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Abstract— This paper addresses the problem of tracking multi- Extended Kalman Filter [26], the Unscented Kalman Filter
ple moving targets by recursively estimating the joint multitarget  [27], and Gaussian Sum Approximations [1], all of which relax
probability density (JMPD). Estimation of the JMPD is done ina g6 of the linearity assumptions present in the Kalman Filter.

Bayesian framework and provides a method for tracking multiple H th techni d t tel del all of th
targets which allows nonlinear target motion and measurement owever, these techniques do not accurately model all of the

to state coupling as well as non-Gaussian target state densities.Salient features of the density, which limits their applicability

The JMPD technique simultaneously estimates both the target to scenarios where the target state posterior density is well
states and the number of targets in the surveillance region based approximated by a multivariate Gaussian density. To address
on the set of measurements made. In this paper, we give anyyis deficiency, others have studied grid-based approaches

implementation of the JIMPD method based on particle filtering . - - . -
techniques and provide an adaptive sampling scheme which [32][33], which utilize a discrete representation of the entire

explicitly models the multitarget nature of the problem. We Single target density. In this setup, no assumptions on the form
show that this implementation of the JMPD technique provides of the density are required, so arbitrarily complicated densities

a natural way to track a collection of targets, is computationally may be accommodated. However, fixed grid approaches are
tractable, and performs well under difficult conditions such as ., mnytationally intractable except in the case of very low state
target crossing, convoy movement, and low measurement SNR. . . .
space dimensionality [8].
Index Terms—Multitarget Tracking, Particle Filtering, Joint Recently, the interest of the tracking community has turned
Multitarget Probability Density. to the set of Monte Carlo techniques known as Particle
Filtering [19][46]. A particle filter approximates a probability
l. INTRODUCTION density on a set of discrete points, where the points are
HE problem of tracking a single maneuvering targethosen dynamically via importance sampling. Particle filtering
in a cluttered environment is a very well studied arechniques have the advantage that they provide computational
[5]. Normally, the objective is to predict the state of atractability [42], have provable convergence properties [13],
object based on a set of noisy and ambiguous measuremeaitsl are applicable under the most general of circumstances,
There are wide range of applications in which the targes there is no assumption made on the form of the density
tracking problem arises, including vehicle collision warninfl6]. Indeed, particle filter based approaches have been used
and avoidance [35][18], mobile robotics [41], human-computsuccessfully in areas where grid based [14] or Extended or
interaction [24], speaker localization [51], animal trackingynscented Kalman Filter-based [3][37] filters have previously
[50], tracking a person [12], and tracking a military targebeen employed.
such as a ship, aircraft, or tank [9]. The multitarget tracking problem has been traditionally
The single target tracking problem can be formulated ardidressed with techniques such as multiple hypothesis track-
solved in a Bayesian setting by representing the target statg (MHT) and joint probabilistic data association (JPDA)
probabilistically and incorporating statistical models for thf9][6][7]. Both techniques work by translating a measurement
sensing action and the target state transition. Implementdthe surveillance area into a set of detections by thresholding.
tionally, the standard tool is the ubiquitous Kalman Filtefhe detections are then either associated with existing tracks,
[39], applicable and optimal when the measurement and stated to create new tracks, or deemed false alarms. Typically,
dynamics are Gaussian and linear. Kalman-filter type algorithms are used to update the existing
In a more general setting where nonlinear target motiortsacks with the new measurements after association. The
non-Gaussian densities, or non-linear measurement to targedllenge, of course, is to determine the correct association
couplings are involved, more sophisticated nonlinear filteringetween measurements and targets.
techniques are necessary [4]. Standard nonlinear filtering tech©thers have approached the problem from a fully Bayesian
niques involve modifications to the Kalman Filter such as thgerspective. Stone [48] develops a mathematical theory of mul-

tiple target tracking from a Bayesian point of view. Srivistava,
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MHT and patrticle filtering. Considerable attention is giveiThe concept of IMPD was discussed by Kastella [29] where
to dealing with the measurement to target association issaemethod of tracking multiple targets that moved between
Others have done work which amounts to a blend betwefixed discrete cells on a line was presented. We generalize
JPDA and particle filtering [28][11]. the discussion to deal with targets that havedimensional

The BraMBLe [25] system, the independent partition parteontinuous valued state vectors and arbitrary kinematics. In
cle filter (IPPF) of Orton and Fitzgerald [43] and the work ofhe tracking problems considered here, we are interested in
Maskell [38] consider multitarget tracking via particle filteringracking the positior{z, y) and velocity(z, y) of multiple tar-
from a purely Bayesian perspective. Measurement- to-targgits. Each target is therefore described by the four dimensional
association is not done explicitly; it is implicit within thestate vectox = [z, %, , §]'. By straightforward extension, the
Bayesian framework. This work has focussed on a tractalielividual state vectors of the targets may be augmented to
implementation of ideas in [48]. include things like target identification.

The main contribution of this paper is the development of Recursive estimation of the JMPD provides a means for
a multiple target tracker that recursively estimates the entiigicking an unknown number of targets in a Bayesian setting.
joint multitarget probability density using particle filteringThe statistical model employed uses the joint multitarget
methods with adaptive sampling schemes. In our formulatiogenditional probability density(x¥,x5,..x% | xk|ZF) as
we useone particle per scenaridThat is, a particle encodes athe probability density for exactlyl’ targets with states
hypothesis about the entire multitarget state — which include$ xk ..xk | x% at timek based on a set of past observa-
the number of targets and the state (position, velocity, etc.) @dnsZ*. In general, the number of targéfsis a variable to be
each target. We demonstrate that the particle filter implemesstimated simultaneously with the states of Théargets. The
tation of JMPD provides a natural way to track a collectioBbservation sef* refers to the collection of measurements
of targets, is computationally tractable, and performs welp to and including at timé, i.e. Z* = {z', 22, ...z*}, where
under difficult conditions such as target crossing and conveych of thez' may be a single measurement or a vector of
movement. The method avoids the need to create detectionspigasurements made at time
thresholding and avoids directly performing measurement-to-gach of the state vectorsx; in the density

track association. The measurement enters into the Bayesigpk & ..xk_ xk|ZF) is a vector quantity and may

formulation through its likelihood, which allows raw senso[for example) be of the fornii, &, y, §|. We refer to each of

measurements to be utilized. This feature allows the tracke 7' target state vectors?,x%,..x% | x% as a partition

to perform well in the low signal to noise ratio regime. of the multitarget stateX. For convenience, the density
These features distinguish the particle filter based JIMPD agii| pe written more compactly in the traditional manner as

proach from traditional approaches of MHT and JPDA as W;\ikxﬂzk)’ which implies that the state-vect represents

as the approaches of Hue [22][23] and others [28][45][17}, yariable number of targets each possessing their own state

which require thresholded measurements (detections) andegtor. As an illustration, some examples illustrating the
measurement-to-track association procedure. Further, by &smple space qf are

timating the joint multitarget density rather than a many
single target densities, our method explicitly models target®
correlations. By utilizing an adaptive sampling scheme that
exploits independence when present, our method benefits front
computational advantages as in [43].

