion characteristics similar to h despite the fact that β is not
small. The simplest example of this phenomena is the linear shifting of the PSF when β is in
the span of the Zernike basis functions Z−1

1 and Z1
1 . Such translations are indistinguishable

from those represented by v1 and v2 in (D.3), and for this reason, these basis elements are
typically removed when performing wavefront estimation. For higher-order aberrations,
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this concept was described by Maréchal [123], and its use in optical design is known as
aberration balancing [121]. Unsurprisingly, when Ψ describes a wavefront corresponding to
a global minimum of (3.8), this phenomenon often leads to multiple stationary points.

In Section 3.8 simulation experiments were used to compare estimation performance
in the neighborhood of the true solution to the Cramér-Rao lower bound. By repeating
this same experiment, but starting the solver from an aberration-free system description
rather than the true solution, one is able to confirm the existence of the aforementioned
local minima immediately. In fact, with an optical aberration strength of 0.25 WRMS, the
gradient-descent solver converges to a stationary point other than one of the two global
optima 96% of the time. Figure 4.1 illustrates an example of this phenomenon from the
demonstration software available with this thesis. In this example, the true aberration
strength is 0.25 WRMS, the identified local minima of the log-likelihood corresponds to an
aberration strength of 0.18 WRMS, but the wavefront estimate at this local minima remains
0.19 WRMS from the true solution despite resulting in a PSF with a structure similar to the
true solution. The existence of such stationary points poses a substantial challenge to the
development of practical wavefront estimation techniques.
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Figure 4.1: A local minima of the log-likelihood that corresponds to a wavefront solution
0.19 WRMS from the true solution despite its associated PSF having a similar dispersion
structure. The PSFs are shown on a grid upsampled 10X relative to the Nyquist-rate of the
detector.

This chapter addresses this challenge through an improved test for convergence of the
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log-likelihood to suboptimal stationary points, as well as a technique for identifying alternate
aberration descriptions that are dissimilar in the wavefront domain while resulting in PSFs
with a similar dispersion structure. The improved test is based on an improvement to a
global maximum validation function proposed by Biernacki [13], and is shown to uniformly
improve upon this test when the statistical distribution of the data is in the generalized
location family. In addition, a new reparameterization and embedding procedure is presented
that exploits knowledge about the forward operator to further improve this global maximum
validation function. Given a stationary point of the log-likelihood believed to be a local
rather than global optimum, new candidate wavefronts are chosen from a precomputed set
of perturbations that optimizes a point-wise minimax criterion over the resulting incoherent
PSF. The result is an application-specific strategy for identifying global optimum, and
the efficacy of this approach is numerically demonstrated in terms of increased detection
accuracy and reduced computation. Figure 4.2 provides an overview of the resulting global
optimization strategy.

Identify Locally 
Optimal Solution

q0initial
estimate

Test for Local 
Minima

q̂ rejected
Stop

Identify Alternate 
Candidate Solution

acceptedq

Figure 4.2: Diagram illustrating how a test for suboptimal solutions can be used in conjunc-
tion with an approach for identifying alternative candidates to perform global optimization.

4.2 Testing for a Local Optimum of the Likelihood

The construction of improved tests for convergence to a local optimum of the likelihood
is first studied in the general setting of maximum likelihood parameter estimation from
multiple samples from a distribution that is in a known parametric family. The conceptual
simplicity and tractability of the Maximum Likelihood (ML) principle have engendered
its use for well over a century, yet questions surrounding its practical application remain
open. Fisher [68] was an early advocate of the ML approach and is generally credited
with its development despite earlier work based on similar concepts. Stigler [176] provides
an excellent historical account of the theory’s maturation throughout the nineteenth and
twentieth centuries. The local asymptotically normal theory for parametric models largely
ended with the work of Le Cam (c.f. [110], ch. 6), yet the application of the approach to
non-convex models can still result in computational difficulties. Standard asymptotic theory
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ensures that under relatively mild conditions there exists a unique consistent root to the
gradient of the log-likelihood [42, 197], and that this root will occur at the global optimum
of the likelihood function [197]. The natural question then becomes, how one can identify
consistent roots of the likelihood?

There exist general-purpose algorithms to address this question, e.g., simulated annealing
and genetic algorithms. However, these algorithms are rarely applied to high-dimensional
problems because of severe computational demands [6, 7, 166]. Stationary points of the
gradient of the likelihood function can be readily found using iterative root-finding methods
such as Quasi-Newton gradient descent [135]. Once a stationary point is located, it would be
useful to have a simple test to determine whether or not it is global optimal without knowing
the maximum value of the likelihood function. Several such tests have been proposed for
this purpose [13, 14]. In this chapter, the focus is on testing local optima of the likelihood
function for high dimensional inverse-problems occurring in signal processing and imaging
applications.

Assume that the data ddd is a realization of the random vector DDD having a parametric
density f (ddd;θθθ 0), where θθθ is an unknown parameter vector taking values in a subset Θ

of Rp and ddd takes values in the sample space D . We define θθθ 0 as a fixed value, called
the true value, of the parameter vector and for a function X of DDD define the statistical
expectation Eθθθ 0 [X ] =

∫
X(ddd) f (ddd;θθθ 0)dµ(ddd) . Assume that f is differentiable in θθθ and

that the Fisher information matrix Eθθθ 0[(∇ln f )(∇ln f )T ] exists. Given independent and
identically distributed observations {ddd1, . . . ,dddn} the log-likelihood function is

`(ddd;θθθ) =
1
n

n

∑
k=1

ln f (dddk;θθθ) , (4.1)

and the maximum likelihood estimator (MLE) is the global minimum

θ̂θθ Global = argmin
θθθ∈ΘΘΘ

−`(ddd;θθθ) . (4.2)

An estimator θ̂θθ is said to be consistent (statistically consistent in norm) when

lim
n→∞

Eθθθ 0

[∥∥∥θ̂θθ(ddd)−θθθ 0

∥∥∥
2
]
→ 0 (4.3)

In the problems of interest, the global minimum is unknown and only a local minimum
θ̂θθ is available, which is not necessarily equal to θ̂θθ Global. For example, the local minimum
could be the convergent limit of a gradient descent algorithm. Then, given θ̂θθ , the local

86



minimum testing problem is to decide between the two hypotheses

H0 : θ̂θθ = θ̂θθ Global vs. H1 : θ̂θθ 6= θ̂θθ Global. (4.4)

A test between H0 and H1 is defined as a binary valued function φ : D→{0,1} that maps
the data sample ddd to 0 or 1, indicating the decision H0 or H1, respectively. For a given test
function φ , a test statistic is any scalar function of the data φ(ddd). The accuracy of a test is
measured by its probability of false alarm PFA=Eθθθ 0[φ |H0] and its probability of detection
PD=Eθθθ 0[φ |H1]. If for two tests φ1 and φ2 having identical PFA, the PD of φ1 is greater than
the PD of φ2, then φ1 is said to be more powerful than φ2.

Many approaches to the general hypothesis testing problem (4.4) have been studied
over the years. Blatt and Hero [14] present the historical context which is summarized here.
The likelihood ratio test [203], Wald test [196], and Rao score test [154] are asymptotically
equivalent tests as the number n of samples approaches infinity. The likelihood ratio and
Wald tests require the distribution under H0 to be known, which for (4.4) requires knowledge
of the true parameter. On the other hand, the Rao score test, later independently discovered
and popularized under the name Lagrange multiplier test [170], can be implemented when
the true parameter is unknown. Rao’s test measures the Euclidean norm of the score function
sss(θθθ) = ∇θθθ `(ddd,θθθ) weighted by the inverse Fisher information evaluated at a local maximum

ξR = 1
psss
(

ddd, θ̂θθ
)T

FFF−1
(

θ̂θθ
)

sss
(

ddd, θ̂θθ
)

. Gan and Jiang [71] propose a similar test for consistency
of a stationary point of the likelihood based on White’s information test [202]. White’s
original work was concerned with testing for model misspecification under the assumption
that the global maximum of the likelihood function had been located, and Gan uses the same
test statistic but in the converse situation.

The Rao test may be used to test for consistency of a local maximum of the log-likelihood
function. Unfortunately, Monte Carlo experiments indicate that this test is not very powerful
even in the univariate setting. Biernacki [13] suggested an improved test for the consistency
of a stationary point following ideas presented by Cox [38, 39]. Biernacki’s test uses a
bootstrap estimate to directly compare the observed value of the locally maximized log-
likelihood to its statistical expectation. Both the Rao score and the Biernacki tests fall under
the more general M-testing framework described by Blatt and Hero [14] where additional
types of tests of local maxima are proposed.

4.2.1 A Simple Motivating Example

It is useful to illustrate the testing of local optima of the log-likelihood through a simpler
inverse problem. Let ddd be data measured from a forward model with mean response µµµ(θ)
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and i.i.d. additive Gaussian noise ε of variance σ2:

ddd = µµµ(θ)+ ε s.t. ε ∼N
(
000,σ2III100×100

)
. (4.5)

The unknown true value of µµµ(θ0) is a vector of time samples of a sinusoidal signal

µµµ(θ0) = sin(θ0xxx), θ0 = 3π (4.6)

xxx =
1

99
[0, 1, · · · , 99]T . (4.7)

We suppose that it is known a priori that µµµ is in the signal class C= {µµµ : µµµ = sin(θxxx) ,

θ ∈ [0, 4π]}. The maximum likelihood estimator is then the solution of the constrained
optimization problem

θ̂Global
def
= argmin

θ∈[0,4π]
‖µµµ(θ)−ddd‖2 (4.8)

The constraint set C is a 1-dimensional manifold parameterized by θ , and thus the objective
function ‖µµµ(θ)− d‖2 has sub-optimal local minima in addition to a global minimum.
Figure 4.3(a) shows two of these local minima for the case that the noise variance σ2 is
zero. The blue curve in Figure 4.3(a) is the global minimum, which is the true signal, and
the dotted red curve is another local minimum. Figure 4.3(b) shows the corresponding data
observation ddd for realizations of these two signals when the noise variance is σ2 = 1. The
perceptual similarity between these two realizations illustrates the potential difficulty of
distinguishing a sub-optimal local minimum from the global minimum. This situation is
a straightforward analog of the more complex optical inverse problem of interest. It was
chosen because it simply illustrates the issue at hand while providing a challenge comparable
to that encountered in the aforementioned inverse-imaging problem (c.f. 3.8).

4.2.2 1-sided Biernacki Test

The key to testing a local minimum of the likelihood function is to define a suit-
able global maximum validation function whose statistical distribution changes depending
on whether the local minimum θ̂θθ is global or not [14]. Define the validation function
ϕ
(

ddd, θ̂θθ
)

def
= `
(

ddd, θ̂θθ
)
−Eθ̂θθ

[
`
(

DDD, θ̂θθ
)]

. Under the null hypothesis H0, where θ̂θθ = θ̂θθ Global, the

distribution of ϕ
(

DDD, θ̂θθ
)

will have approximately zero mean. For an i.i.d. data sample
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Figure 4.3: (a) The true signal achieving global minimum (blue solid) and signal achieving a
sub-optimal local minimum (red dotted) of the likelihood function (4.8) when noise variance
σ2 equals zero. (b) The measured data when the noise variance is σ2 = 1.

DDD1, . . . ,DDDn Biernacki showed the asymptotic result ([13], Theorem 2) under H0:

1√
n

n

∑
t=1

ϕ
(

DDDt , θ̂θθ
)

D→N(0,Var[`(DDD1,θθθ 0)]) , (4.9)

where Var[`(DDD1,θθθ 0)] is the variance of the log-likelihood function for a single data sam-
ple (n = 1). Overloading the notation by designating the entire n data samples by DDD =

{DDD1, . . . ,DDDn}, this Gaussian limit motivates us to define test

(
`
(

DDD, θ̂θθ
)
−Eθ̂θθ

[
`
(

DDD, θ̂θθ
)])2

Varθ̂θθ

[
`
(

DDD, θ̂θθ
)]

H1

>
<
H0

η , (4.10)

where η is a threshold selected to fix the false alarm probability equal to a suitably small
number α ∈ [0,1]. Under local asymptotically normal (LAN) conditions on the likelihood
function [114] θ̂θθ P→ θθθ 0 (a.s.) and the test statistic on the left hand side of (4.10) has an
approximately Chi-Square distribution under H0. Hence η can be selected as the 1−α
quantile of the Chi-square distribution. Biernacki implemented this test by approximating the
mean Eθ̂θθ

[
`
(

DDD, θ̂θθ
)]

and the variance Var[`(DDD,θθθ 0)] using a parametric bootstrap estimator.
The test (4.10) is called a two-sided test as it can be equivalently expressed as

−
√

Varθ̂θθ

[
`
(

DDD, θ̂θθ
)]

η ≤ ϕ
(

DDD, θ̂θθ
)
≤
√

Varθ̂θθ

[
`
(

DDD, θ̂θθ
)]

η .

89



This is thus a test for which, as compared to the global minimum θ̂θθ Global, a sub-optimal
local minimum θ̂θθ will cause the test function to undergo a shift in mean, where the shift
could either be in a positive or a negative direction.

If it were known a priori that a sub-optimal local minimum causes a negative shift in
the mean of the global maximum validation function ϕ

(
DDD, θ̂θθ

)
a one-sided test would be

advantageous over a two-sided test. More specifically, a one-sided test would be expected to
have higher power than the two-sided test (4.10) when, for all θ̂θθ 6= θ̂θθ 0,

Eθ̂θθ

[
`
(

DDD, θ̂θθ
)]
≥ Eθθθ 0

[
`
(

DDD, θ̂θθ
)]

. (4.11)

When this condition is satisfied the two-sided test (4.10) can be replaced by the one-sided
test

`
(

DDD, θ̂θθ
)
−Eθ̂θθ

[
`
(

DDD, θ̂θθ
)]

√
Varθ̂θθ

[
`
(

DDD, θ̂θθ
)]

H0

>
<
H1

η1. (4.12)

The intuition behind a one-sided variant leading to an improvement is shown in Fig-
ure 4.4. Under the alternative hypothesis (θ̂θθ 6= θ̂θθ 0), one might intuitively expect that
log-likelihood values computed as part of a correctly specified bootstrap procedure to be
more likely than under an incorrect parameterization. In general, however, this is not the
case. As a counter-example, consider a scalar problem whose incorrect parameterization
(θ̂θθ 6= θ̂θθ 0) causes the presumed likelihood function to concentrate in the neighborhood of the
observation. Such a problem would clearly permit the situation illustrated in Figure 4.4b.
Nevertheless, there are many situations where this intuition is, in fact, correct.

The condition (4.11) is satisfied for many imaging and inverse problems. For example,
consider the case where θθθ is a clean image that one wishes to recover from samples DDD of the
output of an imaging sensor with known point spread function (forward operator) in additive
correlated noise. When the point-spread function (PSF) and the covariance are known, this
model will always satisfy the inequality (4.11), and the one-sided test might be expected
to lead to a better test for local minima. Define θθθ 0 ∈ Rp the vectorized true image to be
recovered, and DDD ∈ Rq the vectorized the image acquired from the camera, which obeys the
model:

DDD = HHHθθθ 0 + ε s.t. ε ∼N(000,ΣΣΣ) , (4.13)

where HHH is a q× p matrix representing the forward operator and ΣΣΣ is the q× q camera
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Figure 4.4: For a one-sided test to improve upon Biernacki’s more general form, the set
of stationary points comprising a problem’s local minima would produce bootstrapped
log-likelihood values like those shown in (a). The somewhat unintuitive situation of an
incorrect model parameterization resulting in smaller log-likelihood values than the true
parameterization is shown in (b). In both figures, the semi-transparent box emphasizes the
fact that the curves are expectations of random functions, and that individual bootstrap tests
will involve variation.

covariance matrix.
To show that (4.11) holds in this case, start with the log-likelihood function for the above

model

`(DDD,θθθ) =− 1
2
(θθθ 0−θθθ)+ ε)T HHHT

ΣΣΣ
−1HHH (θθθ 0−θθθ)+ ε)− 1

2
ln(detΣΣΣ)− q

2
ln(2π) (4.14)

=− 1
2
[(θθθ 0−θθθ)+ ε]T ΣΣΣ

−1 [(θθθ 0−θθθ)+ ε]− 1
2

ln(|ΣΣΣ|)− p
2

ln(2π) (4.15)

=− 1
2

[
ΣΣΣ
−1/2 (θθθ 0−θθθ)+ξ

]T [
ΣΣΣ
−1/2 (θθθ 0−θθθ)+ξ

]
− 1

2
ln(|ΣΣΣ|)− p

2
ln(2π) ,

(4.16)

where ξ ∼ N(000, III). For any value of θθθ , the quadratic form in (4.14) has a non-central
chi-squared distribution with non-centrality parameter λ :

λ = (θθθ 0−θθθ)T HHHT
ΣΣΣ
−1HHH (θθθ 0−θθθ) . (4.17)

The moment properties of the non-central chi-square distribution [107] thus specify the
statistical expectation of the log-likelihood function (4.14) :

Eθθθ 0[`(DDD,θθθ)] =−1
2
(q+λ )− 1

2
ln(detΣΣΣ)− q

2
ln(2π) . (4.18)

The difference Eθθθ [`(DDD,θθθ)]−Eθθθ 0[`(DDD,θθθ)] = λ/2, which is non-negative, establishing that
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(4.11) as claimed. For this example, the unconstrained maximum likelihood estimator of
θθθ is a solution to a convex optimization problem, which is strictly convex when HHH is full
column rank, and thus there will be no sub-optimal isolated local minima of (4.2). As
our simple example in Figure 4.3 illustrated, addition of constraints on θθθ can give rise to
additional local minima.

Below a stronger result is stated that implies the condition (4.11) is satisfied for any
camera model of the form DDD = µµµ(θθθ 0)+ εεε , where µµµ(·) is a possibly non-linear function and
εεε is a possibly non-Gaussian noise as long as its distribution is independent of θθθ 0. This
condition is equivalent to the condition that the distribution f (ddd,θθθ) belong to the generalized
location family of distributions, i.e., for all θθθ ∈Θ

f (ddd,θθθ) = f (ddd−µµµ(θθθ);0) (4.19)

for some function µµµ(·).

Theorem IV.1. Assume that the distribution f (ddd,θθθ) belongs to a generalized location

family. Then the inequality (4.11) holds.

Proof. By definition we have

Eθθθ

[
`
(

DDD, θ̂θθ
)]

=
∫

ln
(

f
(

ddd; θ̂θθ
))

`(ddd;θθθ)dµ(ddd).

