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ABSTRACT

TRADEOFFS AND LIMITATIONS IN STATISTICALLY BASED
IMAGE RECONSTRUCTION PROBLEMS

by
Thomas J. Kragh

Chair: Alfred O. Hero, III

Advanced nuclear medical imaging systems collect multiple attributes of a large

number of photon events, resulting in extremely large datasets which present chal-

lenges to image reconstruction and assessment. This dissertation addresses several

of these challenges. The image formation process in nuclear medical imaging can be

posed as a parametric estimation problem where the image pixels are the parame-

ters of interest. Since nuclear medical imaging applications are often ill-posed inverse

problems, unbiased estimators result in very noisy, high-variance images. Typically,

smoothness constraints and a priori information are used to reduce variance in med-

ical imaging applications at the cost of biasing the estimator. For such problems,

there exists an inherent tradeoff between the recovered spatial resolution of an esti-

mator, overall bias, and its statistical variance; lower variance can only be bought

at the price of decreased spatial resolution and/or increased overall bias. A goal of

this dissertation is to relate these fundamental quantities in the analysis of imaging

systems. A relationship between list-mode (single photon) measurements and binned

measurements is shown. A model for the measurement statistics for a Compton Scat-

ter Single Photon Emission Tomography (Compton SPECT) system is derived, and

reconstructed images from both simulated and measured data are presented. In order



to reduce the computations involved in reconstruction, we explore lossy compression

of the projection data using vector quantizers. Asymptotic expressions for the loss

in the Kullback-Liebler divergence due to quantization for a low contrast lesion de-

tection task are derived. A fast and efficient method of optimizing the measurement

space partitioning using a lattice vector quantizer is presented, and results for a 2D

Positron Emission Tomography (PET) imaging system show an optimal bit alloca-

tion. Finally, some fundamental limitations in image reconstruction are derived. In

particular, the tradeoff between bias, resolution, and estimator variance is explored

using a 2D image deconvolution problem as a motivating example.
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CHAPTER 1

Introduction

Advanced nuclear medical imaging systems, such as Compton SPECT, collect

multiple attributes of a large number of photon events which result in extremely

large high-dimensionality datasets. These in turn present challenges to image recon-

struction and assessment. This dissertation introduces some novel approaches toward

the goal of deriving tractable image reconstruction algorithms for advanced emission

tomography systems with high-dimensional measurement spaces.

1.1 Dissertation Overview

We will start with a basic model of the measurement statistics for a general-

ized photon imaging system. The relationship between list-mode (i.e. single-photon)

measurements and binned measurements will be shown, as well as their respective log-

likelihood functions with respect to the observed measurements. A general method

for parameterizing the source distribution will be given, along with a Maximum-

Likelihood estimator of the source distribution. Next, we will focus on the specific

problem of modeling the measurement statistics for a Compton SPECT camera and

will show list-mode Maximum-Likelihood image reconstruction results for both mea-

sured 2D and simulated 3D Compton SPECT data. As a possible solution to the

high-count list-mode reconstruction problem, we will investigate methods of adap-

tively binning the measurements in a manner driven by the measurements them-
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selves. In particular, we will investigate the properties and applications of image

reconstruction with vector quantized measurements, and develop asymptotic expres-

sions for the performance loss due to quantization as compared to using unquantized

measurements. Lastly, we will investigate fundamental limitations in image recon-

struction. In particular, lower bounds of estimator variance will be derived for the

general biased-estimator case. A fundamental tradeoff between bias, resolution, and

estimator variance will be derived. An example 2D image deconvolution problem will

be examined from the standpoint of estimating a single pixel value.

1.2 Emission Tomography

Nuclear medical imaging techniques such as Single Photon Emission Computed

Tomography (SPECT) or Positron Emission Tomography (PET) are non-invasive

methods of obtaining functional information of internal body processes. An example

of functional imaging would be glucose uptake within the brain, which is a common

method of determining relative brain activity. By labeling glucose with a radioisotope

and injecting it into a patient, one can infer the internal metabolism by measuring

the relative distribution of radiation emanating from the patient. However, one is not

limited to simply measuring glucose uptake. There exists a wide-range of radioiso-

topes, as well as the compounds formed with them, that can used to monitor internal

body processes, detect tumors, etc. In comparison, imaging techniques such as Ultra-

sound or X-ray Computer Assisted Tomography (X-ray CT) [13] give structural and

anatomical information, but do not give any information about the chemical processes

occurring within the body.

