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Sensor Management
Using Relevance Feedback Learning

Chris Kreucher*, Keith Kastella and Alfred O. Hero IIEEE Fellow

Abstract— An approach that is common in the machine learn- as wireless networking [12] and robot path planning [10].
ing literature, known as relevance feedback learning, is applied There are many objectives that the sensor manager may be
to provide a method for managing agile sensors. In the context of 464 t9 meet, e.g. minimization of track loss, probability of
a machine learning application such as image retrieval, relevance - S .
feedback proceeds as follows. The user has a goal image in mind_targe_t_det_ectlon, minimization of track_ error/cov_arla_nce, and
that is to be retrieved from a database of images (i_e.’ learned by |dent|f|cat|0n aCCUI‘acy. EaCh Of these d|fferent ObJeCUVeS taken
the system). The system computes an image or set of images talone may lead to a different sensor allocation strategy [7][8].
display (the query). Oftentimes, the decision as to which images  Many researchers have approached the sensor scheduling
to display is done using divergence metrics such as the Kullback- problem with a Markov decision process (MDP) strategy.

Leibler (KL) divergence. The user then indicates the relevance of lete | t . heduli |
each image to his goal image and the system updates its estimate$0WeVer, a complete long-term (non-myopic) scheduling solu-

(typically a probability mass function on the database of images). tion suffers from combinatorial explosion when solving prac-
The procedure repeats until the desired image is found. Our tical problems of even moderate size. Researchers have thus

method for managing agile sensors proceeds in an analogousworked at approximate solution techniques. Krishnamurthy
manner. The goal of the system is to learn the number and states [1][2] uses a multi-arm bandit formulation involving hidden

of a group of moving targets occupying a surveillance region. The . . .
system computes a sensing action to take (the query), based on 41&rkov models. In [1], an optimal algorithm is formulated to

divergence measure called the Bnyi divergence. A measurement track multiple targets with an ESA that has a single steerable
is made, providing relevance feedback and the system updates itsbeam. Since the optimal approach has prohibitive computa-

probability density on the number and states of the targets. This tional complexity, several suboptimal approximate methods
procedure repeats at each time where a sensor is available for are given and some simple numerical examples involving

use. It is shown using simulated measurements on real recorded I b ft t . I b
target trajectories that this method of sensor management yields a small number of targets moving among a small number

a ten fold gain in sensor efficiency when compared to periodic Of discrete states are presented. Even with the proposed
scanning. suboptimal solutions, the problem is still very challenging

numerically. In [2], the problem is reversed, and a single
EDICS Category: 2-INFO target is observed by a single sensor from a collection of
Index Terms— Sensor Management, Machine Learning, Rele- sen;ors. Aga'li.n, approximate methqu are fqrmulated due to
vance Feedback, Multitarget Tracking, Particle Filtering, Joint the intractability of the globally optimal solution. Bertsekas
Multitarget Probability Density. and Castanon [3][6] formulate heuristics for the solution
of a stochastic scheduling problem corresponding to sensor
scheduling. They implement a rollout algorithm based on their
heuristics to approximate the stochastic dynamic programming
HE problem of sensor management is to determine thadgorithm. Additionally, Castanon [4][5] formulates the prob-
best way to task a sensor or group of sensors whem of classifying a large number of stationary objects with
each sensor may have many modes and search patteansulti-mode sensor based on a combination of stochastic
Typically, the sensors are used to gain information about thgnamic programming and optimization techniques. Malhotra
kinematic state (e.g. position and velocity) and identificatioil 3] proposes using reinforcement learning as an approximate
of a group of targets. Applications of sensor managemeapproach to dynamic programming.
are often military in nature [7], but also include things such Recently, others have proposed using divergence measures
as an alternative means of sensor management. In the context
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(KL) divergence. Schmaedeke [18] uses the KL divergentlee query takes the form of making a measurement with

to determine optimal sensor-to-target tasking. Kastella ugske sensor rather than asking the user whether one image or
the KL divergence to track multiple targets moving amongstnother is closer to the desired image. However in either case,
discrete cells and for the purposes of target identificatidhe relevance of the query is fed back into the system and
[9][14]. Zhao [24] compares several approaches, includinigcorporated by Bayes’ rule.

simple heuristics, entropy, and relative entropy (KL).

