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Sensor Management
Using Relevance Feedback Learning

Chris Kreucher*, Keith Kastella and Alfred O. Hero III,IEEE Fellow

Abstract— An approach that is common in the machine learn-
ing literature, known as relevance feedback learning, is applied
to provide a method for managing agile sensors. In the context of
a machine learning application such as image retrieval, relevance
feedback proceeds as follows. The user has a goal image in mind
that is to be retrieved from a database of images (i.e., learned by
the system). The system computes an image or set of images to
display (the query). Oftentimes, the decision as to which images
to display is done using divergence metrics such as the Kullback-
Leibler (KL) divergence. The user then indicates the relevance of
each image to his goal image and the system updates its estimates
(typically a probability mass function on the database of images).
The procedure repeats until the desired image is found. Our
method for managing agile sensors proceeds in an analogous
manner. The goal of the system is to learn the number and states
of a group of moving targets occupying a surveillance region. The
system computes a sensing action to take (the query), based on a
divergence measure called the Ŕenyi divergence. A measurement
is made, providing relevance feedback and the system updates its
probability density on the number and states of the targets. This
procedure repeats at each time where a sensor is available for
use. It is shown using simulated measurements on real recorded
target trajectories that this method of sensor management yields
a ten fold gain in sensor efficiency when compared to periodic
scanning.

EDICS Category: 2-INFO

Index Terms— Sensor Management, Machine Learning, Rele-
vance Feedback, Multitarget Tracking, Particle Filtering, Joint
Multitarget Probability Density.

I. I NTRODUCTION

T HE problem of sensor management is to determine the
best way to task a sensor or group of sensors when

each sensor may have many modes and search patterns.
Typically, the sensors are used to gain information about the
kinematic state (e.g. position and velocity) and identification
of a group of targets. Applications of sensor management
are often military in nature [7], but also include things such
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as wireless networking [12] and robot path planning [10].
There are many objectives that the sensor manager may be
tuned to meet, e.g. minimization of track loss, probability of
target detection, minimization of track error/covariance, and
identification accuracy. Each of these different objectives taken
alone may lead to a different sensor allocation strategy [7][8].

Many researchers have approached the sensor scheduling
problem with a Markov decision process (MDP) strategy.
However, a complete long-term (non-myopic) scheduling solu-
tion suffers from combinatorial explosion when solving prac-
tical problems of even moderate size. Researchers have thus
worked at approximate solution techniques. Krishnamurthy
[1][2] uses a multi-arm bandit formulation involving hidden
Markov models. In [1], an optimal algorithm is formulated to
track multiple targets with an ESA that has a single steerable
beam. Since the optimal approach has prohibitive computa-
tional complexity, several suboptimal approximate methods
are given and some simple numerical examples involving
a small number of targets moving among a small number
of discrete states are presented. Even with the proposed
suboptimal solutions, the problem is still very challenging
numerically. In [2], the problem is reversed, and a single
target is observed by a single sensor from a collection of
sensors. Again, approximate methods are formulated due to
the intractability of the globally optimal solution. Bertsekas
and Castanon [3][6] formulate heuristics for the solution
of a stochastic scheduling problem corresponding to sensor
scheduling. They implement a rollout algorithm based on their
heuristics to approximate the stochastic dynamic programming
algorithm. Additionally, Castanon [4][5] formulates the prob-
lem of classifying a large number of stationary objects with
a multi-mode sensor based on a combination of stochastic
dynamic programming and optimization techniques. Malhotra
[13] proposes using reinforcement learning as an approximate
approach to dynamic programming.

Recently, others have proposed using divergence measures
as an alternative means of sensor management. In the context
of Bayesian estimation, a good measure of the quality of a
sensing action is the reduction in entropy of the posterior
distribution that is induced by the measurement. Therefore,
information theoretic methodologies strive to take the sensing
action that maximizes the expected gain in information. The
possible sensing actions are enumerated, the expected gain
for each measurement is calculated, and the action that yields
the maximal expected gain is chosen. Hintz et. al. [15][16]
focus on using the expected change in Shannon entropy
when tracking a single target moving in one dimension with
Kalman Filters. A related approach uses discrimination gain
based on a measure of relative entropy, the Kullback-Leibler
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(KL) divergence. Schmaedeke [18] uses the KL divergence
to determine optimal sensor-to-target tasking. Kastella uses
the KL divergence to track multiple targets moving amongst
discrete cells and for the purposes of target identification
[9][14]. Zhao [24] compares several approaches, including
simple heuristics, entropy, and relative entropy (KL).