Since the distribution is in the location family, it is easily shown that

Eθθθ 0

[
`
(

DDD, θ̂θθ
)]

= E0

[
`
(

DDD, θ̂θθ −θθθ 0

)]

and therefore
Eθ̂θθ

[
`
(

DDD, θ̂θθ
)]

= E0 [`(DDD,0)] ,

where E0[`] denotes Eθθθ [`]|θθθ=0. Consider the expectation of the test function ϕ under the
true model

Eθθθ 0

[
ϕ
(

DDD, θ̂θθ
)]

= Eθθθ 0

[
`
(

DDD, θ̂θθ
)]
−Eθ̂θθ

[
`
(

DDD, θ̂θθ
)]

=
∫

ln




f
(

ddd; θ̂θθ −θ0

)

f (ddd;0)


 f (ddd;0)dµ(ddd)

As ln (x)≤ x−1, the integral on the right can’t exceed zero so that

Eθθθ 0

[
ϕ
(

DDD, θ̂θθ
)]
≤ 0.
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We now return to the simple example presented in Section 4.2.1 to illustrate that the
one-sided test (4.12) gives significant improvement in performance relative to the two-sided
test (4.10) when the distribution f (ddd,θθθ) is in the location family. Figure 4.5 shows the
receiver operating characteristic (ROC) curves for both tests. The ROC of the one-sided
test is uniformly better than the two-sided test since it achieves higher power (PD) for
any level of false alarm (PFA). This example illustrates how one can exploit knowledge
about the nature of the data distribution to implement a better local minimum test. In the
next section, we show how additional improvements in performance can be achieved by
exploiting application-specific information, for example, knowledge of the forward operator
HHH of an inverse problem.
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Figure 4.5: Detection performance of Biernacki’s two-sided test of a local minimum
compared with the one-sided variant for the example problem described by (4.5)-(4.7).
For this example problem the data distribution is in the location family and Thm. 1 applies
leading to significantly improved performance for the one-sided test.
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4.2.3 Reparameterized Embedding

Consider a generalized version of the inverse problem (4.13) with forward model

DDD = µµµ(θθθ)+ εεε,

where µµµ(θθθ) = Eθθθ [DDD] ∈ U is a possibly non-linear forward operator on the parameter vector
θθθ , and εεε is a zero mean noise whose distribution may depend on θθθ . The log-likelihood is
written as `(ddd,µµµ(θθθ)) to emphasizes its dependence on the mean of the data DDD parameterized
by θθθ . We introduce the higher dimensional embedding θ̃θθ ∈ Θ̃ΘΘ and the corresponding
embedded data D̃DD with mean µ̃µµ

(
θ̃θθ
)
= Eθ̃θθ

[
D̃DD
]
∈ Ũ. This reparameterization is defined to be

an embedding in the sense that U⊆ Ũ, and is a relaxation because the embedding directly
implies that

min
θ̃θθ
−`
(
ddd, µ̃µµ

(
θ̃θθ
))
≤min

θθθ
−`(ddd,µµµ(θθθ)) . (4.20)

More generally, the embedding implies a relaxation in the neighborhood of all local minima.
Let θ̂θθ be a local minima of −`(ddd,µµµ(θθθ)), and let S

(
θ̂θθ
)
⊆ Ũ be the connected set containing

µµµ
(

θ̂θθ
)

such that ∀ sss ∈ S, −`(ddd,sss)≤−`
(

ddd,µµµ
(

θ̂θθ
))

. Then the set S contains all connected

points in Ũ that improve upon ` in the neighborhood of θ̂θθ , and we will refer to a minimizer
within this set as ˆ̃θθθ . ˆ̃θθθ is clearly a function of θ̂θθ , however, this dependency is surpressed
in the notation to aid readability. Similarly, let θ̃θθ 0 represent a point in the relaxed space
such that µ̃µµ

(
θ̃θθ 0
)
= µµµ(θθθ 0). It is helpful to think of ˆ̃θθθ and θ̃θθ 0 as unique, however, the

ideas presented here can easily be modified to accommodate a more general case. The
key idea behind using a reparameterized embedding to test for consistency of a root of the
log-likelihood is to monitor the gap

g
(

ddd, θ̂θθ ,Θ̃ΘΘ
)
= `
(

ddd, µ̃µµ
(

ˆ̃θθθ
))
− `
(

ddd,µµµ
(

θ̂θθ
))

, (4.21)

and exploit distributional differences in this quantity to test for H0 : θ̂θθ = θ̂θθ 0 vs. H1 : θ̂θθ 6=
θ̂θθ 0. Notice that (4.21) takes the form of a generalized likelihood-ratio test between the
original parameterization and its relaxation.

Figure 4.6 illustrates this relaxation when viewed relative to the space of expected
measurements. For a relaxation that introduces only a few additional statistical degrees of
freedom, one expects the relaxation to only permit a small improvement in the neighborhood
of the true solution. As before, assume that the Fisher information at θ̃θθ 0 both exists and is
invertible. Then the asymptotic unbiasedness of the MLE, in conjunction with the fact that
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the Fisher information increases proportional to the number of independent observations,
ensures that in the neighborhood of the true solution E

[
µ
(

θ̂θθ 0

)]
= E

[
µ̃
(

ˆ̃θθθ 0

)]
= µ(θθθ 0).

By contrast, no such properties exist in the neighborhoods of the local minima. In fact, the
entire goal of using a relaxation is to alter the local minima structure away from θθθ 0.
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Figure 4.6: The reparameterized embedding leads to a relaxation that permits the ML
estimator θ̂θθ to improve within the set S

(
θ̂θθ
)

. The test for global convergence exploits the

distribution differences in the log-likelihood gap between H0 : θ̂θθ = θθθ 0 and H1 : θ̂θθ 6= θθθ 0.

Figure 4.7 illustrates the relaxation when viewed relative to the log-likelihood function’s
value. The solid and dashed blue lines shown in the foremost plane are the same two
functionals described in Section 4.2.2. The solid green line shows the expectation of the
log-likelihood after relaxation, where this functional is shown on the same domain as the
first two functionals by taking a minimum over the subset of Ũ orthogonal to U. Given a
relaxed parameterization space Θ̃ΘΘ, parametric bootstrap will once again be used to assess
the significance of the observed gap, which immediately suggests the test

g
(

ddd, θ̂θθ ,Θ̃ΘΘ
)
−Eθ̂θθ

[
g
(

DDD, θ̂θθ ,Θ̃ΘΘ
)]

√
Varθ̂θθ

[
g
(

DDD, θ̂θθ ,Θ̃ΘΘ
)]

H1

>
<
H0

τ. (4.22)

Central limit theory can be used to show that the statistic on the LHS of (4.22) converges in
distribution to N(0,1), and thus choosing τ to be the 1−α quantile of the normal distribution
will result in an expected false-alarm rate of α .

The form of the test given by (4.22) is often helpful in approximating the threshold
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corresponding to particular significance level. Wilks’ theorem [203] states that under the null
hypothesis with a large number of measurements, 2g

(
ddd, θ̂θθ ,Θ̃ΘΘ

)
is distributed chi-squared

with a number of degrees of freedom corresponding to the difference in dimensionality
between the original and relaxed parameterizations. When the relaxations involve non-linear
parameterizations, however, determining the number of degrees of freedom generated by
the relaxation is often difficult (c.f. [171], example 7.2.3). The suggested form of the test
exploits the fact that as k→ ∞, (χ2

k−k)/
√

2k
d→ N(0,1), leading to the property that as the

dimensionality of the relaxation increases, the proposed form converges to χ2
1 . A direct

application of the Wilson-Hiferty transform [204] leads to a less intuitive form, but one
which converges more rapidly to χ2

1 . Under the null hypothesis consistency of the MLE
ensures that in the neighborhood of the true solution Eθθθ 0

[
g
(

DDD, θ̂θθ ,Θ̃ΘΘ
)]

= Eθ̂θθ

[
g
(

DDD, θ̂θθ ,Θ̃ΘΘ
)]

,
and thus the proposed framework for testing based on parameterized embeddings is also a
special case of the more general M-testing framework proposed by Blatt and Hero [14].
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Figure 4.7: Diagram illustrating how a locally, but not globally, optimal solution θ̂θθ can be
identified by relaxing the parameter space from ΘΘΘ to Θ̃ΘΘ. Under H1, minimizing the negative
log-likelihood under the relaxation often leads to a relaxed solution ˆ̃θθθ with a substantially
larger gap between its log-likelihood value and the bootstrap estimate (shown in red).

Let’s now return to the simple example from Section 4.2.2, with the notation modified
slightly to better conform to the discussion on reparameterized embeddings.

θ̂θθ 0
def
= argmin

θθθ
‖µµµ(θθθ)−ddd‖2 s.t. (4.23)

µµµ(θθθ) = sin(θθθxxx) , w ∈ [0, 4π] (4.24)
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Before discussing how one might identify good reparameterizations, first consider the naive
choice of µ̃µµ

(
θ̃θθ
)
= sin

(
θ̃θθ 0xxx+ θ̃θθ 1xxx2 + ...+ θ̃θθ kxxxk+1). This reparameterization permits spatial

variation in the instantaneous frequency while implicitly assuming the phase is known.
Figure 4.8 compares detection performance between Biernacki’s test and that given by
(4.22) when the embedding contains one and three additional degrees of freedom (k = 1 and
k = 3 respectively). This illustrates the potential of the proposed approach, however, many
problems do not present themselves with an obvious choice of reparameterization.
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Figure 4.8: ROC curve illustrating the potential of reparameterized embeddings when
applied to our simple example. The performance of Biernacki’s test is compared with the
proposed approach when the naively chosen relaxation has 1 and 3 additional degrees of
freedom respectively.

The use of reparameterized embeddings to test for global convergence is based on the
idea that the quasi-likelihood function disproportionately benefits from the relaxation under
the alternative hypothesis. One is then naturally interested in the marginal cost of the
constraints imposed by the intrinsic parameterization because if these costs were known,
the directions leading to the greatest marginal benefit conditioned upon the alternative
hypothesis would provide a reasonable basis of relaxation. The remainder of this section
describes a practical approach for using a forward model to identify such a basis, and the
efficacy of the resulting relaxation is illustrated using our simple example.

In constrained optimization, a common interpretation of Lagrange multipliers is the

97



direction of maximum marginal benefit subject to a set of equality constraints ([135] Chap.
12). When inequality constraints are permitted, this same concept generalizes, and is known
as the Karush-Kuhn-Tucker (KKT) conditions. For linear equality constraints, it is trivial
to prove that the Lagrange multipliers identify the direction of optimal cost improvement
subject to the constraints, and Bertsekas ([12] Chapter 3) establishes this result for non-
linear constraints. Silvey [2, 3, 170] studied the hypothesis testing problem for a restricted
ML estimator, and developed a Lagrange multiplier test for the hypothesis that the true
parameters lie in the subset defined by the restriction. It was later discovered [40] that the
Lagrange multiplier tests is identical to Rao’s score test [154].

Rao was interested in the locally most powerful test for detecting H0 : θθθ = θθθ 0 against
H1 : θθθ = θθθ 0 +δδδ . Rao first considered the case where δδδ was known. Under this condition,
the proportional change in the log-likelihood function when moving from θθθ 0 to θθθ 0 +δδδ is
given by δδδ T

∇θθθ `(θθθ 0) = δδδ T sss(θθθ 0). This results in the test statistic

ξ (δδδ ) =

[
δδδ T sss(θθθ 0)

]2

δδδ T III(θθθ 0)δδδ
, (4.25)

which is distributed χ2
1 under H0. When δδδ is unknown, Rao proposed choosing δδδ to

maximize (4.25). The resulting test is given by

max
δδδ

ξ (δδδ ) = sss(θθθ 0)
T III(θθθ 0)

−1 sss(θθθ 0) . (4.26)

Notice that Rao’s score is the 2-norm of the log-likelihood gradient after a transformation
of variables that causes the iso-likelihood contours in the neighborhood of θθθ 0 to become
spheres. Our approach to identifying candidate relaxations is based upon this test, where we
are interested in directions that maximally discriminate between local and global minima.

Rao’s score test for constrained and unconstrained ML estimators immediately suggests
an approach to this problem. Given a set of nominal conditions ΘΘΘ0 ⊆ΘΘΘ, for each θθθ 0 ∈ΘΘΘ0

there possibly exist a non-empty set of local minima L(θθθ 0) that are stationary points
of the ambiguity function which are not equal to θθθ 0. Our goal is to identify relaxed
parameterizations that maximally discriminate between H0 : θθθ = θθθ 0 and H1 : θθθ ∈ L(θθθ 0).
Consider a greatly relaxed reparameterized embedding Θ̃ΘΘ, say the measurement domain. As
before, let θ̃θθ 0 represent a point in the relaxed space such that µ̃µµ

(
θ̃θθ 0
)
= µµµ(θθθ 0), and let ĨII

(
θ̃θθ 0
)
,

and s̃ss
(

ˆ̃θθθ
)

, represent the Fisher information matrix and the score evaluated at the restricted
ML estimate respectively. For each local minima encountered, the score function in the
relaxed space identifies the direction of greatest improvement of the log-likelihood had all
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of the additional degrees of freedom of the relaxed parameterization been available. Using
a collection of these points one can identify the single additional degree of freedom that
maximally distinguishes between the encountered members in L(θθθ 0) and θθθ 0. The proposed
procedure for identifying candidate relaxation dimensions is described by Algorithm 4.9. If
more than one additional relaxation dimension is desired, this procedure can be repeated
with previously identified dimensions removed from the relaxed space, and included in the
restricted estimator.

Input: ΘΘΘ0: Set of nominal parameterizations
Input: ΘΘΘs: Set of starting points
Input: Θ̃ΘΘ: Relaxed embedding
Output: rrr: Relaxation dimension

1 for
(

θθθ (i)
0 , θθθ (i)

s

)
∈ΘΘΘ0×ΘΘΘs do

2 Generate noise-free data dddn f Solve for the restricted ML estimator θ̂θθ
(
dddn f
)

from

θθθ (i)
s if θ̂θθ 6= θθθ (i)

0 then

3 Record the whitened score function: [∆∆∆] j = ĨII
(

θ̃θθ (i)
0

)−1/2

s̃ss
(

ˆ̃θθθ
)

4 Compute the direction rrr that maximizes the inner product with ∆∆∆ rrr = uuu(1) def
= First left

singular vector of ∆∆∆

Algorithm 4.9: Algorithm for identifying relaxation.

To demonstrate the efficacy of the proposed approach, once again consider our simple
example of detecting convergence to a local minima when estimating the frequency of a
sinusoid in noise (4.23)-(4.24). The algorithm described in Figure 4.9 was run with the nom-
inal conditions ΘΘΘ0 chosen to be 100 equally spaced frequencies over the interval [0,4π], and
the relaxed embedding Θ̃ΘΘ chosen to be the entire measurement domain µ̃µµ

(
θ̃θθ
)
∈ R100. Fig-

ure 4.10 shows the additional relaxation dimension rrr suggested by the proposed procedure.
Using this additional degree of freedom, the relaxed embedding used in conjunction with
the test given by (4.22) becomes µ̃

(
θ̃θθ
)
= sin

(
[θ̃θθ ]1xxx

)
+[θ̃θθ ]2rrr. Figure 4.11 shows how the

relaxed embedding alters the structure of the expected minima of the negative log-likelihood.
This figure is analogous to the conceptual diagram shown in Figure 4.7, and the ROC curve
associated with the resulting test shown in Figure 4.12.
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Figure 4.11: Expected negative log-likelihood associated with the simple example given
by (4.23)-(4.24) under the 1-dimensional relaxation provided by the algorithm described in
Algorithm 4.9. This figure is analogous to the conceptual plot shown in Algorithm 4.7, and
illustrates how a well-chosen relaxed embedding can be used to detect convergence to local
minima.
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4.3 Identifying Alternate Candidate Solutions

Given a locally optimal solution that fails the proposed test (believed not to be a global
minimizer), one needs to identify alternate candidate solutions. The aim of this section is to
exploit knowledge of a locally optimal solution to identify a set of alternative candidates
that are highly probable to also be stationary points. The proposed approach for generating
these candidates is based on identifying a set of perturbations to the locally-optimal blur
solution than minimize a point-wise bound on the deviation of the PSF.

Consider the PSF h corresponding to the perturbed phase-screen Ψ+β . From (2.10)
and (2.13) one may write [78]

h = c0

∣∣∣F−1
{

Ae jΨABe jβ
}∣∣∣

2
(4.27)

= c0

∣∣∣F−1
{

Ae jΨ
}
∗F−1

{
ABe jβ

}∣∣∣
2

(4.28)

= c0|g∗d|2, (4.29)

where c0 is a normalizing constant, AB = 1supp(A) is the binary aperture corresponding to the
support of A, and g and d are the coherent PSF’s corresponding to the unperturbed PSF and
the perturbing phase-screen under a binary aperture respectively. Letting δ be the Kronecker
delta function, and a an arbitrary complex constant such that |a|= 1, the (m,n)th element of
the discrete representation of h is then given by

[h]m,n =c0|〈g(m− x,n− y) , d〉|2 (4.30)

=c0|〈g(m− x,n− y) , aδ +(d−aδ )〉|2 (4.31)

=c0|〈g(m− x,n− y) , aδ 〉+ 〈g(m− x,n− y) , d−aδ 〉|2 (4.32)

=c0

[
|[g]m,n|2 + |〈g(m− x,n− y) , d−aδ 〉|2

]
+ (4.33)

2ℜ
(
a[g]Hm,n 〈g(m− x,n− y) , d−aδ 〉

)
.
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The magnitude of the PSF change induced by β at the (m,n)th element is then given by

|[ε]m,n|=
∣∣∣[h]m,n− c0|[g]m,n|2

∣∣∣ (4.34)

= c0

∣∣∣|〈g(m− x,n− y) , d−aδ 〉|2 +2ℜ
(
a[g]Hm,n 〈g(m− x,n− y) , d−aδ 〉

)∣∣∣
(4.35)

≤ c0

∣∣∣|〈g(m− x,n− y) , d−aδ 〉|2 +2|[g]m,n||〈g(m− x,n− y) , d−aδ 〉|
∣∣∣ (4.36)

≤ c0

∣∣∣‖g‖2 ‖d−aδ‖2 +2|[g]m,n|‖g‖‖d−aδ‖
∣∣∣ (4.37)

≤ ‖d−aδ‖
[
‖d−aδ‖+2

|[g]m,n|
‖g‖

]
. (4.38)

This point-wise bound on the PSF perturbation ε , associated with the wavefront perturbation
β , is clearly minimized when ∠a = ∠ [d]0,0. Under this condition, the right-hand side
of (4.38) is monotonic in the Strehl ratio [125] associated with β , which we will denote

as c0

∣∣∣[d]0,0(β )
∣∣∣
2
. Thus, the set of wavefronts that maximize the Strehl ratio for a fixed

RMS strength, also minimizes the worst-case point-wise error in the perturbed PSF. These
wavefronts are given by

{
β = argmax β̃c0

∣∣∣[d]0,0(β )
∣∣∣
2

:
∥∥∥β̃
∥∥∥

2
= τ
}

(4.39)

Determining this set is related to the problem of wavefront balancing, and it is well known
that such sets are discontinuous in aberration space, and have no closed form solution
[125]. Fortunately, this set is independent of locally optimal phase screen Ψ. We have
identified this set of points numerically under a basis containing the first 12 Zernike modes
for perturbations up to 0.2 waves RMS, where none of the solutions are trivial associates of
each other.

This set (plus its corresponding trivial associates) can be used to identify aberrations
that are likely to result in similar values of the log likelihood function given an aberration
estimate believed to be a local minima. Figure 4.13 shows a 2D embedding of the points
given by (4.39) for RMS perturbations up to 0.09 waves, and Figure 4.14 shows a PSF
corresponding to a phase-screen of 0.25 waves RMS as well as the first few perturbations
drawn from the set given for τ = 0.2. From this latter plot, it is clear that the proposed
approach indeed has the desired property.
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Figure 4.13: A 2D embedding of the points within the space of the first 12 Zernike modes
that maximize the Strehl ratio for shells of a fixed RMS wavefront deviation. Shells up to
0.09 waves RMS are shown, with the points numbered to indicate correspondence between
phase-screens in neighboring shells. Note that the asymmetries are not unusual when
embedding high-dimensional surfaces into 2D.
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shown in (a). (b)–(f) show the first few perturbations of 0.2 waves RMS drawn from the
set given by (4.39). Each of the PSF’s are displayed at 2X the Nyquist rate for the optical
system.
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4.4 Simulation Experiments

The simulation experiments described in Section 3.8 are repeated without assuming an
initial blur estimate in the neighborhood of the true solution. By using initial blur estimates
consistent with an ideal (unaberrated) optical system, the effectiveness of the proposed
global optimization strategy is compared with both previous findings and the Cramèr-Rao
bound. The proposed global optimization strategy is an application-specific implementation
of simulated annealing. The computational benefits of incorporating problem-specific
knowledge is assessed by comparing the proposed approach to a commercially available
general-purpose simulated annealing implementation.

