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Multitarget Tracking Using a Particle Filter
Representation of the Joint Multitarget Density

Chris Kreucher*, Keith Kastella and Alfred O. Hero III,IEEE Fellow

Abstract— This paper addresses the problem of tracking multi-
ple moving targets by recursively estimating the joint multitarget
probability density (JMPD). Estimation of the JMPD is done in a
Bayesian framework and provides a method for tracking multiple
targets which allows nonlinear target motion and measurement
to state coupling as well as non-Gaussian target state densities.
The JMPD technique simultaneously estimates both the target
states and the number of targets in the surveillance region based
on the set of measurements made. In this paper, we give an
implementation of the JMPD method based on particle filtering
techniques and provide an adaptive sampling scheme which
explicitly models the multitarget nature of the problem. We
show that this implementation of the JMPD technique provides
a natural way to track a collection of targets, is computationally
tractable, and performs well under difficult conditions such as
target crossing, convoy movement, and low measurement SNR.

Index Terms— Multitarget Tracking, Particle Filtering, Joint
Multitarget Probability Density.

I. I NTRODUCTION

T HE problem of tracking a single maneuvering target
in a cluttered environment is a very well studied area

[5]. Normally, the objective is to predict the state of an
object based on a set of noisy and ambiguous measurements.
There are wide range of applications in which the target
tracking problem arises, including vehicle collision warning
and avoidance [35][18], mobile robotics [41], human-computer
interaction [24], speaker localization [51], animal tracking
[50], tracking a person [12], and tracking a military target
such as a ship, aircraft, or tank [9].

The single target tracking problem can be formulated and
solved in a Bayesian setting by representing the target state
probabilistically and incorporating statistical models for the
sensing action and the target state transition. Implementa-
tionally, the standard tool is the ubiquitous Kalman Filter
[39], applicable and optimal when the measurement and state
dynamics are Gaussian and linear.

In a more general setting where nonlinear target motions,
non-Gaussian densities, or non-linear measurement to target
couplings are involved, more sophisticated nonlinear filtering
techniques are necessary [4]. Standard nonlinear filtering tech-
niques involve modifications to the Kalman Filter such as the
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Extended Kalman Filter [26], the Unscented Kalman Filter
[27], and Gaussian Sum Approximations [1], all of which relax
some of the linearity assumptions present in the Kalman Filter.
However, these techniques do not accurately model all of the
salient features of the density, which limits their applicability
to scenarios where the target state posterior density is well
approximated by a multivariate Gaussian density. To address
this deficiency, others have studied grid-based approaches
[32][33], which utilize a discrete representation of the entire
single target density. In this setup, no assumptions on the form
of the density are required, so arbitrarily complicated densities
may be accommodated. However, fixed grid approaches are
computationally intractable except in the case of very low state
space dimensionality [8].

Recently, the interest of the tracking community has turned
to the set of Monte Carlo techniques known as Particle
Filtering [19][46]. A particle filter approximates a probability
density on a set of discrete points, where the points are
chosen dynamically via importance sampling. Particle filtering
techniques have the advantage that they provide computational
tractability [42], have provable convergence properties [13],
and are applicable under the most general of circumstances,
as there is no assumption made on the form of the density
[16]. Indeed, particle filter based approaches have been used
successfully in areas where grid based [14] or Extended or
Unscented Kalman Filter-based [3][37] filters have previously
been employed.

The multitarget tracking problem has been traditionally
addressed with techniques such as multiple hypothesis track-
ing (MHT) and joint probabilistic data association (JPDA)
[9][6][7]. Both techniques work by translating a measurement
of the surveillance area into a set of detections by thresholding.
The detections are then either associated with existing tracks,
used to create new tracks, or deemed false alarms. Typically,
Kalman-filter type algorithms are used to update the existing
tracks with the new measurements after association. The
challenge, of course, is to determine the correct association
between measurements and targets.

Others have approached the problem from a fully Bayesian
perspective. Stone [48] develops a mathematical theory of mul-
tiple target tracking from a Bayesian point of view. Srivistava,
Miller [40], and Kastella [31] did early work in this area.
For the same reasons as the single target case, fixed grid
approaches to multitarget tracking are very computationally
challenging.

Recently, some researchers have applied particle filter based
strategies to the problem of multitarget tracking. In [22], Hue
and Le Cadre introduce the probabilistic multiple hypothesis
tracker (PMHT), which is a blend between the traditional
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MHT and particle filtering. Considerable attention is given
to dealing with the measurement to target association issue.
Others have done work which amounts to a blend between
JPDA and particle filtering [28][11].

The BraMBLe [25] system, the independent partition parti-
cle filter (IPPF) of Orton and Fitzgerald [43] and the work of
Maskell [38] consider multitarget tracking via particle filtering
from a purely Bayesian perspective. Measurement- to-target
association is not done explicitly; it is implicit within the
Bayesian framework. This work has focussed on a tractable
implementation of ideas in [48].

The main contribution of this paper is the development of
a multiple target tracker that recursively estimates the entire
joint multitarget probability density using particle filtering
methods with adaptive sampling schemes. In our formulation,
we useone particle per scenario. That is, a particle encodes a
hypothesis about the entire multitarget state – which includes
the number of targets and the state (position, velocity, etc.) of
each target. We demonstrate that the particle filter implemen-
tation of JMPD provides a natural way to track a collection
of targets, is computationally tractable, and performs well
under difficult conditions such as target crossing and convoy
movement. The method avoids the need to create detections via
thresholding and avoids directly performing measurement-to-
track association. The measurement enters into the Bayesian
formulation through its likelihood, which allows raw sensor
measurements to be utilized. This feature allows the tracker
to perform well in the low signal to noise ratio regime.

These features distinguish the particle filter based JMPD ap-
proach from traditional approaches of MHT and JPDA as well
as the approaches of Hue [22][23] and others [28][45][17],
which require thresholded measurements (detections) and a
measurement-to-track association procedure. Further, by es-
timating the joint multitarget density rather than a many
single target densities, our method explicitly models target
correlations. By utilizing an adaptive sampling scheme that
exploits independence when present, our method benefits from
computational advantages as in [43].

The rest of this paper is organized in the following manner.
In Section II, we introduce the notion of the joint multitarget
probability density and show how the rules of Bayesian
Filtering are applied to produce a recursive filtering procedure.
We give the particle filter based estimation of the JMPD in
Section III. We detail therein the adaptive sampling strategy
applied to automatically factorize the JMPD when targets are
behaving independently, while appropriately handling targets
that are coupled. This automatic factorization is key to the
computational tractability of this implementation. We further-
more detail the permutation symmetry issue (present in all
multitarget tracking algoritms) and its manifestation in our
particle filter estimation of the JMPD. In Section IV, we give
simulation results detailing the performance of the particle
filter based multitarget tracker proposed here. Finally, we
conclude in Section V with a brief summary and discussion.

II. T HE JOINT MULTITARGET PROBABILITY DENSITY

In this section, we introduce the details of using the Joint
Multitarget Probability Density (JMPD) for target tracking.

The concept of JMPD was discussed by Kastella [29] where
a method of tracking multiple targets that moved between
fixed discrete cells on a line was presented. We generalize
the discussion to deal with targets that haveN -dimensional
continuous valued state vectors and arbitrary kinematics. In
the tracking problems considered here, we are interested in
tracking the position(x, y) and velocity(ẋ, ẏ) of multiple tar-
gets. Each target is therefore described by the four dimensional
state vectorx = [x, ẋ, y, ẏ]′. By straightforward extension, the
individual state vectors of the targets may be augmented to
include things like target identification.