Divergence-based adaptivity measures such as the KL diver-
gence are a common learning metric that have been used in
the machine learning literature in techniques with the names
“active learning” [23], “learning by query” [21], “relevance
feedback” [20], and “stepwise uncertainty reduction” [19].
These techniques are iterative procedures in which the system
provides a set of items to the user as a query, the user indicates
the relevance of the retrieved items, and the system adaptively
chooses new queries based on the user feedback. The ultimate
goal is to learn something from the user in an interactive
manner.

A specific example of the role of divergence measures in
machine learning is the interactive search of a database of
imagery for a desired image. Cox et. al. [20] associates a
probability of being the correct image to each image in the
database. The probability mass function (pmf) is initially either
uniformly distributed or peaked due to an informational prior.
Queries are posed to the user based on entropy measures, and
the pmf is updated according to Bayes’ rule. Similarly, Geman
[19] studies the situation where a user has a specific image in
mind and the system steps through a sequence of two-image
comparisons to the user. The pair of images chosen by the
system at each time is the query who’s answer may result in
the lowest resulting Shannon entropy after the user responds.

Additionally, Zhai and Lafferty [22] use the KL divergence
with feedback documents to improve estimation of query
models in an application involving retrieval of documents from
a text-based query. Freund et. al [21] study the rate that the
prediction error decreases under divergence-based learning as
a function of the number of queries for some natural learning
problems. Finally, Geman and Jedynak [17] use expected
entropy reduction as a means of learning the paths of roads in
satellite imagery.

In the signal processing context of multitarget tracking,
we use divergence-based methods to learn the number of
targets present in the surveillance region as well as their
kinematic states. We first utilize a target tracking algorithm to
recursively estimate the joint multitarget probability density
for the set of targets under surveillance. Analogous to the
image/document retrieval applications, at each iteration of our
algorithm we use a divergence-based metric to decide on the
optimal query to pose. The decision as to how to use a sensor
then becomes one of determining which sensing action will
maximize the expected information gain between the current
joint multitarget probability density and the joint multitarget
probability density after a measurement has been made. In
this work, we consider a more general information measure
called the Ŕenyi Information Divergence [25] (also known as
theα-divergence), which reduces to the KL divergence under a
certain limit. The Ŕenyi divergence has additional flexibility in
that in allows for emphasis to be placed on specific portions
of the support of the densities to be compared. In our case

the query takes the form of making a measurement with
the sensor rather than asking the user whether one image or
another is closer to the desired image. However in either case,
the relevance of the query is fed back into the system and
incorporated by Bayes’ rule.

A distinguishing feature of our application is that the goal
is not a fixed entity, but rather a dynamic process that evolves
over time. In other words, the kinematic states and number
of targets change with time as the targets move through
the surveillance region. We therefore include models of the
evolution of the joint multitarget density into our Bayesian
framework. These models are primarily kinematic in nature,
but may include models of target birth and death to accom-
modate changing numbers of targets.

This paper contains two main contributions. First, we give
a particle filter (PF) based multitarget tracking algorithm that
by design explicitly enforces the multitarget nature of the
problem. Each particle is a sample from the joint multitarget
density and thus an estimate of the status of the entire system –
the number of targets in the surveillance areas as well as their
individual states. We find that the PF based multitarget tracker
allows for successful tracking in a highly non-linear non-
Gaussian filtering scenario. Furthermore, the PF implementa-
tion allows both target tracking and sensor management to be
done in a computationally tractable manner. We demonstrate
this by evaluating the sensor management scheme and tracking
algorithm on a surveillance area containing ten targets, with
target motion that is taken from real recorded target trajectories
from an actual military battle simulation. Second, we detail a
reinforcement learning approach to sensor management where
the Ŕenyi divergence is used as the method for estimating
the utility of taking different actions. The sensor management
algorithm uses the estimated density to predict the utility
of a measurement before tasking the sensor, thus leading to
actions which maximally gain information. We demonstrate
that this method of sensor management yields a ten-fold
increase in sensor efficiency over periodic scanning in the
scenarios considered.