The aforementioned simulation experiments were repeated to study convergence be-
havior under large wavefront aberrations. Data was generated from the model given by
(2.70) over a range of SNR’s. For all experiments, the wavefront aberration strength was
0.25 WRMS, and the detector was 2.5 times undersampled in each linear dimension. The
SNR, defined as the standard deviation of the noise-free scene divided by the standard
deviation of the total noise, was adjusted by increasing or decreasing the sensor’s read-noise
level. A Sierpinski carpet was used as the calibration target, and for this object the lighting
environment and exposure times were such that approximately 2.05× 105 photons were
received per pixel. The detector gain and offset were chosen so that the final recorded
data was centered, and filled 70% of a typical 8-bit dynamic range. These gain and offset
parameters resulted in an expectation of approximately 2000 photons/count. Figure 4.15
shows the true object alongside a sequence of data frames at varying SNRs generated under
these conditions.

Figure 4.16 shows estimation error plotted against SNR for random blurs corresponding
to 0.25 WRMS perturbations, where an ideal imaging system as the starting point of
the inverse-problem. As expected, achieving global convergence is only possible given
data of a sufficiently high SNR. Simulation experiments indicate, however, that this SNR
requirement is met under typical imaging conditions. For data chips of only 106 pixels on
a side, and SNRs exceeding approximately 50, the proposed estimator is reliably able to
locate the globally optimal solution. This is a modest SNR requirement (cf. Figure 4.15),
and could undoubtedly be relaxed if one were to use larger image chips. As such, the
SNR requirement for achieving global convergence using the proposed application-specific
simulated annealing method is not expected to be a practical limitation in most imaging
problems.

It is important to note, however, that when the test for a local minima fails to reject
the null hypothesis, one cannot conclude that a global optimum has been found. Instead,
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Figure 4.15: The true object (a) is shown alongside a series of data frames generated with
all parameters fixed other than the SNR. The read-noise standard deviation corresponding to
(b)-(d) were 0.68, 1.41, and 7.15 counts respectively.

all that can be said is that the current solution is sufficiently close to the solution in the
embedded space that it cannot be ruled out as a local minimum. Figure 4.17 shows a local
solution that failed to meet a 1× 10−4 significance level for detecting a local minimum
on data with an SNR of 18. Similarly, Figure 4.18 shows the typical progression of local
minima identified during the global search procedure in moderate to high SNR scenarios.
The current implementation stops its search when a solution is found that fails to reject the
null hypothesis of being a global minimum. If necessary, additional searching could be
allowed, and the set of all local minima and their likelihood values returned.
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Figure 4.16: Wavefront estimation error is shown as a function of SNR for 0.25 wave pertur-
bations where the starting point is a clear aperture, and the proposed global optimization
procedure described in Section 4.2 is used.
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with data simulated with and SNR of 18. (b) shows the local minima which failed to
reject the null hypothesis at a power of 1E-4 due to the elevated noise levels. The actual
p-value associated with the local solution was 0.019, and (c) shows the resulting PSF and
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Figure 4.18: (a)-(c) shows a typical succession of PSF’s and phase-screen estimates associ-
ated with local minima found using the proposed global optimization procedure under high
SNR conditions. (d) and (e) show the true solution and the associated errors respectively
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4.4.1 Computational Comparison

A natural point of comparison for the proposed problem-specific global optimization
strategy (see Figure 4.2) is simulated annealing. Simulated annealing (SA) is a meta-heuristic
for identifying heuristic global optimization procedures based on the Metropolis-Hastings
algorithm [126]. As such, SA describes a large class of possible optimization approaches,
and the performance of any individual SA derived method should not be used to make
broader claims about the entire class of procedures. Be that as it may, comparison to widely
used SA implementations are useful in providing a sense of scale. All of the simulation
results presented in this section utilize the implementation provided by the MATLABr

Optimization Toolbox version 8.0.
Initial studies using simulated annealing indicated that additional problem-specific

knowledge must be incorporated into the search strategy to ensure reasonable convergence
times. Even after placing problem-specific bounds on the search-space, stock simulated
annealing approaches are unlikely to be an efficient method of solving the optimization
problem described by (3.8). Under the conditions described in Section 4.4, with an SNR
of 100, and without the aid of gradient information, simulated annealing took more than
300 hours to place a single test point within 0.01 WRMS of the true global minima. During
this experiment, the optimizer was stopped the first time a point was placed inside the 0.01
WRMS sphere surrounding the true solution, not when convergence was actually reached.
Such long runtimes would preclude most practical applications of this work; however,
practitioners sometimes use hybrid methods that exploit gradient information to improve
convergence rates.

Hybrid simulated annealing approaches append an additional optimization procedure
either during or at the end of each annealing stage.The Mathworks implementation applies
the hybrid method to each randomly generated point before evaluating the objective func-
tion to determine that point’s fitness.Consistent with our desire to both exploit gradient
information and simultaneously incorporate parameter constraints, a bounded interior-point
algorithm was used as part of the hybrid optimizer [198].This method is designed for non-
linear optimization problems and adaptively switches between a line-search method based
on direct-factorization of the prime-dual equations and a trust-region method that uses
conjugate gradient iterations to guarantee progress toward a stationary point.This is the
same algorithm used in the well known KNITRO optimization suite [23, 24], and has been
shown to perform well on the industry-standard CUTEst test suite [15, 80, 81]. This hybrid
annealing strategy proved to be a reasonable point of comparison for the aforementioned
application-specific approach.

A Monte Carlo simulation was performed under the conditions described in Section 4.4,
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with an SNR of 100, and the number of aberration parameters varied to alter the problem
difficulty. As the number of Zernike modes in the model increases, so too does the probability
of encountering local minima, and thus overall search times increase. Figure 4.19 shows
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Figure 4.19: Monte-Carlo study of optimization runtimes as a function of the number of
aberration modes in the model.

the mean and standard errors of runtimes corresponding to 10 independent realizations of
the same camera model with the number of consecutive Noll-ordered Zernike modes in the
model ranging from 1 (defocus only) to a 12-mode wavefront description (all wavefront
modes of radial orders 2 through 4).

The ability of the proposed application-specific optimization strategy to terminate as
soon as a likely global optimum is detected leads to substantial runtime improvements. In
the astronomical imaging community wavefront descriptions of optical systems typically
include Zernike models up to at least radial-order 3 (7 Zernike modes). For models of this
complexity, the proposed global optimization strategy results in 5X improvement in total
runtimes. Furthermore, the proposed approach allows one to explicitly control the power of
the test against convergence to local minima. In this study, the test was run at a power level
of α = 0.01. The advantage of a test for global convergence is the ability to terminate a SA
procedure once one is confident that a global optimum has been reached. Generic simulated
annealing algorithms, such as the one provided in MATLABrOptimization Toolbox 8.0, do
not exploit these types of tests leading to unnecessary computation.
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Figure 4.20: A point is said
to improve upon a search line
if it improves upon the line’s
best log-likelihood value using
a wavefront solution within 0.04
WRMS of the associated wave-
front description.

To make this idea more concrete, consider a particu-
lar SA run under the aforementioned conditions with a
12 Zernike mode wavefront description. During this run
28,906 function evaluations were made over 11.4 hours
before the default annealing schedule completed. The hy-
brid annealing procedure periodically invokes an interior-
point solver, and this gradient-based optimization stage
causes the test points to concentrate into basins of attrac-
tion. New test points are based on random perturbations
of previously accepted solutions, and both the acceptance
criteria and the hybrid interior-point solver lead to com-
mon “lines” of exploration. For the problem at hand, a test
point was defined to improve upon an existing search line
if it improved upon that line’s log-likelihood value while
remaining within 0.04 WRMS of the associated wavefront
solution. This situation is illustrated graphically in Fig-
ure 4.20. If a point improves upon the greatest observed log-likelihood function but is not
within the neighborhood of an existing line, a new line is formed. Similarly, two lines may
merge into a single line if their best points converge to within this wavefront threshold. By
defining the notion of a search line, all of the points tested by the SA algorithm may be
associated with a much smaller number of lines. In this particular example, only 54 unique
search lines were identified. In the limit, every line discovered will converge to a unique
local optimum.

Figure 4.21 shows the final objective function value associated with each of the 54
uniquely identified lines plotted against their respective creation times. This figure illustrates
that within the first hour of runtime, the simulated annealing algorithm identified all of the
local basins of attraction that would eventually be explored. This particular run corresponds
to the demonstration software associated with [111], where the random number generation
seed was fixed to ensure reproducibility. In this example, the limited-memory quasi-Newton
method used to initialize the algorithm happens to converge almost immediately. Figure 4.22
shows the wavefront error of the test points plotted against time. At around 18 minutes, the
initialization routine is complete. After this point, the SA algorithm begins testing random
points through simulated annealing. The hybrid method uses a gradient-based solver to
explore a subset of the randomly generated points, and this repeats at roughly 20-minute
intervals. In this example, however, the hybrid optimization technique identifies a point
within 0.001 WRMS of the true solution after its first annealing cycle. Our test for global
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Figure 4.21: Final objective function value plotted against the creation time for each of the
54 unique lines identified by the SA algorithm. Wavefront solutions corresponding to the
global optimum as well as the nearest two local minima are compared with the true solution.

convergence indicates that a global minimum is achieved (p-value < 0.01) after the first
annealing round (at 31 minutes), and had such a test been used the subsequent 11 hours
of runtime could have been avoided. This example clearly illustrates the benefit of global
convergence tests like those studied in [13, 14, 52, 71, 112, 174, 202].

One justification for permitting a SA technique to continue after a globally optimal
solution has been identified is to be able to characterize the structure of the local minima. In
Section 4.3 we demonstrated how disparate wavefront solutions could lead to PSF’s with
a similar structure. Figure 4.23 compares the true wavefront and its associated PSF to the
3 most likely solutions identified using simulated annealing. As expected, the most likely
solution is indeed the global optimum, and the overall wavefront error of 0.0014 WRMS
is consistent with the Cramér-Rao bound for this problem. The two nearest local minima,
however, have PSFs that are structurally very similar despite wavefront descriptions that
deviate from the true wavefront by 0.117 and 0.115 WRMS respectively. Recall that a
random wavefront perturbation on the order of the Maréchal criteria (∼ 0.07 WRMS) [123]
is considered significant for a well-calibrated optical system. These perturbations, however,
are far from random. Despite relatively large wavefront perturbations, the PSF’s associated
with the solutions at the first two local minima differ from the true solution by only ∼1% in
energy. The relative closeness of the locally optimal solutions measured through the PSF
underscores the difficulty of blur estimation.

Figure 4.24 illustrates the convergence properties of the proposed approach outlined in
Figure 4.2. A quasi-Newton method is used to identify local minima that are subsequently
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Figure 4.22: Wavefront error plotted versus runtime over the first hour of the simulated
annealing run.

tested for being a global minimum using the aforementioned reparameterized embedding
technique. In this example, 6 local minima are reached before the global solution is located
(p < 0.01). The 6 local minima correspond to only 3 unique wavefront solutions, of which
two are trivial associates as discussed in Section 3.6. Figure 4.25 compares the wavefront
solutions corresponding to the global minima and each of the unique local minima to the
true solution. It should be noted that the proposed optimization approach is a simulated
annealing technique, where both the annealing process and termination criteria are exploiting
the specific problem structure.
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Figure 4.23: Comparison between the 3 most likely solutions identified using simulated
annealing and the true solution.
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Figure 4.24: Wavefront error and objective function value plotted as a function of time. This
plot is analogous to Figure 4.22, where the addition of the objective function value helps
clarify the locations of the local minima.
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Figure 4.25: Comparison between all unique solutions identified using the proposed opti-
mization approach.
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4.5 Hardware Experiments

A hardware experiment was performed to validate the correctness of the forward-models,
accuracy of the proposed inverse-problem approach under large wavefront perturbations,
and to demonstrate the utility of the resulting system identification solutions for image
restoration. A Nikon D7000 was modified to remove its anti-aliasing filter, and this camera
was used in conjunction with a Nikkor 70-200 mm f/2.8 VR II lens to collect imagery
of a Sierpinski carpet displayed on an iPad, model MC705LL/A, at ranges of 3, 3.2, and
3.3 meters. The camera autofocus was applied against the calibration target at 3 m, and
subsequent images were collected with the lens configuration held fixed. A diagram of the
experimental setup is shown in Figure 4.26. The focal length was 70 mm, and corresponded
to an F-stop of 2.8. The key idea behind the collection geometry is to exploit changes in the
calibration-target range to induce known levels of defocus at the focal plane. Estimation
is then performed independently over the 3 color channels and 3 target depths to produce
9 independent wavefront estimates. The hypothesis is that the data will be consistent with
the model described in (3.2), and that the resulting wavefront estimates will exhibit defocus
terms consistent with that induced through the change in depth of field.

3.0 m

3.2 m

3.3 m

Calibration
Target

Figure 4.26: Experimental setup involving a Nikon D7000 imaging a calibration target a 3
ranges. The devices was auto-focused at the nearest range and then the lens configuration
was held fixed for the remaining collections.

4.5.1 Literature Review: Depth from Defocus

Digital signal processing techniques for estimating range from defocus date back to the
initial widespread availability of digital cameras in the mid- to late- 1980’s. Our primary
interest is in studying the value of defocus cues for depth estimation, and as such, we
emphasize those works that treat this cue in isolation. Surprisingly, very little work has been
done on single-frame depth estimation from data collected with traditional cameras. This is
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clearly not due to a lack of interest, but rather is indicative of the very difficult nature of the
problem.

Assuming a traditional (monocular, passive) imaging system operating under typical
conditions the available depth perception mechanisms are [98]:

Absolute Scale Knowledge of the absolute scale of an object can be used to
estimate its range from its perceived scale

Perspective The fact that parallel lines intersect at vanishing points (ideal
points) can be used in conjunction with knowledge of the geometry
of the scene to estimate depth

Perceived Intensity Lambertian surfaces will result in an image whose intensity is pro-
portional to their solid angle less the atmospheric losses (scattering
and absorption) along the intermediary path. The absorption and
scattering is typically wavelength dependent, and with sufficient
prior knowledge, this could be used to estimate range.

Occlusion Occlusions in the 3D to 2D projection operator provide ordering
information related to depth

Shading Illumination effects in conjunction with prior knowledge about
the object and its environment can be used to infer relative depth.

Distributional Prior For terrestrial imaging, the presence of the Earth generates a
horizon in the image plane, and the distribution of object ranges is
skewed about this contour resulting in statistical prior information
about object range as a function of its relative position in the
image.

Defocus The finite aperture of a traditional camera causes the sensor’s
point-spread-function to be dependent on range. Objects imaged
in front of, or behind, the best focus plane will exhibit additional
defocus blur.

Notice that of these range cues, only defocus provides absolute range without prior
knowledge of the scene.

Nearly simultaneously, Pentland [143] and Grossmann [84] suggested using blur to
estimate depth. Grossmann essentially demonstrates that a correlation exists between “edge
width” and range, suggesting that the desired information content may exist in the collected
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data. The proposed method for estimating the blur is “ill-defined and sensitive to noise,”
leading the authors to ultimately advocate for the use of multiple images with varying
sensor settings. Pentland provides a more rigorous theoretical development and illustrates
that under good conditions, the human eye has a ranging accuracy based on defocus cues
that are about half as accurate as stereopsis. Despite this, Pentland’s approach results
in “considerable variability in the depth estimates,” and only relative depth estimation is
actually presented. Ultimately, he too suggests a multi-frame approach based on a beam-
splitter and varying imaging apertures. This type of multi-frame approach is known as
phase-diverse phase-retrieval [75]. Subarrao subsequently pursued both the single-frame
[180], and multi-frame ideas [179]. In Subarrao’s single-frame work he explicitly calls
out the incongruous nature of using a Gaussian blur model in conjunction with simplistic
geometric optics models, but ultimately uses a best-fit Gaussian with 1 unknown. Two more
experimentally derived constants are introduced to fit the change of the defocus with range.
Depth estimation errors on the order of a few percent were reported, but how much of this
accuracy should be attributed to the fitting of the 3 unknowns is unclear. Subbarao also
reported noise sensitivity but did not provide details on the “noise cleaning” procedure used
to mitigate this problem. Perhaps because of these early difficulties, subsequent work in the
literature is almost exclusively focused on multi-frame collections.

Ens [53] suggests a two-frame approach based on estimating the change in the camera’s
transfer functions in each image using regularized circulant matrix approximation. Ens
notes the relationship between his technique and the use of a windowed Fourier transform,
and subsequent approaches will often be described as either “image domain” or “frequency
domain”, despite the fact that they all will act on local regions within collected imagery.
Subbarao and Surya [181] and Gokstorp [74] would nearly simultaneously release similar
techniques referred to acting in the spatial- and frequency-domains respectively, and the
bulk of the literature on depth from defocus would follow this same multi-frame approach
(c.f. Rajagopalan [149, 150], Xiong [206], Watanabe [200], Chaudhuri [31], Ziou [216],
Park [137], Joshi [101], Malik [122], Yang [209]).

Early work in single-frame depth from defocus convincingly suggested that object range
can be recovered under some scene geometries when a sufficient amount of information
is known about the camera. One could argue, however, that for typical imaging scenarios,
this capability has not been demonstrated. Early work focused on producing “depth maps”;
images correlated with actual scene ranges, but not sufficiently calibrated to be reported in
units of length.

The more recent literature has approached this problem in two ways. One set of research
findings has chosen to focus on relative depth, typically with increased segmentation
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capabilities in mind (c.f. Namboodiri [132], Chan [28], Shuo [215], Sun [182]). The other set
considers the impact of chromatic effects (c.f. Garcia [72], Guichard [86], and Trouvé [189]).
Saxena [162] presents reasonably good results toward absolute range estimation based on
an ad-hoc machine learning approach. This approach, however, needs to be trained for a
particular camera. A severe limitation of Saxena’s technique is its inability to accommodate
cameras with the ability to focus. Lin [118] is susceptible to this same criticism, and presents
an approach that appears to depend critically on an ad-hoc regularization strategy. Exploiting
chromatic dependence of the PSF to estimate depth from defocus could have considerable
potential. Unfortunately, the aforementioned approaches either exploit or advocate for
custom optics specifically designed to enhance chromatic differences between the channels.
The degree to which this phenomenon can be exploited in conventional systems remains an
open question.

4.5.2 Estimating Depth from Defocus

Before proceeding with the results of the experiment, a small amount of additional
theory is needed to relate key geometric quantities of the camera system to the generalized
aberration model describe in Section 2.2.3. Let Din and Dout represent entrance and exit
pupil diameters respectively, f the focal length, and r the range to best focus. Recall that the
pupil magnification is defined by the ratio of exit- to entrance-pupil diameters mp = Dout/Din,
and let s be defined with respect to r and f through the Gaussian lens formula 1/r+ 1/s = 1/f .
Then the peak-to-valley (PV) defocus error induced by a change in range of the target is
given by

δPV = (sd− s)+

√
[s− (mp−1) f ]2−

(
Dout

2

)2

−
√
[sd− (mp−1) f ]2−

(
Dout

2

)2

,

(4.40)

where the relationship between peak-to-valley and RMS defocus error is further given by
δPV = δRMS

√
12 for a circular aperture. A full derivation, and its relation to commonly used

measures of defocus, is provided in Appendix E.
For the aforementioned experimental setup, a defocus at the Maréchal criterion corre-

sponds to a beam converging 0.336 µm from best focus, which in turn corresponds to a
translation of the calibration target of 13.2 mm along the optical axis. The individual detector
elements within the Bayer filtered sensor will sample the impinging wavefront at 56.5X
undersampled (7.518X undersampled in each linear dimension). Intensity variations induced
by non-uniform transmission from the iPad’s display, and wavelength dependencies in both
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the transmission of the optics, as well as the sensitivity of the CCD array, were calibrated
by collecting flat-field images and then adjusting the known object in the forward-model.
Figure 4.27 shows the raw sensor data as well as the corresponding PSF estimates on the
aliased data grid. Figure 4.28 shows the independent PSF estimates on a common grid
that is Nyquist sampled for the shortest wavelength (blue channel at 450 nm), and the
corresponding Zernike coefficients are listed under the Noll ordering starting with defocus.
Estimation was performed under a narrowband model with center wavelengths of 650, 550,
and 450 nm corresponding to the red, green, and blue channels respectively. These estimates
correspond to a predicted global optimum, and the resulting residuals indicate a good fit
between the model and the measured data. Figure 4.29 shows a zoom in of the red channel
at 3.2 meters, as well as the predicted data, its residual, and a Q-Q plot comparing the
sample quantiles of the residuals to their associated theoretical distribution. Finally, the 9
independent defocus estimates were used to predict the range to best-focus for each of the
3 color channels, as well as the pupil magnification. The ranges to best focus for each of
the 3 color channels most consistent with the wavefront estimates were 3.024, 2.979, 3.058
meters for the red, green, and blue channels respectively. The autofocus algorithm reported
the best focus range to be 3.162 meters in the camera’s meta-data. The corresponding pupil
magnification estimate was 0.985, which is consistent with an essentially telecentric design.
Nikon USA was contacted regarding the actual pupil magnification, and they responded by
saying it is “not made available to the public.”