Divergence-based adaptivity measures such as the KL diverA distinguishing feature of our application is that the goal
gence are a common learning metric that have been usedsimot a fixed entity, but rather a dynamic process that evolves
the machine learning literature in techniques with the nameser time. In other words, the kinematic states and number
“active learning” [23], “learning by query” [21], “relevanceof targets change with time as the targets move through
feedback” [20], and “stepwise uncertainty reduction” [19]}the surveillance region. We therefore include models of the
These techniques are iterative procedures in which the systewolution of the joint multitarget density into our Bayesian
provides a set of items to the user as a query, the user indicdtamework. These models are primarily kinematic in nature,
the relevance of the retrieved items, and the system adaptivelit may include models of target birth and death to accom-
chooses new queries based on the user feedback. The ultinmadelate changing numbers of targets.
goal is to learn something from the user in an interactive
manner. This paper contains two main contributions. First, we give

A specific example of the role of divergence measures @particle filter (PF) based multitarget tracking algorithm that
machine learning is the interactive search of a databasebgf design explicitly enforces the multitarget nature of the
imagery for a desired image. Cox et. al. [20] associatespeoblem. Each particle is a sample from the joint multitarget
probability of being the correct image to each image in thaensity and thus an estimate of the status of the entire system —
database. The probability mass function (pmf) is initially eithehe number of targets in the surveillance areas as well as their
uniformly distributed or peaked due to an informational prioindividual states. We find that the PF based multitarget tracker
Queries are posed to the user based on entropy measures,allod/s for successful tracking in a highly non-linear non-
the pmf is updated according to Bayes' rule. Similarly, Gemaaaussian filtering scenario. Furthermore, the PF implementa-
[19] studies the situation where a user has a specific imagetion allows both target tracking and sensor management to be
mind and the system steps through a sequence of two-imalpme in a computationally tractable manner. We demonstrate
comparisons to the user. The pair of images chosen by thé by evaluating the sensor management scheme and tracking
system at each time is the query who's answer may resultdlgorithm on a surveillance area containing ten targets, with
the lowest resulting Shannon entropy after the user respon@sget motion that is taken from real recorded target trajectories

Additionally, Zhai and Lafferty [22] use the KL divergencefrom an actual military battle simulation. Second, we detail a
with feedback documents to improve estimation of quemginforcement learning approach to sensor management where
models in an application involving retrieval of documents frorthe Renyi divergence is used as the method for estimating
a text-based query. Freund et. al [21] study the rate that e utility of taking different actions. The sensor management
prediction error decreases under divergence-based learninglgsrithm uses the estimated density to predict the utility
a function of the number of queries for some natural learnirgf a measurement before tasking the sensor, thus leading to
problems. Finally, Geman and Jedynak [17] use expectadtions which maximally gain information. We demonstrate
entropy reduction as a means of learning the paths of roadghat this method of sensor management yields a ten-fold
satellite imagery. increase in sensor efficiency over periodic scanning in the

In the signal processing context of multitarget trackingscenarios considered.
we use divergence-based methods to learn the number of
targets present in the surveillance region as well as theirThe paper is organized in the following manner. In Section
kinematic states. We first utilize a target tracking algorithm td, we review the target tracking algorithm that is central to our
recursively estimate the joint multitarget probability densitgensor management scheme. Specifically, we give the details
for the set of targets under surveillance. Analogous to tlé the JMPD and examine the numerical difficulties involved
image/document retrieval applications, at each iteration of our directly implementing JMPD on a grid. In Section Ill,
algorithm we use a divergence-based metric to decide on thie present our particle filter based implementation of JMPD.
optimal query to pose. The decision as to how to use a sen¥d& see that this implementation provides for computation-
then becomes one of determining which sensing action wdllly tractable implementation, allowing realistic scenarios to
maximize the expected information gain between the currdoe considered. Our sensor management scheme, which is a
joint multitarget probability density and the joint multitargetearning algorithm that employs theéRyi divergence as a
probability density after a measurement has been made.nletric, is extensively detailed in Section IV. A comparison
this work, we consider a more general information measuoé the performance of the tracker using sensor management
called the Rnyi Information Divergence [25] (also known ago the tracker using a non-managed scheme on two model
the a-divergence), which reduces to the KL divergence undemaoblems of increasing realism is given in Section V. We
certain limit. The Renyi divergence has additional flexibility inbriefly illustrate the effect of non-myopic (long term) planning
that in allows for emphasis to be placed on specific portioms this information theoretic context. We conclude with some
of the support of the densities to be compared. In our casmughts on future direction in Section VI.
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[I. THE JOINT MULTITARGET PROBABILITY DENSITY p(x1|Z), the posterior probability density for one target with
In this section, we introduce the details of using the Joint statex;
Multitarget Probability Density (JMPD) for target tracking.P(X1,X2|Z), the posterior probability density for two targets
The concept of JIMPD was first discussed by Kastella [11] with statesx; andx; _
where a method of tracking multiple targets that moved beP(X1,%2,%3|Z), the posterior probability density for three
tween discrete cells on a line was presented. We generalize the targets with states;, x; andx;