The paper is organized in the following manner. In Section
II, we review the target tracking algorithm that is central to our
sensor management scheme. Specifically, we give the details
of the JMPD and examine the numerical difficulties involved
in directly implementing JMPD on a grid. In Section III,
we present our particle filter based implementation of JMPD.
We see that this implementation provides for computation-
ally tractable implementation, allowing realistic scenarios to
be considered. Our sensor management scheme, which is a
learning algorithm that employs the Rényi divergence as a
metric, is extensively detailed in Section IV. A comparison
of the performance of the tracker using sensor management
to the tracker using a non-managed scheme on two model
problems of increasing realism is given in Section V. We
briefly illustrate the effect of non-myopic (long term) planning
in this information theoretic context. We conclude with some
thoughts on future direction in Section VI.
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II. T HE JOINT MULTITARGET PROBABILITY DENSITY

In this section, we introduce the details of using the Joint
Multitarget Probability Density (JMPD) for target tracking.
The concept of JMPD was first discussed by Kastella [11]
where a method of tracking multiple targets that moved be-
tween discrete cells on a line was presented. We generalize the
discussion here to deal with targets that haveN -dimensional
continuous valued state vectors and arbitrary kinematics. In
the model problems, we are interested in tracking the position
(x, y) and velocity (ẋ, ẏ) of multiple targets and so we
describe each target by the four dimensional state vector
[x, ẋ, y, ẏ]′. A simple schematic showing three targets (Targets
A, B, and C) moving through a surveillance area is given in
Figure 1. There are two target crossings, a challenging scenario
for multitarget trackers.
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Fig. 1. A simple scenario involving three moving targets. The target paths
are indicated by the lines, and direction of travel by the arrows. There are
two instances where the target paths cross.

JMPD provides a means for tracking an unknown num-
ber of targets in a Bayesian setting. The statistics model
uses the joint multitarget conditional probability density
p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) as the probability density for ex-

actly T targets with statesxk
1 ,xk

2 , ...xk
T−1,x

k
T at timek based

on a set of observationsZk. The number of targetsT is a
variable to be estimated simultaneously with the states of theT
targets. The observation setZk refers to the collection of mea-
surements up to and including timek, i.e.Zk = {z1, z2, ...zk},
where each of thezi may be a single measurement or a vector
of measurements made at timei.

Each of the state vectorsxi in the density
p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) is a vector quantity and may

(for example) be of the form[x, ẋ, y, ẏ]′. We refer to each of
the T target state vectorsxk

1 ,xk
2 , ...xk

T−1,x
k
T as a partition

of the multitarget stateX. For convenience, the density
will be written more compactly in the traditional manner as
p(Xk|Zk), which implies that the state-vectorX represents
a variable number of targets each possessing their own state
vector. As an illustration, some examples illustrating the
sample space ofp are

p(∅|Z), the posterior probability density for no targets in the
surveillance volume

p(x1|Z), the posterior probability density for one target with
statex1

p(x1,x2|Z), the posterior probability density for two targets
with statesx1 andx2

p(x1,x2,x3|Z), the posterior probability density for three
targets with statesx1,x2 andx3

The JMPD is symmetric under permutation of the target
indices. If the targets are widely separated in the sensor’s mea-
surement space, each target’s measurements can be uniquely
associated with it, and the joint multitarget conditional density
factorizes. In this case, the problem may be treated as a
collection of single target trackers. The characterizing fea-
ture of multitarget tracking is that in general some of the
measurements have ambiguous associations, and therefore the
conditional density does not factorize.

The temporal update of the posterior likelihood on this
density proceeds according to the usual rules of Bayesian
filtering. Given a model of how the JMPD evolves overtime,
p(Xk|Xk−1), we may compute the time-updated or prediction
density via

p(Xk|Zk−1) =
∫

dXk−1p(Xk|Xk−1)p(Xk−1|Zk−1) (1)

The time evolution of the JMPD may simply be a collection
of target kinematic models or may involve target birth and
death. In the case where target identification is part of the state
being estimated, different kinematic models may be used for
different target types.

Bayes’ rule is used to update the posterior density as new
measurementszk arrive as

p(Xk|Zk) =
p(zk|Xk)p(Xk|Zk−1)

p(zk|Zk−1)
(2)

This formulation allows JMPD to avoid altogether the
problem of measurement to track association. There is no need
to identify which target is associated with which measurement
because the Bayesian framework keeps track of the entire joint
multitarget density.

In practice, the sample space ofXk is very large. It contains
all possible configurations of state vectorsxi for all possible
values of T . The original formulation of JMPD given by
Kastella [11] approximated the density by discretizing on
a grid. It was found that the computational burden in this
scenario makes evaluating realistic problems intractable, even
when using the simple model of targets moving between
discrete locations in one-dimension. In fact, the number grid
cells needed grows asLocationsTargets, whereLocations is
the number of discrete locations the targets may occupy and
Targets is the number of targets.