The rest of this paper is organized in the following manner. *
In Section Il, we introduce the notion of the joint multitarget
probability density and show how the rules of Bayesian ®
Filtering are applied to produce a recursive filtering procedure.
We give the particle filter based estimation of the JMPD in An important factor that is often overlooked in multitarget
Section lll. We detail therein the adaptive sampling stratedgsacking algorithms is that the JMPD is symmetric under per-
applied to automatically factorize the JMPD when targets aneutation of the target indices. This symmetry is a fundamental
behaving independently, while appropriately handling targgtsoperty of the JMPD which exists because of the physics of
that are coupled. This automatic factorization is key to thtbe problem and not because of mathematical construction.
computational tractability of this implementation. We furtherSpecifically, the multitarget statX = [x;,x3] and X =
more detail the permutation symmetry issue (present in @&y, x;] refer to the same event, namely that there are two
multitarget tracking algoritms) and its manifestation in ouargets in the surveillance area — one with stafeand one
particle filter estimation of the JMPD. In Section IV, we givewith statexs. This is true regardless of the makeup of the
simulation results detailing the performance of the particiingle target state vector. For example, the single target state
filter based multitarget tracker proposed here. Finally, wector may include target ID or even a target serial number and
conclude in Section V with a brief summary and discussiorthe permutation symmetry remains. Therefore, all algorithms

designed to implement the JMPD are permutation invariant.

Il. THE JOINT MULTITARGET PROBABILITY DENSITY If targets are widely separated in the sensor's measurement

In this section, we introduce the details of using the Joispace, each target's measurements can be uniquely associated
Multitarget Probability Density (JMPD) for target trackingwith it, and the joint multitarget posterior density approxi-

p(0|Z), the posterior probability density for no targets in
the surveillance volume

p(x1]Z), the posterior probability density for one target
with statex;

p(x1,x2|Z), the posterior probability density for two

targets with respective states andxs

p(X1, X2, X3|Z), the posterior probability density for three
targets with respective states, x, andxs



mately factorizes. In this case, the problem may be treatBd Sensor Modeling
as a collection of single target problems. The characterizingI q il B F | 5
feature of multitarget tracking is that in general some of the N Oder to implement Bayes Formula (eg. 2), we must

measurements have ambiguous associations, and therefor& ghaPUte the measur_ement I|kel|hop(ct\X) (the time index is
conditional density does not factorize suppressed here to lighten notation). There are two approaches
The temporal update of the posterior likelihood procee&g rgodelmg the I'kfl'hozd’lwmgh r:/ve”refer t.o as t?e ?ssogl-l
according to the usual rules of Bayesian filtering. The model gfed measurement” model and the “association-free” model.
how the JMPD evolves over time is given pgX*|X*~1) and In both models, the sensor produces a sequence of scans at
will be referred to as the kinematic prior (KP). The kinematighszlrete (;nstanrt]s in time. Each Sc_ﬁ:‘ |sdifset of mbeasuremerr:ts
prior describes probabilistically how the state of the systeﬂ{odulcel_ at t E Same mstafnt.h e difierence between the
evolves over time. It includes models of target motion, targ@f0 els liesin .t e structure of the scans. .
birth and death, and any additional prior information that may In the associated measurement model, an observation vector

exist such as terrain and roadway maps. The time-updaffiSists ofM measurements, denoted= (21, ..., zx). 2 is
prediction density is computed via theodel updatequation: composed of threshold exceedances, i.e. valid detections and
false alarms. Each valid measurement is generated by a single

target and is related (possibly non-linearly) to the target state.
p(XF|ZF-1) = /ka_lp(Xk|Xk_1)p(Xk_l|Zk_1) (1) False alarms have a known distribution independent of the
targets (usually taken as uniform over the observation space)
The time evolution of the JMPD may simply be a collectiognd the targets have known detection probabifity (usually
of target kinematic models or may involve target birth angonstant for all targets). The origin of each measurement is
death. In the case where target identification is part of the staignown. If measurement is generated by target then it
being estimated, different kinematic models may be used f@ra realization of the random process ~ Hy(x;, wy).
different target types. _ In its usual formulation, the associated measurement model
The measurement updatequation uses Bayes' rule topreciydes the possibility of two different targets contributing
update the posterior density with a new measurenaént 4, 5 single measurement. This model predominates most cur-
p(z"’\X"’)p(X’ﬂZ’f—l) rent t_racking, data fusioq and sen_sor mgnagement work. _The
R (2) practical advantage of this model is that it breaks the tracking
p(z"|ZET) problem into two disjoint sub-problems: data association and
This formulation allows JMPD to avoid altogether théiltering. The filtering problem is usually treated using some
problem of measurement to track association. There is no né@sd of Kalman filter. The disadvantages are a restricted sensor
to identify which target is associated with which measuremefifodel and the difficult combinatorial problem of associating
because the Bayesian framework keeps track of the entire jadiservations to filters. The associated measurement model
multitarget density. In fact, there is no need for thresholdegas initially conceived in order to cast the problem into a
measurements (detections) to be used at all. A tractable serfg@ in which the Kalman filter can be applied, which is
model merely requires the ability to compute the likelihoodnderstandable in light of the enormous success the Kalman

p(X*|Z") =

p(z|X) for each measurementreceived. filter has enjoyed.
In contrast, nonlinear filtering methods allow much greater
A. Motion Modeling flexibility regarding the way measurements are modeled. As a

In the simulation studies of Section (IV), we assume thé?sult, we are free to employ an association-free sensor model

the number of targets is fixed and model the target motidh the work presented here. This type of mo“del_ has been
as linear and independent for each target. The target motiéd n track-before-detect algorithms, in the “Unified Data
of the simulation was taken from recorded vehicle data. We!Sion” work of Stone et. al [48] and in the grid-based sensor

found that a nearly constant velocity model was adequate fBnagement work of [29]. There are several advantages to the
these simulation studies, with the state for targetenoted association-free method. First, it requires less idealization of
x; = (w4, %1, s, ) With discrete time transitions with periodthe sensor physics and can readily _accommodate issues such as
7 and indexed byt as merged measurements, side-lobe interference amongst targets
and velocity aliasing. Second, it eliminates the combinatorial

k_ pxh—1 k 3) bottleneck of the associated-measurement approach. Finally,
x; =Fxy "+ wy e - .
it simplifies the processing of unthresholded measurements to
where enable improved tracking at lower target SNR.