discussion here to deal with targets that havalimensional  The JMPD is symmetric under permutation of the target
continuous valued state vectors and arbitrary kinematics. jHyices. If the targets are widely separated in the sensor's mea-
the model problems, we are interested in tracking the positigQ)rement space, each target's measurements can be uniquely
(z,y) and velocity (,7) of multiple targets and so we gggociated with it, and the joint multitarget conditional density
describe each target by the four dimensional state vecCigktorizes. In this case, the problem may be treated as a
[z,2,y,9]". A simple schematic showing three targets (Targegglection of single target trackers. The characterizing fea-
A, B, and C) moving through a surveillance area is given iyre of multitarget tracking is that in general some of the
Figure 1. There are two target crossings, a challenging scenafigasurements have ambiguous associations, and therefore the

for multitarget trackers. conditional density does not factorize.

The temporal update of the posterior likelihood on this
2200r density proceeds according to the usual rules of Bayesian
2000 Tar filtering. Given a model of how the JMPD evolves overtime,

get B k| k—1 i ot
18001 Target A p(X*|X"*~1), we may compute the time-updated or prediction
— density via
£ 16001
E 1400+
o pXH 2 =[xt XXkt 2 (@
élooo— The time evolution of the JIMPD may simply be a collection
g of target kinematic models or may involve target birth and
800¢ T death. In the case where target identification is part of the state
arget C . . . . .
600 being estimated, different kinematic models may be used for
400 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ different target types.
0 500 1000 1500 2000 2500 3000 3500 4000 Bayes’ rule is used to update the posterior density as new
X position (meters) measurements® arrive as
Fig. 1. A simple scenario involving three moving targets. The target paths ki~ k kirgk—1
are indicated by the lines, and direction of travel by the arrows. There are p(Xk|Zk) _ p(z"|X")p(X"|Z ) 2)

two instances where the target paths cross. p(zk|Z"~'—1)

. . This formulation allows JMPD to avoid altogether the

JMPD prowdgs a means for trapkmg an “”".”O_W” nu;'f)'roblem of measurement to track association. There is no need
ber of targ_er n a .Baye3|an se.tfung. The staﬂsﬂcs mogy identify which target is associated with which measurement
useks t,? € Jokmt m,? litarget condmonal' .probab|!|ty denSI%ecause the Bayesian framework keeps track of the entire joint
p(xf, x5, ..xk | xk|Z*) as the probability density for ex- multitarget density
actly T' targets with Stf"‘texg’ X5, . Xp_y, X} at imek bgsed In practice, the éample spaceXf is very large. It contains
on a set of obsgrvatlonz - The number_of targetd” is a all possible configurations of state vectotsfor all possible
variable to be estlmat_ed simultaneously with the states cﬂ“thevalues of 7. The original formulation of JMPD given by
targets. The observat_lon gé.}f refers_to th,? CO||eftI02n of 2nea- Kastella [11] approximated the density by discretizing on
surements up to ar;d including t_|me|.e.Z ={z’,2% .2%}, a grid. It was found that the computational burden in this
where each of the* may be a §|ngle measurement or & VeclQcenario makes evaluating realistic problems intractable, even
of measurements made at time . . when using the simple model of targets moving between

E,?Chk Ofk thek St,?te. vectorsx; i the density discrete locations in one-dimension. In fact, the number grid
p(x1, %3, .. Xp_y,X7|2%) 1S a vector quantity and MaYy cells needed grows asocationsT 795 where Locations is

(for example) be of the forniz, &, y, y]’ We refer to each of yho i mber of discrete locations the targets may occupy and
the T target state vectorg},x5,..x% | xk as a partition Targets is the number of targets.