Figure 4.30 shows the model predictions for defocus vs range based on the estimated
best-focus distances for each color channel and pupil magnification. The 9 defocus terms
from the aberration estimates are also plotted against this model. The deviations from the
model, in terms of the mean absolute defocus perturbation across the 3 target positions, is
0.0067, 0.0145, 0.0007 WRMS at the reference wavelength for the red, green, and blue
channels respectively. These errors are about 5 times the Cramèr-Rao bound for the given
conditions, but correspond to relative depth from defocus errors of only 1.2, 3.0, and 0.1
mm along the optical axis.
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Figure 4.27: The data collected at 3.0, 3.2, and 3.3 meters is shown in (a)-(c) with the
corresponding PSF estimates shown on the data grid in (d)-(f).
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Figure 4.28: (a)-(c) The PSF estimates corresponding to the 3 target locations and 3 color
channels are plotted on a common grid that is Nyquist sampled for the shortest wavelength
of light (450 nm). (d)-(f) provides the corresponding 12 Zernike coefficients under the Noll
ordering starting from defocus.
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Figure 4.29: A zoom in of the red channel data at 3.2 m (a), the predicted data (b) shown on
the same color axis, the residual (c), and a Q-Q plot for the residual after accounting for the
intensity dependency.
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Figure 4.30: Predicted RMS defocus vs target depth based on the proposed camera model
for each of the 3 RGB color channels assuming best-focus positions of 3.024, 2.979, and
3.058 meters respectively and a pupil magnification of 0.985. The 9 defocus terms from the
PSF estimates are plotted as squares.
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4.5.3 Restoration

This section uses data collected with the Nikon to demonstrate the utility of the recovered
system information for image restoration. The solution to the system identification problem
can be used in conjunction with the data model from (3.2) to perform image restoration by
now treating the imaging system as known, and a Nyquist sampled representation of the
object as unknown. Applying the same inverse-problem framework, but now treating fff as
the only unknown, the regularized ML estimator for the object becomes

f̂ff = argmin
fff

`(ddd| fff )+λR( fff ) s.t. fff ≥ 0, (4.41)

where the log-likelihood function is once again given by (3.5). The regularizer R( fff ) is a
multi-dimensional variation of the classic roughness measure [88, 152]

Rm( f ) =
∫ (∂ m f

∂xm

)2

dx, (4.42)

for m = 2. Details of this roughness penalty, and its invariance properties under the object
description given in Section 2.4.1 are provided in Appendix K. Unlike system identification,
regularization is required for object reconstruction because the number of degrees of freedom
of the unknowns exceeds the number of measurements. For this experiment a single color
channel (Bayer pattern element) from a single frame is being used to estimate the full
Nyquist sampled object. The particular camera settings resulted in the individual sensing
elements being 7.518X undersampled in each linear dimension, and the 2×2, Bayer filter
reduces any individual color channel by an additional factor of 2, resulting in data that is
more than 15X undersampled in each linear dimension. This regularizer may be viewed as
conservative compared to edge-preserving techniques (c.f. [212]), however, this approach
ensures that recovered information is brought about by the inverse-problem framework
rather than the regularization strategy.

The goal in performing restorations is to demonstrate the value of the information
that results from the proposed joint inverse-problem approach for blur estimation when
applied to image restoration, as well as the utility of the high-fidelity models for image
restoration itself. To this end, Figure 4.31 shows single channel restoration results based on
the recovered PSF information within both the Richardson-Lucy (RL) restoration algorithm
[67, 119, 156], as well as the higher-fidelity models presented in this work. The red channel
of a defocused image collected at 3.2 meters during the experiment described in Section 4.5.2.
All restorations are shown on the Nyquist grid with RMS errors provided in the lower left
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for reference. When the RL algorithm is provided the additional PSF information it clearly
produces a better reconstruction, indicating that the recovered camera information can
be useful within restoration techniques that use simpler camera models. The solution to
full inverse problem from (4.41) is shown using strict ML (λ = 0), the defocus only PSF
(λ = 300), and the full PSF description (λ = 300).
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Figure 4.31: Single frame, red-channel restoration results based on the defocused data (a)
collected at 3.2 meters. The Richardson-Lucy technique is shown operating both blindly
(b) and with the aid of the PSF information from the proposed blur estimation algorithm
(c). The proposed ML solution of (4.41) for λ = 300 is shown in (f), and similar results
using the strict ML estimate as well as regularized estimation with only the defocus term are
shown in (d) and (e) respectively. RMSE’s are shown for all restorations in the lower-left
corner.
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CHAPTER V

Conclusions and Ongoing Work

5.1 Summary

The central tenet of this dissertation is that by understanding the physical relationships
between the environment, the imaging system, and the collected data, one can more effec-
tively use available measurements to make inferences about the sensor, the scene being
imaged, or both. With this in mind, a natural question arrises regarding existing image
restoration approaches; “Given a model of the form ddd = AAA fff + εεε , where the aim is to restore
an unknown object fff from some collected data ddd, to what extent can one reasonably assume
AAA is known?”. This question then leads to a series of subsequent questions that this work
either answers, or provides a foundation for answering.

1. What is the correct structure of AAA when working with modern cameras?

2. How should AAA be parameterized?

3. Can the structure of AAA be estimated by exploiting knowledge of the scene?

4. When is the parameterization of AAA unique, and what is the structure of its ambiguities?

5. Can the non-linear relationship between the natural parameterization of AAA and the
data be overcome?

6. How does improved knowledge of AAA improve ones ability to estimate ?

7. How much must one know about the scene fff to recover AAA?

The remainder of this chapter summarizes the progress to date, presents some ongoing work,
and discusses future directions.

Chapter II lays the foundation for our approach to this problem. A continuous-to-discrete,
physically motivated, forward imaging model is developed. Each component within this
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model is tied directly to our understanding of the physical imaging process, and this close
proximity leads to clear traceability of the modeling assumptions. Constructing the model
in this way also ensures a one-to-one relationship between physical imaging devices and
modeling parameters. For example, suppose one is interested in estimating defocus in a
camera. Stopping the device down (reducing its collection aperture) is neatly accommodated,
and does not interact with the wavefront description of this unknown. The proposed approach
also accommodates physical effects that had previously been ignored, and which are critical
for accurate system characterization. The most notable of these being diffraction, aliasing,
and the use of Bayer filters. Finally, this chapter places the forward model within a statistical
inverse-problem framework, and then formulates the system identification question as a
joint inference problem.

Chapter III constructs a joint ML estimator for the unknown system parameters, and
studies its properties. From the perspective of blur estimation, this results in a type of
phase-retrieval problem known as wavefront-estimation. Surprisingly, wavefront estimation
from single extended scene does not appear to have been previously studied. The estimator
is stated in terms of a non-convex optimization problem, and is shown to be set identifiable
up to a set of measure at most 2. The Cramér-Rao bound is computed for this estimator,
and the bound is used to show that the data fundamentally includes enough information to
permit use of wavefront estimation in the presence of the nuisance parameters. Simulation
experiments demonstrate that the ML estimator is essentially unbiased, and is able to
recover the unknown wavefront to within 2dB of the CRB. Finally, the estimation problem’s
bias-variance trade-off is explored through the uniform CRB. As expected, the estimator’s
bias-gradient was found to be very small. In conjunction with knowledge of the Fisher
information matrix, and improved, biased estimator was constructed, but its performance
improvements were shown to be minimal.

Chapter IV addresses the non-convexity of the ML estimator in the presence of large
aberrations. For sufficiently small perturbations, or with sufficient prior information, one can
ensure that the initial wavefront estimate starts in the neighborhood of the true solution. This
condition, however, cannot be assured in many practical situations. Highly under-sampled
systems can include large wavefront deviations while maintaining a PSF that is point-like
with respect to its coarsely sampled detector. This challenge is addressed through two
new contributions. An improved test for global convergence is constructed based on a
relaxation of the problems parameterization. For the problem at hand, this new test is shown
to substantially outperform existing techniques, and is sufficiently accurate to enable a
robust global-optimization strategy. This new test is then paired with a minimax L1 heuristic
for identifying new candidate wavefront solutions given a local minima. The utility of this
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approach is that one can pre-compute a series of perturbations which, with high-probability,
will result in similar PSF structures, and hence similar log-likelihood values. Simulation
experiments are used to confirm the efficacy of the resulting global optimization strategy,
and it enables hardware simulations.

Using a commercially available camera, known defocus amounts are introduced by
translating the calibration target along the sensor’s optical axis. The proposed wavefront
estimation technique is then used to determine these relative defocus amounts by inde-
pendently estimating (without exploiting knowledge of the type of perturbation) the blur
from the collected data. This experiment not only lends credence to the proposed approach,
but represents a depth-from-defocus capability well beyond what has been reported in the
literature.

Finally, this chapter illustrates how the estimation framework can be used for restoration.
The informational value of the recovered camera description is explored by comparing
restorations made with standard deconvolution techniques (with and without the aid of
the estimated blur) and by directly restoring using the full camera models proposed by
this work. These results clearly indicate that (1) the recovered information is helpful
in image restoration, and (2) image restoration is best performed using a full statistical
inverse-problem approach.

5.2 Ongoing Work

The gestalt of the aforementioned work is the exploitation of low-dimensional object
representations for system identification, and this presents ongoing work toward allowing
not only ad-hoc environments, but also ad-hoc objects. So long as the object models have
low-dimensional parameterizations, one can expect that for non-trivial scenes, similar types
of performance can be achieved. In doing so, this section takes this work one additional step
closer to blind system calibration when fiducials can be identified in the data.

5.2.1 Continuous Representation

Fiducial information can be used to blindly establish unknown system parameters
when the object is otherwise unknown, but can be partially described by low-dimensional
constituent objects. While a very broad class of potential fiducials could be used, the
idea will first be explored through a set of restricted “edges”. For the purposes of this
initial exploration, an edge will be defined to be the line which separates two regions of
constant reflectance. Using this definition, an edge has a minimal representation given by
θθθ f

def
= (θa,‖aaa‖ , `1, `2), where θa gives the angle to the vector orthogonal to the line, ‖aaa‖ is
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Figure 5.1: Geometry of an edge

the distance to the line, and `1, `2 represent the radiance on the near and far side of the line
respectively. It follows immediately, that the resulting object is given by

f
(
θθθ f
)
=

{
`1 ∀ppp : 〈ppp , âaa〉−‖aaa‖< 0
`2 otherwise

}
s.t.

aaa = ‖aaa‖(cos(θa) ,sin(θa))

ppp = aaa+ rpâaa+ tpn̂nn

(5.1)

= `1 +(`2− `1)u(〈ppp , âaa〉−‖aaa‖) (5.2)

= `1 +(`2− `1)u(rp) (5.3)

where u(·) is the unit-step function. Thus the forward model for a single fiducial becomes

ddd = c3P
{

TTT SSSBBB(ααα) fff
(
θθθ f
)}

+ c4 + εεεr, (5.4)

where the warp operator may be omitted because its action on an edge remains in the class
of edges.

For the moment, consider the differential of a single edge with respect to its unknowns.

∇θθθ f = eee3 +(eee4− eee3)u(〈ppp , âaa〉−‖aaa‖)+(`2− `1)δ (〈ppp , âaa〉−‖aaa‖)∇θθθ (〈ppp , âaa〉−‖aaa‖)
(5.5)

∇θθθ (〈ppp , âaa〉−‖aaa‖) =
[
〈ppp , n̂nn〉 −1 0 0

]T
(5.6)
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back-substituting, and writing the result in vector form one gets

∇θθθ fff =




(`2− `1)〈ppp , n̂nn〉δ (〈ppp , âaa〉−‖aaa‖)
−(`2− `1)δ (〈ppp , âaa〉−‖aaa‖)

1−uuu(〈ppp , âaa〉−‖aaa‖)
uuu(〈ppp , âaa〉−‖aaa‖)




T

(5.7)

5.2.2 Sufficient Representations For Imaging

The non-differentiability of the continuous edge-representation is not problematic in the
context of imaging due to the smooth nature of the overall likelihood function associated
the larger imaging model. This smoothness follows immediately from the band-limiting
nature of the blur operator. This also implies that the proper place to numerically evaluate
the continuous-to-discrete forward operator is at this blurred object. That is, for all intents
and purposes our “object” will be defined through the discrete blurred representation of the
edge. Following this idea through mathematically we may write

BBB fff (ppp)def
=
∫

fff (xxx)hhh(ppp− xxx)dxxx (5.8)

= `1 +(`2− `1)
∫ ∫

uuu(rx)hhh((rp− rx)âaa+(tp− tx)n̂nn)dtxdrx (5.9)

= `1 +(`2− `1)
∫

uuu(rx)
∫

hhh(rx, tx)dtxdrx (5.10)

Here it is understood that uuu(rx) remains a 2D function despite the fact that it is being indexed
by a single parameter. Furthermore, it is convenient to define hhh(·) as the marginal of the
PSF w.r.t. n̂nn. Using this new definition one may write

BBB fff (ppp) = `1 +(`2− `1)

∞∫

0

hhh(rp− rx)drx (5.11)

= `1 +(`2− `1)

rp∫

−∞

hhh(rx)drx (5.12)

Clearly this is a well-defined, differentiable function which, when combined with the
imaging system’s parameters, will have a discrete representation. The derivative w.r.t. the
object parameters also have well defined forms in terms of the line-spread function as given
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below.

BBB∇θa fff = (`2− `1)
∫
〈xxx , n̂nn〉δ (〈xxx , âaa〉−‖aaa‖)hhh(ppp− xxx)dxxx (5.13)

= (`2− `1)
∫ ∫

txδ (rx)hhh((rp− rx)âaa+(tp− tx)n̂nn)dtxdrx (5.14)

= (`2− `1)
∫

txhhh(rpâaa+(tp− tx)n̂nn)dtx (5.15)

= (`2− `1)

[
tphhh(rp)−

∫
txhhh(rpâaa+ txn̂nn)dtx

]
(5.16)

BBB∇‖a‖ fff =−(`2− `1)
∫

δ (〈xxx , âaa〉−‖aaa‖)hhh(ppp− xxx)dxxx (5.17)

=−(`2− `1)
∫

δ (rx)hhh((rp− rx)âaa+(tp− tx)n̂nn))drxdtx (5.18)

=−(`2− `1)
∫

hhh(rpâaa+(tp− tx)n̂nn))dtx (5.19)

=−(`2− `1)hhh(rp) (5.20)

BBB∇`1 fff =
∫

(1−uuu(〈xxx , âaa〉−‖aaa‖))hhh(ppp− xxx)dxxx (5.21)

= 1−
∫ ∫

uuu(rx)hhh((rp− rx)âaa+(tp− tx)n̂nn)drxdtx (5.22)

= 1−
∫

uuu(rx)hhh(rp− rx)drx (5.23)

= 1−
∞∫

0

hhh(rp− rx)drx (5.24)

= 1−
rp∫

−∞

hhh(rx)drx (5.25)

∴ BBB∇`2 fff =

rp∫

−∞

hhh(rx)drx (5.26)

Finally, differentiating w.r.t. the blur parameters one may write

∇αααBBB fff = (`2− `1)

rp∫

−∞

∇αααhhh(rx)drx. (5.27)

The blurred edges and their differentials can both be efficiently represented at the
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Nyquist rate, however we are also interested in the action of a sampling operator on these
representations. In practice one must represent both the Nyquist sampled object and its
post-sampling representation on a computer using an integer number of samples. This poses
a challenge given that some down-sampling rates will not be ratios of integers.

To find acceptably accurate representations one first notes that the underlying object
representations can be formed at any integer sizes. Furthermore, we require that the post-
sampled representation exceed the size of the measured data to ensure that the truncation
operator is able to produce an estimate which “covers” the observations, and one also needs
to ensure the Nyquist sampled object is sufficiently large to allow extrapolation to mitigate
edge effects. Using this criteria, and imposing a constraint on the relative error of the
sampling rate, results in the following subproblem. For reasonable downsampling factors,
the provided algorithm converges to the optimal solution almost immediately. In essence,
it works by projecting optimal but inadmissible solutions onto the admissible set until the
projection yields a solution on the grid of integers.

Given: r̃ ∈ R+ and z̃1, z̃2 ∈ Z+ (5.28)

Find: argmin
z1, z2∈Z+

z2 s.t. (5.29)

∣∣∣∣
z1

z2
− r̃
∣∣∣∣≤ ε r̃ (5.30)

z1 ≥ z̃1 (5.31)

z2 ≥ z̃2 (5.32)

The specific algorithm for this projection is given in Figure 5.3.

z1

z2

+ +

z1 < z̃1

r̃r̃+
ε r̃

+ +z2 < z̃2

Figure 5.2: Illustration of the projections used to solve the integer sampling sub-problem

Using this technique, one can apply the forward operator to continuous edges with
arbitrary precision.
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Input: r̃, z̃1, z̃2, ε
Output: z1, z2

1 z1 = z̃1

2 z2 = max
⌈

z1
(1+ε)r̃

⌉
, z̃2

3 while z2 >
z1

(1−ε)r̃ do
4 z1 = maxbz2(1+ ε)r̃c , z1 +1

5 z2 =
⌈

z1
(1+ε)r̃

⌉

Figure 5.3: Algorithm for finding data sizes for downsampling

5.2.3 Evaluating Line-Spread Functions

The previous section, while technically correct, leaves a lot to be desired in terms
of implementation details. While the discontinuities in the underlying object have been
addressed, and it should now be clear that only the object representing the action of the
blur on the fiducial should ever be represented numerically, but how should one take the
necessary integrals?

The naive approach is to simply upsample and integrate the PSF. Sinc-based upsampling
of the PSF ensures that numerical precision is not lost during the subsequent integration,
and the 1D integral can then be computed by first rotating the object such that integration is
being computed along the first dimension, and then subsequently applying a 1D numerical
integration scheme (I presently employ the trapezoidal rule). The rotation itself, also implies
an interpolation, and here I presently use the bicubic technique referenced earlier. Taken
together, this is an effective, albeit very numerically intensive, approach.

By contrast, the “correct” way of computing a line-spread function is to exploit the
band-limited nature of the PSF, the volume preserving aspects of rotation (all eigenvalues
are 1), and the Fourier slice theorem. This avoids the upsampling while simultaneously
implementing the rotation using a perfect sinc-based interpolation. This rotation is performed
on the Fourier transform of the PSF allowing one to simply read off the “slice” in the
frequency domain, and hence the line integral in the spatial domain. While possible, exact,
and much more numerically efficient that the previously described technique, this approach
requires a number of signal processing steps that are not commonly used, and codes have
not yet been developed and tested for this purpose.