Nuclear medical imaging relies upon detecting and measuring γ-ray intensity,

where the γ-rays are emitted by the radioactive decay of a radioisotope injected

within a patient’s body. The typical SPECT measurement device is the Anger cam-

era [9, 17, 67], which consists of a scintillating material such as sodium iodide (NaI)

2



coupled with an array of photomultiplier tubes. When an incoming γ-ray strikes the

scintillating material, it creates visible light photons which are detected and ampli-

fied by an array of photomultiplier (PMT) tubes. By measuring the relative output

intensity of the PMT tube array, one can estimate the position where the individual

γ-ray struck the scintillation material. The components of a typical Anger camera

are given in Figure 1.1.

Figure 1.1: Components of an Anger camera.

In the above diagram, an incoming γ-ray can come from any direction and be

detected. In order to obtain directional information as to where the γ-ray came from,

a pin-hole or slit collimator is placed in front of the Anger camera. The collimator

typically consists of an array of pin-holes or slits in a high atomic number material

such as lead, tungsten, or gold. Only γ-rays traveling parallel to the pin-holes or slit

array will pass through the collimator and be detected by the Anger camera.

In SPECT, a radioisotope is administered to the patient, which subsequently de-

cays and results in the production of γ-rays that travel outside the patient’s body

and are detected externally by a collimated Anger camera. The Anger camera is ro-

tated around the patient in some fashion to collect intensity measurements at various

angles. By collecting the radiation intensity at various angles around the patient, the

internal radiation distribution can then be estimated by solving an inverse problem

that will be described in more detail in Chapter 2.
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The main problem with SPECT imaging is its reliance upon mechanical colli-

mation to determine the direction of the detected γ-ray. A mechanical collimator,

a lead pinhole or slit, forms a hard physical constraint on where a detected photon

could have originated. The incoming photon is constrained to have emanated from

somewhere along a fan-beam passing through the patient, as illustrated in Figure 1.2.

Figure 1.2: Diagram of an Anger camera with a converging fan-beam collimator.

Due to collimation, SPECT systems detect only a fraction of the emitted γ-rays,

on order of 10−4 or less. Since the total radiation dose that can be administered is

limited to avoid harming the patient, the only alternative for detecting more γ-rays is

to increase the size of the collimator holes. However, there is an inverse relationship

between collimator pinhole size and resolution. For a fixed geometry and fixed imaging

time (equivalently, fixed radiation dose), one is forced to trade off resolution for signal

intensity.
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1.3 Compton SPECT and Electronic Collimation

In Compton SPECT imaging [71, 72, 95, 96, 101], the location uncertainty of the

emitted photon is reduced by electronic collimation where additional measurements

about the detected photon are used to infer where it came from rather than relying

upon physical constraints such as pinholes or slits. These additional measurements

about the detected photon event are obtained by coincidence measurement, which

is defined as when multiple measurements of a γ-ray’s interaction with a detection

system occurs within some small time window so as to be considered occurring in-

stantaneously. Since γ-ray photons travel at the speed of light, a set of measurements

from two different detectors that occurs within some small time window (determined

by the imaging volume viewed by the camera, and typically on order of nanoseconds)

can be presumed to be different attribute measurements of the same γ-ray photon.

Compton SPECT is not the only imaging modality that relies on electronic col-

limation. In Positron Emission Tomography (PET) [13, 104], a radioisotope injected

inside the patient emits a positron which in turn self-annihilates with a nearby elec-

tron. This produces a pair of 511keV γ-ray photons. Pairs of γ-ray photons then

exit the body in opposite directions where they are subsequently detected by an

external ring of detectors surrounding the patient. These pairs of detections form

coincidence measurements; in that pairs of detections which occur within some small

time-window are presumed to have come from the same positron annihilation. The

positron emission / annihilation location is constrained to have occurred somewhere

along a line of response between the two detections on the PET ring. In Time-of-Fight

(TOF) PET [84, 98], the difference in the arrival times between the two detections

of each coincidence measurement is also recorded. Since the speed of light is 30cm

per nanosecond, a differential timing measurement accuracy on the order of 100ps

(100× 10−12 sec) can be used to reduce the uncertainty of the emission location to a

region a few centimeters wide within the line-of-response, as shown in Figure 1.3.
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Figure 1.3: Region of possible positron emission / annihilation location for a coinci-
dence measurement in PET (left), TOF-PET (right).