Recursive estimation of the JMPD provides a means for
tracking an unknown number of targets in a Bayesian setting.
The statistical model employed uses the joint multitarget
conditional probability densityp(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) as

the probability density for exactlyT targets with states
xk

1 ,xk
2 , ...xk

T−1,x
k
T at timek based on a set of past observa-

tionsZk. In general, the number of targetsT is a variable to be
estimated simultaneously with the states of theT targets. The
observation setZk refers to the collection of measurements
up to and including at timek, i.e. Zk = {z1, z2, ...zk}, where
each of thezi may be a single measurement or a vector of
measurements made at timei.

Each of the state vectorsxt in the density
p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) is a vector quantity and may

(for example) be of the form[x, ẋ, y, ẏ]′. We refer to each of
the T target state vectorsxk

1 ,xk
2 , ...xk

T−1,x
k
T as a partition

of the multitarget stateX. For convenience, the density
will be written more compactly in the traditional manner as
p(Xk|Zk), which implies that the state-vectorX represents
a variable number of targets each possessing their own state
vector. As an illustration, some examples illustrating the
sample space ofp are

• p(∅|Z), the posterior probability density for no targets in
the surveillance volume

• p(x1|Z), the posterior probability density for one target
with statex1

• p(x1,x2|Z), the posterior probability density for two
targets with respective statesx1 andx2

• p(x1,x2,x3|Z), the posterior probability density for three
targets with respective statesx1,x2 andx3

An important factor that is often overlooked in multitarget
tracking algorithms is that the JMPD is symmetric under per-
mutation of the target indices. This symmetry is a fundamental
property of the JMPD which exists because of the physics of
the problem and not because of mathematical construction.
Specifically, the multitarget stateX = [x1,x2] and X =
[x2,x1] refer to the same event, namely that there are two
targets in the surveillance area – one with statex1 and one
with statex2. This is true regardless of the makeup of the
single target state vector. For example, the single target state
vector may include target ID or even a target serial number and
the permutation symmetry remains. Therefore, all algorithms
designed to implement the JMPD are permutation invariant.

If targets are widely separated in the sensor’s measurement
space, each target’s measurements can be uniquely associated
with it, and the joint multitarget posterior density approxi-
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mately factorizes. In this case, the problem may be treated
as a collection of single target problems. The characterizing
feature of multitarget tracking is that in general some of the
measurements have ambiguous associations, and therefore the
conditional density does not factorize.

The temporal update of the posterior likelihood proceeds
according to the usual rules of Bayesian filtering. The model of
how the JMPD evolves over time is given byp(Xk|Xk−1) and
will be referred to as the kinematic prior (KP). The kinematic
prior describes probabilistically how the state of the system
evolves over time. It includes models of target motion, target
birth and death, and any additional prior information that may
exist such as terrain and roadway maps. The time-updated
prediction density is computed via themodel updateequation:

p(Xk|Zk−1) =
∫

dXk−1p(Xk|Xk−1)p(Xk−1|Zk−1) (1)

The time evolution of the JMPD may simply be a collection
of target kinematic models or may involve target birth and
death. In the case where target identification is part of the state
being estimated, different kinematic models may be used for
different target types.

The measurement updateequation uses Bayes’ rule to
update the posterior density with a new measurementzk:

p(Xk|Zk) =
p(zk|Xk)p(Xk|Zk−1)

p(zk|Zk−1)
(2)

This formulation allows JMPD to avoid altogether the
problem of measurement to track association. There is no need
to identify which target is associated with which measurement
because the Bayesian framework keeps track of the entire joint
multitarget density. In fact, there is no need for thresholded
measurements (detections) to be used at all. A tractable sensor
model merely requires the ability to compute the likelihood
p(z|X) for each measurementz received.

A. Motion Modeling

In the simulation studies of Section (IV), we assume that
the number of targets is fixed and model the target motion
as linear and independent for each target. The target motion
of the simulation was taken from recorded vehicle data. We
found that a nearly constant velocity model was adequate for
these simulation studies, with the state for targett denoted
xt = (xt, ẋt, yt, ẏt)′ with discrete time transitions with period
τ and indexed byk as

xk
t = Fxk−1

t + wk
t (3)

where

F =




1 τ 0 0
0 1 0 0
0 0 1 τ
0 0 0 1


 (4)

wk
t is 0-mean Gaussian noise with covarianceQ =

diag(20, .2, 20, .2), which was selected based on an empirical
fit to the data.

B. Sensor Modeling

In order to implement Bayes Formula (eq. 2), we must
compute the measurement likelihoodp(z|X) (the time index is
suppressed here to lighten notation). There are two approaches
to modeling the likelihood, which we refer to as the “associ-
ated measurement” model and the “association-free” model.
In both models, the sensor produces a sequence of scans at
discrete instants in time. Each scan is a set of measurements
produced at the same instant. The difference between the
models lies in the structure of the scans.

In the associated measurement model, an observation vector
consists ofM measurements, denotedz = (z1, . . . , zM ). z is
composed of threshold exceedances, i.e. valid detections and
false alarms. Each valid measurement is generated by a single
target and is related (possibly non-linearly) to the target state.
False alarms have a known distribution independent of the
targets (usually taken as uniform over the observation space)
and the targets have known detection probabilityPd (usually
constant for all targets). The origin of each measurement is
unknown. If measurementm is generated by targett, then it
is a realization of the random processzm ∼ Ht(xt, wt).

In its usual formulation, the associated measurement model
precludes the possibility of two different targets contributing
to a single measurement. This model predominates most cur-
rent tracking, data fusion and sensor management work. The
practical advantage of this model is that it breaks the tracking
problem into two disjoint sub-problems: data association and
filtering. The filtering problem is usually treated using some
kind of Kalman filter. The disadvantages are a restricted sensor
model and the difficult combinatorial problem of associating
observations to filters. The associated measurement model
was initially conceived in order to cast the problem into a
form in which the Kalman filter can be applied, which is
understandable in light of the enormous success the Kalman
filter has enjoyed.

In contrast, nonlinear filtering methods allow much greater
flexibility regarding the way measurements are modeled. As a
result, we are free to employ an association-free sensor model
in the work presented here. This type of model has been
used in track-before-detect algorithms, in the “Unified Data
Fusion” work of Stone et. al [48] and in the grid-based sensor
management work of [29]. There are several advantages to the
association-free method. First, it requires less idealization of
the sensor physics and can readily accommodate issues such as
merged measurements, side-lobe interference amongst targets
and velocity aliasing. Second, it eliminates the combinatorial
bottleneck of the associated-measurement approach. Finally,
it simplifies the processing of unthresholded measurements to
enable improved tracking at lower target SNR.

As motivation, we consider a few of the sensor types
encountered in tracking and surveillance applications. First,
an imaging sensor may observe a collection of unresolved
point objects. The imager output is then a collection of 1-
or 2-dimensional pixel outputs. The output of each pixel is
related to the integrated photon count in that pixel which is in
turn determined by the background rate and how many targets
are present within the pixel during the integration interval, and
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their locations within the pixel. This is represented numerically
as either a positive integer or real number. Depending on the
nature of the optics and their impulse response function, one
or more pixels may respond to a target. Furthermore, multiple
targets can contribute to the output of a single pixel, violating
the assumptions of the associated measurement model.

Another commonly used sensor type is radar. In a ground
moving target indicator (GMTI) radar, a collection of pulses
is emitted, their returns are collected and integrated over
some coherent processing interval (CPI) [47]. The output of
successive CPIs may also be averaged non-coherently. During
the integration interval, the radar antenna is directed at some
fixed or slowly varying bearing. The integrated pulse data is
processed to obtain the reflectivity as a function of range and
range-rate at that average bearing. Depending on the nature of
the integration process, the return amplitude may be envelope
detected or it may be available in complex form. Given the
ubiquity of modern digital signal processing, radar data is
usually available somewhere within the radar system as an
array indexed by discrete range, range-rate and bearing values.