5.2.4 Joint Model

A multi-frame formulation will be considered, where the gain and offset parameters
(c3,c4) are allowed to change between frames, and the depth of field over the fiducial set will
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be assumed unknown. We will not, however, allow for reconfigurations of the optics during
the collection interval (non-defocus aberrations are assumed constant), nor will we attempt
to relate the various fiducials between the frames. Combining these additional details, the
full joint model is then given by

ddd =vec

({
ccc( j)

1 111
nnn( j)

f

}J

j=1

)
�P

{
vec
({

TTT SSSBBB(ααα,βk) fff k

(
θθθ (k)

f

)}K

k=1

)}
+ (5.33)

vec

({
ccc( j)

2 111
nnn( j)

f

}J

j=1

)
+ εr(σσσ r)

where K is the total number of fiducials, J is the total number of frames, fff k is the kth fiducial
with parameters θθθ (k)

f , BBB is the blur operator indexed by the common set of blur parameters
ααα and the individual defocus parameters βββ = [β1, . . . , βK]

T , SSS is the sampling operator,
TTT is the truncation operator, P is the Poisson noise operator, ccc1 and ccc2 are the length J

vectors of gains and offsets respectively, and εr is the read-noise as a function of the length
J vector of read-noise standard deviations σσσ r. The total vector of unknowns then becomes
θθθ =

[
ααα,ccc1,ccc2,σσσ r,βββ ,θθθ f

]
. Notice that the warp operator does not appear because a warped

edge falls within the class of warped edges, and for this discussion it is implicitly assumed
(via the model) that the collection of edges each fall within a narrow depth range relative to
the sensors depth of field. Finally, the image regions containing edges are allowed to take
on arbitrary shapes, but are assumed to be simply connected. When tracking the sizes of
the corresponding lexicographically ordered regions, and their relationship to frames, it is
helpful to again abuse notation rather than introducing additional variables. By convention,
n(·) is used to denote the cardinality of (·), but depending on context we may wish to refer
to the cardinality of an individual edge region, the cardinality of the edges in a frame, or the
cardinality of all edge regions. To maximize the readability of the resulting expressions we
introduce the notation

n f =
K

∑
k=1

nnn(k)f =
J

∑
j=1

nnn( j)
f (5.34)

where n f is the total number of samples across all edges, nnn( j)
f is the total number of edge

samples across the jth frame, and nnn(k)f is the total number of edge samples in the kth edge.
The edge regions themselves are lexicographically ordered, and where the context is not
clear additional annotation will be given. This allows one to consistently think of “n f ” as
the number of object elements in the current context.
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Applying the gaussian approximation to the Poisson process one may write

ddd = vec

({
ccc( j)

1 111
nnn( j)

f

}J

j=1

)
�vec

({
TTT SSSBBB(ααα,βk) fff k

(
θθθ (k)

f

)}K

k=1

)
+ (5.35)

vec

({
ccc( j)

2 111
nnn( j)

f

}J

j=1

)
+ ε

= µµµ(θθθ)+ εεε (5.36)

εεε ∼ N


000,diag


vec

({
ccc( j)

1 111
nnn( j)

f

}J

j=1

)�2

�vec
({

TTT SSSBBB(ααα,βk) fff k

(
θθθ (k)

f

)}K

k=1

)
+ εεεrrr






(5.37)

∼ N(0,ΣΣΣ(θθθ)) (5.38)

where εεεr relates to read noise for the individual frames via

εεε(σσσ r) = vec

({(
σσσ ( j)

r

)2
111

nnn( j)
f

}J

j=1

)
(5.39)

The aggregate log-likelihood function is proportional to1

`(θθθ) = (ddd−µµµ(θθθ))T
ΣΣΣ
−1 (ddd−µµµ(θθθ))+111T

n f
ln(diag(ΣΣΣ(θθθ)))+n f ln(2π) , (5.40)

n f
def
=

J

∑
j=1

n( j)
f (5.41)

The differential of the likelihood function is given by

∇`(θθθ) = 2aaaT
ΣΣΣ
−1

∇aaa−aaaT
ΣΣΣ
−1

∇ΣΣΣΣΣΣ
−1aaa+111T

n f
ΣΣΣ
−1

∇bbb (5.42)

1With proportionality constant −1/2
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where for convenience the following variables are introduced

aaa = ddd−µµµ(θθθ) (5.43)

= ddd−vec

({
ccc( j)

1 111
nnn( j)

f

}J

j=1

)
�vec

({
TTT SSSBBB(ααα,βk) fff k

(
θθθ (k)

f

)}K

k=1

)
− (5.44)

vec

({
ccc( j)

2 111
nnn( j)

f

}J

j=1

)

bbb = diag(ΣΣΣ(θθθ)) (5.45)

= vec

({
ccc( j)

1 111
nnn( j)

f

}J

j=1

)�2

�vec
({

TTT SSSBBB(ααα,βk) fff k

(
θθθ (k)

f

)}K

k=1

)
+ (5.46)

vec

({(
σσσ ( j)

r

)2
111

nnn( j)
f

}J

j=1

)

Recall that the parameter ordering is given by θθθ =
[
ααα,ccc1,ccc2,σσσ r,βββ ,θθθ f

]
, implying a total of

nα +J+J+J+K+4K = nα +3J+5K unknowns, and let F(k) map the edge index k onto
its corresponding frame index. Utilizing F(·), aaa and bbb can be written in the more intuitive
forms

aaa = ddd−vec
({

ccc(F(k))1 TTT SSSBBB(ααα,βk) fff k

(
θθθ (k)

f

)
+ ccc(F(k))2

}K

k=1

)
(5.47)

bbb = vec

({(
ccc(F(k))1

)2
TTT SSSBBB(ααα,βk) fff k

(
θθθ (k)

f

)
+
(

σσσ (F(k))
r

)2
}K

k=1

)
(5.48)

It is important to note that both aaa and bbb, as well as their differentials, are all separable along
the edge boundaries (the k index). Along these lines it is helpful to introduce the notation
aaak, bbbk, and so forth. Using this notation, the log-likelihood function can be written as

`(θθθ) =
K

∑
k=1

[(
aaak

bbbk

)T

aaak +111T
n(k)f

ln(bbbk)+n(k)f ln(2π)

]
(5.49)

Taking the differentials with respect to the parameter groups one finds

∇αaaa
(n f×nα)

=−vec
({

ccc(F(k))1 TTT SSS∇αBBB fff k

}K

k=1

)
(5.50)

∇ccc1aaa
(n f×nccc1)

=−vec
({

[TTT SSSBBB fff k]eee
T
F(k)

}K

k=1

)
(5.51)
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∇ccc2aaa
(n f×nccc2)

=−vec

({
111

nnn( j)
f

eeeT
j

}J

j=1

)
(5.52)

∇σσσ raaa
(n f×nσσσr)

= 000 (5.53)

∇βββ aaa
(n f×nβββ)

=−vec
({

ccc(F(k))1 TTT SSS∇βββ BBB fff k

}K

k=1

)
(5.54)

∇θθθ f aaa(
n f×nθθθ f

)
=−vec

({
ccc(F(k))1 TTT SSSBBB∇θθθ f fff k

}K

k=1

)
(5.55)

∇αbbb
(n f×nα)

= vec

({(
ccc(F(k))1

)2
TTT SSS∇αBBB fff k

}K

k=1

)
(5.56)

∇ccc1bbb
(n f×nccc1)

= vec
({[

2ccc(F(k))1 TTT SSSBBB fff k

]
eeeT

F(k)

}K

k=1

)
(5.57)

∇ccc2bbb
(n f×nccc2)

= 000 (5.58)

∇σσσ rbbb
(n f×nσσσr)

= vec

({
2σσσ ( j)

r 111
nnn( j)

f
eeeT

j

}J

j=1

)
(5.59)

∇βββ bbb
(n f×nβββ)

= vec

({(
ccc(F(k))1

)2
TTT SSS∇βββ BBB fff k

}K

k=1

)
(5.60)

∇θθθ f bbb(
n f×nθθθ f

)
= vec

({(
ccc(F(k))1

)2
TTT SSSBBB∇θθθ f fff k

}K

k=1

)
(5.61)

where based on our ordering of the unknowns the final differential is given by

∇(·) =
[

∇ααα(·) ∇ccc1(·) ∇ccc2(·) ∇σσσ r(·) ∇βββ (·) ∇θθθ f (·)
]

(5.62)

Using this notation, the sub-terms in Equation 5.42 can be more parsimoniously expressed
as follows

aaaT
ΣΣΣ
−1

∇aaa =
(aaa

bbb

)T
∇aaa (5.63)

=
K

∑
k=1

(
aaak

bbbk

)T

∇aaak (5.64)

aaaT
ΣΣΣ
−1

∇ΣΣΣΣΣΣ
−1aaa =

[(aaa
bbb

)�2
]T

∇bbb (5.65)
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=
K

∑
k=1

[(
aaak

bbbk

)�2
]T

∇bbbk (5.66)

aaaT
n f

ΣΣΣ
−1

∇bbb =

(
1
bbb

)T

∇bbb (5.67)

=
K

∑
k=1

(
1
bbbk

)T

∇bbbk (5.68)

Combining terms results in following expression for the differential

∇`(θθθ) = 2
K

∑
k=1

(
aaak

bbbk

)T

∇aaak +
K

∑
k=1

[
1
bbbk
−
(

aaak

bbbk

)�2
]T

∇bbbk (5.69)

5.2.5 Experiment

Edge fiducials were artificially inserted into an ad-hoc imaging scenario and used to
estimate their range from the imaging device to illustrate the efficacy of these ideas. As with
the hardware experiment described in Chapter IV, the wavefront description of the blur is
used in conjunction with a physical imaging model to relate estimated defocus directly to
the range. This section demonstrates that for the purposes of estimating defocus (range), the
fiducial model leads to estimates that are only slightly less accurate than having a full object
description.

A Nikon D7000 was modified to remove its anti-aliasing filter, and this camera was used
in conjunction with a Nikkor 70-200 mm f/2.8 VR II lens to collect imagery of two people
holding manilla envelopes with a white piece of printer paper used to induce an edge. The
actual ranges to the targets were measured with a laser ranging device and found to be 5 m
and 7.7m respectively. The camera was allowed to autofocus on the first edge, and the range
to best focus was reported by the camera to be 5.012 m. Using (5.49), maximum likelihood
estimates of the defocus blur at each edge were used in conjunction with (4.40) to estimate
the ranges to the targets directly.

Estimation was performed over the blue channel, with a fully open aperture. The
focal length was 70 mm, and corresponded to an F-stop of 2.8. With these settings, the
detector undersampled the optical wavefront by 56.5X (7.518X in each linear dimension).
The defocus at each of the two edges was jointly estimated alongside the edge geometry,
intensity emanating from each side of the edge, and the sensor read noise variance. Using
the focus range reported by the camera, and the estimated defocus amounts of 0.006 waves
and 1.327 waves RMS at 450 nm. These correspond to target ranges of 5.021 m and
7.771 m respectively. Figure 5.4 compares the magnitude of the observed ranging errors
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to those expected given wavefront estimation accuracy of 0.01 waves RMS at 450 nm.
This experiment demonstrates the use of ad-hoc fiducials for wavefront estimation and
suggests only a small loss in information compared to estimation performed using full object
knowledge.
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Figure 5.4: The data used to estimate edge-target ranges based on relative fiducial defocus
amounts is shown in (a). Subfigure (b) shows the observed experimental error along with
the theoretical error had the wavefront estimation accuracy been 0.01 waves RMS.

The ranging accuracy demonstrated during this experiment is predominantly a function
of the large entrance aperture of the camera. Had the aperture been stopped down, or
had a camera with a smaller aperture been used, the reduced depth of field would lead to
substantially reduced ranging accuracy given the same blur estimation fidelity. Figure 5.5
compares the maximum possible ranging accuracy of various commercial cameras to the
Nikon D7000 assuming a defocus estimation accuracy of 0.01 waves RMS. Overall, these
experiments demonstrate the flexible nature of the proposed inverse-problem framework for
solving inverse-imaging problems.
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Figure 5.5: Comparison of maximum theoretical ranging uncertainty for common consumer
cameras relative to the Nikon D7000 assuming defocus estimation accuracy of 0.01 waves
RMS.
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5.3 Future Directions

This thesis presents a modular and extensible inverse-problem approach for studying
optical imaging systems that supports many future research directions. For example, given a
prior probability on wavefront errors introduced by manufacturing imperfections, one could
use the Cramér-Rao analysis described in Section 3.4 to design optimal calibration targets.
Another interesting extension of this work would be the optimal sequential design of targets.
One could design such sequences to optimize computational efficiency, solution stability, or
other metrics designed to ensure fast, accurate, and reliable sensor characterizations.
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APPENDIX A

Minimum Bandwidth Function Extension and Inpainting
Comparison

This section compares the minimum bandwidth criterion for smooth function extension
(discussed in Section 2.4.1) to modern inpainting approaches. The aim of minimum band-
width function extension is not the same as inpainting, but the two techniques are sufficiently
related that a comparison is warranted. Minimum bandwidth function extension is based on
constructing the smoothest continuous function that takes on certain values over a subset
of its domain. By contrast, image inpainting approaches often combine similar energy
functions with self-similarity or spatial coherence measures to produce results that appear
more natural to a human observer. See [22] and the references therein for an overview this
field. When successful, such heuristics can produce remarkable results. Unfortunately these
techniques often dependent on tuning parameters that must be hand-picked and which must
be changed on a per-image basis, require substantial computation, and occasionally fail to
converge to reasonable solutions.

To illustrate the relative efficacy of smooth function extension it was compared to a
number of modern inpainting approaches [34, 43, 51, 54, 117]. To eliminate the possibility
of coding errors, or a misinterpretation of subtle algorithm details, all of the techniques
are based on codes provided by the original authors. D’Errico [47] implements a finite-
difference approximation to classical PDE inpainting. This technique is similar to that
suggested by Chui [33, 34] and later studied by [96]. Of the inpainting approaches, this one
is closest in spirit to the proposed function extension technique, but it does not immediately
result in a continuous extension. Fadili et al. [54] uses a sparsity promoting prior within
a Bayesian framework to perform inpainting using a redundant dictionary of wavelets,
curvelets, and ridgelets [175]. In addition to the choice of dictionary, this algorithm includes
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3 tuning parameters, and these were set to be consistent with the lena example shown in
their publication. Elad et al. [51] also models the unknown image components through
a sparse representation in an over-complete dictionary. The missing image components
are assumed to be the composition of a smooth function with a texture component, where
smoothness is enforced through a total variation (TV) penalty on the gradient, and both
terms enter into their final objective function through mixed L1- and L2-norm objective. This
approach also results in 3 tuning parameters, and these were again chosen to be consistent
with the lena example given in their original work. Criminisi et. al. [43] uses block-based
exemplars to iteratively inpaint missing regions based on a mixed objective that considers
both texture and smoothness. This work introduces the most aggressive heuristics, and
can produce remarkably consistent-looking results when large contiguous image regions
are missing. Unfortunately, the approach does not lend itself to more spatially distributed
masks, and for this reason the tight checkerboard pattern used in Figure 2.9 had to be relaxed
slightly to allow this technique to properly function. Finally, Li [117] uses Bayesian model
averaging in conjunction within a simulated annealing optimization strategy to enforce local
smoothness with global structural consistency. Like the approach of Criminisi, the global
similarity metric struggled with the complex masks used in this comparison. I was able to
reproduce the results from the author’s publication, but the technique failed to converge
to reasonable solutions given complex masks. For this reason, the results are not shown.
Additionally, this was the slowest of the approaches tested, running for well over an hour.

Figure A.1 illustrates the image used to exercise the inpainting algorithms and the
associated inpainting mask. Errors in the reconstructions are reported in terms of PSNR
measured in units of dB; a standard in the inpainting community. To avoid unnecessarily
penalizing approaches that implicitly assume inpainting regions are surrounded by known
values, errors were computed over the interior set indicated by the white dashed line in Fig-
ure A.1 (b). The result of applying the aforementioned techniques are shown in Figure A.2.
Surprisingly, many of the more sophisticated inpainting approaches are outperformed by
minimum bandwidth function extension when measured in terms of PSNR (or equivalently
MSE). This experiment supports the use of the minimum bandwidth criterion, and the fact
that the proposed technique has no tuning parameters and is extremely fast, suggests that it
could also provide a valuable starting solution for many inpainting techniques. Figure A.3
repeats this experiment with exterior pixels known. The results are similar.
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Original Image(a) (b) Image w/ Mask Applied

Figure A.1: The original test image (a), is shown alongside the mask used to best inpainting
(b). To avoid unnecessarily penalizing methods that implicitly assume inpainting regions
are surrounded by known values, errors were computed over both the whole image and the
interior set indicated by the white dashed line.
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Original Image

Min Bandwidth: PSNR 28.8  ( 17.6 )

Criminisi_2004: PSNR 27.45  ( 14.98 )

DErrico_2009: PSNR 28.52  ( 8.198 )Elad_2005: PSNR 28  ( 14.69 )

(a) (b)

(d)

(f)

(c)

(e) Fadili_2009: PSNR 28.63  ( 18.25 )

Figure A.2: Comparison between minimum bandwidth continuous function extension and
various inpainting techniques. Errors are reported in terms of PSNR, measured in units of
dB, over the interior portion of the image. The error for the entire image is also reported in
parentheses. All of the images are shown on the same scale as the truth.
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Original Image(a) (b)

(d)

(f)

(c)

(e) Min Bandwidth: PSNR 30.78  ( 30.78 )

Criminisi_2004: PSNR 29.65  ( 29.65 )

DErrico_2009: PSNR 30.52  ( 30.52 )Elad_2005: PSNR 29.99  ( 29.99 )

Fadili_2009: PSNR 30.84  ( 30.84 )

Figure A.3: This figure illustrates the same experiment shown in Figure A.2 with the
exception that the exterior pixels were assumed known. For this reason, the interior, and
whole image, PSNR calculations match in every instance.
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APPENDIX B

Discrete to Continuous Fourier Transform

This appendix revisits the ideas presented in Section 2.4.5 with a greater emphasis
placed on the group-theoretic perspective. The aforementioned section is motivated by
group-theoretic ideas, but uses language and notion aimed at an engineering audience. Some
readers may find this appendix to be a helpful companion text.

Homomorphisms

A abelian group formed from a set G is a closure of G and its associated inverse
elements under a commutative binary operation. We are interested in Z with addition,
Zn = {0, . . . ,n−1} with addition modulo n, and T with multiplication, where T is complex
numbers with norm 1. A group homomorphism is a map between groups that commutes with
the group operation. Let ψn :Z→Zn be the map which takes an integer to its residue modulo
n. For χ : Zn→ T to be a group homomorphism, it must satisfy χ(1)n = χ(n) = f (0) = 1.
Therefore, we must have character χn,k

def
= χ(1) = e2πik/n for some k ∈ Zn.

Characters form a group with the operation of pointwise multiplication. The group of
characters

Ẑn =
{

χn,k| k ∈ Zn
}

is isomorphic to Zn as a group via the relationship χn,k+` = χn,kχn,`. Similarly, the characters
of T are χ j(z) = z j, with j ∈ Z. The associated group of characters

T̂=
{

χ j| j ∈ Z
}

is isomorphic to Z via χk+` = χkχ`.
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Zn
φn //

χn,ψr   

φ

  
T
χ j
��

Zm
φmoo

χm,s~~

Zn

Fnχn,r   

γn
// Z
Fχ j
��

ψntt
ψm ** Zm

Fmχm,s~~

γm
oo

ψ

~~

C C
Figure B.1: Overall structure showing group homomorphisms (solid lines), and set maps
(dashed lines). The dotted line indicates the diagrams don’t, in general, commute along
compositions of solid lines (e.g. (Fnχn,r)ψn 6= Fχ j).

A group homomorphism φ : G→ Zn is a map such that for any g and h ∈ G, we have
φ(gh) = φ(g)+ φ(h) in Zn. It is injective if φ(g) = φ(h) implies g = h, or equivalently,
if the only element in φ−1(0) is the identity element in G. Given an injective group
homomorphism φ , it induces the homomorphism φ̄ : C(Zn)→ C(G), defined by φ̄( f ) =

f ◦φ . The overarching structure being described is shown in Figure B.1, where the solid
lines indicate group homomorphisms, the dashed lines set maps, and the dotted line indicates
that the diagrams don’t necessarily commute along compositions of solid lines. For example,
(Fnχn,r)ψn 6= Fχ j, however, this relationship will hold under the restriction r = ψn( j) and
s = ψm( j).