Currently, over 85% of all nuclear medicine procedures use some type of 99Tc-

labeled radio-pharmaceutical [90]. In order to be competitive as an imaging tech-

nique, a Compton SPECT camera must be able to exceed the performance of existing

mechanically collimated SPECT systems. The advantage of applying electronic col-

limation to SPECT imaging is twofold: greatly increased photon collection efficiency

and the decoupling of resolution vs. signal intensity. The disadvantage of Compton

SPECT imaging is that the region of uncertainty of each detected photon is con-

strained to lie on the surface of a “fuzzy cone” rather than along a line or fan-beam.

Intuitively, this conical region of uncertainty is larger than the region of uncertainty

along a fan-beam. Thus, each measured γ-ray in a Compton SPECT camera gives

less information as to the position of the emission source than traditional SPECT

systems. Clinthorne et al [23, 61] have shown that on a per detected photon basis,

a Compton SPECT camera has worse performance than standard SPECT imaging

at 99Tc energies. However, due to its vastly larger collection efficiency, a Compton

SPECT camera is potentially superior to SPECT for a given imaging time because it
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can collect far more of the emitted γ-rays due to its higher collection efficiency. Also,

a Compton SPECT camera shows better performance than SPECT at higher γ-ray

energies, since imaging at higher energies (> 140keV) requires thicker collimator septa

which in turn results in decreased measurement resolution and detection sensitivity.

1.4 Image Reconstruction

Image reconstruction in nuclear medical imaging can be posed as a parametric

estimation problem, where the internal radiation distribution inside the patient is

discretized into N distinct pixels whose mean intensities are the parameters of inter-

est. Traditional statistically-based image reconstruction methods rely on “binning” or

quantizing the individual γ-ray detections into one of M discrete locations. Binning

is a discretization method which has an associated discretization error due to quan-

tizing the measurement space. Statistically-based estimation techniques are typically

iterative, with a computational load of O(MN) per iteration for binned measure-

ments. For example, a PET detector ring with B detector elements will have at most

M = B(B−1) uniquely ordered detector element pairs. The corresponding angle and

position measurements are quantized by the detection hardware, with the quantized

values determined by the relative acceptance angles and locations of the finite-size

detector element pairs in the PET ring.

In Compton SPECT, the image reconstruction problem is daunting due to the

high dimensionality of each measurement. Binning of each measurement dimension

individually results in many more possible bins then measurements. When fewer

photons are collected than the possible number of measurements, an alternative is

list-mode reconstruction techniques [10,84]. In list-mode reconstruction, multiple at-

tributes of each photon such as position, energy, scatter angle, etc., are recorded as a

point in a multi-dimensional detector space. Each photon contributes individually to

the likelihood function, and the underlying source distribution can be estimated using
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maximum-likelihood based estimation techniques. A failing of list-mode reconstruc-

tion is that it scales directly with counts. Since each count independently contributes

to the overall likelihood function, the computational complexity and storage require-

ments are proportional to the total number of counts. For PET or mechanically

collimated SPECT systems, this is not a problem since the individual backprojec-

tions are relatively sparse. However, for imaging modalities which have non-sparse

backprojections (such as Compton SPECT), this is critical since each count must

be assigned a different likelihood value. For a typical Compton SPECT imaging

problem involving O(106) detections and O(104) reconstruction pixels, the storage re-

quirements for list-mode image reconstruction are in the gigabyte range, and it only

gets worse as high efficiency fully 3D modalities which collect massive amounts of

counts are developed. Thus, we are faced with the choice of either keeping all the

measurements in their full resolution and accepting the storage requirements for the

backprojections, or binning the data and accepting the loss in both measurement and

reconstruction fidelity due to quantization error.

1.5 Emission Tomography using Compressed Data

The next part of this dissertation concerns acceleration of image reconstruction for

emission tomography where equally spaced measurement bins are impractical due to

the high dimensional detector space. Traditionally in imaging modalities such as 2D

SPECT and PET, the detected photon measurements are quantized to one of a finite

number of possible measurement bins. This quantization is either done mechanically

by the geometry of the detectors (i.e., PET or SPECT detector elements) or elec-

tronically in software (i.e., Anger camera energy windows or position measurement

binning). Typically, the measurements are binned uniformly with equal-sized bins

along each measurement dimension. As pointed out in [10], when the dimensionality

of the measurement space is greater then 4 or more, uniform quantization about each
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measurement axis becomes impractical. One wants fine binning along each axis in

order to minimize error due to quantization. However, the total number of quantizer

bins grows exponentially with the number of dimensions.