of the multitarget stateX. For convenience, the density rp,s we need a method for approximating the JMPD that
will be written more compactly in the traditional manner ag,,4s 1o more tractable computational burden. In the next
p(X*|Z*), which implies that the state-vect represents section, we show that the Monte Carlo methods collectively

a variable number of targets each possessing their own Sigig,n as particle filtering break this computational barrier.
vector. As an illustration, some examples illustrating the

sample space gf are 1. THE PARTICLE FILTER IMPLEMENTATION OF JMPD

p(0|Z), the posterior probability density for no targets in the We find that a particle filter based implementation of JIMPD
surveillance volume breaks the computational logjam and allows us to investigate
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more realistic problems. To implement JMPD via a particl® a single target, some targets become particle starved over
filter (PF), we first approximate the joint multitarget probatime. All of the particles tend to attach to the target receiving
bility density p(X|Z) by a set of N, weighted samples, the best measurements. Our method explicitly enforces the
Xp, (p=1...Npart): multitarget nature of the problem by encoding in each particle
the estimate of the number of targets and the states of those
targets. This technique helps to alleviate the particle starvation
p(X|Z) ~ Z wpd(X = Xp) @) issue, ensuring that all targets are represented by the particles.
p=1 This is particularly critical in the challenging scenario of target
Here we have suppressed the time supersérgterywhere crossing. This paradigm is important for estimating the number
for notational simplicity. We will do this whenever time is notof targets in the surveillance region.
relevant to the discussion at hand. The permutation symmetry discussed in Section Il is di-
Particle filtering is then simply a method of solving the prerectly inherited by the particle filter representation. Each
diction and update equations given earlier by simulation [29jarticle contains many partitions (as many as the number of
Samples are used to represent the density and to propagdatgets it estimates exist in the surveillance region) and the
it through time. The prediction equation (eq. 1) is solved byermutation symmetry of JMPD is visible through the fact
proposing new particles from the existing set of particles usinigat the relative ordering of targets may change from particle
a model of state dynamics and (perhaps) the measuremetttsparticle. This permutation symmetry must be dealt with
The update equation (eq. 2) is solved by assigning a weigtarefully in the particle proposal process and during estimation
to each of the particles that have been proposed using tifedarget positions.
measurements and the model of state dynamics. As detailed in another work [26], while following the
The specific details of the PF implementation are as followstandard sampling importance resampling method for particle
Recall first from Section Il that our multitarget state vectdiiltering, we employ an adaptive sampling scheme for particle
X has T partitions, each corresponding to a target, writteproposal that dramatically reduces the number of particles

Npart

explicitly in equation (4): necessary to effectively track groups of targets. This scheme
automatically factorizes the JMPD when targets or groups of
X =[x1, X2, .., X7_1, X7] (4) targets are acting independently from the others (i.e. there is

no measurement to target association issue) while maintaining
the couplings when necessary. We also employ an adaptive
) resampling on the particle set based on the effective number of
is a sample drawn from the JMPD(X|Z). Therefore, a particles. It is shown therein that it is computationally tractable

particle X, may have0,1,...co partitions, each partition i, yack tens of targets moving over a large surveillance region
corresponding to a different target. We will denote the numbgfit, e particle filter implementation of JMPD.

of partitions in particleX, by n,, wheren, may be different

for different X,,. In practice, the maximum number of targets |v. RELEVANCE FEEDBACK LEARNING FOR SENSOR
a particle may track in truncated at some large finite number MANAGEMENT

Tmas- Since a partition corresponds to a target, the number OfIn this section, we present the details of our information
partitions that a partide has is. that particle’s estimate of ﬂPJ%lsed method fc;r sensor management. As mentioned earlier,
number of targets in t.he surveillance area. our paradigm for sensor management is analogous to the
. To makg our not'atlon more concrete, assume that a PRfachine learning methodologies present in relevance feedback
ticular particle,X,, is trackingn, targets. ThenX, hasn,

i d will be ai b techniques.
partiions and will be given by The goal of the multitarget tracker is to learn the number

and states of a set of targets in a surveillance region. At

each instance when a sensor is available for use, we use a
In the case where each partition (target) is modelled usiflfyergence based method to compute the best sensing action to

the state vectox = [z,i,y,9), the particle will haven, take (the query). This is done by first enumerating all possible

Furthermore, the joint multitarget probability(X|Z) is
defined forl" = 0...co. Each of the particleX,, p = 1... Npgr