Consider the case when n|m such that φ(r) = m
n r is an injective group homomorphism

φ : Zn→ Zm inducing the m
n -to-one surjection φ̄ : Ẑm→ Ẑn. Let m = dn, and φ(r) = rd for

all r ∈ Zn, then every element s in Zm can be written uniquely as s = xn+ r for some r ∈ Zm

such that 0≤ r < n. Then

φ̄ χm,s(k) = χm,s(dk) = e2πisdk/m = e2πisk/n = e2πirk/n = χn,r(k). (B.1)

Now let ψ : Zm→ Zn be the quotient map ψ(s) = r with n,m,s and r as above. This is
a surjection, and together these two group maps provide a general description of integral
upsampling and downsampling respectively. The difference between this description, and
that typically taught in signal processing texts, is that the relationships are traditionally
illustrated through functions on the groups.
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Functions on Zn, T, and Z

The functions of interest are maps to C that are not necessarily group homomorphisms.
Let C(Z), C(Zn), and C(T) denote the complex vector spaces of functions on the corre-
sponding groups. There is a linear isomorphism between C(T) and periodic functions on
an interval [0,T ] defined through the span over basis elements of the form χ j(t) = e2πi jt/T .
The functions form a vector space with inner-products defined ∀ f ,g ∈ C(Zn),

〈 f , g〉= 1
n

n−1

∑
k=0

f (k)g(k)∗

The characters χn,k ∈ C(Zn) form an orthonormal basis with respect to this inner product.
Similarly, ∀ f ,g ∈ C(T),

〈 f , g〉= 1
T

T∫

0

f (t)g(t)∗dt

Fourier Transforms

The Fourier inversion formulas are simply an expression of functions decomposed with
respect to the aforementioned orthonormal bases of characters:

For f ∈ C(Zn) : f (`) =
n−1

∑
k=0

f̂ (k)χn,k(`)

For f ∈ C(T) : f (t) = ∑
j∈Z

f̂ (k)χ j(k)

Exploiting the orthonormality of the characters, the Fourier transforms are given by:

For f ∈ C(Zn) : f̂ (k) =
〈

f , χn,k
〉
=

1
n

n−1

∑
`=0

f (`)χ∗n,k(`)

=
1
n

n−1

∑
`=0

f (`)χn,k(−`)

For f ∈ C(T) : f̂ ( j) =
〈

f , χ j
〉
=

1
T

T∫

0

f (t)χ∗j (t)dt

=
1
T

T∫

0

f (t)χ j(−t)dt
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C(Zn)

Fn
��

C(T)
φ∗noo

F
��

C(Zn)
ψn // C(Z)

Figure B.2: Linear transforms relating C(Zn), C(T), and C(Z).

The Fourier transform is a linear isomorphism of finite-dimensional complex vector spaces
Fn : C(Zn)→ C(Zn) by Fn( f ) = f̂ . Due to the orthonormality of the characters one finds

〈Fn( f ) , ĝ〉=
〈

f , F†
n (ĝ)

〉
,

where F†
n (g) is the adjoint transformation. For appropriately normalized definitions of

the Fourier transform this relation becomes Parseval’s equality. We may similarly define
F : C(T)→ C(Z) by F( f ) = f̂ , which is a linear isomorphism of infinite-dimensional
complex vector spaces.

Discrete to Continuous Time Signals

Recall that ψn : Z→ Zn is the homomorphism sending an integer to its residue modulo
n as shown in Figure B.1. This group homomorphism induces a linear transformation
ψn : C(Zn)→ C(Z) defined by ψn f (k) = f (ψn(k)). In particular, we have

ψnχ j = χn,k, j ≡ k mod n.

Let φn : Zn→ T be the homomorphism φn(k) = χn,1(k) = e2πik/n. This group homomor-
phism induces a linear transformation φ∗n : C(T)→C(Zn) defined by φ∗n f (k) = f (φn(k)) =

f (e2πik/n) = f (tk) with tk = T k/n as a periodic function on [0,T ]. In particular, ∀ j ∈ Z we
have

φ∗n χ j(k) = χ j(tk) = χn,ψn( j)(k) = χn,k(ψn( j)) = ψnχn,k( j).

Thus we can relate the vector spaces C(Zn), C(T), and C(Z) with the linear transformations
as shown in Figure B.2.

We want to define Mn : C(Zn)→C(T) with properties similar to the adjoint (φ∗n )
† while

avoiding infinite sums. This will allow us to reconstruct a continuous signal from finite data.
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First consider the formal adjoint (φ∗n )
†. For g ∈ C(Zn) and j ∈ Z,

ψnFn(g)( j) = 〈g , χn,r〉=
1
n

n−1

∑
k=0

g(k)χn,r(k) s.t. r = ψn( j).

Then,

(φ∗n )
† g = ∑

j∈Z
ψnFn(g)( j)χ j = ∑

j∈Z
〈g , χn,r〉χ j s.t. r = ψn( j).

Rewriting the adjoint to simplify comparing inner products, one has

(φ∗n )
† g =

n−1

∑
r=0

∑
ψn( j)=r

〈g , χn,r〉χ j.

For f ∈ C(T), we have

〈
f , (φ∗n )

† g
〉
=

n−1

∑
r=0

∑
ψn( j)=r

〈g , χn,r〉
〈

f , χ j
〉
,

and

〈φ∗n f , g〉= ∑
j

〈
f , χ j

〉〈
φ∗n χ j , g

〉

=
n−1

∑
r=0

∑
ψn( j)=r

〈
f , χ j

〉
〈χn,r , g〉=

〈
f , (φ∗n )

† g
〉
.

The last equality uses the fact that ∀k ∈ Zn, we have φ∗n χ j(k) = χ j(tk) = e−2πik j/n = χn,r(k),
where r = ψn( j). The adjunction of these characters is given by

(φ∗n )
† χn,r =

n−1

∑
k=0

∑
ψn( j)=k

〈
χn,r , χn,k

〉
χ j = ∑

ψn( j)=r
χ j.

Under the formal adjoint each, χ j such that ψn( j) = r is in the preimage of χn,r under φ∗n .
For reconstruction, however, we want F(Mnχn,r) = ψnFn(χn,r). Since

ψnFn(χn,r)( j) = 〈χn,r,χn,ψn( j)〉= δr,k,

Mn must be a truncation of (φ∗n )
†. If we require Mnχn,r to be a single character, then there is
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an injective map γn : Zn→ Z such that

Mnχn,r = χγn(r) and ψn(γn(r)) = r.

Let Γn be the image of γn, and consider γn : Zn → Γn for all n. Mn must be a linear
transformation, implying Mn(χ0) = Mn(1) = 1. This implies γn(0) = 0. We also know that
ψnγn must be the identity morphism on Zn, and equivalently, φ∗n Mn must be the identity
transformation on C(Zn). If r+ s ∈ Γn, then since ψn is a homomorphism,

r+ s = γn(ψn(r+ s)) = γn(ψn(r)+ψn(s)).

When r and s are also individually in Γn, we must have γn(ψn(r)+ψn(s)) = γn(ψn(r))+

γn(ψn(s)). Therefore, γn evaluated at any other point (e.g. γn(1)) determines the entire map.

Reconstructibility

We say that a continuous signal fc ∈ C(T) is “reconstructible” if there exists an n∗ such
that fc = Mn∗(φ∗n∗ fc). Given n measurements fn = φ∗n fc, it is not clear a priori whether n is
sufficiently large for Mn fn = fc. We must define Mn collectively for all n ∈ N. For every
element of C(T) to be reconstructible we require

C(T) =
∞⋃

n=0

Mn(C(Zn)) and
∞⋃

n=0

Γn = Z.

To ensure surjectivity, the maps γn must have the property that γmψmγn = γn for all m > n,
and for every s̃ ∈⋃∞

n=0 Γn, there is an n∗ sufficiently large that s̃ = γn∗(s) = sγn∗(1) = sγ3(1)
for some s ∈ Zn∗ .

∞⋃

n=0

Γn = {sγn(1)| s ∈ Z}= γ3(1)Z

is only equal to Z when γ3(1) =±1. The multiplicative structure on Z is such that ψn(rs) =

ψn(r)ψn(s). Therefore, for k = 1,2, we have ψ3(γ3(k)2) = ψ3(γ3(k))2 = k2 ≡ 1 mod 3.
This implies that if we set γ3(1) = 1 by convention, we must have γ3(2) = −1, and visa
versa. It also follows that for n odd, we have γn(n− k) =−γn(k) for all k ∈ Zn, and when
k ≤ n−1

2 , we have γn(k) = k. That is, for 2n+1≥ 3, we have

Γ2n+1 = {−n,−n+1, . . . ,n−1,n} .
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Finally, for a vector of n measurements fn := φ∗n fc, if n is sufficiently large for Γn to contain
the support of fc, we have

fc = ∑
j∈Z

F( f )( j)χ j =
n−1

∑
r=0

(Fn fn)(r)χγn(r).

Upsampling

The upsampling operator Un,m : C(Zn)→ C(Zm) is defined for every m > n by the
property that whenever Mn( fn) = Mm( fm) we have Un,m( fn) = fm. That is, Mmφ∗mMn fn =

Mn fn, and since φ∗mMm = id it follows immediately that

Un,m( fn) = φ∗mMn( fn).

If m > n, then Γ2n+1 ⊂ Γ2m+1, and the associated characters are given by

For 0≤ r ≤ n−1 : ψm(γn(r)) = ψm(r) = r and

Un,mχn,r = χm,r

For n≤ r ≤ 2n : ψm(γn(r)) = ψm(r−n) = m−n+ r and

Un,mχn,r = χm,m−n+r = χm,m−nχm,r.

The upsampling operator is typically viewed with respect to the Fourier transform because

For r = ψn(γm(s)) : Fm(Un,m fn)(s) = 〈Un,m f , χm,s〉= 〈 fn , χn,r〉= (Fn fn)(r),

and otherwise : Fm(Un,m fn)(s) = 0.

This completes the connections relative to functions on groups, and Figure B.3 summarizes
the key relationships. The adjunction of the Un,m defines the aliasing operator, and with the
exception of the sign convention necessary in γn, the usual results follow. For example, for
f ∈ C(Zm), if s = nd + r and m = nd, we have

φ̄ f =
m−1

∑
s=0

(Fm f )(s)φ̄ χm,s =
n−1

∑
r=0

(
d−1

∑
x=0

(Fm f )(xn+ r)

)
χn,r

and therefore

(ψ∗Fnφ̄ f )(s) = (Fnφ̄ f )(ψ(s)) =
d−1

∑
x=0

(Fm f )(xn+ r).
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C(Zn)

Un,m

%%

Mn
//

Fn
��

C(T)

F
��

φ̄nqq
φ̄m --

C(Zm)Mm
oo

Fm
��

C(Zn)
ψn // C(Z) C(Zm)

φ̄noo

Figure B.3: Relationship between homomorphisms and set maps for functions defined over
the relevant groups. Solid lines indicate group homomorphisms, and dashed lines set maps.
As before, the dotted line indicates that the diagrams don’t commute along compositions of
solid lines except for under the restrictions that r = ψn( j) and s = ψm( j).
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APPENDIX C

Subgroups of Perspective Transformations

Within the class of projective transformations there are a number of important sub-
groups. Projective transformations are important in imaging because they describe arbitrary
plane-onto-plane projections. As such, this transformational class describes the geomet-
ric properties of ideal imagers. Projective transformations are described in homogeneous
coordinates by the Projective linear group PL(n), and this property ensures closure under
composition, the existence of both identity and inverse elements [208]. In more constrained
imaging scenarios, it is often useful to consider subgroups of transformations. For example,
in the limit as imaging range gets large, projective transformations are restricted to their
affine subgroup. Various subgroups are listed below by their respective degrees of freedom

(1) Rotation w/ implicit origin - SO(2,ℜ)

(2) Translation - E(1)×E(1)

(3) Proper Rotation and Translation - E+(2)

(4) Proper Rotation, Isotropic Magnification, and Translation

(5) Proper Rotation, Magnification, and Translation

(6) Affine group

This set is of particular interest because of the invariants of the members and their relationship
to common imaging scenarios. For example, rotation + translation is listed as a 3 degree
of freedom subgroup, but isotropic magnification + translation is not. This is due to the
fact that stabilizing an imaging system such that one can assume no rotation is present is
extremely difficult, while imaging a distant static object while not moving the focal length
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is relatively common. Alternative representations that span the same space are possible, but
these characterizations given here have been found to be particularly useful.

Consider the mathematical form of these transformations and how one would distinguish
between them. Because some of the subclasses contain others, two representations are
convenient. The first is the full projective matrix representation MMM ∈ PL(3), and the second
is a vector xxx of the intrinsic dimension of the transformation. For example, one could
represent a rotation using a 3×3 projective matrix, but simply giving the angle would also
be sufficient if we 1st agree to use the subclasses given above. More generally, given a
predetermined ordering of the dimensions, one can form a mapping between the vector
representations and its equivalent vector form. For the aforementioned subgroups, these
relationships are summarized below.

(1) MMM =




cos(x1) −sin(x1) 0
sin(x1) cos(x1) 0

0 0 1




(2) MMM =




1 0 x1

0 1 x2

0 0 1




(3) MMM =




cos(x3) −sin(x3) x1

sin(x3) cos(x3) x2

0 0 1




(4) MMM =




x3cos(x4) −x3sin(x4) x1

x3sin(x4) x3cos(x4) x2

0 0 1




(5) MMM =




x3cos(x5) −x4sin(x5) x1

x3sin(x5) x4cos(x5) x2

0 0 1




(6) MMM =




x3 x5 x1

x4 x6 x2

0 0 1




(8) MMM =




x3 x5 x1

x4 x6 x2

x7 x8 1




Note that for these representations to be unique all rotations must be assumed to be
proper. Improper rotations are, however, still supported through magnifications. Using this
transformation set a roto-inverse requires at least 5 degrees of freedom, with “flipping” and
“scaling” treated as part of the same class.

Determining the mapping from the projective transform to the subclass with the fewest
degrees of freedom is less straight-forward because the transformation representations are
not unique. This stems from the fact magnification within the set {±1} and rotation are
cyclic subgroups. When composed, these operators have a 2 intrinsic dimensions but are
not simply-connected. In other words, we need both dimensions to describe the operator
but the topological structure contains cycles that make the representations non-unique. This
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same issue is more commonly encountered through the non-uniqueness of the SVD. This
ambiguity can be resolved, but doing so is beyond the scope of this work.
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APPENDIX D

Warp Partials

This section provides the partial derivatives of the warping operator (camera pose)
relative to its parameterization. To begin, recall that the warping operator maps an object fff

into an imaging plane through a projective transformation. This transformation is described
in terms of the transformation of the coordinates through the 3×3 matrix VVV . Depending
on the (sub)-class of projective transforms used, this matrix contains at most 8 degrees-
of-freedom described by the vector vvv. The object representation is not closed under this
transformational class, so the continuous object is approximated though an interpolation
operator QQQ as follows

WWW (vvv)◦ f (x,y,λ )def
= f (x(vvv) ,y(vvv) ,λ ) (D.1)

≈ QQQ(x(vvv) ,y(vvv)) fff , (D.2)

The action of the projective transformation on the coordinates is given in homogenous
coordinates as




r′(vvv)

c′(vvv)

w′(vvv)


= LLL−1VVV−1(vvv)LLL




r

c

1


 , (D.3)

where the variables “r” and “c” are chosen to suggest row and column, and the similarity
matrix LLL enables an arbitrary relabeling of this space. The structure of VVV (vvv) depends on
the particular transformation class (See Appendix C), and this matrix enters into (D.3)
through its inverse to make the transformation description more intuitive. If one wants to
describe a transformation of an image, then it follows that this transformation is brought
about by resampling to a new set of coordinates that are transformed by the inverse of the
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transformation. Defining transforms without the inverse is not wrong, but one must accept
that VVV = diag

(
[.5 1 1]T

)
is describing a magnification rather than a demagnification.

Differentiating the homogenous coordinate transformation with respect the warp param-
eterization one finds

∂
∂vvvi

[(
LLL−1VVV LLL

)−1
]
=

∂
∂vvvi

[
LLL−1VVV−1LLL

]
(D.4)

= LLL−1 ∂
∂vvvi

[
VVV−1]LLL (D.5)

=−LLL−1VVV−1 ∂VVV
∂vvvi

VVV−1LLL (D.6)

=−
(
LLL−1VVV LLL

)−1
(

LLL−1 ∂VVV
∂vvvi

LLL
)(

LLL−1VVV LLL
)−1

(D.7)

The codomain of this derivative is still in homogeneous coordinates. Projection back to R2 is
achieved by applying the equivalence relation for homogeneous representations (Chapter II,
Equation 2.1) in conjunction with the quotient rule for differentiation. Let xxx be a coordinate
in normalized homogeneous form. Then xxx3 = 1, and the associated projection into R2 is
given by xxx1:2. Let yyy be the transformation of this coordinate as given by (D.3). Then the
derivative of the transformation w.r.t. vvv is given in R2 by

∂
∂vvvi

[(
LLL−1VVV LLL

)−1
]

xxx =

∂
∂vvvi

[(
LLL−1VVV LLL

)−1
]

1:2,:
xxx−
(

∂
∂vvvi

[(
LLL−1VVV LLL

)−1
]

3,:
xxx
)
〈yyy〉1:2

[(
LLL−1VVV LLL

)−1
]

3,:
xxx

(D.8)

This form of the gradient is particularly useful because it emphasizes ones ability to use
traditional linear algebra operations to efficiently compute the derivative over the entire
image field. Differentiating the warping operator as defined through (D.2) with respect to vvv

one finds

∂
∂vvv

[QQQ(vvv)] =
∂Q
∂ r

(r(vvv) ,c(vvv))
∂r
∂vvv

+
∂Q
∂c

(r(vvv) ,c(vvv))
∂c
∂vvv

, (D.9)

and expression that depends only the derivative of the interpolator with respect to the
coordinates, and the coordinates with respect to the warping parameterization. The latter
terms are provided in vector form through (D.8).

The Hession of this operator is less straight-forward, and is included here for complete-
ness. As before, we will begin by computing the derivative of the coordinate transformation
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with respect to the warp parameterization.

∂
∂vvv j

[
−LLL−1VVV−1 ∂VVV

∂vvvi
VVV−1LLL

]
=−LLL−1 ∂

∂vvv j

[
VVV−1 ∂VVV

∂vvvi
VVV−1

]
LLL (D.10)

∂
∂vvv j

[
VVV−1 ∂VVV

∂vvvi
VVV−1

]
=−VVV−1 ∂VVV

∂vvv j
VVV−1 ∂VVV

∂vvvi
VVV−1 +VVV−1 ∂

∂vvv j

[
∂VVV
∂vvvi

VVV−1
]

(D.11)

∂
∂vvv j

[
∂VVV
∂vvvi

VVV−1
]
=

∂ 2VVV
∂vvv j∂vvvi

VVV−1− ∂VVV
∂vvvi

VVV−1 ∂VVV
∂vvv j

VVV−1 (D.12)

Substituting (D.12) into (D.11) fully reduces this term

∂
∂vvv j

[
VVV−1 ∂VVV

∂vvvi
VVV−1

]
=VVV−1 ∂ 2VVV

∂vvv j∂vvvi
VVV−1−VVV−1 ∂VVV

∂vvvi
VVV−1 ∂VVV

∂vvv j
VVV−1− (D.13)

VVV−1 ∂VVV
∂vvv j

VVV−1 ∂VVV
∂vvvi

VVV−1,

and substituting (D.14) into (D.10) leads to the desired result.