A concept well known in the fields of information theory and communications is

vector quantization [49, 52], which is a multivariate generalization of binning. For a

k-dimensional measurement space, rather then distributing O(M1/k) bins uniformly

along each dimension, a vector quantizer places more bins in regions of the detector

space that are more informative. A quantizer that has a non-uniform concentration

of quantizer bins is referred to having a variable point density. Although vector

quantizers with non-uniform point densities can achieve minimal distortion loss, they

are difficult to design and implement in practice especially at the high dimension-rate

product sizes required for image reconstruction.

For a fixed number of quantizer cells1 about each axis, the total number of quan-

tizer cells grows exponentially with the number of dimensions. Alternatively, for a

fixed number M of quantizer cells, the average number of cells per measurement di-

mension is O(M1/k) resulting in poorer measurement fidelity (or quantization error)

with higher dimensional measurements when all other factors are kept fixed. How-

ever, there is merit to quantizing the components of a k-dimensional measurement

independently along each of the k-axis due to the implementation simplicity of such

so-called lattice-based vector quantizers [25,92]. One possibility would be to optimize

the number of quantizer levels along each axis with respect to a distortion measure

under the constraint that the total number of quantizer levels (or rate of the quan-

tizer) remains constant. One can constrain the support region of the lattice quantizer

based on the observed measurements by only allocating quantizer cells to regions

that have non-zero measurements. The effective volume of the support region can be

estimated from the observed measurement entropy by the Asymptotic Equipartition

1For the purposes of this dissertation we will use the terms “bins” and “cells” interchangeably.
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Principle (AEP) [28]. From this one can estimate the savings in bit-rate or distortion

by adapting the lattice to the observed measurement support region.

The most common distortion measure in the literature is the mean-squared error

between the unquantized and quantized vectors. However, others exist which are

more apropos to nuclear medical imaging. For example, in nuclear medical imaging

the difference between a radiotracer image of a patient before and after the emer-

gence of a tumor would manifest itself as a subtle variation of a few pixels against

an similar background image. Thus, one is concerned not with dramatic changes be-

tween two images, but rather with sensitivity to detecting small changes in an initial

image. In this dissertation, we investigate a strategy pioneered by Gupta [54] of de-

signing optimal vector quantizers that minimize the loss in various metrics such as the

Kullback-Liebler (KL) discrimination [28], along with the associated loss in perfor-

mance as measured by the area under the Receiver Operating Characteristic (ROC)

curve. The KL discrimination and ROC curve characterize the detection performance

of the quantizer / detector combination, and are analogs to the mean-square quan-

tization error metric commonly used to design vector quantizers. These KL-optimal

quantizers depend on the source only through its projections, and can be quickly

designed on-the-fly from the observed list-mode measurements.

1.6 Resolution / Variance Tradeoffs

The variance of an image, or alternatively the signal-to-noise ratio, is often used

as a measure of image quality. Since nuclear medical imaging applications are often

ill-posed inverse problems, unbiased estimators result in very noisy, high-variance

images. Typically, smoothness constraints and a priori information are used to reduce

variance in medical imaging applications at the cost of biasing the estimator. The

next part of the dissertation deals with quantifying fundamental bias and variance

tradeoffs for statistically based image reconstruction.
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The classical Cramèr-Rao (CR) bound [28, 103] gives an estimator-independent

lower bound on variance and can be used to find fundamental limitations of an imaging

system. However, it only applies to unbiased estimators. The general form of the CR

bound applies to biased estimators. However, it is not estimator-independent since

it depends on the gradient of the estimator’s bias function. In order to measure

the performance capability of an imaging system, a desired goal is to decouple the

variance due to the inherent limitations of the imaging system from the choice of

algorithm used to process the data.

The Uniform Cramèr-Rao bound (UCRB) [57] is a generalization of the CR bound

that decouples the variance contributions of the biased estimator and the imaging

system. The idea behind the UCRB is that the norm of the bias-gradient vector can

be viewed as a measure of the total bias-error of an estimator. Among all possible

estimators with a given bias-gradient norm, one can solve for the minimum possible

variance of a hypothetical ideal estimator via a constrained optimization problem.