1 70 0 As motivation, we consider a few of the sensor types

010 0 encountered in tracking and surveillance applications. First,

F= 00 1 » (4) an imaging sensor may observe a collection of unresolved

00 0 1 point objects. The imager output is then a collection of 1-

or 2-dimensional pixel outputs. The output of each pixel is
wF is 0-mean Gaussian noise with covarian€@ = related to the integrated photon count in that pixel which is in
diag(20,.2,20,.2), which was selected based on an empiricalirn determined by the background rate and how many targets
fit to the data. are present within the pixel during the integration interval, and



their locations within the pixel. This is represented numerically Eq. (8) allows for fairly general modeling of a pixelized
as either a positive integer or real number. Depending on thensor response to a collection of targets including non-linear
nature of the optics and their impulse response function, oeffects due to multiple targets contributing to a single pixel.
or more pixels may respond to a target. Furthermore, multipline limitation is aggregations of targets only couple to the
targets can contribute to the output of a single pixel, violatingnion of pixels that the individual targets couple to. If a pair
the assumptions of the associated measurement model. of targets have some type of nonlinear coupling that results in
Another commonly used sensor type is radar. In a grouaccontribution to a pixel that they do not couple to individually,
moving target indicator (GMTI) radar, a collection of pulsethis is not captured in the model. This is likely to be a very
is emitted, their returns are collected and integrated owvemall effect in most situations, so we choose to ignore it here.
some coherent processing interval (CPI) [47]. The output of We further idealize the sensor as having a box-car resolution
successive CPIs may also be averaged non-coherently. Duried) in position coordinates. We assume that the sensor scans
the integration interval, the radar antenna is directed at soendixed rectangular region consisting df, x N, contiguous
fixed or slowly varying bearing. The integrated pulse data xels. Thez- and y- ground-plane projection of each pixel
processed to obtain the reflectivity as a function of range aisdA, andA,. The sensor response within pixeis uniform
range-rate at that average bearing. Depending on the naturéooftargets ini and vanishes for targets outside pixellt is
the integration process, the return amplitude may be envela@mvenient to define the occupation numhefX) for pixel 4
detected or it may be available in complex form. Given thas the number of targets K that lie ini. The single target
ubiquity of modern digital signal processing, radar data #sgnal-noise-ratio (SNR), assumed constant across all targets,
usually available somewhere within the radar system as @ndenoted\. We assume that when multiple targets lie within
array indexed by discrete range, range-rate and bearing valuks.same pixel their amplitudes add non-coherently (this will
With this as background motivation, we present thibe an accurate model for unresolved optical targets and radar
association-free model. We compute the measurement likargets not moving as a rigid body). Then the effective SNR
lihood p(z|X), which describes how sensor output dependghen there are: targets in a pixel is\,, = nA and we may
on the state of all of the targets in the surveillance regionsep,, (z;) to denote the pixel measurement distribution (note
A sensor scan consists dff pixels, and a measurememnt that the background distribution is obtained by setting 0).
consists of the pixel output vectar = [z, ..., zx]", where  With these modeling assumptions, the measurement distri-
z; is the output of pixet. In generalz; can be an integer, real, bution in pixel: depends only on its occupation number and
or complex valued scalar, a vector or even a matrix, dependiag. (8) becomes
on the sensor. If the data are thresholded, then eauhll be » ()
either a0 or 1. Note that for thresholded data,consists of p(z|X) H T35
both threshold exceedances and non-exceedances. The failure i€ix po(#i)

to detect a target at a given location can have as great ajg complete the specification of the sensor model, we must
|mp§ct on the posterior distribution as a dete_c-tlon. . ive its dependence on SNR. Many models are plausible,
Pixel measurements are modeled as conditionally indepefi,ending on the detailed nature of the sensor. We have elected

9)

dent so to use Rayleigh-distributed measurements. This distribution
corresponds to envelope detected signals under a Gaussian

p(z|X) = HP(Z”X) (3)  model, and has been used for example to model interfering tar-

! o gets in a monopulse radar system [10][49] and to model clutter

Let X = [x},...,x7] and letx;(x;) denote the indicator 4nq target returns in turbulent environments [20]. Rayleigh

function for pixeli, defined asy;(x;) = 1 when a target in mogels are also often used for diffuse fading channels. In the
statex; couples tai andy;(x;) = 0 when it does not. Observe nihresholded case, this is

a pixel can couple to multiple targets and single target can
contribute to the output of multiple pixels, say, by coupling oz - 22
through side-lobe responses. The indicator function for the Pn(z) = 14+ n\ exp 2(1 +n\)

joint multitarget state is constructed as the logical disjunction When the tracker only has access to thresholded measure-
ments, we use a constant false-alarm rate (CFAR) model for

T
xi(X) = \/ Xi(Xt) (6) the sensor. If the background false alarm rate is sétathen
t=1 the detection probability when there ardargets in a pixel is

(10)

The set of pixels that couple ¥ is
ix = {i[xi(X) = 1} (1)
1
For the pixels that do not couple X, the measurements are This extends the usual relatidp; = P;** for thresholded

characterized by the background distribution, dengigld;). Rayleigh random variables at SNR[6].
With this, eq. (5) becomes

J S
Pd,n = Pfl+nA (11)

IIl. PARTICLE FILTER IMPLEMENTATION OF JMPD

p(z|X) = H p(2|X) H po(z;) o H p(zX) (8) We now turn to the development of a particle filter approx-
po(2i) imation to the Joint Multitarget Probability Density (JMPD).