Thus, we need a method for approximating the JMPD that
leads to more tractable computational burden. In the next
section, we show that the Monte Carlo methods collectively
known as particle filtering break this computational barrier.

III. T HE PARTICLE FILTER IMPLEMENTATION OF JMPD

We find that a particle filter based implementation of JMPD
breaks the computational logjam and allows us to investigate
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more realistic problems. To implement JMPD via a particle
filter (PF), we first approximate the joint multitarget proba-
bility density p(X|Z) by a set ofNpart weighted samples,
Xp, (p = 1...Npart):

p(X|Z) ≈
Npart∑
p=1

wpδ(X−Xp) (3)

Here we have suppressed the time superscriptk everywhere
for notational simplicity. We will do this whenever time is not
relevant to the discussion at hand.

Particle filtering is then simply a method of solving the pre-
diction and update equations given earlier by simulation [29].
Samples are used to represent the density and to propagate
it through time. The prediction equation (eq. 1) is solved by
proposing new particles from the existing set of particles using
a model of state dynamics and (perhaps) the measurements.
The update equation (eq. 2) is solved by assigning a weight
to each of the particles that have been proposed using the
measurements and the model of state dynamics.

The specific details of the PF implementation are as follows.
Recall first from Section II that our multitarget state vector
X has T partitions, each corresponding to a target, written
explicitly in equation (4):

X = [x1, x2, ..., xT−1, xT ] (4)

Furthermore, the joint multitarget probabilityp(X|Z) is
defined forT = 0...∞. Each of the particlesXp, p = 1...Npart

is a sample drawn from the JMPDp(X|Z). Therefore, a
particle Xp may have 0, 1, ...∞ partitions, each partition
corresponding to a different target. We will denote the number
of partitions in particleXp by np, wherenp may be different
for differentXp. In practice, the maximum number of targets
a particle may track in truncated at some large finite number
Tmax. Since a partition corresponds to a target, the number of
partitions that a particle has is that particle’s estimate of the
number of targets in the surveillance area.

To make our notation more concrete, assume that a par-
ticular particle,Xp, is trackingnp targets. ThenXp hasnp

partitions and will be given by

Xp = [xp,1, xp,2, . . . xp,np ] (5)

In the case where each partition (target) is modelled using
the state vectorx = [x, ẋ, y, ẏ]′, the particle will havenp

partitions each of which has4 components:

Xp = [xp,1, xp,2, . . . xp,np ] =



xp,1 xp,2 . . . xp,np

ẋp,1 ẋp,2 . . . ẋp,np

yp,1 yp,2 . . . yp,np

ẏp,1 ẏp,2 . . . ẏp,np


 (6)

Where here we expand the notation a bit and usexp,1 to
denote thex position estimate that particlep has of target1.

Notice that this method differs from traditional particle filter
tracking algorithms where a single particle corresponds to
a single target. We find that when each particle is attached

to a single target, some targets become particle starved over
time. All of the particles tend to attach to the target receiving
the best measurements. Our method explicitly enforces the
multitarget nature of the problem by encoding in each particle
the estimate of the number of targets and the states of those
targets. This technique helps to alleviate the particle starvation
issue, ensuring that all targets are represented by the particles.
This is particularly critical in the challenging scenario of target
crossing. This paradigm is important for estimating the number
of targets in the surveillance region.

The permutation symmetry discussed in Section II is di-
rectly inherited by the particle filter representation. Each
particle contains many partitions (as many as the number of
targets it estimates exist in the surveillance region) and the
permutation symmetry of JMPD is visible through the fact
that the relative ordering of targets may change from particle
to particle. This permutation symmetry must be dealt with
carefully in the particle proposal process and during estimation
of target positions.

As detailed in another work [26], while following the
standard sampling importance resampling method for particle
filtering, we employ an adaptive sampling scheme for particle
proposal that dramatically reduces the number of particles
necessary to effectively track groups of targets. This scheme
automatically factorizes the JMPD when targets or groups of
targets are acting independently from the others (i.e. there is
no measurement to target association issue) while maintaining
the couplings when necessary. We also employ an adaptive
resampling on the particle set based on the effective number of
particles. It is shown therein that it is computationally tractable
to track tens of targets moving over a large surveillance region
with the particle filter implementation of JMPD.

IV. RELEVANCE FEEDBACK LEARNING FORSENSOR

MANAGEMENT

In this section, we present the details of our information
based method for sensor management. As mentioned earlier,
our paradigm for sensor management is analogous to the
machine learning methodologies present in relevance feedback
techniques.