With this as background motivation, we present the
association-free model. We compute the measurement like-
lihood p(z|X), which describes how sensor output depends
on the state of all of the targets in the surveillance region.
A sensor scan consists ofM pixels, and a measurementz
consists of the pixel output vectorz = [z1, . . . , zM ]′, where
zi is the output of pixeli. In general,zi can be an integer, real,
or complex valued scalar, a vector or even a matrix, depending
on the sensor. If the data are thresholded, then eachzi will be
either a0 or 1. Note that for thresholded data,z consists of
both threshold exceedances and non-exceedances. The failure
to detect a target at a given location can have as great an
impact on the posterior distribution as a detection.

Pixel measurements are modeled as conditionally indepen-
dent so

p(z|X) =
∏

i

p(zi|X) (5)

Let X = [x′1, . . . ,x
′
T ]′ and letχi(xt) denote the indicator

function for pixel i, defined asχi(xt) = 1 when a target in
statext couples toi andχi(xt) = 0 when it does not. Observe
a pixel can couple to multiple targets and single target can
contribute to the output of multiple pixels, say, by coupling
through side-lobe responses. The indicator function for the
joint multitarget state is constructed as the logical disjunction

χi(X) =
T∨

t=1

χi(xt) (6)

The set of pixels that couple toX is

iX = {i|χi(X) = 1} (7)

For the pixels that do not couple toX, the measurements are
characterized by the background distribution, denotedp0(zi).
With this, eq. (5) becomes

p(z|X) =
∏

i∈iX

p(zi|X)
∏

i/∈iX

p0(zi) ∝
∏

i∈iX

p(zi|X)
p0(zi)

(8)

Eq. (8) allows for fairly general modeling of a pixelized
sensor response to a collection of targets including non-linear
effects due to multiple targets contributing to a single pixel.
One limitation is aggregations of targets only couple to the
union of pixels that the individual targets couple to. If a pair
of targets have some type of nonlinear coupling that results in
a contribution to a pixel that they do not couple to individually,
this is not captured in the model. This is likely to be a very
small effect in most situations, so we choose to ignore it here.

We further idealize the sensor as having a box-car resolution
cell in position coordinates. We assume that the sensor scans
a fixed rectangular region consisting ofNx ×Ny contiguous
pixels. Thex- and y- ground-plane projection of each pixel
is ∆x and∆y. The sensor response within pixeli is uniform
for targets ini and vanishes for targets outside pixeli. It is
convenient to define the occupation numberni(X) for pixel i
as the number of targets inX that lie in i. The single target
signal-noise-ratio (SNR), assumed constant across all targets,
is denotedλ. We assume that when multiple targets lie within
the same pixel their amplitudes add non-coherently (this will
be an accurate model for unresolved optical targets and radar
targets not moving as a rigid body). Then the effective SNR
when there aren targets in a pixel isλn = nλ and we may
usepn(zi) to denote the pixel measurement distribution (note
that the background distribution is obtained by settingn = 0).

With these modeling assumptions, the measurement distri-
bution in pixel i depends only on its occupation number and
eq. (8) becomes

p(z|X) ∝
∏

i∈iX

pni(X)(zi)
p0(zi)

(9)

To complete the specification of the sensor model, we must
give its dependence on SNR. Many models are plausible,
depending on the detailed nature of the sensor. We have elected
to use Rayleigh-distributed measurements. This distribution
corresponds to envelope detected signals under a Gaussian
model, and has been used for example to model interfering tar-
gets in a monopulse radar system [10][49] and to model clutter
and target returns in turbulent environments [20]. Rayleigh
models are also often used for diffuse fading channels. In the
unthresholded case, this is

pn(z) =
z

1 + nλ
exp

(
− z2

2(1 + nλ)

)
(10)

When the tracker only has access to thresholded measure-
ments, we use a constant false-alarm rate (CFAR) model for
the sensor. If the background false alarm rate is set atPf , then
the detection probability when there aren targets in a pixel is

Pd,n = P
1

1+nλ

f (11)

This extends the usual relationPd = P
1

1+λ

f for thresholded
Rayleigh random variables at SNRλ [6].

III. PARTICLE FILTER IMPLEMENTATION OF JMPD

We now turn to the development of a particle filter approx-
imation to the Joint Multitarget Probability Density (JMPD).
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Even for modest problems, the sample space ofXk is large
since it contains all possible configurations of state vectorsxi

for all possible values ofT . Earlier implementations of JMPD
given by Kastella [29] approximated the density by discretiz-
ing on a grid. The computational burden in this scenario makes
evaluating realistic problems intractable, even when using the
simple model of targets moving between discrete locations
in one-dimension. In fact, for a fixed approximation error,
the number grid cells needed grows asLT , whereL is the
number of discrete locations the targets may occupy andT is
the number of targets.

Thus, to estimate the JMPD in a computationally tractable
manner, a more sophisticated approximation method is re-
quired. We find that a particle filter (PF) based implementation
of JMPD breaks the computational logjam and allows us to
investigate more realistic problems.

A. The Single Target Particle Filter

Before detailing the particle filter implementation of JMPD
we first briefly review standard single target particle filtering.
Particle filtering is a method of approximately solving the
prediction and update equations by simulation [4][19], where
samples from the target density are used to represent the
density and are propagated through time.

To implement a single target particle filter, the single target
density of interest,p(x|Z), is approximated by a set ofNpart

weighted samples (particles):

p(x|Z) ≈
Npart∑
p=1

wpδD(x− xp) (12)

WhereδD represents the usual Dirac delta function.
The model update (eq. 1) and the measurement update

(eq. 2) are simulated by the following three step recursion,
summarized in Table I. First, the particle locations at timek
are generated using the particle locationsXp at timek−1 and
the current measurementszk by sampling from an importance
density, denotedq(xk|xk−1, zk). The design of the importance
density is a well studied area [16], as the choice of the
importance density can have a dramatic effect of the efficiency
of the particle filter algorithm. It is known that the optimal
importance density (OID) is given byp(xk|xk−1, zk), but this
density is typically prohibitively difficult to sample from. In
practice, oftentimes the importance density is chosen just to be
the kinematic priorp(xk|xk−1). However, more sophisticated
choices of importance density lead to better results for a fixed
number of particles. As we will see in the multitarget case,
approximating the OID (rather than simply using the kinematic
prior) becomes crucial as dimension of the problem increases.

Second, particle weights are updated according to the weight
equation, which involves the likelihood, the kinematic model,
and the importance density [4].

wk
p = wk−1

p

p(zk|xk
p)p(xk

p|xk−1
p )

q(xk
p|xk−1

p , zk)
(13)

When using the kinematic prior as the importance density, the
weight equation reduces towk

p = wk−1
p ∗ p(zk|xk

p).

Finally, a resampling step is used to prevent particle degen-
eracy. Without resampling, the variance of the particle weights
increases with time, yielding a single particle with all the
weight after a small number of iterations [15]. Resampling
may be done on a fixed schedule or based on variance of the
weights.

The particle filter algorithm that uses the kinematic prior
as the importance density and resamples at each time step is
called sampling importance resampling (SIR) in the literature.

TABLE I

SIR SINGLE TARGET PARTICLE FILTER

1) For each particlep, p = 1, · · · , Npart,

a) Samplexk
p ∼ q(xk|xk−1, zk) = p(x|xk−1

p )

2) Computewk
p = wk−1

p ∗ p(z|xp) for eachp
3) ResampleNpart particles with replacement

from xp based onwp

B. Multitarget Particle Filtering

To implement the JMPD recursions via a particle filter, we
similarly approximate the joint multitarget probability density
p(X|Z) by a set ofNpart weighted samples. The multitarget
state vector forT targets is written as

X = [x′1, x′2, ..., x′T−1, x′T ]′ (14)

The particle state vector forTp targets is

Xp = [x′p,1, x′p,2, . . . x′p,Tp
]′ (15)

whereTp is can be any non-negative integer. WithδD denoting
the Dirac delta, we define

δ(X−Xp) =
{

0 T 6= Tp

δD(X−Xp) otherwise
(16)

Then the particle filter approximation to the JMPD is given
by a set of particlesXp and corresponding weightswp as

p(X|Z) ≈
Npart∑
p=1

wpδ(X−Xp) (17)

where
∑

wp = 1.
Different particles in the approximation may correspond

to different estimates of the numberTp of targets in the
surveillance region. In practice, the maximum number of
targets a particle may track is truncated at some large finite
numberTmax.