1€IX ig¢ix 1€IX



Even for modest problems, the sample spac&éfis large Finally, a resampling step is used to prevent particle degen-
since it contains all possible configurations of state vectgrs eracy. Without resampling, the variance of the particle weights
for all possible values df'. Earlier implementations of JMPD increases with time, yielding a single particle with all the
given by Kastella [29] approximated the density by discretizveight after a small number of iterations [15]. Resampling
ing on a grid. The computational burden in this scenario makesmy be done on a fixed schedule or based on variance of the
evaluating realistic problems intractable, even when using tiveights.

simple model of targets moving between discrete locationsThe particle filter algorithm that uses the kinematic prior
in one-dimension. In fact, for a fixed approximation errols the importance density and resamples at each time step is
the number grid cells needed grows BS, where L is the called sampling importance resampling (SIR) in the literature.
number of discrete locations the targets may occupy&rsl

the number of targets.

Thus, to estimate the JMPD in a computationally tractable
manner, a more sophisticated approximation method is re- 1)
quired. We find that a particle filter (PF) based implementation
of JMPD breaks the computational logjam and allows us to 2) Computew® = wk~1 « p(z|x,) for eachp

investigate more realistic problems. 3) ResampleN,q.+ particles with replacement
from x,, based onw,

TABLE |
SIR SNGLE TARGET PARTICLE FILTER

For each particle, p = 1,-- -, Npart,
a) Samplexk ~ q(x*[xk~1,z%) = p(x|x} ")

A. The Single Target Particle Filter

Before detailing the particle filter implementation of IMPD ) i o
we first briefly review standard single target particle filtering>: Multitarget Particle Filtering
Particle filtering is a method of approximately solving the To implement the JMPD recursions via a particle filter, we
prediction and update equations by simulation [4][19], whe&imilarly approximate the joint multitarget probability density
samples from the target density are used to represent tH&|Z) by a set of N, weighted samples. The multitarget
density and are propagated through time. state vector fofl" targets is written as

To implement a single target particle filter, the single target

X =[x}, x5, ..., X/ il 14
density of interestp(x|Z), is approximated by a set 0¥, [x1, X3, .., Xp_1, X7 (14)
weighted samples (particles): The particle state vector fdf, targets is
Npar / / / /
part X, =[x x5 ... x 15
p(X|Z) ~ Z wp(SD(X - Xp) (12) . P [ Pyl P2 . ' vap] ( . )
=1 whereT,, is can be any non-negative integer. With denoting

Wheredp represents the usual Dirac delta function. the Dirac delta, we define

The model update (eq. 1) and the measurement update 0 T4T
; ; ; (X=X, = 7 1y 16
(eq. 2) are simulated by the following three step recursion, (X =Xp) = 5p(X —X,) otherwise (16)
summarized in Table I. First, the particle locations at titne
are generated using the particle locatiddsat timek —1 and
the current measurement$ by sampling from an importance

Then the particle filter approximation to the JMPD is given
by a set of particles(,, and corresponding weights, as

density, denoted(x*|x*~1, z*). The design of the importance Npart
density is a well studied area [16], as the choice of the p(X|Z) ~ Z wyd(X — X,) (17)
importance density can have a dramatic effect of the efficiency =1

of the particle filter algorithm. It is known that the OptimalwhereZw _q
importance density (OID) is given by(x"|x""", 2"), but this Differentp _arti.cles in the approximation may correspond
density is typically prohibitively difficult to sample from. In P pp Y P

. : : - . different estimates of the numbdr, of targets in the
practice, oftentimes the importance density is chosen just to be ~ . : : .

. Co P o surveillance region. In practice, the maximum number of
the kinematic priop(x*|x"~'). However, more sophisticated

choices of importance density lead to better results for a fixttra]aclgrgne;:r:ar particle may track is truncated at some large finite
max -

gumrgi:rmogﬁzar';ﬂegl [,)A?r;/;/ﬁe\r/vmas;\eseir:]n lthﬁsmuliﬁzrgﬁtefna;?é The joint multitarget probability(X|Z) is defined for all
bp 9 Pl 9 ssible numbers of target§; = 0..co. As each of the

: . . . : 0
prior) becomes crucial as dimension of the problem mcreasgs.rticlesxp, p = 1..N,u,; is a sample drawn from the JMPD

Second, particle weights are updated according to the wei . -
: o S . . |Z), a particleX, may have0,1,...co partitions, each
equation, which involves the likelihood, the kinematic mod . / . -
. . Partition corresponding to a different target. Note that it is
and the importance density [4]. : .
possible to have two or more targets in the same state. We
. oy P(EF X )p(x|xE ) have denoted the number .of partitions in fié part|c'IeXp
wy, = w, PR (13) by T,, whereT, may be different for differeniX,. Since a
q(xplxp ™, 2%) partition corresponds to a target, the number of partitions that
When using the kinematic prior as the importance density, tagarticle has is that particle’s estimate of the number of targets

i i k — k-1 k |k i i
weight equation reduces to; = w, " * p(z"|x}). in the surveillance area.




With these definitions the SIR particle filter extends directly 1) Independent-Partition (IP) MethodThe independent
to JMPD filtering, as shown in Table II. This simply proposepatrtition (IP) method given by Orton [43] is a convenient way
new particles at timé using the particles at timé — 1 and to propose particles when part or all of the joint multitarget
the target kinematics model eq. (3) while eq. (9) is used @ensity factorizes. The Independent-Partition (IP) method pro-
the weight update. poses a new partition independently as follows. For a partition
t, each particle at timé& — 1 has it'st'" partition proposed
via the kinematic prior and weighted by the measurements.
From this set ofV,,,. weighted estimates of the state of the
tth target, we seleciV,,,; samples with replacement to form
the t*" partition of the particles at tim&. This is a biased

TABLE Il
SIR MULTITARGET PARTICLE FILTER

1) For each particle, p = 1, ..., Npart,
a) For each partitiort, t =1, ..., T},

) SampleXk, ~ g(XFXEL, 28)=p(X X" 1) sam_pllng scheme, and so the biases cprrespondlng to each
e kel ’ particle for each target), ;, must be retained to unbias the
2) Computew, =w;, ~ *p(z|Xp) for eachp . . S . .
3) ResampleN,q,¢ particles with replacement particle weights. This is summarized in Table Il1.
replacement fronX,, based onw,
TABLE Il