The goal of the multitarget tracker is to learn the number
and states of a set of targets in a surveillance region. At
each instance when a sensor is available for use, we use a
divergence based method to compute the best sensing action to
take (the query). This is done by first enumerating all possible
sensing actions. A sensing action may consist of choosing
a particular mode (i.e. SAR mode versus GMTI mode), a
particular dwell point/pointing angle, or a combination of the
two. Next, theexpectedinformation gain is calculated for each
of the possible actions, and the action that yields the maximum
expected information gain is taken. The measurement received
is treated as the relevance feedback, analogous to a user
selecting an image that is most relevant to his query. This
measurement is used to update the JMPD, which is in turn
used to determine the next measurement to make.

The calculation of information gain between two densities
f1 andf0 is done using the Ŕenyi information divergence (7),
also known as theα-divergence:
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Dα(f1||f0) =
1

α− 1
ln

∫
fα
1 (x)f1−α

0 (x)dx (7)

Theα parameter in equation (7) may be used to adjust how
heavily one emphasizes the tails of the two distributionsf1

and f0. In the limiting case ofα → 1 the Ŕenyi divergence
becomes the more commonly utilized Kullback-Leibler (KL)
discrimination (8).

lim
α→1

Dα(f1||f0) =
∫

f0(x)ln
f0(x)
f1(x)

dx (8)

In the case that forα = 0.5, the Ŕenyi information
divergence becomes the log Hellinger distance squared, where
the Hellinger distance is defined by

dH(f1, f0) =
1
2

∫ (√
f1(x)−

√
f0(x)

)2

dx (9)

The function Dα given in (eq. 7) is a measure of the
divergence between the densitiesf0 andf1. In our application,
we are interested in computing the divergence between the
predicted densityp(X|Zk−1) and the updated density after a
measurement is made,p(X|Zk). Therefore, we write

Dα

(
p(X|Zk)||p(X|Zk−1)

)
=

1
α− 1

ln
∑

X

p(X|Zk)αp(X|Zk−1)1−α (10)

The integral in equation (7) reduces to a summation since
any discrete approximation ofp(X|Zk−1), including our par-
ticle filter approximation, only has nonzero probability at a
finite number of target states. After some algebra and the
incorporation of Bayes’ rule (eq. 2), one finds that this quantity
can be simplified to

Dα

(
p(X|Zk)||p(X|Zk−1)

)
=

1
α− 1

ln
1

p(z|Zk−1)α

∑

X

p(X|Zk−1)p(z|X)α (11)

Our particle filter approximation of the density (eq. 3)
reduces equation (11) to

Dα

(
p(X|Zk)||p(X|Zk−1)

)
=

1
α− 1

ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (12)

where

p(z) =
Npart∑
p=1

wpp(z|Xp) (13)

We note in passing here that the sensor modelp(z|Xp)
is used to incorporate everything known about the sensor,
including SNR, detection probabilities, and even whether the
locations represented byXp are visible to the sensor.

We would like to choose to perform the measurement that
makes the divergence between the current density and the
density after a new measurement has been made as large as

possible. This indicates that the sensing action has maximally
increased the information content of the measurement updated
density,p(X|Zk), with respect to the density before a mea-
surement was made,p(X|Zk−1).

We propose, then, as a method of sensor management
calculating the expected value of equation (12) for each of
them (m = 1...M) possible sensing actions and choosing the
action that maximizes the expectation. In this notationm refers
to any possible sensing action under consideration, including
but not limited to sensor mode selection and sensor beam
positioning. In this manner, we say that we are making the
measurement that maximizes the expected gain in information.

The expected value of equation (12) may be written as
an integral over all possible outcomeszm when performing
sensing actionm:

< Dα >m=
∫

dzmp(zm|Zk−1)Dα

(
p(X|Zk)||p(X|Zk−1)

)
(14)

In the special case where measurements are thresholded and
are therefore either detections or no-detections (i.e.z = 0 or
z = 1), this integral reduces to

< Dα >m= p(z = 0|Zk−1)Dα|m,z=0

+p(z = 1|Zk−1)Dα|m,z=1 (15)

Which, using equation (12) results in

< Dα >m=

1
α− 1

1∑
z=0

p(z)ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (16)

Implementationally, the value of equation (16) can be cal-
culated for a host of possible actions using only a single loop
through the particles. This results in a computationally efficient
method for making sensor tasking decisions.