∂
∂vvv j

[
−LLL−1VVV−1 ∂VVV

∂vvvi
VVV−1LLL

]
= LLL−1VVV−1

[
∂VVV
∂vvvi

VVV−1 ∂VVV
∂vvv j

+
∂VVV
∂vvv j

VVV−1 ∂VVV
∂vvvi
− ∂ 2VVV

∂vvvivvv j

]
VVV−1LLL

(D.14)

This derivative must be transferred from P2→ R2 by applying the definition of the equiva-
lence relation. This involves differentiating the ratio of two functions, each of two arguments.
The structure of this transformation is given by

∂ 2

∂x∂y

[
f (x,y)
g(x,y)

]
=

[
2
(

f
g

)(
1
g

∂g
∂x

)
− 1

g
∂ f
∂x

](
1
g

∂g
∂y

)
−
(

1
g

∂g
∂x

)(
1
g

∂ f
∂y

)
+ (D.15)

1
g

∂ 2 f
∂x∂y

− f
g

(
1
g

∂ 2g
∂x∂y

)
,

where both the single and mixed partials have been expressed above. Finally, given a
interpolator that implements both its first and second partial derivatives with respect to the
coordinates, one can easily express the hessian of the warping operator with respect to vvv

∂ 2

∂vvvivvv j
[QQQ(vvv)] =

(
∂ 2QQQ
∂ r2

∂r
∂vvvi

+
∂ 2QQQ
∂ r∂c

∂c
∂vvvi

)
∂r

∂vvv j
+

∂QQQ
∂ r

∂ 2r
∂vvvi∂vvv j

+ (D.16)
(

∂ 2QQQ
∂ r∂c

∂r
∂vvvi

+
∂ 2QQQ
∂c2

∂c
∂vvvi

)
∂c
∂vvv j

+
∂QQQ
∂c

∂ 2c
∂vvvi∂vvv j

.
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APPENDIX E

Geometric Optics for the Asymmetric Generalized
Imaging Model

The modeling fidelity needed to compliment the previously discussed wavefront-estimation
approach in the context of ray-tracing generally leads to intractable forms that must inex-
orably be evaluated numerically. See, for example, the excellent texts by Borne [19] and
Goodman [77]. On the other hand, photographers and those in the remote sensing commu-
nity generally apply geometrical approximations that are inadequate for the purposes of
wavefront estimation. This section derives the defocus induced by changes in depth-of-field
for Goodman’s generalized imaging model under a paraxial approximation. The results are
compatible with the Fraunhofer diffraction model used throughout this thesis, and make
explicit the relationship between this model and the less precise geometric model for the
Circle-of-Confusion (CoC).

Figure E.1 illustrates the key elements of the generalized camera model, as well as
their relationships to the relevant camera and lens parameters. Let Din and Dout represent
entrance- and exit-pupil diameters respectively. The entrance-pupil is the image of the
aperture stop as seen from the object side of the imaging system. Similarly, the exit-pupil is
the image of the aperture stop as seen from the image side of the lens. P and P′ represent the
entrance- and exit- principal-planes [93]. These planes are the positions where the Gaussian
lens formula is valid. As a result one has the relationship

1
r
+

1
s
=

1
f
, (E.1)

which implies that with respect the ray-tracing geometry, the two principal-planes behave as
though they were collocated. When the entrance- and exit-pupil diameters are of different
sizes, the camera system induces a magnification. The pupil magnification is denoted
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r1

s1

1
r

+
1
s

=
1
f

Dout

In-Focus System Actual System

Exit Pupil

Entrance Pupil

P

P0

Din

mp =
Dout

Din

r2

s2

(1�mp) f

(1/mp �1) f

Figure E.1: Diagram and relevant parameters needed to relate a physical camera to the
generalized model

by mp = Dout/Din. Notice that when the pupil magnification is not one, the entrance- and
exit-pupils do not coincide with principal-planes.

The relationship between the principal-planes and their respective exit-pupils can be
determined by considering the system when focused to infinity. When this is the case the
cone (beam) of light passing through the entrance-pupil intersects P with diameter Din.
Applying (E.1), this light then forms a cone that extends from P′ with a diameter of Din, to
a focus point a distance f away along the optical axis. This cone also passes through the
exit-pupil, and from the similar triangles one finds that the distance between the exit-pupil
its principal-plane is (1−mp) f . Working the opposite direction similarly yields the distance
between the entrance-pupil its principle-plane.

Figure E.2 shows the rays corresponding to near and far ranges associated with a range-
induced-defocus resulting in a Circle-of-Confusion (CoC) of diameter c. From similar
triangles one may write

c
Dout

=
sn− s

sn− (1−mp) f
=

s− s f

s f − (1−mp) f
, (E.2)

where it useful to recall that F-Number is commonly used to describe the ratio between focal
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cd
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rn

r f
s
sn

s f

(1/mp �1) f (1�mp) f

Figure E.2: Rays tracing diagram corresponding to the near- and far-focus positions that
yield a fixed Circle-of-Confusion (CoC) of diameter c.

length and entrance-pupil diameter1.

f# =
f

Din
=

mp f
Dout

(E.3)

Solving for the distance between the exit principle-plane and the point of focus one finds

sn =
s− f# c

(
1

mp
−1
)

1− c
Dout

=
f s− f# c

(
1

mp
−1
)

f

f − f#
c

mp

, (E.4)

and similarly,

s f =
s+ f# c

(
1

mp
−1
)

1+ c
Dout

=
f s+ f# c

(
1

mp
−1
)

f

f + f#
c

mp

. (E.5)

Applying the thin lens law one may write s = r f
r− f , and back-substituting one may express

the near and far imaging ranges in terms of the CoC diameter.

rn =
r f − f# c

(
1

mp
−1
)
(r− f )

(r− f )
(

1− c
Dout

) =
r f 2− f# c

(
1

mp
−1
)
(r− f )

f 2 + f# c(r− f )
(E.6)

r f =
r f + f# c

(
1

mp
−1
)
(r− f )

(r− f )
(

1+ c
Dout

) =
r f 2 + f# c

(
1

mp
−1
)
(r− f )

f 2− f# c(r− f )
(E.7)

(E.8)

1Smaller f# optics are often called “faster” because they collect a fixed amount of light in less time than
optics with a larger f#. Specifically, the radiance at the detector goes as the square of f#.
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Given a (possibly defocused) point object at some range rd observed through a camera that
is in focus at range r, the associated CoC diameter is given by

cd =
mp f 2

f# (r− f )
· |rd− r|

rd +(rd− f )(mp−1)
. (E.9)

Similarly, for a system focused at some range r, the difference between the near and far
ranges yielding the CoC diameter c is given by

r f − rn =
2 f#c f 2

[
r+ f

(
1

mp
−1
)]

(r− f )

f 4− f 2
# c2(r− f )2 (E.10)

The relationship between cd and peak-to-valley waves of defocus is given by the geometry
illustrated in Figure E.3. The difference in sagitta between the wavefronts is given by

D

out

dPV

s� (1�mp) f

sd � (1�mp) f

cd

Figure E.3: The relationship between Peak-to-Valley (PF) defocus and the Circle-of-
Confusion (CoC) is given by the difference in sagitta between the in- and out- of focus
converging waves.

δPV = (sd− s)+

√
[s− (mp−1) f ]2−

(
Dout

2

)2

−
√

[sd− (mp−1) f ]2−
(

Dout

2

)2

(E.11)
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Solving in terms of imaging range, one finds

δPV = f


 rd

rd− f
− r

r− f
+

√(
1−mp +

r
r− f

)2

−
(

mp

2 f#

)2

− (E.12)

√(
1−mp +

rd

rd− f

)2

−
(

mp

2 f#

)2



and a circular aperture, the relationship between peak-to-valley defocus error and RMS
defocus error is δPV = δRMS

√
12. By understanding the relationship between the CoC and

wavefront description of the an imaging system, one is more easily apply physically realistic
models to imaging experiments.
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APPENDIX F

Numerical PSF Evaluation

High fidelity statistical inverse-techniques, and their associated information-theoretic
bounds, are only as accurate as the models used to approximate the physical phenomenon
being studied. That is to say, bounds correctly derived for a particular model are only relevant
to the extent that the model accurately represents the physical process in question. This
section gives insight into the fidelity of the blur model used throughout this composition, and
provides support to the implicit claim made in Chapter III that it is sufficient for examining
estimation performance on the order of 1×10−3 waves RMS. This level of accuracy is in
part due to a first-order correction applied to the aperture function which to the author’s
knowledge has not appeared in the literature. That correction is also derived here for
completeness.

Recall that the blur in an optical system induced by wavefront-errors in the exit-pupil
relate to the system’s PSF as follows

h(x,y) = F−1{H(w̃x, w̃y)
}

(F.1)

= c0
∣∣F−1{C(w̃x, w̃y)

}∣∣2 (F.2)

C(w̃x, w̃y) = A(w̃x, w̃y)exp
[

j2π
λ

λre f
Ψ(w̃x, w̃y)

]
(F.3)

w̃ def
=

λ
λre f

w (F.4)

where c0 is a normalizing constant that ensures the PSF integrates to 1, the 2π in the
exponent of the CTF implies that phase errors are being represented in units of waves, and
the ratio λ/λre f accounts for the scaling between the wavelength being used to represent
the optical system and the wavelength where the linear forward model is being evaluated.
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This expressions are exact, but do not indicate how one should implement them in a finite-
precision computer.

After implementing the proceeding equations, two sources of error must be considered;
errors in accuracy and errors in precision. These two types of errors are, like the blur
operator itself, are implicitly functions of the number of bits used to represent the system.
They are analogous to the bias and variance for an estimator in the sense that one can have a
very accurate (low-bias) estimator with very high variance, or conversely one can have a
very inaccurate (high-bias) estimator with very low variance. In the context of implementing
a forward operator, errors in precision (variance) is referred to here as the variation of the
operator in the neighborhood of its implicit parameters. As such, a complete description of
the errors in any implementation must address both sources1.

The physics of an optical system leads to parameterizations over Ψ resulting in the most
parsimonious representations of the blur operator, however, these parameters related to the
PSF in a non-linear way. The Sum of Absolute Error (SAE) is chosen to measure PSF
accuracy, and unless otherwise noted errors are measured about an unaberrated system. For
example, Figure F.1 illustrates the PSF variation measured in SAE for a 1×10−3 wave RMS
variation in the wavefront description. This plot is a histogram because not all directions
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Figure F.1: PSF variation induced by 1×10−3 waves RMS in the exit pupil over 7 Zernike
modes

in the parameter space manifest themselves as equal levels of variation in the PSF. Never
the less, if one is interested in estimating PSF variations on order of 1×10−3 waves, the
blur operator must exhibit errors in the PSF less than ∼ 3×10−3. Given this knowledge,
Figure F.2 shows that the use of a binary aperture is extremely inconvenient given our

1In this case accuracy (bias) errors will dominate precision errors
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tight accuracy constraints. This is due to the fact that the computational complexity of
computing a PSF goes as O

(
k2 logk

)
, where k is the aperture diameter, and that the accuracy

of the blur approximation is rolling off at or near the level of deviation expected from a
1×10−3 RMS deviation in the parameters. Taken together, this suggests that the use of a
binary aperture essentially prohibits estimation to the desired level. A higher-fidelity blur
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Figure F.2: Blur operator error as a function of exit-pupil diameter

operator can be achieved by using shaded aperture. Despite the fact that the true aperture was
binary, a shaded aperture can yield a better approximation because one is essentially using
numerical quadrature in the calculation of the PSF. Another way of looking at the problem
is to note that Equations F.2 and F.3 specify that the peak of the PSF (Strehl ratio), for an
aberration-free aperture, is a proportional to the square of the area of the aperture function.
For a circular aperture, this area is known a priori and may be viewed as a constraint on the
aperture approximation. Figure F.3 shows the reduction in PSF error (bias) as a function
of exit pupil diameter for using the shaded aperture approximation. At a pupil diameter of
only 225, the associated variation in pupil size (variance) is reduced to less than 2E-4. The
details of how one computes this improved approximation is given in Section G, and its
necessity when attempting to estimate errors on the order of this described in Chapter III
should now be clear.
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APPENDIX G

Shaded Aperture Derivation

The finite numerical approximation to a continuous circular aperture can be improved
by allowing each pixel in the approximation to take on the value of the area of intersection
between the pixels support and the disc representing the true continuous aperture. For our
purposes we’ll assume the pixels lie on Z×Z with the disc centered at the origin with radius
r. Then the problem is then naturally parameterized by where the disc intersects the square
representing the pixel centered about the point P. The area of intersection and the relevant
points are illustrated in Figure G.1. Exploiting the symmetry in the problem allows one to

P
A

B

Figure G.1: Area of intersection between (shown in blue) between a disc of radius r and a
pixel centered about the point P. The problem is naturally parameterized by the boundary
points A and B

consider only those pixels intersecting the first quadrant of the cartesian plane. Furthermore,
only “boundary” pixels are of interest, where these pixels are defined as those taking on
values in the range (0,1). Pixels entirely within the circle of radius r are given by

[
x+

1
2

sgn
(

x− 1
2

)]2

+

[
y+

1
2

sgn
(

y− 1
2

)]2

≤ r2 (G.1)
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whereas those entirely outside the circle are given by

[
x+

1
2

sgn(x)
]2

+

[
y+

1
2

sgn(y)
]2

> r2 (G.2)

The remaining pixels are “boundary” pixels as illustrated in Figure G.2, and calculating
their values is the subject of the remainder of this section.

Example finite aperture approximation

column [pixels]

ro
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Figure G.2: Pupil diameter of 9 with boundary pixels (with respect to a circle of radius 4.5)
shown in light red

After projecting each of the boundary pixels into quadrant 1, the area of intersection
with the disc can be written as a function of the area under the curve defining the boundary
of the disc and the half plane

b∫

a

√
r2− x2dx =

r2

2

[
arcsin

(
b
r

)
− arcsin

(a
r

)]
+ (G.3)

b
2

√
r2−b2− a

2

√
r2−a2

The means of computing the area of intersection fall into 2 primary cases; (i) “Full left edge”
and (ii) “Partial left edge” corresponding to the left edge of the pixel entirely falling within
the disc verses only partially falling within the disc. These two primary cases each have two
principle sub-cases corresponding to how the bounding circle exits the pixel. Additional
exceptions occur when the pixel falls on the principle axes, and the edge cases associated
with circles of very small radii. The function circularAperture.m implements these ideas and
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provides both the typical nearest-neighbor circular aperture, as well as the shaded aperture
implementation described in this appendix.
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APPENDIX H

OTF Partials

This section provides the partial derivatives of the PSF relative to the phase error
parameterization. To begin, recall the PSF relates to the phase errors as follows

h(x,y) = F−1{H(wx,wy)
}

(H.1)

= c0
∣∣F−1{C(wx,wy)

}∣∣2 (H.2)

C(wx,wy) = A(wx,wy)exp [ j2πΨ(wx,wy,α)] (H.3)

where h is the PSF, H is the OTF, C is the CTF, A is the aperture, Ψ is the wavefront phase
function, and c0 is a constant that normalizes the PSF to unit volume. Taking the gradient
one may write

∇α [h] = 2c0Re
((

F−1{C}
)∗
F−1{∇αC}

)
(H.4)

= 2c0Re
((

F−1{C}
)∗ (

j2πF−1{C∇αΨ}
))

(H.5)

=−4πc0Im
((

F−1{C}
)∗
F−1{C∇αΨ}

)
(H.6)

= 4πc0Im
(
F−1{C}

(
F−1{C∇αΨ}

)∗)
(H.7)

Differentiating a second time results in the Hessian

∇
2
α [h] = 4πIm

(
j2πF−1{C∇αΨ}

(
F−1{C∇αΨ}

)∗
+
(
∇α
[
F−1{C∇αΨ}

])∗
F−1{C}

)

(H.8)
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where the chain rule must again be applied the intermediate term

∇α
[
F−1{C∇αΨ}

]
= F−1{ j2πC∇αΨ∇αΨ+C∇

2
αΨ
}

(H.9)

= j2πF−1{C
(
∇αΨ∇αΨ+∇

2
αΨ
)}

(H.10)

Plugging this result into Equation H.8 leads to the desired result

∇
2
α [h] = 8π2Re

(
F−1{C∇αΨ}

(
F−1{C∇αΨ}

)∗−F−1{C}
(
F−1{C

(
∇αΨ∇αΨ+∇

2
αΨ
)})∗)

(H.11)
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APPENDIX I

Derivations for Known Objects

Consider the derivative of the likelihood function given by Equation 3.5. The differential
in general form is

∇L(θθθ) =−aaaT
ΣΣΣ
−1

∇aaa+
1
2

aaaT
ΣΣΣ
−1

∇ΣΣΣΣΣΣ
−1aaa− 1

2

(
bbb�−1

)T
∇bbb s.t. (I.1)

aaa =ddd− c3HHH (c1 fff + c2)− c4 (I.2)

bbb =c2
3HHH (c1 fff + c2)+σ2

r (I.3)

Next we sequentially evaluate the individual terms

∇HHH = ∇

[
diag

({
TTT SSSBBB(ααα)WWW

(
vvv j
)}J

j=1

)(
111J⊗ IIIn f

)]
(I.4)

= diag
({

TTT SSS
[
BBB(ααα)∇WWW

(
vvv j
)
+∇BBB(ααα)WWW

(
vvv j
)]}J

j=1

)(
111J⊗ IIIn f

)
(I.5)

Later we will use the fact that ∇BBB and ∇WWW both have 111 in their null-space implying so to
does ∇HHH. This follows immediately from the fact that HHH(111) = 111

∇aaa =−c3∇HHH (c1 fff + c2)−HHH∇c1c3 fff + c2c3−∇c4 (I.6)

Note that for vector differentials

∇(·) =
[

∇vvv(·) ∇ααα(·) ∇ccc(·) ∇σr(·)
]

(I.7)

Matrix differentials are taken one element at a time, but their actions are similarly defined.

[∇HHH fff ]( j,:) = TTT SSS
[
BBB(ααα)∇WWW

(
vvv j
)

fff +∇BBB(ααα)WWW
(
vvv j
)

fff
]

(I.8)
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where for clarity we use [{·}] to denote the concatenation of the set elements, and [·](1:J,:) to
indicate that the concatenation is occurring along dimension 1 filling elements 1:J (in this
case each “element” contains n f scalars along dimension 1) and “:” indicates that all of the
column indices are assigned as necessary.

Explicitly taking the action of the differential we get

∇aaa =−c1c3∇HHH fff −
[

000Jn f×(nv+nα ) c3HHH fff c3111Jn f c1HHH fff + c2 111Jn f 000Jn f

]
(I.9)

Similarly

∇bbb = c1c2
3∇HHH fff +

[
000Jn f×(nv+nα ) c2

3HHH fff c2
3111Jn f 2c3 (c1HHH fff + c2) 000Jn f 2σr111Jn f

]

(I.10)

Turning to the covariance term

ΣΣΣ
−1 = diag

([
c2

3HHH (c1 fff + c2)+σ2
r
]�−1

)
(I.11)

= diag
([

diag
(

c2
3
{

TTT SSSBBB(ααα)WWW
(
vvv j
)}J

j=1

(
IIIJ⊗ IIIn f

)
(c1 fff + c2)+σ2

r

)]�−1
)

(I.12)

= diag
([

vec
({

c2
3TTT SSSBBB(ααα)WWW

(
vvv j
)
(c1 fff + c2)+σ2

r
}J

j=1

)]�−1
)

(I.13)

= diag
([

c1c2
3vec

({
TTT SSSBBB(ααα)WWW

(
vvv j
)

fff
}J

j=1

)
+ c2c2

3 +σ2
r

]�−1
)

(I.14)

= diag
([

c1c2
3vec

({
HHH j fff

}J
j=1

)
+ c2c2

3 +σ2
r

]�−1
)

(I.15)

Thus,

aaaT
ΣΣΣ
−1

∇aaa =−
J

∑
j=1

(
ddd j− c3

(
c1TTT SSSBBB(ααα)WWW

(
vvv j
)

fff + c2
)
− c4

c1c2
3TTT SSSBBB(ααα)WWW

(
vvv j
)

fff + c2c2
3 +σ2

r

)T

(I.16)

[
c1c3TTT SSSBBB(ααα)

(
∇WWW

(
vvv j
))

fff c1c3TTT SSS (∇BBB)WWW
(
vvv j
)

fff c3HHH j fff c3111n f · · ·

c1HHH j fff + c2 111n f 000n f

]

where HHH j identifies the component of the forward operator that generates the jth frame of
data. This essentially lays out the individual component gradients of the 1st term in the
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likelihood. Similarly

aaaT
ΣΣΣ
−1

∇ΣΣΣΣΣΣ
−1aaa = aaaT

ΣΣΣ
−1

∇diag(bbb)ΣΣΣ−1aaa (I.17)

=
((

ΣΣΣ
−1aaa
)�2
)T

∇bbb (I.18)

=

((aaa
bbb

)�2
)T

∇bbb (I.19)

=
J

∑
j=1



(

ddd j− c3
(
c1HHH j fff + c2

)
− c4

c1c2
3HHH j fff + c2c2

3 +σ2
r

)�2



T

(I.20)

[ c1c2
3TTT SSSBBB(ααα)

(
∇WWW

(
vvv j
))

fff c1c2
3TTT SSS (∇BBB)WWW

(
vvv j
)

fff c2
3HHH j fff c2

3111n f . . .