INDEPENDENTPARTITION PARTICLE FILTER

C. Multi-target Particle Proposal 1) For each partitiont = 1--- Thaz,

. . . . . . a) Propose partition via Independent Partition Subroutine
Using the kinematic prior as the importance density has the ) Proposep P

benefit that it is simple to implement and is computationally 2 Computew; = wy™ « %
inexpensive on a per particle basis. As we will see later, -
this computational efficiency is erased by the fact that a very ~'ndependent Partition Subroutine for Target
large number of particles are required using this importance ) For each pa”*'c'@’ =L Npare,
density. One obvious drawback is that the kinematic prior S)) izrr:‘;ﬁfﬁ,t;pf(’;rgfpf )
does n_ot explicitly take advantage of the fact that the state 2) Normalizew to”sum tol_”’t
vector in fact represents many targets. Targets that are far apart  3) For each particle = 1, ..., Npars,
in measurement space behave independently and should be a) Sample an indey from distribution ofw
treated as such. A second drawback, common to many particle b) SetX,. = X7,
- : P . ¢) Retain bias 0% samplé,, + = w;
filtering applications, is that the current measurements are not v ’
used when proposing new particles. These two considerations
taken together result in a very inefficient use of particles andlt is important to carefully account for the permutation
therefore require large numbers of particles to successfulymmetry issue discussed in Section Ill here. The IP method
track. makes the critical assumption that partitioin each particle
To overcome these deficiencies, we have employed altéprresponds to the same target. Therefore, the partitions in
native particle proposal techniques which bias the propo&#ich particle must be identically positioned before this method
process towards the measurements and allow for factorizatisrapplied. If IP is applied to particles that have different or-
of the target state when permissible. These strategies propdegngs of partitions, multiple targets will be grouped together
each partition (target) in a particle separately, and form nedad erroneously used to propose the location of a single target.
particles as the combination of the proposed partitions. Wowever, when this assumption of target/partition correspon-
describe two methods here, the independent partitions (#gnce is valid, IP is an effective sampling strategy because it
method of [43] and the coupled partitions (CP) method. TH®mbines results for each partition across particles, resulting
basic idea of both CP and IP is to construct particle propos#isimproved numerical efficiency.
by the partition level, incorporating the measurements so adn the case of well separated targets, this method allows
to bias the proposal towards the optimal importance densitgany targets to be tracked with the same number of particles
We show that each has benefits and drawbacks and proposeegded to track a single target. Indeed, as mentioned earlier,
adaptive partition (AP) method which automatically switchei® the case of well separated targets, the multitarget tracking
between the two as appropriate. problem breaks down into many single-target problems. The
The permutation symmetry of the JMPD must be carefull® method is useful for just this case, as it allows the targets
accounted for when using these advanced sampling schentede treated independently when their relative spacing deems
The CP method proposes particles in a permutation invaridhat appropriate. Note, however, that this method is not ap-
manner, however it has the drawback of being computationafiicable when there is any measurement-to-target association
demanding. When used on all partitions individually, the IRmMbiguity. Therefore, when targets are close together in sensor
method is not permutation invariant. Our solution is to perforgpace, an alternative method must be used.
an analysis of the particle set to determine which partitions2) Coupled Partition (CP) Proposal MethodWhen the
require the CP algorithm because they are involved in partitiposterior distributions on target position begin to overlap, we
swapping and which partitions may be proposed via the Hay that the corresponding partitions are coupled. In these
method. This analysis leads to the AP method of proposaktances, the IP method is no longer applicable, and another
which is permutation invariant. method of particle proposal such as Coupled Partitions (CP)



must be used. An alternative method would be to use the e Euclidian distance between estimated states is sufficient

strategy on groups of partitions as is suggested in [43]. and less computationally burdensome. The adaptive proposal
We apply the coupled partitions method as follows. Tmethod is summarized in Table V.

propose partitiont of particle p, CP proposesV possible

realizations of the future state using the kinematic prior. The

M proposed futures are then given weights according to the

current measurements and a single representative is selected. 1) ror each partitiort = 1 : Tnas

TABLE V
ADAPTIVE PROPOSALMETHOD

This process is repeated for each particle untilttfigpartition a) d(t) = minjz [[R; — %]
for all particles has been formed. This can interpreted as an b) ifd(t) >7 .
auxiliary particle filter where the multiplicity/ plays the role Propose partitiort using IP method
of the auxiliary variable. As in the IP method, the final particle c) else N _
weights must be adjusted for this biased sampling. This is P:]Opost_e Iparjt'f” ”s]'\?g CP method
summarized in table IV. ) o A )™ 7o

wp = ’U}p = e—

Tp
TABLE IV | "
COUPLED PARTITION PARTICLE FILTER
In any of these proposal methods, target birth and death may

1) For each partitiont = 1--- Trnaq N ‘ be accounted for in a straightforward manner by modifying the
a) Propose partitiort via CO;J(P'ed Partition Subroutine proposal density to incorporate a probability that the proposed
2) Computew’ = wh=! « % particle X has either fewer or more targets tha&g—*. In
= particular, assume a death rate which may be spatially
Coupled Partition Subroutine for Target varying to account for the fact that targets exit along the
1) For each particle = 1, ..., Npart, boundaries of the surveillance region. Then when proposing

a) For each proposah = 1,..., M

] 1 new particles, with probabilityy, a target is removed from
i) SampleX? ,(m) ~ p(x|X,")

. ity N particlep and the updated number of targets in this particle is
i)y Computewnm = p(z|X} ;(m)) L k1 )
b) Normalizew to sum tol. set asT); = Tp - 1. Fu.rther, assume a p!rth rate Then
c) Sample an indey from distribution ofw when proposing new particles, with probability a new target
d) SetX,, =X .(4) is added to particlep. The location of the new target may
€) Retain bias of sample, . = w; be random, or more realistically chosen along the perimeter
of the surveillance area. In this case, the number of targets
This algorithm is a modified version of the traditional SIRepresented by this particle is updated]@bz Tz’f‘l + 1.
technique that operates on partitions individually. It improves

traCking performance over SIR at the expense of add|t|0r]§| Permutation Symmetry and Partition Sorting

computations. As discussed throughout the preceding sections, the per-

3) Adaptive Particle Proposal Methodin order to mit- mutation symmetry associated with the JMPD discussed in

igate the problem of additional computational cost of th . P : : _ ) )
CP method, and the problems with the IP method wh §nect|on Il is directly inherited by the particle filter represen

targets are close together, we propose a hybrid solution, cal aHon of the JMPD. Each particle contains many partitions

the Adaptive-Partition (AP) method. The adaptive-partitio {is many as the number of targets_ It estimates exist in the
) : . surveillance region) and the permutation symmetry of JMPD is

method again considers each partition separately. Those parii- . .
. . . - visible through the fact that the relative ordering of targets may
tions that are sufficiently well separated according to a giver ; : :
. " change from particle to particle. We refer to the permutation
metric (see below) from all other partitions are treated as L . .
sgtr?nmetry in this context as partition swapping.

independent and proposed using the IP method. When targ he fact that partitions are in different orders from particle

are not sufficiently distant, the CP method is used. L : :
. .y to particle is of no consequence when the object of interest
To determine when targets are sufficiently separated, we

. : IS_an estimate of the joint multitarget density. Each particle
threshold based on distance in sensor space between he . . .
: h - th - contributes the correct amount of mass in the correct location
estimated state of thé'" partition and thej*" partition.