In summary, our sensor management algorithm is a recur-
sive algorithm that proceeds as follows. At each occasion
where a sensing action is to be made, we evaluate the expected
information gain as given by equation (16) for each possible
sensing actionm. We then select and make the sensing
action that gives maximal expected information gain. The
measurement made is then fed back into the JMPD via Bayes’
rule. Notice that this is a greedy scheme, which chooses to
make the measurement that optimizes information gain only
for the next time step.

A. On the Value ofα in the Ŕenyi Divergence

The Ŕenyi divergence has been used in the past in many
diverse applications, including content-based image retrieval,
georegistration of imagery, and target detection [27][28].
These studies have provided some guidance as to the optimal
choice of the parametersα.

In the georegistration problem [27] it was empirically de-
termined that the value ofα leading to highest resolution
clusters around eitherα = 1 or α = 0.5 corresponding
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to the KL divergence (eq. 8) and the Hellinger affinity (eq.
9) respectively. The determining factor appears to be the
degree of differentiation between the two densities under
consideration. If the densities are very similar, i.e. difficult to
discriminate, then the indexing performance of the Hellinger
affinity distance (α = 0.5) was observed to be better that
the KL divergence (α = 1). In fact, an asymptotic analysis
[28] has shown thatα = .5 results in the maximum distance
between two densities that are very similar. We say, then, that
this value ofα stresses the tails, i.e. the minor differences,
between two densities.

These results give reason to believe that eitherα = 0.5 or
α = 1 are good choices. We investigate the performance of
our scheme under both choices in Section V.

B. Extensions to Non-Myopic Sensor Management

The sensor management algorithm proposed here is myopic
in that it does not take into account long-term ramifications of
the current sensing action when deciding the optimal action.
If the dynamics of the problem change rapidly (either due to
fast moving targets, moving sensors or a combination of the
two), non-myopic scheduling is important. We propose then as
a first step towards non-myopic sensor management a Monte
Carlo rollout technique like that given by Castanon [3].

At each time a measurement decision is to be made, we first
enumerate all possible measurements and the corresponding
expected information gains. For each candidate measurement,
we simulate making the measurement based on our estimated
JMPD, update the density to the next time step based on
the simulated measurement received, and compute the actual
information gain received under this simulated measurement.
We can then compute the expected gains of all possible
measurements at the new time, and the actual gain received
plus the maximum expected gain at the new time give the
total information gain for making the particular measurement.
Running this procedure many times gives a Monte Carlo
estimate of the 2-step ramification of making a particular
measurement. Extensions to n-step are straightforward, but
computationally burdensome.

V. SIMULATION RESULTS

In this section, we provide simulation results that show
the benefit of sensor management in the multitarget tracking
scenario. We first present a purely synthetic scenario and then
proceed to a more realistic scenario using real recorded target
trajectories from a military battle simulation. We conclude
with some preliminary results on the benefit of non-myopic
sensor scheduling.

A. An Extensive Evaluation of Sensor Management Perfor-
mance Using Three Simulated Targets

We first gauge the performance of the sensor management
scheme by considering the following model problem. There
are three targets moving on a12×12 sensor grid. Each target
is modelled using the four-dimensional state vector[x, ẋ, y, ẏ]′.
Target motion is simulated using a constant-velocity (CV)

model with a (relatively) large diffusive component. The
trajectories have been shifted and time delayed so that there
are two times during the simulation where targets cross paths
(i.e. come within sensor resolution of each other).

The target kinematics assumed by the filter (eq. 1) are
CV as in the simulation. At each time step, a set ofL (not
necessarily distinct) cells are measured. The sensor is at a fixed
location above the targets and all cells are always visible to
the sensor. When measuring a cell, the imager returns either
a 0 (no detection) or a1 (detection) governed byPd, Pf , and
SNR. This model is known by the filter and used to evaluate
equation (2). In this illustration, we takePd = 0.5, and
Pf = P

(1+SNR)
d , which is a standard model for thresholded

detection of Rayleigh returns [31]. The filter is initialized with
10% of the particles in the correct state (both number of targets
and kinematic state). The rest of the particles are uniformly
distributed in both the number of targets and kinematic state.

We contrast the performance of the tracker when the sensor
uses a non-managed (periodic) scheme with the performance
when the sensor uses the relevance feedback based manage-
ment scheme presented in Section IV. The periodic scheme
measures each cell in sequence. At time1, cells 1...L are
measured. At time2, cells L + 1...2L are measured. This
sequence continues until all cells have been measured, at
which time the scheme resets. The managed scheme uses the
expected information divergence to calculate the bestL cells
to measure at each time. This often results in the same cell
being measured several times at one time step.