The joint multitarget probabilityp(X|Z) is defined for all
possible numbers of targets,T = 0...∞. As each of the
particlesXp, p = 1...Npart is a sample drawn from the JMPD
p(X|Z), a particleXp may have0, 1, ...∞ partitions, each
partition corresponding to a different target. Note that it is
possible to have two or more targets in the same state. We
have denoted the number of partitions in thepth particleXp

by Tp, whereTp may be different for differentXp. Since a
partition corresponds to a target, the number of partitions that
a particle has is that particle’s estimate of the number of targets
in the surveillance area.
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With these definitions the SIR particle filter extends directly
to JMPD filtering, as shown in Table II. This simply proposes
new particles at timek using the particles at timek − 1 and
the target kinematics model eq. (3) while eq. (9) is used in
the weight update.

TABLE II

SIR MULTITARGET PARTICLE FILTER

1) For each particlep, p = 1, ..., Npart,
a) For each partitiont, t = 1, ..., Tp,

i) SampleXk
p,t ∼ q(Xk|Xk−1, zk)=p(X|Xk−1

p,t )

2) Computewk
p = wk−1

p ∗ p(z|Xp) for eachp
3) ResampleNpart particles with replacement

replacement fromXp based onwp

C. Multi-target Particle Proposal

Using the kinematic prior as the importance density has the
benefit that it is simple to implement and is computationally
inexpensive on a per particle basis. As we will see later,
this computational efficiency is erased by the fact that a very
large number of particles are required using this importance
density. One obvious drawback is that the kinematic prior
does not explicitly take advantage of the fact that the state
vector in fact represents many targets. Targets that are far apart
in measurement space behave independently and should be
treated as such. A second drawback, common to many particle
filtering applications, is that the current measurements are not
used when proposing new particles. These two considerations
taken together result in a very inefficient use of particles and
therefore require large numbers of particles to successfully
track.

To overcome these deficiencies, we have employed alter-
native particle proposal techniques which bias the proposal
process towards the measurements and allow for factorization
of the target state when permissible. These strategies propose
each partition (target) in a particle separately, and form new
particles as the combination of the proposed partitions. We
describe two methods here, the independent partitions (IP)
method of [43] and the coupled partitions (CP) method. The
basic idea of both CP and IP is to construct particle proposals
by the partition level, incorporating the measurements so as
to bias the proposal towards the optimal importance density.
We show that each has benefits and drawbacks and propose an
adaptive partition (AP) method which automatically switches
between the two as appropriate.

The permutation symmetry of the JMPD must be carefully
accounted for when using these advanced sampling schemes.
The CP method proposes particles in a permutation invariant
manner, however it has the drawback of being computationally
demanding. When used on all partitions individually, the IP
method is not permutation invariant. Our solution is to perform
an analysis of the particle set to determine which partitions
require the CP algorithm because they are involved in partition
swapping and which partitions may be proposed via the IP
method. This analysis leads to the AP method of proposal
which is permutation invariant.

1) Independent-Partition (IP) Method:The independent
partition (IP) method given by Orton [43] is a convenient way
to propose particles when part or all of the joint multitarget
density factorizes. The Independent-Partition (IP) method pro-
poses a new partition independently as follows. For a partition
t, each particle at timek − 1 has it’s tth partition proposed
via the kinematic prior and weighted by the measurements.
From this set ofNpart weighted estimates of the state of the
tth target, we selectNpart samples with replacement to form
the tth partition of the particles at timek. This is a biased
sampling scheme, and so the biases corresponding to each
particle for each target,bp,t, must be retained to unbias the
particle weights. This is summarized in Table III.

TABLE III

INDEPENDENTPARTITION PARTICLE FILTER

1) For each partition,t = 1 · · ·Tmax,
a) Propose partitiont via Independent Partition Subroutine

2) Computewk
p = wk−1

p ∗ p(z|Xp)∏Tp

t=1
bp,t

Independent Partition Subroutine for Targett:
1) For each particlep = 1, ..., Npart,

a) SampleX∗p,t ∼ p(x|Xk−1
p,t )

b) Computeωp = p(z|X∗p,t)

2) Normalizeω to sum to1.
3) For each particlep = 1, ..., Npart,

a) Sample an indexj from distribution ofω
b) SetXp,t = X∗

j,t
c) Retain bias of sample,bp,t = ωj

It is important to carefully account for the permutation
symmetry issue discussed in Section III here. The IP method
makes the critical assumption that partitiont in each particle
corresponds to the same target. Therefore, the partitions in
each particle must be identically positioned before this method
is applied. If IP is applied to particles that have different or-
derings of partitions, multiple targets will be grouped together
and erroneously used to propose the location of a single target.
However, when this assumption of target/partition correspon-
dence is valid, IP is an effective sampling strategy because it
combines results for each partition across particles, resulting
in improved numerical efficiency.

In the case of well separated targets, this method allows
many targets to be tracked with the same number of particles
needed to track a single target. Indeed, as mentioned earlier,
in the case of well separated targets, the multitarget tracking
problem breaks down into many single-target problems. The
IP method is useful for just this case, as it allows the targets
to be treated independently when their relative spacing deems
that appropriate. Note, however, that this method is not ap-
plicable when there is any measurement-to-target association
ambiguity. Therefore, when targets are close together in sensor
space, an alternative method must be used.

2) Coupled Partition (CP) Proposal Method:When the
posterior distributions on target position begin to overlap, we
say that the corresponding partitions are coupled. In these
instances, the IP method is no longer applicable, and another
method of particle proposal such as Coupled Partitions (CP)
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must be used. An alternative method would be to use the IP
strategy on groups of partitions as is suggested in [43].

We apply the coupled partitions method as follows. To
propose partitiont of particle p, CP proposesM possible
realizations of the future state using the kinematic prior. The
M proposed futures are then given weights according to the
current measurements and a single representative is selected.
This process is repeated for each particle until thetth partition
for all particles has been formed. This can interpreted as an
auxiliary particle filter where the multiplicityM plays the role
of the auxiliary variable. As in the IP method, the final particle
weights must be adjusted for this biased sampling. This is
summarized in table IV.

TABLE IV

COUPLED PARTITION PARTICLE FILTER

1) For each partition,t = 1 · · ·Tmax

a) Propose partitiont via Coupled Partition Subroutine

2) Computewk
p = wk−1

p ∗ p(z|Xp)∏Tp

t=1
bp,t

Coupled Partition Subroutine for Targett

1) For each particlep = 1, ..., Npart,
a) For each proposalm = 1, ..., M

i) SampleX∗
p,t(m) ∼ p(x|Xk−1

p,t )
ii) Computeωm = p(z|X∗p,t(m))

b) Normalizeω to sum to1.
c) Sample an indexj from distribution ofω
d) SetXp,t = X∗

p,t(j)
e) Retain bias of sample,bp,t = ωj

This algorithm is a modified version of the traditional SIR
technique that operates on partitions individually. It improves
tracking performance over SIR at the expense of additional
computations.

3) Adaptive Particle Proposal Method:In order to mit-
igate the problem of additional computational cost of the
CP method, and the problems with the IP method when
targets are close together, we propose a hybrid solution, called
the Adaptive-Partition (AP) method. The adaptive-partition
method again considers each partition separately. Those parti-
tions that are sufficiently well separated according to a given
metric (see below) from all other partitions are treated as
independent and proposed using the IP method. When targets
are not sufficiently distant, the CP method is used.