Denote by, the estimated state of thé" partition (eq. to the multitarget density irrespective of the ordering of its

. .. patrtitions.
(28)). We have computed the distance between two partition owever, the IP scheme requires that particles be identically

using a Euclidian metric between the estimated centers, an%_1

the Mahalanobis metric (eq. (18)), whele is the covariance or ered._ Fur'_[hermore, estlm_atmg the multitarget states from
) : : , . the particle filter representation of JIMPD must also be done

associated with the estimate of th#& partition (eq. (29)). . e . . .
in a way that is invariant to permutations of the particles.

Therefore, before estimating target states, we permute the
particles so that each particle has the targets in the same
We have additionally used a nearest neighbor type criter@der. We use the K-means [21] algorithm to cluster the
where partitions are considered coupled if any sample frgpartitions of each particle, where the optimization is done
partition: is closer to the center of partitighthen any sample across permutations of the particles. In practice, this is a very
from partition j. In practice, it is found that simply usinglight computational burden. First, those partitions that are not

r? = (& — ;)5 (& — 35) (18)



coupled are already correctly ordered and need not involved

in the clustering procedure. Second, since this ordering occurs I - { 1 ifT,=T

at each time step, those partitions that are coupled are nearly P71 0 otherwise

ordered already, and so one iteration of the K-means algorithm

is enough to find the best permutation. Then the probability of: targets in the surveillance volume,
The details of the K-means algorithm are as follows. First(n|Z), is given by

we state the notion of permutation symmetry precisely. Sup-

pose a particle hag), partitions labeledt = 1---7,. A

(24)

permutationr, is a reshuffling of the labelst, : 4 (z) Npare
p p i1 — Tp(2). _
So a particle defined p(n|Z) = Z:l Tyw, (25)
p:
Xp = [Xp1,Xp2, +, Xp,1, ] (19) The estimate of the probability that there aréargets in the

surveillance volume is the sum of the weights of the particles
that haven partitions. Note that the particle weights,,, are
normalized to sum to unity for all equations given in this

Under the permutatiom,, is reordered to

Xp = [Xp,mp (1) Xpmy (205 Xpymy (1) 0) o ction.

Denote byr a set of permutations for each particte,, p = To compute the estimated target state and covariance of
1--- Npare. We define the mean of thé'tpartition under the targeti, we first define a second indicator variablg that
permutationt as indicates if particlep has a partition corresponding to target

N This is necessary as each particle is a sample drawn from the
_ barts JMPD and hence may have a different number of partitions
Xy(m) = Z WpXp,m (1) ) (targets):

p=1

and define they? statistic

= [ 1 |if partition ¢ exists in particlep
Nparts ) Iy = { 0 otherwise (26)
X2(7T) = Z wp(Xp,ﬁp(t) - Xt(”p))Q (22) i ] .
=1 Furthermore, we define the normalized weights to be
To reorder the particles in identical fashion, the goal is to .
find the set of permutations that minimizex?, i.e. i, wylp 27)

S i
7 = min x () (23)
i So w, is the relative weight of particle, with respect to
The K-means algorithm is a well known method of solvingil particles tracking target Then the estimate of the state of
problems of this type. An initiair is assumed and perturbatargeti is given by
tions about that value are made to descend and find the best
(local) =. The algorithm is given in Table VI.

Npart
TABLE VI X(1) = E[X(1)] = z_; WpXp,i (28)
K-MEANS ALGORITHM OPTIMIZING OVER PARTITION ORDERINGS L

1) Initialize with = = current ordering of partitions which is simply the weighted summation of the position

2) ComputeX, () for t = 1T, using eq. (21) estimates from those particles that are tracking taigd&he
3) For each particlep, permute the particle (update,) to covariance is given similarly as
yield
TP
B 74 N, art
Tp < argmin Z(Xer ) — Xi(mp))? . P A . .
et AG) =) (X — X(8)(Xps — X(0)) (29)
p=1

4) If no particles have changed permutation from 1, quit.
Otherwise go to 2 -
The indicator functionl,, ensures that the summations in

(28) and (29) are taken over only those particles that are
tracking target. The permutation symmetry issue mentioned
earlier comes to the forefront here. Notice that without a

Estimates of various interesting quantities may be easijustering on the partitions, it is not necessarily true that
made using the particles. partitioni of particlej is tracking the same target that partition

To compute the probability that there are exaatlyargets < of particle j + 1 is tracking. Therefore, before evaluation
in the surveillance volume, first define the indicator variablef equation (28) or equation (29), the clustering procedure
I, for p = 1...Nparts. discussed in Section IV-F is performed.

E. Estimation



F. Resampling 22007

In the traditional method of resampling, after each measur¢ 2000¢ Target B
ment update,N,,: particles are selected with replacement ;gp0l
from X, based upon the particle weights,. The result % 1600,
is a set of NV, particles that have uniform weight which £
approximate the multitarget densityX|Z). Particles that do £ 1400}
not correspond to measurements are eliminated — in particulaé 1200
particles that have &fi, that is not supported by measurements é’l
(too many or too few targets) are not selected. >

The particular resampling that was used in this work i¢ 800
systematic resampling [4]. This resampling strategy is easil gyl
implemented, runs in ordé¥,,.,, is unbiased, and minimizes
the Monte Carlo variance. Many other resampling scheme 4000 500 1000 1500 2000 2500 3000 3500 4000
and modifications are presented in the literature [16]. C. X position (meters)
the.se methOdS’ we have found that adaptively choosing Flat 1. A schematic showing the motion of three of the ten targets in the
which time steps to resample [36] based on the numbﬁaulation scenario. The target paths are indicated by the lines, and direction
of effective particles leads to improved performance whilef travel by the arrows. There are two instances where the target paths cross
reducing compute time. All results presented herein use tf;g ae at the same position at the same time).
method of [36] to determine which times to resample and use

systematic resampling [,4] to perform resampling. We have.alﬁp_cl we qualitatively evaluate the performance difference
found that Markov Chain Monte Carlo (MCMC) moves using e, ysing unthresholded measurements versus thresholded

a Metropolis-Hastings sgher_ne [16] leads to slightly improverﬂeasurements. Third, in Section IV-D, we evaluate the ability
performance in our application. of the tracker to determine the number of targets when the
number is initially unknown. Fourth, in Section IV-E, we

IV. SIMULATION RESULTS investigate the computational burden of the algorithm and how

A. Introduction it scales with different numbers of targets. Fifth, in Section

V-F, we illustrate partition swapping when two targets cross.

he scenario is contrasted with and without partition sorting
as described in Section IV-F.