The variance of this hypothetical ideal estimator is then a lower bound among all

possible estimators with that choice of bias-gradient norm. Moreover, the variance

of this hypothetical ideal estimator is only a function of the Fisher Information and

the bias-gradient norm, and thus independent of any particular choice of estimation

algorithm. For any given choice of estimator, the tradeoff between bias and variance

can be expressed as a parametric curve indexed by the estimator’s regularization

parameter. The variance of the hypothetical ideal estimator calculated using the

UCRB forms a lower bound on the variance of this (or any other) choice of estimator.

The margin between these two curves gives the performance margin between the

particular regularized estimator in question and the fundamental performance limit

of the imaging system2. For an estimator whose variance lies on this curve, lower

estimator variance can only be achieved at the price of increased estimator bias.

2In general, the Fisher Information and the resulting lower bound will be object dependent.
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For single pixel intensity estimation, the estimator bias-gradient is equivalent to

the error between the estimator’s local impulse response and an ideal impulse re-

sponse. Thus, the norm of the estimator bias-gradient would seem to be a natural

measure of resolution in that local impulse response functions with small tails would

have smaller bias-gradient norm. However, different impulse response functions can

have identical bias-gradient norm but widely different resolution. This has lead to

some counter-intuitive results and interpretation difficulties when using the Uniform

CR Bound in performance studies of imaging systems [81].

A major contribution made in this dissertation is the extension of this tradeoff

concept to include resolution [68,69]. One can solve for an ideal hypothetical estimator

that has minimum variance for a given amount of total bias and resolution, forming a

parametric surface which is a function of the Fisher information, bias-gradient norm,

and resolution parameter and thus independent of any particular choice of estimation

algorithm. The variance of any given estimator traces out a trajectory, indexed by

its regularization parameter, that is constrained to lie above this minimum-variance

surface. The distance between this trajectory and surface gives the performance

margin between the particular regularized estimator in question and the fundamental

performance limit of the imaging system. For an estimator whose variance lies on

this surface, lower estimator variance can only be achieved at the price of increased

estimator bias and/or decreased resolution.
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CHAPTER 2

Statistical Model of Emission Tomography

2.1 Mathematical Source Model

Let x ∈ Rd be a random variable with distribution p(x), and let X be a realization

of x. It is common to model source emission locations as a time-ordered sequence

{X1, X2, . . .} of statistically independent random spatial locations (each in Rd) drawn

from a spatial Poisson point process with emission-rate function λ(x) defined over

some subset Ω ⊂ Rd, where d = 2 for planar imaging, d = 3 for volume imaging and

d = 4 for dynamic volume imaging where the fourth dimension is time. The subset

Ω is called the field-of-view of the scanner, the region of space over which emissions

are recorded.

Figure 2.1: Diagram of scanner field of view along with emission location.

The emission-rate function λ(x) has units of emissions per unit time per unit area
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or volume, and the total emission-rate λo =
∫

Ω
λ(x′) dx′ has units of emissions per-

unit-time. The emission rate function is proportional to the distribution p(x), i.e.

λ(x) = λop(x).

Let the vector y ∈ Rk be a measurement of k different attributes of a detected pho-

ton. Let S ⊂ Rk be the set of all possible detected measurements. Assuming a linear

relationship between the measurements and emissions, the sequence {Y 1, Y 2, . . .} of

detected measurements is a set of random vectors (each in Rk) drawn from a Poisson

point process with detection-rate function µ(y) given by

µ(y) =

∫
Ω

a(y|x′)λ(x′) dx′. (2.1)

Equation (2.1) is referred to as the ideal measurement equation where µ(y) is the

ideal (noiseless) detection-rate function and λ(x) is the source intensity of interest.

The term a(y|x) is often referred to as the transition probability in that it is the

probability density function of measurements y given a detected emission from x ∈ Ω

combined with the probability of detecting an emission from x ∈ Ω (depending on

the detector efficiency),

a(y|x) = p(y|D, x)P (D|x) (2.2)

where the event D represents a detected photon emission. The term P (D|x) is often

referred to as the survival probability or detection sensitivity [10, 84] of a photon

emission from the location x, and will be denoted as s(x).