Xy = [Xp1s Xp2, --- Xpn,] (5)

partitions each of which has components: sensing actions. A sensing action may consist of choosing
a particular mode (i.e. SAR mode versus GMTI mode), a
Xy = [Xp1, Xp2, o0 Xpn,|= particular dwell point/pointing angle, or a combination of the

two. Next, theexpectednformation gain is calculated for each

;”’1 z“ o i”’"? of the possible actions, and the action that yields the maximum

Pl P2 P (6) expected information gain is taken. The measurement received
Yot Yp2 - Upimy is treated as the relevance feedback, analogous to a user
Yp,1 Yp,2 ER Yp,np

selecting an image that is most relevant to his query. This
Where here we expand the notation a bit and ugg to measurement is used to update the JMPD, which is in turn
denote ther position estimate that particle has of targett.  used to determine the next measurement to make.
Notice that this method differs from traditional particle filter The calculation of information gain between two densities
tracking algorithms where a single particle corresponds fp and fj is done using the &yi information divergence (7),
a single target. We find that when each particle is attachatso known as the-divergence:
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possible. This indicates that the sensing action has maximally
Do (fillfo) = 1 ln/ff‘(x) (}‘O‘(x)dx (7) increased the information content of the measurement updated
a—1 density, p(X|Z*), with respect to the density before a mea-
The o parameter in equation (7) may be used to adjust haurement was made(X|Z*~1).
heavily one emphasizes the tails of the two distributighs  We propose, then, as a method of sensor management
and fy. In the limiting case ofo — 1 the Renyi divergence calculating the expected value of equation (12) for each of
becomes the more commonly utilized Kullback-Leibler (KLthem (m = 1...M) possible sensing actions and choosing the

discrimination (8). action that maximizes the expectation. In this notatiorefers
to any possible sensing action under consideration, including
lim Do (f1]|fo) = /fo(x)lnfo(x) dx (8) but not limited to sensor mode selection and sensor beam
a—l1 fi(z) positioning. In this manner, we say that we are making the
In the case that fora = 0.5, the Renyi information Measurement that maximizes the expected gain in information.
divergence becomes the log Hellinger distance squared, wherdhe expected value of equation (12) may be written as
the Hellinger distance is defined by an integral over all possible outcomes, when performing

sensing actionn:
< Dy >m=

/ Qemp(5m|Z5) Do (0(X|Z9)[Ip(X[Z41) (1)

dulfid) =5 [ (VA@ - VE@) & ©

The function D, given in (eq. 7) is a measure of the
divergence between the densitjgsand f7. In our application,
we are interested in computing the divergence between th
predicted density(X|Z*~!) and the updated density after a,
measurement is madg(X|Z*). Therefore, we write

&n the special case where measurements are thresholded and
re therefore either detections or no-detections f{i.e. 0 or
z = 1), this integral reduces to

Do (p(X|Z")[[p(X|Z*7)) =

1
a—1

< Da >m= p(z = O‘Zk_l)Da|m,z:O
Iny  p(X|ZF)*p(X|ZF1)t e (10) +p(z = 1|ZF ") D |m,2—1 (15)
X

Which, using equation (12) results in

The integral in equation (7) reduces to a summation since
any discrete approximation gf X|Z*~1), including our par-

. X . . - Da >m=

ticle filter approximation, only has nonzero probability at a N

finite number of target states. After some algebra and the 1 ! 1 relt o

incorporation of Bayes' rule (eq. 2), one finds that this quantity o1 Zp(z)l”p(z)a wpp(2|X;) (16)
z=0 p=1

can be simplified to
Implementationally, the value of equation (16) can be cal-
Do (p(X|Z9)[|p(X[2ZF1)) = culated for a host of possible actions using only a single loop
1 1 - N through the particles. This results in a computationally efficient
- 1mp(z\zk'—1)a > p(X|ZF)p(2[X) (11) method for making sensor tasking decisions.
X In summary, our sensor management algorithm is a recur-
Our particle filter approximation of the density (eq. 3pive algorithm that proceeds as follows. At each occasion

reduces equation (11) to where a sensing action is to be made, we evaluate the expected
information gain as given by equation (16) for each possible
D, (P(X\Zk)||P(X|Zk_1)) = sensing actionm. We then select and make the sensing

action that gives maximal expected information gain. The

Npart

1 1 X i i i ,

In _ wyp(z|Xp)® (12) measurement made is then fed back into the JMPD via Bayes

a—1 p(z) = rule. Notice that this is a greedy scheme, which chooses to

make the measurement that optimizes information gain only

where for the next time step.
Npamt
p(z) = Y wp(z|X,) (13) A. On the Value ofv in the Renyi Divergence
p=1 The Renyi divergence has been used in the past in many