To determine when targets are sufficiently separated, we
threshold based on distance in sensor space between the
estimated state of theith partition and thejth partition.
Denote by x̂i the estimated state of theith partition (eq.
(28)). We have computed the distance between two partitions
using a Euclidian metric between the estimated centers, and
the Mahalanobis metric (eq. (18)), whereΣ̂j is the covariance
associated with the estimate of thejth partition (eq. (29)).

r2 = (x̂i − x̂j)′Σ̂−1
j (x̂i − x̂j) (18)

We have additionally used a nearest neighbor type criteria,
where partitions are considered coupled if any sample from
partition i is closer to the center of partitionj then any sample
from partition j. In practice, it is found that simply using

the Euclidian distance between estimated states is sufficient
and less computationally burdensome. The adaptive proposal
method is summarized in Table V.

TABLE V

ADAPTIVE PROPOSALMETHOD

1) For each partitiont = 1 : Tmax

a) d(t) = minj 6=t ||x̂t − x̂j ||
b) if d(t) > τ

Propose partitiont using IP method
c) else

Propose partitiont using CP method
2) For each particlep = 1, ..., Npart

wk
p = wk−1

p ∗ p(z|Xp)∏Tp

t=1
bp,t

In any of these proposal methods, target birth and death may
be accounted for in a straightforward manner by modifying the
proposal density to incorporate a probability that the proposed
particle Xk

p has either fewer or more targets thenXk−1
p . In

particular, assume a death rateα, which may be spatially
varying to account for the fact that targets exit along the
boundaries of the surveillance region. Then when proposing
new particles, with probabilityα, a target is removed from
particlep and the updated number of targets in this particle is
set asT k

p = T k−1
p − 1. Further, assume a birth rateβ. Then

when proposing new particles, with probabilityβ, a new target
is added to particlep. The location of the new target may
be random, or more realistically chosen along the perimeter
of the surveillance area. In this case, the number of targets
represented by this particle is updated toT k

p = T k−1
p + 1.

D. Permutation Symmetry and Partition Sorting

As discussed throughout the preceding sections, the per-
mutation symmetry associated with the JMPD discussed in
Section II is directly inherited by the particle filter represen-
tation of the JMPD. Each particle contains many partitions
(as many as the number of targets it estimates exist in the
surveillance region) and the permutation symmetry of JMPD is
visible through the fact that the relative ordering of targets may
change from particle to particle. We refer to the permutation
symmetry in this context as partition swapping.

The fact that partitions are in different orders from particle
to particle is of no consequence when the object of interest
is an estimate of the joint multitarget density. Each particle
contributes the correct amount of mass in the correct location
to the multitarget density irrespective of the ordering of its
partitions.

However, the IP scheme requires that particles be identically
ordered. Furthermore, estimating the multitarget states from
the particle filter representation of JMPD must also be done
in a way that is invariant to permutations of the particles.
Therefore, before estimating target states, we permute the
particles so that each particle has the targets in the same
order. We use the K-means [21] algorithm to cluster the
partitions of each particle, where the optimization is done
across permutations of the particles. In practice, this is a very
light computational burden. First, those partitions that are not
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coupled are already correctly ordered and need not involved
in the clustering procedure. Second, since this ordering occurs
at each time step, those partitions that are coupled are nearly
ordered already, and so one iteration of the K-means algorithm
is enough to find the best permutation.

The details of the K-means algorithm are as follows. First,
we state the notion of permutation symmetry precisely. Sup-
pose a particle hasTp partitions labeledt = 1 · · ·Tp. A
permutationπp is a reshuffling of the labels,πp : i → πp(i).
So a particle defined

Xp = [xp,1,xp,2, · · · ,xp,Tp ] (19)

Under the permutationπp is reordered to

Xp = [xp,πp(1),xp,πp(2), · · · ,xp,πp(Tp)] (20)

Denote byπ a set of permutations for each particle,πp, p =
1 · · ·Npart. We define the mean of the tth partition under the
permutationπ as

X̄t(π) =
Nparts∑

p=1

wpXp,πp(t) (21)

and define theχ2 statistic

χ2(π) =
Nparts∑

p=1

wp(Xp,πp(t) − X̄t(πp))2 (22)

To reorder the particles in identical fashion, the goal is to
find the set of permutationsπ that minimizeχ2, i.e.

π̂ = min
π

χ2(π) (23)

The K-means algorithm is a well known method of solving
problems of this type. An initialπ is assumed and perturba-
tions about that value are made to descend and find the best
(local) π. The algorithm is given in Table VI.

TABLE VI

K-MEANS ALGORITHM OPTIMIZING OVER PARTITION ORDERINGS

1) Initialize with π = current ordering of partitions
2) ComputeX̄t(π) for t = 1 · · ·Tp using eq. (21)
3) For each particlep, permute the particle (updateπp) to

yield

πp ← arg min
πp

Tp∑
t=1

(Xp,πp(t) − X̄t(πp))2

4) If no particles have changed permutation from 1, quit.
Otherwise go to 2

E. Estimation

Estimates of various interesting quantities may be easily
made using the particles.

To compute the probability that there are exactlyn targets
in the surveillance volume, first define the indicator variable
Ip for p = 1...Nparts,

Ip =
{

1 if Tp = T
0 otherwise

(24)

Then the probability ofn targets in the surveillance volume,
p(n|Z), is given by

p(n|Z) =
Npart∑
p=1

Ipwp (25)

The estimate of the probability that there aren targets in the
surveillance volume is the sum of the weights of the particles
that haven partitions. Note that the particle weights,wp, are
normalized to sum to unity for all equations given in this
section.

To compute the estimated target state and covariance of
target i, we first define a second indicator variablẽIp that
indicates if particlep has a partition corresponding to targeti.
This is necessary as each particle is a sample drawn from the
JMPD and hence may have a different number of partitions
(targets):

Ĩp =
{

1 if partition i exists in particlep
0 otherwise

(26)

Furthermore, we define the normalized weights to be

ŵp =
wpĨp∑Npart

l=1 Ĩlwl

(27)

So ŵp is the relative weight of particlep, with respect to
all particles tracking targeti. Then the estimate of the state of
targeti is given by

X̂(i) = E[X(i)] =
Npart∑
p=1

ŵpXp,i (28)

which is simply the weighted summation of the position
estimates from those particles that are tracking targeti. The
covariance is given similarly as

Λ̂(i) =
Npart∑
p=1

ŵp(Xp,i − ˆX(i))(Xp,i − ˆX(i))′ (29)

The indicator functionĨp ensures that the summations in
(28) and (29) are taken over only those particles that are
tracking targeti. The permutation symmetry issue mentioned
earlier comes to the forefront here. Notice that without a
clustering on the partitions, it is not necessarily true that
partitioni of particlej is tracking the same target that partition
i of particle j + 1 is tracking. Therefore, before evaluation
of equation (28) or equation (29), the clustering procedure
discussed in Section IV-F is performed.



9

F. Resampling

In the traditional method of resampling, after each measure-
ment update,Npart particles are selected with replacement
from Xp based upon the particle weightswp. The result
is a set ofNpart particles that have uniform weight which
approximate the multitarget densityp(X|Z). Particles that do
not correspond to measurements are eliminated – in particular,
particles that have anTp that is not supported by measurements
(too many or too few targets) are not selected.

The particular resampling that was used in this work is
systematic resampling [4]. This resampling strategy is easily
implemented, runs in orderNparts, is unbiased, and minimizes
the Monte Carlo variance. Many other resampling schemes
and modifications are presented in the literature [16]. Of
these methods, we have found that adaptively choosing at
which time steps to resample [36] based on the number
of effective particles leads to improved performance while
reducing compute time. All results presented herein use the
method of [36] to determine which times to resample and use
systematic resampling [4] to perform resampling. We have also
found that Markov Chain Monte Carlo (MCMC) moves using
a Metropolis-Hastings scheme [16] leads to slightly improved
performance in our application.