2c3
(
c1HHH j fff + c2

)
000n f 2σr111n f ]

111T bbb�−1
∇bbb =

J

∑
j=1

(
1

c2
3HHH j (c1 fff + c2)+σ2

r

)T

(I.21)

[ c1c2
3TTT SSSBBB(ααα)

(
∇WWW

(
vvv j
))

fff c1c2
3TTT SSS (∇BBB)WWW

(
vvv j
)

fff c2
3HHH j fff c2

3111n f . . .

2c3
(
c1HHH j fff + c2

)
000n f 2σr111n f ]
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APPENDIX J

Known Object CRB Terms

To clarify the calculations of the Fisher information matrix, consider a matrix represen-
tation of ∇aaa that specifically isolates the components of the individual data frames. Next
consider how these components come together to form the individual elements of the Fisher
information matrix.

(∇aaa)T
∇aaa =




CCCT
v CCCv CCCT

v CCCα CCCT
v CCCc1 CCCT

v CCCc2 CCCT
v CCCc3 CCCT

v CCCc4

CCCT
αCCCα CCCT

αCCCc1 CCCT
αCCCc2 CCCT

αCCCc3 CCCT
αCCCc4

CCCT
c1

CCCc1 CCCT
c1

CCCc2 CCCT
c1

CCCc3 CCCT
c1

CCCc4

...

CCCT
c2

CCCc2 CCCT
c2

CCCc3 CCCT
c2

CCCc4 0
CCCT

c3
CCCc3 CCCT

c3
CCCc4

...

CCCT
c4

CCCc4

. . . 0 . . .




(J.1)

(∇bbb)T
∇bbb = c2

3




CCCT
v CCCv CCCT

v CCCα CCCT
v CCCc1 CCCT

v CCCc2 2CCCT
v CCCc3 2σr

c3
CCCT

v CCCc4

CCCT
αCCCα CCCT

αCCCc1 CCCT
αCCCc2 2CCCT

αCCCc3 2σr
c3

CCCT
αCCCc4

CCCT
c1

CCCc1 CCCT
c1

CCCc2 2CCCT
c1

CCCc3

... 2σr
c3

CCCT
c1

CCCc4

CCCT
c2

CCCc2 2CCCT
c2

CCCc3 0 2σr
c3

CCCT
c2

CCCc4

4CCCT
c3

CCCc3

... 4σr
c3

CCCT
c3

CCCc4

. . . 0 . . .

4
(

σr
c3

)2
CCCT

c4
CCCc4




(J.2)

Only the upper triangle is given because the matrix is clearly symmetric. The individual
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terms, which include the inverse covariance matrices, are computed below.

CCCT
v ΣΣΣ
−1CCCv = diag







c1


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T

(∇v1(HHH1) fff )

...

c1


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T

(∇vJ(HHHJ) fff )







(J.3)

CCCT
v ΣΣΣ
−2CCCv = diag







1
c2

3


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T 
 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




...

1
c2

3


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T 
 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]










(J.4)

CCCT
v ΣΣΣ
−1CCCα =




c1


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T

(∇α(HHH1) fff )

...

c1


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T

(∇α(HHHJ) fff )




(J.5)

CCCT
v ΣΣΣ
−2CCCα =




1
c2

3


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T 
 ∇α(HHH1) fff

111T
nα⊗

[
HHH1 fff+ c2

c1
+ 1

c1

(
σr
c3

)2
]




...

1
c2

3


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T 
 ∇α(HHHJ) fff

111T
nα⊗

[
HHHJ fff+ c2

c1
+ 1

c1

(
σr
c3

)2
]







(J.6)

CCCT
v ΣΣΣ
−1CCCc1 =




(∇v1(HHH1) fff )T

(
HHH1 fff

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

(∇vJ(HHHJ) fff )T

(
HHHJ fff

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.7)
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CCCT
v ΣΣΣ
−2CCCc1 =




1
c1c2

3


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
HHH1 fff

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

1
c1c2

3


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
HHHJ fff

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.8)

CCCT
v ΣΣΣ
−1CCCc2 =




(∇v1(HHH1) fff )T

(
111n f

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

(∇vJ(HHHJ) fff )T

(
111n f

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.9)

CCCT
v ΣΣΣ
−2CCCc2 =




1
c1c2

3


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
111n f

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

1
c1c2

3


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
111n f

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.10)

CCCT
v ΣΣΣ
−1CCCc3 =




c1
c3
(∇v1(HHH1) fff )T

(
HHH1 fff+ c2

c1

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

c1
c3
(∇vJ(HHHJ) fff )T

(
HHHJ fff+ c2

c1

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.11)

CCCT
v ΣΣΣ
−2CCCc3 =




1
c3

3


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
HHH1 fff+ c2

c1

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

1
c3

3


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
HHHJ fff+ c2

c1

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.12)

CCCT
v ΣΣΣ
−1CCCc4 =




1
c3
(∇v1(HHH1) fff )T

(
111n f

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

1
c3
(∇vJ(HHHJ) fff )T

(
111n f

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.13)
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CCCT
v ΣΣΣ
−2CCCc4 =




1
c1c3

3


 ∇v1(HHH1) fff

111T
nv1
⊗
[

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
111n f

HHH1 fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)

...

1
c1c3

3


 ∇vJ(HHHJ) fff

111T
nvJ
⊗
[

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2
]




T (
111n f

HHHJ fff+ c2
c1
+ 1

c1

(
σr
c3

)2

)




(J.14)

CCCT
αΣΣΣ
−1CCCα = c1

J

∑
j=1

(
∇α
(
HHH j
)

fff
)T




∇α
(
HHH j
)

fff

111T
nα ⊗

[
HHH j fff + c2

c1
+ 1

c1

(
σr
c3

)2
]


 (J.15)

CCCT
αΣΣΣ
−2CCCα =

1
c2

3

J

∑
j=1




∇α
(
HHH j
)

fff

111T
nα ⊗

[
HHH j fff + c2

c1
+ 1

c1

(
σr
c3

)2
]




T 


∇α
(
HHH j
)

fff

111T
nα ⊗

[
HHH j fff + c2

c1
+ 1

c1

(
σr
c3

)2
]




(J.16)

CCCT
αΣΣΣ
−1CCCc1 =

J

∑
j=1

(
∇α
(
HHH j
)

fff
)T




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.17)

CCCT
αΣΣΣ
−2CCCc1 =

1
c1c2

3

J

∑
j=1




∇α
(
HHH j
)

fff

111T
nα ⊗

[
HHH j fff + c2

c1
+ 1

c1

(
σr
c3

)2
]




T 


HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




(J.18)

CCCT
αΣΣΣ
−1CCCc2 =

J

∑
j=1

(
∇α
(
HHH j
)

fff
)T




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.19)

CCCT
αΣΣΣ
−2CCCc2 =

1
c1c2

3

J

∑
j=1




∇α
(
HHH j
)

fff

111T
nα ⊗

[
HHH j fff + c2

c1
+ 1

c1

(
σr
c3

)2
]




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




(J.20)

CCCT
αΣΣΣ
−1CCCc3 =

c1

c3

J

∑
j=1

(
∇α
(
HHH j
)

fff
)T




HHH j fff + c2
c1

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.21)
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CCCT
αΣΣΣ
−2CCCc3 =

1
c3

3

J

∑
j=1




∇α
(
HHH j
)

fff

111T
nα ⊗

[
HHH j fff + c2

c1
+ 1

c1

(
σr
c3

)2
]




T 


HHH j fff + c2
c1

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




(J.22)

CCCT
αΣΣΣ
−1CCCc4 =

1
c3

J

∑
j=1

(
∇α
(
HHH j
)

fff
)T




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.23)

CCCT
αΣΣΣ
−2CCCc4 =

1
c1c3

3

J

∑
j=1




∇α
(
HHH j
)

fff

111T
nα ⊗

[
HHH j fff + c2

c1
+ 1

c1

(
σr
c3

)2
]




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




(J.24)

CCCT
c1

ΣΣΣ
−1CCCc1 =

1
c1

J

∑
j=1

(
HHH j fff

)T




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.25)

CCCT
c1

ΣΣΣ
−2CCCc1 =

1
c2

1c2
3

J

∑
j=1




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.26)

CCCT
c1

ΣΣΣ
−1CCCc2 =

1
c1

J

∑
j=1

111T
n f




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.27)

CCCT
c1

ΣΣΣ
−2CCCc2 =

1
c2

1c2
3

J

∑
j=1




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.28)

CCCT
c1

ΣΣΣ
−1CCCc3 =

1
c3

J

∑
j=1

(
HHH j fff +

c1

c2

)T




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.29)

CCCT
c1

ΣΣΣ
−2CCCc3 =

1
c1c2

3

J

∑
j=1




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


HHH j fff + c1
c2

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.30)

CCCT
c1

ΣΣΣ
−1CCCc4 =

1
c1c3

J

∑
j=1

111T
n f




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.31)
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CCCT
c1

ΣΣΣ
−2CCCc4 =

1
c2

1c3
3

J

∑
j=1




HHH j fff

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.32)

CCCT
c2

ΣΣΣ
−1CCCc2 =

1
c1

J

∑
j=1

111T
n f




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.33)

CCCT
c2

ΣΣΣ
−2CCCc2 =

1
c2

1c2
3

J

∑
j=1




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.34)

CCCT
c2

ΣΣΣ
−1CCCc3 =

1
c3

J

∑
j=1

(
HHH j fff +

c1

c2

)T




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.35)

CCCT
c2

ΣΣΣ
−2CCCc3 =

1
c1c3

3

J

∑
j=1




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


HHH j fff + c1
c2

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.36)

CCCT
c2

ΣΣΣ
−1CCCc4 =

1
c1c3

J

∑
j=1

111T
n f




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.37)

CCCT
c2

ΣΣΣ
−2CCCc4 =

1
c2

1c3
3

J

∑
j=1




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.38)

CCCT
c3

ΣΣΣ
−1CCCc3 =

c1

c2
3

J

∑
j=1

(
HHH j fff +

c1

c2

)T




HHH j fff + c1
c2

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.39)

CCCT
c3

ΣΣΣ
−2CCCc3 =

1
c4

3

J

∑
j=1




HHH j fff + c1
c2

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


HHH j fff + c1
c2

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.40)

CCCT
c3

ΣΣΣ
−1CCCc4 =

1
c2

3

J

∑
j=1

111T
n f




HHH j fff + c1
c2

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.41)

CCCT
c3

ΣΣΣ
−2CCCc4 =

1
c1c4

3

J

∑
j=1




HHH j fff + c1
c2

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.42)
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CCCT
c4

ΣΣΣ
−1CCCc4 =

1
c1c2

3

J

∑
j=1

111T
n f




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.43)

CCCT
c4

ΣΣΣ
−2CCCc4 =

1
c2

1c4
3

J

∑
j=1




111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2




T 


111n f

HHH j fff + c2
c1
+ 1

c1

(
σr
c3

)2


 (J.44)
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APPENDIX K

Smoothing Regularizer

This section motivates the use of a novel smoothness/roughness based regularizer for
continuous objects, and derives a functional with certain desirable invariances. Consider a
finite length vector that maps to its continuous representation through a circulant support
assumption, and that its Fourier transform is given by the DFT. These assumptions are
consistent with the finite-series object model presented in [63] (Section 4.2.1) with a
complex exponential basis and inter-sample values defined through sinc interpolation. This
is a very commonly applied assumption, but one must be mindful of how Gibb’s phenomenon
impacts the continuous representation given its circulant support. The remainder of this
section addresses this problem for 1D signals, however, the ideas easily generalize to higher
dimensions.

Given a finite-series object model, one natural goal is to minimize the bandwidth of the
overall signal subject to the observed data. With the uncertainty principle in mind, a natural
regularization functional is given by [173]

Λ( f (x)) =
∫

(w−w0)
2 |F(w)|2dw (K.1)

where w0 is a free variable related to where one labels the origin of the frequency axis,
and F(w) is defined through the Fourier transform F(w) = F( f (x)). The signals of interest
in this thesis are always real, implying |F(w)|2 is a symmetric positive function about
zero. If follows from symmetry that the minimizer with respect to w0 is given by w0 = 0,
however, this is also a natural selection of w0 for many applications. By applying Parseval’s
theorem we see that this objective function is equivalent to minimizing the integrated squared
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derivative over the circle.

Λ( f ) =
∫
| jwF(w)|2dw (K.2)

=
∫ ∣∣∣∣F

(
∂ f (x)

∂x

)∣∣∣∣
2

dw (K.3)

=
∫ ∣∣∣∣

∂ f (x)
∂x

∣∣∣∣
2

dx (K.4)

From this form it is clear that this functional is a member of the more general class of
functions

Rm( f ) =
∫ (∂ m f

∂xm

)2

dx, (K.5)

and a classic measure of roughness [88, 152]. Thus a constraint on Equation K.1, typically
enforced in the form of a penalty term, enforces a degree of smoothness on the object. The
fact that the non-commutable induced differential operators associated with the tangent-
space of the Heisenberg group are related by first-order differentiation motivates the use of
m = 1. In other words, we are penalizing the unobserved member of the two incompatible
observables.

Integrating (K.4) by parts, and using the fact that f is defined over the circle to address
the boundary conditions, also results in the following illuminating relationship

Λ( f ) =
∫ ∣∣∣∣

∂ f (x)
∂x

∣∣∣∣
2

dx (K.6)

=−
∫ ∂ 2 f (x)

∂x2 f dx (K.7)

Specifically, when f is constrained to be positive, the regularizer can be interpreted as a
weighted inner-product of the laplacian. Equation (K.7) also provides insight into how the
circulant model can be used in conjunction with guard banding to approximate non-circulant
objects.

The roughness regularization functional given by (K.1) penalizes high-frequency com-
ponents, but it still lacks some of the invariance properties that are desirable for inverse
imaging problems. Specifically, we would like to find a regularizer Λ with the additional
properties

1. Λ( f (R◦ x)) = Λ( f (x)) s.t. R def
= A rigid transformation

2. Λ(a f (x)+b) = Λ( f (x)) ∀a,b ∈ C
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3. The ability to regularize with respect to another function

Property 1 requires that the roughness measure be invariant to rigid transformations of
the coordinates. For a 2D image this implies that circulantly rotating or translating the
object must not alter its degree of smoothness. Given that integration occurs over the entire
support, and that the determinant of the Jacobian of a rigid transformation is 1, this property
holds for (K.1) by applying multivariate substitution of variables [158]. Property 2 requires
that an affine shift of the intensity of the object not alter its smoothness property. Finally,
property represents the desire to measure smoothness relative to some reference function.
As an example, given data from an imaging device, one may wish to penalize non-smooth
deviations from some function other than the mean as implied by (K.4). Properties 2 and
3 clearly do not hold for (K.1), so the goal becomes to alter this function to accommodate
these new properties without sacrificing either property 1 or the bandwidth interpretation.

Let FFF represent the DFT matrix corresponding to a length N signal, then (K.4) may be
represented in the form a standard quadratic penalty acting the discrete representation of the
band-limited and circulant signal as follows

Λ(xxx) =
1
n

xxxH
ΣΣΣ
−1
x xxx (K.8)

=
1
n
(FFFxxx)H FFFΣΣΣ

−1
x FFFH (FFFxxx) (K.9)

Equating FFFΣΣΣ
−1
x FFF with w2 from (K.2) immediately allows one to solve for the penalty matrix.

When xxx is a lexicographically ordered representation of a 2D signal of size nr×nc, and FFF

the corresponding 2D DFT matrix, then back-substituting one finds that

ΣΣΣ
−1
x = FFFHdiag

[
vec
(
(wwwr�wwwr)111T

nc
+111nr (wwwc�wwwc)

T
)]

FFF , (K.10)

where wwwr and wwwc are the frequency axes associated with the DFT in the row and column
dimensions respectively. A simple way of accommodating affine scale invariance is to
project the object into an affine invariant space. One such space is the space of analytic
circulant functions with zero mean and unit-norm. Redefining Λ over this projection with
respect to some zero-mean, unit-norm reference function one gets

Λ(xxx) =
1
n

[
FFF
(

xxx− x̄xx
‖xxx− x̄xx‖ −µµµx

)]H

FFFΣΣΣ
−1
x FFFH

[
FFF
(

xxx− x̄xx
‖xxx− x̄xx‖ −µµµx

)]
, (K.11)

where x̄xx def
= 1/n111T xxx111. Due to the structure of the regularization functional it maintains its

invariance to rigid transformation while simultaneously picking up the two additional
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properties. Furthermore, for zero mean unit-norm signals, with µx taken to be zero, (K.11) is
precisely the multi-dimensional extension of the classic roughness measure given by (K.5).
In general, µµµx is any zero mean reference image, and one often wants to ensure that µµµx is
also unit-norm.

The gradient of (K.11) is relatively straight forward once one has first computed a few
of the requisite relations

f̂ff def
=

fff
‖ fff‖ (K.12)

∂ ‖ fff‖
∂ fff

= f̂ff
T

(K.13)

∂ fff T QQQ fff
∂ fff

= fff T (QQQ+QQQT) (K.14)

Applying these relationships to the normalized image one finds

∂
∂ fff

[
fff − f̄ff∥∥ fff − f̄ff

∥∥

]
=

∥∥ fff − f̄ff
∥∥(III− 1

n111111T)−
(

fff − f̄ff
) ( fff− f̄ff)

T

‖ fff− f̄ff‖
(
III− 1

n111111T)

∥∥ fff − f̄ff
∥∥2 (K.15)

=
1∥∥ fff − f̄ff
∥∥
(
III− ĝggĝggT)

(
III− 1

n
111111T

)
(K.16)

ĝgg def
=

fff − f̄ff∥∥ fff − f̄ff
∥∥ (K.17)

Using these results in conjunction with the chain rule one finds

∂
∂ fff

[
R f ( fff )

]
=

[
2

n
∥∥ fff − f̄ff

∥∥
(

III− 1
n

111111T
)(

III− ĝggĝggT)
ΣΣΣ
−1
f

(
ĝgg−µµµ f

)]T

(K.18)

=

[
2

n
∥∥ fff − f̄ff

∥∥
(
III− ĝggĝggT)

ΣΣΣ
−1
f

(
ĝgg−µµµ f

)]T

, (K.19)

where (K.19) follows from (K.18) because ΣΣΣ
−1
f projects out the mean, FFF is orthonormal,

and both ĝgg and µµµ f are zero mean by construction.
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Theoretical performance model for single image depth from defocus. JOSA A,
31(12):2650–2662, 2014.

[191] UN Population Division. World population prospects. Technical report, United
Nations, 2015.

[192] Harry L. Van Trees. Detection, Estimation, and Modulation Theory - Van Trees,
Harry L. John Wiley & Sons, 2001.

[193] Patrick Vandewalle, Luciano Sbaiz, Joos Vandewalle, and Martin Vetterli. How to
take advantage of aliasing in bandlimited signals. In Acoustics, Speech, and Signal
Processing, 2004. Proceedings.(ICASSP’04). IEEE International Conference on,
volume 3, pages iii–948. IEEE, 2004.
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