We note in passing here that the sensor mqdelX,) diverse applications, including content-based image retrieval,
is used to incorporate everything known about the sensgeoregistration of imagery, and target detection [27][28].
including SNR, detection probabilities, and even whether tiighese studies have provided some guidance as to the optimal
locations represented ¥, are visible to the sensor. choice of the parameters.

We would like to choose to perform the measurement thatin the georegistration problem [27] it was empirically de-
makes the divergence between the current density and teemined that the value ofr leading to highest resolution
density after a new measurement has been made as largelasters around eithew = 1 or a = 0.5 corresponding
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to the KL divergence (eq. 8) and the Hellinger affinity (egnodel with a (relatively) large diffusive component. The
9) respectively. The determining factor appears to be tlrajectories have been shifted and time delayed so that there
degree of differentiation between the two densities undare two times during the simulation where targets cross paths
consideration. If the densities are very similar, i.e. difficult t¢i.e. come within sensor resolution of each other).
discriminate, then the indexing performance of the Hellinger The target kinematics assumed by the filter (eq. 1) are
affinity distance ¢ = 0.5) was observed to be better thalCV as in the simulation. At each time step, a setlofnot
the KL divergence ¢ = 1). In fact, an asymptotic analysisnecessarily distinct) cells are measured. The sensor is at a fixed
[28] has shown thaty = .5 results in the maximum distancelocation above the targets and all cells are always visible to
between two densities that are very similar. We say, then, thlaé sensor. When measuring a cell, the imager returns either
this value ofa stresses the tails, i.e. the minor differences, 0 (no detection) or d (detection) governed by, Py, and
between two densities. SN R. This model is known by the filter and used to evaluate
These results give reason to believe that either 0.5 or equation (2). In this illustration, we tak&; = 0.5, and
a = 1 are good choices. We investigate the performance g} = Pf*SNR), which is a standard model for thresholded
our scheme under both choices in Section V. detection of Rayleigh returns [31]. The filter is initialized with
10% of the particles in the correct state (both number of targets
and kinematic state). The rest of the particles are uniformly

distributed in both the number of targets and kinematic state.

_ The sensor management algorithm proposed here is myopigye contrast the performance of the tracker when the sensor
in that it does not take into account long-term ramifications @foq 5 non-managed (periodic) scheme with the performance
the current sensing action when deciding the optimal actiqfjnen, the sensor uses the relevance feedback based manage-

If the dynamics of the problem change rapidly (either due {Qq¢ scheme presented in Section IV. The periodic scheme
fast moving targets, moving sensors or a combination of the.,q \res each cell in sequence. At timecells 1...L, are

two), non-myopic scheduling is important. We propose then gg.,q \red. At time2, cells L + 1...2L are measured. This

a first step towards non-myopic sensor management a Moglg,,ence continues until all cells have been measured, at
Carlo rollout technique like that given by Castanon [3].  hich time the scheme resets. The managed scheme uses the
At each time a measurement decision is to be made, we f'&bected information divergence to calculate the Hesells

enumerate all possible measurements and the correspondiig,eaqire at each time. This often results in the same cell
expected information gains. For each candidate measuremgggng measured several times at one time step

we simulate making the measurement based on our estimategigure 2 presents a single-time tracker snapshot, which
JMPD, update the density to the next time step based
the simulated measurement received, and compute the ac
information gain received under this simulated measurement.

We can then compute the expected gains of all possibl Managed Scan Periodic Scan
measurements at the new time, and the actual gain receive 12
plus the maximum expected gain at the new time give the
total information gain for making the particular measurement.
Running this procedure many times gives a Monte Carlc_ ¢
estimate of the 2-step ramification of making a particulars
measurement. Extensions to n-step are straightforward, bl§
computationally burdensome.