IV. SIMULATION RESULTS

A. Introduction

We illustrate the performance of our multitarget tracking
scheme by considering the following model scenario.

Targets move in a5000m × 5000m surveillance area.
Targets are modeled using the four-dimensional state vector
x = [x, ẋ, y, ẏ]′. The target motion in the simulation is taken
from a set of recorded data based on GPS measurements of
vehicle positions collected as part of a battle training exercise
at the Army’s National Training Center. This battle simulation
provides a large number of real vehicles following prescribed
trajectories over natural terrain. Based on an empirical fit
to the data, we found that a nearly constant velocity model
(see eq. (3)) was adequate to model the behavior of the
vehicles for these simulation studies and is therefore used in all
experimental results presented herein. In another study [34],
we have found that a multiple model particle filter with modes
corresponding to nearly constant velocity, rapid acceleration,
and stationarity provides more efficient filtering.

We utilize the idealized sensor described in Section II-B.
The sensor scans a fixed rectangular region of50× 50 pixels,
where each pixel represents a100m×100m area on the ground
plane. The sensor returns Rayleigh-distributed measurements
in each pixel, depending on the number of targets that oc-
cupy the pixel. Unthresholded measurements return energy
according to eq. (10) while thresholded measurements behave
according to eq. (11).

We present the results of 5 simulation studies here. First, in
Section IV-B, we illustrate the benefit of the adaptive proposal
scheme detailed in Section III-C. We contrast the performance
of the CP, IP, and AP methods in two scenarios, one where
targets are always well separated and one more realistic
scenario where targets frequently interact. Second, in Section
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Fig. 1. A schematic showing the motion of three of the ten targets in the
simulation scenario. The target paths are indicated by the lines, and direction
of travel by the arrows. There are two instances where the target paths cross
(i.e. are at the same position at the same time).

IV-C, we qualitatively evaluate the performance difference
when using unthresholded measurements versus thresholded
measurements. Third, in Section IV-D, we evaluate the ability
of the tracker to determine the number of targets when the
number is initially unknown. Fourth, in Section IV-E, we
investigate the computational burden of the algorithm and how
it scales with different numbers of targets. Fifth, in Section
IV-F, we illustrate partition swapping when two targets cross.
The scenario is contrasted with and without partition sorting
as described in Section IV-F.

B. Adaptive Proposal Results

In Figure 2, we compare the performance of the Independent
Partitions (Table III), Coupled Partitions (Table IV), and
Adaptive Partitions (Table V) proposal schemes presented here
with that of the traditional scheme of sampling from the
kinematic prior (Table II), in terms of RMS tracking error. In
this example, we use3 targets which remain close in sensor
space for about 50% of the time. Thresholded measurements
with Pd = 0.5 are used and the SNR parameterλ is varied
from 1 to 21.

Due to partition swapping, the IP method is inappropriate
during target crossings and hence the tracker only IP has
poor performance. The CP method makes no assumption about
the independence of the targets and therefore performs very
well, although at significantly higher computational cost. Most
importantly, the adaptive method, which uses IP on partitions
that are independent and CP otherwise, performs nearly as
well as the CP method itself. AP achieves approximately a
50% reduction in computational burden (measured by floating
point operations) as compared to the CP method alone (see
Table VII). For this simuation, we have extracted 3 targets
from our large database of real recorded target trajectories.
The targets were chosen so that they spent approximately one-
half of the simulation in close proximity. The AP algorithm
correctly chooses to use IP during the half of the simulation
where targets well separated and CP during the other half,
which results in the stated reduction in computation.
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Fig. 2. The Performance of the Coupled Partitions (CP), Independent
Partitions (IP), and Adaptive Partitions (AP) schemes in comparison to simply
using the kinematic prior. For this simulation, we have extracted 3 targets
from our large database of real recorded target trajectories. The targets were
chosen so that they spent approximately one-half of the simulation in close
proximity. The IP algorithm used alone is inappropriate during target crossings
and so performs poorly here. The CP algorithm is always appropriate, but
computationally demanding. The AP algorithm adaptively switches between
IP and CP resulting in good performance at reduced computation.

TABLE VII

FLOPSFOR KP, CP, IP,AND AP METHODS

Method Flops
Coupled Partition 1.25e+8
Independent Partition 6.74e+6
Adaptive Partition 5.48e+7
Kinematic Prior 6.32e+6

As a means of directly comparing the IP and CP methods
with the kinematic prior (KP), we construct an alternate model
problem. We consider five well separated targets. For the
purposes of this model problem, we restrict target motion to
be linear, measurement to state coupling to be linear, and the
noise processes to be Gaussian. We use the motion model
given by eq. (3) both for the simulation of target motion and in
the filter. In this case we can use the Kalman filter as a bound.
Note that it is not necessary to make these assumptions for the
PF. In fact, the strength of the PF (and nonlinear filtering in
general) approach is that no linearity/Gaussianity assumptions
are needed. However, we have restricted the problem in this
manner here in order to provide an asymptotic performance
bound and show that the PF implementation indeed reaches
the bound.

The CP method is shown with a particular choice ofM ,
M = 10. It can be seen that the IP technique reduces the
number of particles needed by between two and three orders
of magnitude as compared to the traditional technique. Since
the work per particle to perform IP is nearly identical to that
of sampling from the kinematic prior, IP actually reduces
computational burden by two to three orders of magnitude
when targets are well separated.

These simulations are the result of particular choices of the
plant noise and measurement noise parameters. The number of
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Fig. 3. The performance of the CP and IP Proposal Schemes, in comparison
to sampling from the Kinematic Prior. For the purposes of this example,
we consider well separated targets with linear motion and linear state-to-
measurement coupling. Therefore for the purposes of this simple example,
the Kalman filter is optimal and is shown as a performance bound.

particles required to reach the Kalman filter bound is sensitive
to these choices. Specifically, as the ratio of plant noise to
measurement noise increases, the number of particles to reach
the bound increases. However, the relative performance of the
IP, CP and KP algorithms remains consistent as the plant and
measurement noise parameters change.

C. The Value of Not Thresholding

We investigate here the gain from using non-thresholded
measurements in the multitarget tracking scenario. One of the
strengths of our association-free method is the ability to use
non-thresholded measurements.

In this simulation, we first study three targets and bench-
mark the performance of the tracker versus SNR (λ) for
thresholded measurements withPd = 0.1 · · · 0.9. At a constant
SNR, as thePd is reduced, so is thePf according to the
relation given in eq. (11). The performance of the algorithm
versus SNR andPd is given in Figure 4.

We contrast the performance of the algorithm using thresh-
olded measurements with the performance when using non-
thresholded measurements at the same set of SNR values.
Figure 5 is a plot showing the performance of the algorithm
using thresholded measurements atPd = 0.4 (the best perfor-
mance from Figure 4) and the algorithm using non-thresholded
measurements in terms of the number of targets successfully
tracked. We see that non-thresholded measurements provide
similar tracking performance at an SNR of 1 as the thresholded
measurements provide at an SNR of 5, for a gain of about 7dB
from not thresholding the measurements.

D. Unknown Number of Targets

The ability of the algorithm to determine the number of
targets is illustrated in Figures 6 and 7. There are three
targets in this simulation. We initialized the filter uniformly
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a function of SNR.

in target number space, allocating one-sixth the probability to
0, 1, · · · , 5 targets. Over time, the filter is able to accurately
estimate the number of targets in the surveillance region. As
the SNR improves, the time until correctly determining the
number of targets decreases.

E. Computational Considerations

Using MatLab on an off-the-shelf 3GHz Linux box, we find
that the AP method is able to track 10 real targets with scans
of the surveillance area coming in once per second in near real
time (for typical situations, the algorithm takes approximately
1.5 seconds to process each 1 second of data). A more low-
level implementation is anticipated to easily allow real time
tracking. Figure 8 shows the tracking performance when using
particle filter implementation of JMPD on ten targets. The plot
is averaged of50 trials, where in each trial a random set of
10 targets is chosen from our large database of real targets.