Figure 2 presents a single-time tracker snapshot, which
graphically illustrates the difference in behavior between the
two schemes.
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Fig. 2. A comparison of non-managed and managed tracking. (L) Using
sensor management, and (R) Using a periodic scheme. Targets are marked
with an asterisk, the covariance of the filter estimate is given by the ellipse,
and grey scale is used to indicate the number of times each cell has been
measured at this time step (the same total number of looks is used in each
scenario). With sensor management, measurements are only used in areas that
contain targets and the covariance ellipses are much tighter.

Qualitatively, in the managed scenario the measurements
are focused in or near the cells that the targets are in.
Furthermore, the covariance ellipses, which reflect the current
state of knowledge of the tracker conditioned on all previous
measurements, are much tighter. In fact, the non-managed
scenario has confusion about which tracks correspond to which
target as the covariance ellipses overlap.
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A more detailed examination is provided in the Monte Carlo
simulation results of Figure 3. We refer to each cell that
is measured as a “Look”, and are interested in empirically
determining how many looks the non-managed algorithm
requires to achieve the same performance as the managed
algorithm at a fixed number of looks. The sensor management
algorithm was run with24 looks (i.e. was able to scan24
cells at each time step) and is compared to the non-managed
scheme with24 to 312 looks. Here we takeα = 0.99999
(approximately the KL divergence) in equation (8). It is found
that the non-managed scenario needs approximately312 looks
to equal the performance of the managed algorithm in terms of
RMSE error. We say that the sensor manager is approximately
13 times as efficient as allocating the sensors without manage-
ment. This efficiency implies that in an operational scenario
target tracking could be done with an order of magnitude fewer
sensor dwells. Alternatively put, more targets could be tracked
with the same number of total resources when this sensor
management strategy is employed.
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Fig. 3. Median and mean error versus signal to noise ratio (SNR). Managed
performance with24 looks is similar to non-managed with312 looks.

To determine the sensitivity of the sensor management
algorithm to the choice ofα, we test the performance with
α = .1, α = .5, and α ≈ 1. Figure 4 shows that in this

case, where the actual target motion is very well modelled
by the filter dynamics, that the performance of the sensor
management algorithm is insensitive to the choice ofα. We
generally find this to be the case when the filter model is
closely matched to the actual target kinematics.

2 3 4 5 6 9 12 15 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

M
ed

ia
n 

E
rr

or

SNR

α = 0.99999
α = 0.5    
α = 0.1    

Fig. 4. The performance of the sensor management algorithm with different
values ofα. We find that in the case where the filter dynamics match the
actual target dynamics, the algorithm is insensitive to the choice ofα.

B. A Comparison Using Ten Real Targets

We test the sensor management algorithm again using a
modified version of the above simulation, which is intended to
demonstrate the technique in a scenario of increased realism.
Here we have ten targets moving in a5000m × 5000m
surveillance area. Each target is modelled using the four-
dimensional state vector[x, ẋ, y, ẏ]′ . Target trajectories for
the simulation come directly from a set of recorded data
based on GPS measurements of vehicle positions over time
collected as part of a battle training exercise at the Army’s
National Training Center. Targets routinely come within sensor
cell resolution (i.e. crossing trajectories). Therefore, there
is often measurement to track ambiguity, which is handled
automatically by JMPD since there is no measurement to
track assignment necessary. Target positions are recorded at
1 second intervals, and the simulation duration is 1000 time
steps. An image showing the initial target positions and the
road network on which the targets travel is given in Figure 5.

The filter again assumes constant velocity motion with a
large diffusive component as the model of target kinematics.
However, in this case, the model is severely at odds with the
actual target behavior which contains sudden accelerations and
move-stop-move behavior. This model mismatch adds another
level of difficulty to this scenario that was not present in the
previous case. We use 500 particles, each of which is tracking
the states of all ten targets, and therefore each particle has 40
dimensions.

At each time step, an imager is able to measure cells in
the surveillance area by making measurements on a grid with
100m×100m detection cell resolution. The sensor simulates
a moving target indicator (MTI) system in that it may lay a
beam down on the ground that is one resolution cell wide and
many resolution cells deep. Each time a beam is formed, a set
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Fig. 5. An image showing the ten-target case under consideration, where the
initial positions of the targets are each marked with an asterisk. The backdrop
is the hospitability – which is a military derived product that indicates the
drivability of the terrain. Road networks are visible (high drivability, hence a
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of measurements is returned, corresponding to the depth of the
beam. In this simulation, we refer to each beam that is laid
down as a “Look”. We judge the performance of a tracker in
terms of the number of looks needed to perform the task (e.g.
keep targets in track, or track with a certain mean squared
error).