B. Extensions to Non-Myopic Sensor Management

fa hically illustrates the difference in behavior between the
schemes.
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V. SIMULATION RESULTS ﬁ il

In this section, we provide simulation results that show 2 4 6 8 10 12 2 4 6 8 10 12
. . . . X Position X Position
the benefit of sensor management in the multitarget tracking
scenario. We first present a purely synthetic scenario and the 2. A comparison of non-managed and managed tracking. (L) Using
proceed to a more realistic scenario using real recorded targgior management, and (R) Using a periodic scheme. Targets are marked
traiectories from a militarv battle simulation. We conclud ith an asterisk, the covariance of the filter estimate is given by the ellipse,
rajec Yy : Gnd grey scale is used to indicate the number of times each cell has been

with some preliminary results on the benefit of non-myopi@easured at this time step (the same total number of looks is used in each
sensor scheduling. scenario). With sensor management, measurements are only used in areas that
contain targets and the covariance ellipses are much tighter.

A. An Extgnswe Evalluatlon of Sensor Management Perfor'QuaIitativer, in the managed scenario the measurements
mance Using Three Simulated Targets are focused in or near the cells that the targets are in.

We first gauge the performance of the sensor managemeutthermore, the covariance ellipses, which reflect the current
scheme by considering the following model problem. Thestate of knowledge of the tracker conditioned on all previous
are three targets moving onla x 12 sensor grid. Each targetmeasurements, are much tighter. In fact, the non-managed
is modelled using the four-dimensional state ve¢tor:, y, y]’.  scenario has confusion about which tracks correspond to which
Target motion is simulated using a constant-velocity (CMarget as the covariance ellipses overlap.
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A more detailed examination is provided in the Monte Carloase, where the actual target motion is very well modelled
simulation results of Figure 3. We refer to each cell thdty the filter dynamics, that the performance of the sensor
is measured as a “Look”, and are interested in empiricaliganagement algorithm is insensitive to the choicexoiWe
determining how many looks the non-managed algorithgenerally find this to be the case when the filter model is
requires to achieve the same performance as the managledely matched to the actual target kinematics.
algorithm at a fixed number of looks. The sensor management
algorithm was run with24 looks (i.e. was able to sca 1
cells at each time step) and is compared to the non-manage —+ o=0.99999
scheme with24 to 312 looks. Here we takex = 0.99999 ' - a=05
(approximately the KL divergence) in equation (8). It is found © a=01
that the non-managed scenario needs approximatelyooks 5
to equal the performance of the managed algorithm in terms oug 09
RMSE error. We say that the sensor manager is approximatel g 0-8
13 times as efficient as allocating the sensors without manage = 0.7
ment. This efficiency implies that in an operational scenario 0.6
target tracking could be done with an order of magnitude fewel g5
sensor dwells. Alternatively put, more targets could be trackec g,
with the same number of total resources when this sensc E— ————

. 2 3 4 5 6 9 12 15 1
management strategy is employed. SNR

2.5 Fig. 4. The performance of the sensor management algorithm with different

_"*'_ Sg:gg:ﬁ §‘2‘ :gg‘g values ofa. We find that in the case where the filter dynamics match the
-©- periodic 120 looks actual target dynamics, the algorithm is insensitive to the choice. of
8 -8 periodic 216 looks
2 =% periodic 312 looks

+ === \anaged 24 looks

B. A Comparison Using Ten Real Targets

We test the sensor management algorithm again using a
modified version of the above simulation, which is intended to
demonstrate the technique in a scenario of increased realism.
Here we have ten targets moving in #00m x 5000m
surveillance area. Each target is modelled using the four-
dimensional state vectdr, 4, y,y] . Target trajectories for
the simulation come directly from a set of recorded data
based on GPS measurements of vehicle positions over time
collected as part of a battle training exercise at the Army’s
National Training Center. Targets routinely come within sensor

Median Error

¥ periodic 24 Tooks cell resolution (i.e. crossing trajectories). Therefore, there
iy o e 120 ks is often measurement to track ambiguity, which is handled
N - ol odve oo automatically by JMPD since there is no measurement to
?Q == Managed 24 looks track assignment necessary. Target positions are recorded at
y 1 second intervals, and the simulation duration is 1000 time
30_15[ steps. An image showing the initial target positions and the
& road network on which the targets travel is given in Figure 5.
§ The filter again assumes constant velocity motion with a
= large diffusive component as the model of target kinematics.
However, in this case, the model is severely at odds with the
actual target behavior which contains sudden accelerations and
05 move-stop-move behavior. This model mismatch adds another
level of difficulty to this scenario that was not present in the
previous case. We use 500 particles, each of which is tracking
%2 s 4 5 o 12 15 the states of all ten targets, and therefore each particle has 40
SNR dimensions.
Fig. 3. Median and mean error versus signal to noise ratio (SNR). ManagedAt each time step, an imager is able to measure cells in
performance with24 looks is similar to non-managed witi 2 looks. the surveillance area by making measurements on a grid with