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Step

P
ro

ba
bi

lit
y

0 Targets
1 Target
2 Targets
3 Targets
4 Targets
5 Targets

Fig. 6. The estimate of number of targets in the surveillance region
versus time with SNR=4. The filter is initialized with probability uniform for
0, 1, · · · , 5 targets. Measurements taken over time allow the filter to properly
estimate the number of targets in the surveillance area.
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Fig. 7. The estimate of number of targets in the surveillance region versus
time with SNR=12. The filter is initialized with probability uniform for
0, 1, · · · , 5 targets. Measurements taken over time allow the filter to properly
estimate the number of targets in the surveillance area.

One factor that effects computation dramatically is the num-
ber of coupled targets. This effect can have a greater impact on
computational complexity then the number of targets. When
targets move close together, their coupling must be explicitly
modeled and the CP algorithm becomes necessary. This algo-
rithm is significantly more computationally demanding then
the IP method.

In Figure 9, we show the timing results of simulations
where 1 · · · 10 targets are tracked. We include for reference
the average number of coupled targets during the simulations.
For each trial, we selectt targets at random from our collection
of real recorded data. Depending on which targets are selected,
they may or may not be coupled, resulting in a different level
computational complexity. The plot in Figure 9 is averaged
over 50 trials.
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Fig. 8. The performance of the particle filter implementation of JMPD when
tracking ten real targets. For each simulation, at each time step tracking error
is measured as the mean track error for the ten targets. The plot shows the
median tracking error across all50 simulations. The filter is initialized with
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100m x 100m resolution cells on the ground. The particle filter implementation
of JMPD uses 250 particles which allows near real time tracking.
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Fig. 9. Floating point operations (as measured by MatLab) versus number of
targets. One factor that dramatically effects the computations required is the
number of closely spaced targets, as the coupling most be modeled explicitly
and the CP algorithm becomes necessary. We include for reference here the
average number of coupled targets over all simulations.

F. Partition Swapping

We illustrate in this section the issue of partition swapping
as discussed in Section IV-F. When targets are close together,
measurement-to-target ambiguity may result in partitions of
individual particles being reordered. In Figure 10, we give a 9
time step vignette which includes a target crossing. Initially,
the targets are well separated and identically ordered (e.g.
Time=44) and the IP method is used for particle proposal.
When the targets cross (Time=60), partition swapping occurs
and the CP method must be used. Without partition sorting
using the k-means algorithm of Section , this swapping persists
even after the targets separated and the CP method must be

used even at Time=84. This results in an inefficient algorithm,
as the CP method is more computationally demanding.

In Figure 11 we give the same vignette as in Figure 10, but
this time we utilize the partition sorting algorithm outlined
in Section IV-F at each time step. While the CP method
must still be used when the targets are occupying the same
detection cell, when they move out (Time=72) the IP method
may be used again. The partition sorting allows for the more
computationally efficient IP method to be used for proposal
by reordering the particles appropriately.

V. CONCLUSION

This paper has presented a new grid-free implementation
of a Bayesian method for tracking multiple targets based on
recursively estimating the joint multitarget probability density.
We have detailed an adaptive particle proposal scheme that
explicitly takes into account the multitarget nature of the
problem and automatically factors it into a series of smaller
independent problems when appropriate. This implementation
reduces the computational burden to a reasonable level and
allows implementation for realistic problems. In simulations
with real target motion, we have shown the ability to track
ten targets with complicated kinematic behavior, using pixe-
lated measurements on a grid. This technique has the benefit
that raw sensor measurements may be directly incorporated
through the use of a likelihood function. No thresholding to
create detections is necessary. Furthermore, no measurement-
to-target association is explicitly required.

REFERENCES

[1] D. L. Alspach and H. W. Sorensen, “Nonlinear Bayesian Estimation
Using Gaussian Sum Approximations”,IEEE Transactions on Automatic
Control, Vol. 17, no. 4, pp. 439-448, August 1972.

[2] B. Anderson and J. Moore,Optimal Filtering, New Jersey: Prentice Hall,
1979.

[3] M. S. Arulampalam and B. Ristic, “Comparison of the particle filter with
range parameterized and modified polar EKFs for angle-only tracking,
Proceedings of SPIE, vol. 4048, pp. 288299, 2000.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp “A Tutorial on
Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”,
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188,
2002.

[5] Y. Bar-Shalom, and X. Li,Estimation and Tracking : Principles, Tech-
niques, and Software, Artech House, 1993.

[6] Y. Bar-Shalom,Multitarget Multisensor Tracking: Advanced Applications,
Artech House, 1990.

[7] Y. Bar-Shalom and W. D. Blair,Multitarget-Multisensor Tracking: Appli-
cations and Advances, Volume III, Boston: Artech House, 2000.

[8] N. Bergman, “Recursive Bayesian Estimation: Navigation and Tracking
Applications”, Ph.D. dissertation, Linkping Univ., Linkping, Sweden,
1999.

[9] S. S. Blackman,Mulitple-Target Tracking with Radar Applications, Mas-
sachusetts: Artech House, 1986.

[10] W. D. Blair, M. Brandt-Pearce, “Unresolved Rayleigh target detection
using monopulse measurements”,IEEE Transactions on Aerospace and
Electronic Systems, vol. 34, issue 2, pp. 543-552, 1998.

[11] H. A. P. Blom and E. A. Bloem, “Joint IMMPDA Particle Filter”,
Proceedings of the 6th International Conference on Information Fusion,
Cairns, Queensland, Australia, July 2003.

[12] K. Chood and D. J. Fleet, “People Tracking using Hybrid Monte Carlo
Filtering”, Proceedings of The International Conference on Computer
Vision, vol. 2, pp. 321-328, 2001.

[13] D. Crisan and A. Doucet, “A Survey of Convergence Results on
Particle Filtering Methods for Practicioners”, IEEE Transactions on Signal
Processing, Vol. 50, No. 3, pp. 736-746, 2002.



13

[14] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo Localiza-
tion for Mobile Robots”,IEEE International Conference on Robotics and
Automation, May 1999.

[15] A. Doucet, “On Sequential Monte Carlo Methods for Bayesian Filter-
ing”, Dept. Eng. Univ. Cambridge, UK. Tech. Rep., 1998.

[16] A. Doucet, N. de Freitas, and N. Gordon,Sequential Monte Carlo
Methods in Practice, New York: Springer Publishing, 2001.

[17] A. Doucet, Ba-Ngu Vo, C. Andrieu, and M. Davy, “Particle Filtering for
Multi-target Tracking and Sensor Management”,The Fifth International
Conference on Information Fusion, Maryland, 2002.

[18] H. H. Gonzalez-Banos, Cheng-Yu Lee, Jean-Claude Latombe, “Real-
time Combinatorial Tracking of a Target Moving Unpredictably Among
Obstacles”,Proceedings of the IEEE Conference on Robotics and Au-
tomation, Washington, D.C., May 2002.

[19] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “A Novel Approach
to Non-linear and Non-Gaussian Bayesian State Estimation,”IEE Pro-
ceedings on Radar and Signal Processing, vol. 140, pp. 107-113, 1993.

[20] C. H. Gowda and R. Viswanatha, “Performance of Distributed CFAR
Test Under Various Clutter Amplitudes”,IEEE Transactions on Aerospace
and Electronic Systems, vol. 35, no. 4, pp. 1410-1419, 1999.

[21] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning, Springer Series in Statistics. Springer Verlag, Basel, 2001.

[22] C. Hue, J.-P. Le Cadre, and P. Perez, “Tracking Multiple Objects
with Particle Filtering”,IEEE Transactions on Aerospace and Electronic
Systems, vol. 38, no. 3, pp. 791-812, 2002.