Target A

)

000

Target C

We illustrate the performance of our multitarget trackin
scheme by considering the following model scenario.
Targets move in a5000m x 5000m surveillance area.
Targets are modeled using the four-dimensional state vector )
x = [z,4,y,9]’. The target motion in the simulation is takerB- Adaptive Proposal Results
from a set of recorded data based on GPS measurements ofh Figure 2, we compare the performance of the Independent
vehicle positions collected as part of a battle training exerci®artitions (Table 1ll), Coupled Partitions (Table 1V), and
at the Army’s National Training Center. This battle simulatioddaptive Partitions (Table V) proposal schemes presented here
provides a large number of real vehicles following prescribagiith that of the traditional scheme of sampling from the
trajectories over natural terrain. Based on an empirical Kinematic prior (Table 1l), in terms of RMS tracking error. In
to the data, we found that a nearly constant velocity modglis example, we us8 targets which remain close in sensor
(see eq. (3)) was adequate to model the behavior of thgace for about 50% of the time. Thresholded measurements
vehicles for these simulation studies and is therefore used invaith P; = 0.5 are used and the SNR parameleis varied
experimental results presented herein. In another study [3#pm 1 to 21.
we have found that a multiple model particle filter with modes Due to partition swapping, the IP method is inappropriate
corresponding to nearly constant velocity, rapid acceleratiayring target crossings and hence the tracker only IP has
and stationarity provides more efficient filtering. poor performance. The CP method makes no assumption about
We utilize the idealized sensor described in Section II-Bhe independence of the targets and therefore performs very
The sensor scans a fixed rectangular regiofi0ok 50 pixels, well, although at significantly higher computational cost. Most
where each pixel represent§@m x 100m area on the ground importantly, the adaptive method, which uses IP on partitions
plane. The sensor returns Rayleigh-distributed measuremehtt are independent and CP otherwise, performs nearly as
in each pixel, depending on the number of targets that owell as the CP method itself. AP achieves approximately a
cupy the pixel. Unthresholded measurements return eneff§6 reduction in computational burden (measured by floating
according to eq. (10) while thresholded measurements behaaint operations) as compared to the CP method alone (see
according to eq. (11). Table VII). For this simuation, we have extracted 3 targets
We present the results of 5 simulation studies here. First,fiom our large database of real recorded target trajectories.
Section IV-B, we illustrate the benefit of the adaptive propos&he targets were chosen so that they spent approximately one-
scheme detailed in Section IlI-C. We contrast the performanbalf of the simulation in close proximity. The AP algorithm
of the CP, IP, and AP methods in two scenarios, one wheagerrectly chooses to use IP during the half of the simulation
targets are always well separated and one more realistibere targets well separated and CP during the other half,
scenario where targets frequently interact. Second, in Sectighich results in the stated reduction in computation.
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Fig. 2. The Performance of the Coupled Partitions (CP), Independent

Partitions (IP), and Adaptive Partitions (AP) schemes in comparison to simghg. 3. The performance of the CP and IP Proposal Schemes, in comparison
using the kinematic prior. For this simulation, we have extracted 3 targdes sampling from the Kinematic Prior. For the purposes of this example,
from our large database of real recorded target trajectories. The targets wegeconsider well separated targets with linear motion and linear state-to-
chosen so that they spent approximately one-half of the simulation in clg®@asurement coupling. Therefore for the purposes of this simple example,
proximity. The IP algorithm used alone is inappropriate during target crossing¢ Kalman filter is optimal and is shown as a performance bound.

and so performs poorly here. The CP algorithm is always appropriate, but

computationally demanding. The AP algorithm adaptively switches between

IP and CP resulting in good performance at reduced computation. . . . . ..
gin good'p P particles required to reach the Kalman filter bound is sensitive

TABLE VI to these choices. Specifically, as the ratio of plant noise to
FLOPSFORKP. CP. IPAND AP METHODS measurement noise increases, the number of particles to reach
the bound increases. However, the relative performance of the
Method Flops . . .
Coupled Partition 175678 IP, CP and KP algorithms remains consistent as the plant and
Independent Partitior) 6.74e+6 measurement noise parameters change.
Adaptive Partition 5.48e+7
Kinematic Prior 6.32e+6

C. The Value of Not Thresholding

We investigate here the gain from using non-thresholded

easurements in the multitarget tracking scenario. One of the
g%rengths of our association-free method is the ability to use
n-thresholded measurements.
In this simulation, we first study three targets and bench-
rk the performance of the tracker versus SN for
T:?holded measurements with = 0.1 ---0.9. At a constant

, as thePy is reduced, so is thé’ according to the

8Iation given in eq. (11). The performance of the algorithm

As a means of directly comparing the IP and CP metho
with the kinematic prior (KP), we construct an alternate mod
problem. We consider five well separated targets. For t
purposes of this model problem, we restrict target motion to
be linear, measurement to state coupling to be linear, and
noise processes to be Gaussian. We use the motion mg
given by eq. (3) both for the simulation of target motion and i
the filter. In this case we can use the Kalman filter as a bour}

Note that it is not necessary to make these assumptions for YESUS Srz\':rR ir][fd 'S rgf"’fr: ': Flglf”tfl 4 lqorithm using thresh
PF. In fact, the strength of the PF (and nonlinear filtering in € contrast the pertormance ot the aigo using thres

; . . _— . olded measurements with the performance when using non-
eneral) approach is that no linearity/Gaussianity assumptiq g
9 ) app Y y P .gesholded measurements at the same set of SNR values.