100mx100m detection cell resolution. The sensor simulates

To determine the sensitivity of the sensor managememtmoving target indicator (MTI) system in that it may lay a
algorithm to the choice ofy, we test the performance withbeam down on the ground that is one resolution cell wide and
a = .1, a = .5, anda = 1. Figure 4 shows that in this many resolution cells deep. Each time a beam is formed, a set
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14 aged algorithm in terms of RMSE error. We say that the sensor
manager is approximately3 times as efficient as allocating
the sensors without management.

10 We compare next the performance of the sensor man-

15000

12

élOOOO agement algorithm under different values @fin equation

E (7). This problem is more challenging then the simulation
s of Section V-A for several reasons (e.g. number of targets,
§ soool™ number of target crossing events, and model mismatch). Of

particular interest is the fact that the filter motion model
and actual target kinematics do not match very well. The
asymptotic analysis performed previously (see Section IV-A)
leads us to believe that = 0.5 is the right choice in this
scenario.

In Figure 7, we show the results 6f) Monte Carlo trials
Fig. 5. An image showing the ten-target case under consideration, where #&Ng our sensor management technique wite= 0.1, o =
initial positions of the targets are each marked with an asterisk. The backd®B, anda = 0.99999. The statistics are summarized in Table
B i ey e loducl ht Iicates I We find that indeed the sensor management algorithm with
white color) in the hospitability. a = 0.5 performs best here as it does not loose track on any
of the 10 targets during any of th&0 simulation runs. Both

thea =~ 1 anda = 0.1 case lose track of targets on several
of measurements is returned, corresponding to the depth of fe@asions.

beam. In this simulation, we refer to each beam that is laid
down as a “Look”. We judge the performance of a tracker in

terms of the number of looks needed to perform the task (e.g.
keep targets in track, or track with a certain mean squared
error).

As in the previous simulation, the sensor is at a fixed
location above the targets and all cells are always visible to the
sensor. When making a measurement, the imager returns either
a0 (no detection) or d (detection) governed by, Py, and

5000 10000
X position (meters)

50 Trials usinga = 0.1

N w
a =]
=) =]

n
=]
=]

=
o
=]

a
=]

Position Error (Ten Target Average)
I
o

0
0 10 20 30 40 50 60 70 80 90 100

SNR. In this illustration, we takeP; = 0.5, SNR = 10dB, N Time Sten o
( +SN ) 50 Trials usinga = 0.5 50 Trials usinga = 0.99999
andP = P g 300 & 300
We compare the performance of the managed and ncw 250 § 250
<
managed scenarios in Figure 6. Our method of comparlsw % 500
again is to determine empirically the number of looks neede; ) EHO
in the non-managed scenario to achieve the same performac £
. . o o
as the managed algorithm with = 50 looks. 51 g
Utility of Sensor Management : Ten Real Targets é 0 § 0
16+ 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
4 Periodic Scan Time Sten Time Sten
AY
\
Meoo N Fig. 7. A comparison of sensor management performance under different
\*,' . values of the Rnyi divergence parametet,
12+ N
\’\
- L AY
g "% TABLE |
g 8l . SENSOR MANAGEMENT PERFORMANCE WITH DIFFERENT VALUES OF.
< 3
Q A
= 6f . Mean Position
. Position Error
4r N « Error(m)  Variance (m)
0.1 49.57 614.01
2} - 0.5 47.28 140.25
Managed with 50 Looks ~ © " TT=~l_ 0.99999 57.44 1955.54
L L L L L L L v I}
0O 100 200 300 400 500 600 700 800

Number of Looks

Fig. 6. Median error versus number of looks. managed performance wj _ ; ;
50 looks performs similarly to non-managed witb0 looks. @ The Effect of Non-Myopic Scheduling

Finally, we give some preliminary results on the rami-
Figure 6 shows that the non-managed scenario needs figations of non-myopic (long-term) sensor management on
proximately 700 looks to equal the performance of the manalgorithm performance. We inspect a challenging scenario in
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