[23] C. Hue, J.-P. Le Cadre, and P. Perez, “Sequential Monte Carlo Methods
For Multiple Target Tracking and Data Fusion”,IEEE Transactions on
Signal Processing, vol. 50, no. 2, pp. 309-325, 2002.

[24] M. Isard and A. Blake, “Visual Tracking by Stochastic Propagation of
Conditional Density”,Proceedings of the 4th European Conference on
Computer Vision, Cambridge, England, pp. 343-356, 1996.

[25] M. Isard and J. MacCormick, “BraMBLe: A Bayesian Multiple-Blob
Tracker”, Proceedings of the 8th International Conference on Computer
Vision, 2001.

[26] A. H. Jazwinski,Stochastic Processes and Filtering Theory, New York:
Academic Press, 1970.

[27] S. J. Julier, and J. K. Uhlman, “A New Extension of the Kalman
Filter to Nonlinear Systems”,Proceedings of Aerosense: The Eleventh
International Symposium on Aerospace/Defense Sensing, Simulation and
Controls, vol. 3068, pp. 182-193, 1997.

[28] R. Karlsson and F. Gustafsson, “Monte Carlo Data Association for
Multiple Target Tracking”,Proceedings of The IEE Workshop on Target
Tracking : Algorithms and Applications, The Netherlands, 2001.

[29] K. Kastella, “Discrimination Gain for Sensor Management in Multitarget
Detection and Tracking”,IEEE-SMC and IMACS Multiconference CESA
’96, vol. 1, Lille France, July 9-12 1996, pp. 167-172.

[30] K. Kastella, “Discrimination Gain to Optimize Detection and Classifi-
cation,” IEEE Transactions on Systems, Man, and Cybernetics - Part A:
Systems and Humans, vol. 27, No. 1, pp. 112-116, 1997

[31] K. Kastella, “Event-Averaged Maximum Liklihood Estimation and
Mean-Field Theory in Multitarget Tracking”,IEEE Transactions on
Automatic Control, vol. AC-40, no. 6, pp. 1070-1074, 1995.

[32] G. Kitagawa, “Non-Gaussian state-space modelling of non-stationary
time series”,Journal of the American Statistical Association, vol. 82, pp.
1032-1063, 1987.

[33] C. Kreucher and K. Kastella, “Multiple-model nonlinear filtering for
low-signal ground target applications”,Proceedings of The Fifteenth
International Aerosense Symposium, vol. 4380, pp. 1-12, 2001.

[34] C. Kreucher, A. O. Hero and K. Kastella, “Multiple Model Particle
Filtering for Multi-Target Tracking”,Proceedings of the Twelfth Annual
Workshop on Adaptive Sensor Array Processing, March 2004.

[35] Moon-Sik Lee and Yong-Hoon Kim, “An Efficient Multitarget Track-
ing Algorithm for Car Applications”,IEEE Transactions on Industrial
Electronics, Vol. 50, no. 2, pp. 397-399, 2003.

[36] J. Liu, and R. Chen, “Sequential Monte Carlo Methods for Dynamic
Systems”, Journal of the American Statistical Association, September
1998.

[37] M. Mallick, ”Comparison of EKF, UKF, and PF for UGS and GMTI
Sensors”,The 2003 Defense Science and Technology Workshop, Adelaide,
Australia, July 2003.

[38] S. Maskell, M. Rollason, N. Gordon, D. Salmond, “Efficient Particle
Filtering for Multiple Target Tracking with Application to Tracking in
Structured Images”,Procedings of SPIE Conference on Signal and Data
Processing of Small Targets, 2002, Orlando, April 1-5, 2002.

[39] P. S. Maybeck,Stochastic Models, Estimation, and Control, Volume 1,
Academic Press, 1982.

[40] M. I. Miller, A. Srivastava, and U. Grenander, “Conditional Mean
Estimation via Jump-Diffusion Processes in Multiple Target Track-
ing/Recognition”,IEEE Transactions on Signal Processing, vol. 43, no.
11, pp. 2678-2690, 1995.

[41] M. Montemerlo, S. Thrun, and W. Whittaker, “Conditional Particle
Filter for Simultaneous Mobile Robot Localization and People Tracking”,
Proccedings of the IEEE Conference on Robotics and Automation, vol.
1, pp. 695-701, 2002.

[42] S. Musick, J. Greenewald, C. Kreucher, and K. Kastella, “Comparison
of Particle Method and Finite Difference Nonlinear Filters for Low SNR
Target Tracking”, Proceedings of The Fourth Annual Conference on
Information Fusion, Montreal, Canada, 2001.

[43] M. Orton and W. Fitzgerald, “A Bayesian Approach to Tracking Multiple
Targets Using Sensor Arrays and Particle Filters”,IEEE Transactions on
Signal Processing, vol. 50, no. 2, pp. 216-223, 2002.

[44] M. K. Pitt and N. Shephard, “Filtering via Simulation: Auxiliary Particle
Filters”, Journal of the American Statistical Association, vol. 94, no. 446,
pp. 590-599, June 1999.

[45] D. Schulz, D. Fox and J. Hightower, “People Tracking with Anonymous
and ID-Sensors Using Rao-Blackwellised Particle Filter”,Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence,
2003.

[46] Special Issue on Particle Filtering Methods,IEEE Transactions on Signal
Processing, vol. 50, no. 2, 2002.

[47] G. W. Stimson,Introduction to Airborne Radar, SciTech Publishing, 2nd
edition, 1998.

[48] L. D. Stone, C. A. Barlow, and T. L. Corwin,Bayesian Multiple Target
Tracking, Artech House, 1999.

[49] B. E. Tullsson, “Monopulse tracking of Rayleigh Targets: A Simple
Approach”,IEEE Transactions on Aerospace and Electronic Systems, vol.
27, no. 3, pp. 520-531, 1991.

[50] D. Tweed and A. Calway, “Tracking Multiple Animals in Wildlife
Footage”,Proceedings of the Conference on Pattern Recognition, vol.
2, pp. 24-27, 2002.

[51] J. Vermaak and A. Blake, “Nonlinear Filtering for Speaker Tracking
in Noisy and Reverberant Environments”,Proceedings of International
Conference on Acoustics Speech and Signal Processing, vol. V, pp. 3021-
3024, 2001.



14

X position

Y
 p

os
iti

on

Time = 30

X position

Y
 p

os
iti

on

Time = 44

X position

Y
 p

os
iti

on

Time = 50

X position

Y
 p

os
iti

on

Time = 54

X position

Y
 p

os
iti

on

Time = 60

X position

Y
 p

os
iti

on

Time = 66

X position

Y
 p

os
iti

on

Time = 72

X position

Y
 p

os
iti

on

Time = 78

X position

Y
 p

os
iti

on

Time = 84

Fig. 10. This figure illustrates the phenomenon of partition swapping that occurs in direct particle filter implementation of the SIR filter for JMPD. True
target locations are indicated by∗. The two partitions for each particle, plotted with× and◦, are well separated at time44. From time60 to 66, they occupy
the same detection cell. At time84, some partition swapping has occurred, indicated by the fact that there are mixtures of× and◦ corresponding to each
target location.
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Fig. 11. An example of the performance of the particle filter based multitarget tracker during target crossing. The nine time sequential images focus on one
of the ten targets that the filter is tracking. The ground truth location of the target (projected into the XY plane) is denoted by an asterisk. The partitions
associated with the two targets are denoted by× and◦. The sensor cells are given by the gridlines. As discussed earlier, the sensor measures on a grid and
receives energy from the target density if the cell is occupied or the false alarm density if the cell is empty. Initially (before time 50), this target is well
separated from all of the others. At these points the IP algorithm is being used for proposal. During times 50 to 66, a second target is crossing (coming within
sensor resolution) of the target of interest. Near time 72, the target complete their crossing and again move apart.