are needed. However, we have restricted the problem in t Ure 5 is a plot showing the performance of the algorithm
manner here in order to provide an asymptotic performancécl P 9 P 9

bound and show that the PF implementation indeed reaclies 9 threshol_ded measurementﬂt: 0.4 (the best perfor-
the bound. mance from Figure 4) and the algorithm using non-thresholded

The CP method is shown with a particular choice idt measurements in terms of the number of targets successfu_lly
) racked. We see that non-thresholded measurements provide
M = 10. It can be seen that the IP technique reduces tﬁe . .
. similar tracking performance at an SNR of 1 as the thresholded
number of particles needed by between two and three ordéers . .
. i . .“measurements provide at an SNR of 5, for a gain of about 7dB
of magnitude as compared to the traditional technique. Sm]pe :
) . . . om not thresholding the measurements.
the work per particle to perform IP is nearly identical to that
of sampling from the kinematic prior, IP actually reduces
computational burden by two to three orders of magnitud® Unknown Number of Targets
when targets are well separated. The ability of the algorithm to determine the number of
These simulations are the result of particular choices of tkergets is illustrated in Figures 6 and 7. There are three

plant noise and measurement noise parameters. The numbedamjfets in this simulation. We initialized the filter uniformly
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Fig. 4. A contour plot showing the number of targets successfully tracked ) ) ) )
in this three target experiment versi®y and SNR when using thresholdedFig. 6.  The estimate of number of targets in the surveillance region
measurements. versus time with SNR=4. The filter is initialized with probability uniform for
0,1,---,5 targets. Measurements taken over time allow the filter to properly
estimate the number of targets in the surveillance area.
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Fig. 5. A plot of the number of targets successfully tracked in the three target s 1o s 2 » %

: Time Step
experiment for thresholded measurements and unthresholded measurements as

a function of SNR. . . . . .
Fig. 7. The estimate of number of targets in the surveillance region versus

time with SNR=12. The filter is initialized with probability uniform for

0,1,---,5 targets. Measurements taken over time allow the filter to properly
in target number space, allocating one-sixth the probability ¢stimate the number of targets in the surveillance area.
0,1,---,5 targets. Over time, the filter is able to accurately

estimate the number of targets in the surveillance region. As
the SNR improves, the time until correctly determining the One factor that effects computation dramatically is the num-
number of targets decreases. ber of coupled targets. This effect can have a greater impact on
computational complexity then the number of targets. When
targets move close together, their coupling must be explicitly
modeled and the CP algorithm becomes necessary. This algo-
Using MatLab on an off-the-shelf 3GHz Linux box, we findithm is significantly more computationally demanding then
that the AP method is able to track 10 real targets with scatie IP method.
of the surveillance area coming in once per second in near realn Figure 9, we show the timing results of simulations
time (for typical situations, the algorithm takes approximatehkyhere1---10 targets are tracked. We include for reference
1.5 seconds to process each 1 second of data). A more Idlae average number of coupled targets during the simulations.
level implementation is anticipated to easily allow real timEor each trial, we sele¢ttargets at random from our collection
tracking. Figure 8 shows the tracking performance when usingreal recorded data. Depending on which targets are selected,
particle filter implementation of JMPD on ten targets. The pldhey may or may not be coupled, resulting in a different level
is averaged ob0 trials, where in each trial a random set ofomputational complexity. The plot in Figure 9 is averaged
10 targets is chosen from our large database of real targetever 50 trials.

E. Computational Considerations
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60

used even at Time¥d. This results in an inefficient algorithm,
as the CP method is more computationally demanding.

In Figure 11 we give the same vignette as in Figure 10, but
this time we utilize the partition sorting algorithm outlined
in Section IV-F at each time step. While the CP method
must still be used when the targets are occupying the same
detection cell, when they move out (Tim#2; the IP method
may be used again. The partition sorting allows for the more
computationally efficient IP method to be used for proposal
by reordering the particles appropriately.

50

N
o

Tracking error (meters)
N w
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105 V. CONCLUSION

‘ ‘ ‘ This paper has presented a new grid-free implementation
0 50 100 150 200 250 of a Bayesian method for tracking multiple targets based on
Time Step recursively estimating the joint multitarget probability density.
Fig. 8. The performance of the particle filter implementation of JIMPD Whew/e _h_ave detalle_d an adaptlve pamCIe, proposal scheme that
tracking ten real targets. For each simulation, at each time step tracking e@¥plicitly takes into account the multitarget nature of the

is measured as the mean track error for the ten targets. The plot showsgheblem and automatically factors it into a series of smaller
median tracking error across @0 simulations. The filter is initialized with

the true target locations and so initial tracking error is 0. Steady state trackfrqbdependent prOblems_When appropriate. This implementation
error is on the order of 50 meters. As mentioned earlier, the sensor meastigduces the computational burden to a reasonable level and

100m x 100m resolution cells on the ground. The particle filter implementatigfllows implementation for realistic problems. In simulations

of JMPD uses 250 particles which allows near real time tracking. with real target motion, we have shown the ability to track
ten targets with complicated kinematic behavior, using pixe-

3 10 15 lated measurements on a grid. This technique has the benefit

that raw sensor measurements may be directly incorporated

through the use of a likelihood function. No thresholding to

create detections is necessary. Furthermore, no measurement-

to-target association is explicitly required.

~
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Fig. 10. This figure illustrates the phenomenon of partition swapping that occurs in direct particle filter implementation of the SIR filter for JMPD. True
target locations are indicated by The two partitions for each particle, plotted withando, are well separated at timet. From time60 to 66, they occupy

the same detection cell. At tim&4, some partition swapping has occurred, indicated by the fact that there are mixtuxearafo corresponding to each

target location.
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Fig. 11. An example of the performance of the particle filter based multitarget tracker during target crossing. The nine time sequential images focus on one
of the ten targets that the filter is tracking. The ground truth location of the target (projected into the XY plane) is denoted by an asterisk. The partitions
associated with the two targets are denotedxbgndo. The sensor cells are given by the gridlines. As discussed earlier, the sensor measures on a grid and
receives energy from the target density if the cell is occupied or the false alarm density if the cell is empty. Initially (before time 50), this target is well
separated from all of the others. At these points the IP algorithm is being used for proposal. During times 50 to 66, a second target is crossing (coming within
sensor resolution) of the target of interest. Near time 72, the target complete their crossing and again move apart.