As in the previous simulation, the sensor is at a fixed
location above the targets and all cells are always visible to the
sensor. When making a measurement, the imager returns either
a 0 (no detection) or a1 (detection) governed byPd, Pf , and
SNR. In this illustration, we takePd = 0.5, SNR = 10dB,
andPf = P

(1+SNR)
d .

We compare the performance of the managed and non-
managed scenarios in Figure 6. Our method of comparison
again is to determine empirically the number of looks needed
in the non-managed scenario to achieve the same performance
as the managed algorithm withL = 50 looks.
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Fig. 6. Median error versus number of looks. managed performance with
50 looks performs similarly to non-managed with700 looks.

Figure 6 shows that the non-managed scenario needs ap-
proximately700 looks to equal the performance of the man-

aged algorithm in terms of RMSE error. We say that the sensor
manager is approximately13 times as efficient as allocating
the sensors without management.

We compare next the performance of the sensor man-
agement algorithm under different values ofα in equation
(7). This problem is more challenging then the simulation
of Section V-A for several reasons (e.g. number of targets,
number of target crossing events, and model mismatch). Of
particular interest is the fact that the filter motion model
and actual target kinematics do not match very well. The
asymptotic analysis performed previously (see Section IV-A)
leads us to believe thatα = 0.5 is the right choice in this
scenario.

In Figure 7, we show the results of50 Monte Carlo trials
using our sensor management technique withα = 0.1, α =
0.5, andα = 0.99999. The statistics are summarized in Table
I. We find that indeed the sensor management algorithm with
α = 0.5 performs best here as it does not loose track on any
of the 10 targets during any of the50 simulation runs. Both
the α ≈ 1 and α = 0.1 case lose track of targets on several
occasions.
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Fig. 7. A comparison of sensor management performance under different
values of the Ŕenyi divergence parameter,α.

TABLE I

SENSOR MANAGEMENT PERFORMANCE WITH DIFFERENT VALUES OFα.

Mean Position
Position Error

α Error(m) Variance (m)
0.1 49.57 614.01
0.5 47.28 140.25

0.99999 57.44 1955.54

C. The Effect of Non-Myopic Scheduling

Finally, we give some preliminary results on the rami-
fications of non-myopic (long-term) sensor management on
algorithm performance. We inspect a challenging scenario in



SENSOR MANAGEMENT USING RELEVANCE FEEDBACK LEARNING 9

which the sensor is prevented from seeing half of the region
every other time step. At even time steps, all of the targets are
visible; at odd time steps only half of the targets are visible.
For the purposes of exposition, we assume that this pattern is
fixed and known ahead of time by the sensor manager.

The myopic (greedy) management scheme simply measures
the targets whose expected information gain is highest at the
current time. This implies that at odd time steps it will only
measure targets that are visible to the sensor, but at even
time steps will have no preference as to which targets to
measure. Intuitively, we would like the manager to measure
targets that are about to become obscured from the sensor
preferentially, since the system must wait two time steps to
have an opportunity to revisit.

The non-myopic sensor management technique discussed
in IV-B takes the dynamics of the scene into account. When
making a measurement at even time steps it prefers to measure
those targets that will be invisible at the next time step, because
it rolls out the ramifications of its action and determines the
best action to take is to measure targets that are about to
become obscured since this will result in the maximum total
(2-step) information gain.

We show in Figure 8 the results of tracking in this challeng-
ing scenario. It turns out that it is only modestly important
to be non-myopic. Myopic sensor scheduling results in loss
of track approximately 22% of the time, while non-myopic
scheduling only loses track 11% of the time. It is especially
important to be non-myopic around time step150, where the
dynamics of the problem accelerate due to the speed up of
some of the targets.
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Fig. 8. A comparison of sensor management performance in the myopic
(greedy) case and in the 2-step non-myopic case.

VI. D ISCUSSION

We have applied an approach that is common in the machine
learning literature, known as relevance feedback learning, to
provide a method for managing agile sensors. The sensor
management algorithm is integrated with the target tracking
algorithm in that it uses the posterior densityp(X|Z) approx-
imated by the multitarget tracker via particle filtering. In this
case, the posterior is used in conjunction with target kinematic
models and sensor models to predict which measurements will
provide the most information gain. In simulated scenarios, we
find that the tracker with sensor management gives similar
performance to the tracker without sensor management with
more than a ten-fold improvement in sensor efficiency.
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