From the definition of the transition probability function a(y|x), the integral over

all measurements y ∈ S is the sensitivity function

s(x) =

∫
S

a(y|x) dy. (2.3)

Similarly, the mean total detection-rate µD (in units of detections per unit time)

is simply the integral over all detected measurements y ∈ S of the detection-rate
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function µ(y),

µD =

∫
S

µ(y) dy

=

∫
S

∫
Ω

a(y|x′)λ(x′) dx′ dy

=

∫
Ω

λ(x′)

[∫
S

a(y|x′) dy
]
dx′

=

∫
Ω

λ(x′)s(x′) dx′. (2.4)

The ratio µD/λo is called the overall detection efficiency of the system.

The objective of image reconstruction is to estimate the source emission-rate

intensity λ = λ(x), x ∈ Rd from a finite number p of observed measurements

{Y 1, Y 2, . . . , Y p}. The most natural way to approach this problem is via the like-

lihood function l(λ), which relates the measurements {Y 1, Y 2, . . . , Y p} to λ through

the joint density of {y
1
, y

2
, . . . , y

p
} parameterized by λ. The function λ maximizing

this likelihood function l(λ) is called the Maximum-Likelihood (ML) estimator, and

it enjoys many attractive properties [32, 103]. However, estimating the continuous

function λ from a finite number of discrete measurements is an example of an ill-

posed inverse problem [82]. Since λ is a continuous function on Rd and the number

of measurements is finite, there generally exists no unique solution even in the ideal

situation where µ(y) is observed directly without additional noise due to Poisson

counting statistics. To overcome this requires prior assumptions on the form of the

emission-rate intensity function λ to constrain the estimation problem. Two common

assumptions are source parameterization and regularization.

2.2 Source Parameterization

As pointed out in [41], it is natural to treat the image reconstruction problem as a

statistical estimation problem due to the Poisson counting statistics of the measure-

ments. Since we will want to estimate λ by maximizing a likelihood function, and

estimating a continuous function from a finite number of observations is an ill-posed
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problem, one solution is to parameterize λ by approximating it as a linear combination

of N basis functions,

λ(x) =
N∑

j=1

λjbj(x) (2.5)

where λ = [λ1, ..., λN ]T is a coefficient vector of the basis functions bj(x), j = 1, . . . , N .

In general there will be a truncation error between λ(x) and its projection onto a finite

set of basis functions parameterized by λ. For this dissertation, we will restrict ourself

to the pixel or voxel basis and assume that λ(x) is smooth enough to be effectively

constant over the support region of each basis function. The choice of best basis

functions used to represent the image parameterization is open one. Some examples

in the imaging literature include splines [4], gaussians [84], complex exponentials [102],

and natural pixels [59]. However, the most common choice is a piece-wise constant

function over the unit square or cube (i.e. the “pixel” or “voxel” basis).

The source-dependent terms in (2.1, 2.2, 2.3) can be made discrete in the source

parameters by integrating against the basis functions. With aj(y), λj, and sj defined

as

aj(y) =

∫
Ω

a(y|x′)bj(x′) dx′ (2.6)

λj =

∫
Ω

λ(x′)bj(x
′) dx′ (2.7)

sj =

∫
Ω

s(x′)bj(x
′) dx′, (2.8)

the finite truncated basis representation of µ(y) is

µ(y) =
N∑

j=1

aj(y)λj, (2.9)

and the corresponding mean total detection-rate is

µD =
N∑

j=1

λjsj. (2.10)
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2.3 Measurement Statistics

In an emission tomography measurement, a random number p of time-ordered

random measurement realizations {Y 1, Y 2, . . . , Y p}, Y i ∈ Rk are detected in some

fixed, known time period [0, T ]. This sequence of measurements is often referred

to in the literature as count-record [97] or list-mode [10, 84]. This is contrasted to

a binned measurement Yi =
∑p

i=1 I(Y i ∈ Sl), the (Poisson distributed) number of

measurements collected in the fixed time interval [0, T ] within a bin or quantization

cell Sl ⊂ Rk, l = 1, . . . ,M . Binned measurements will be discussed in more detail in

Section 2.6.

One important consideration in emission tomography is the effect of detections

from outside sources such as background radiation, cosmic rays, false coincidences,

etc., otherwise known as randoms [70]. These are important effects in any γ-ray

detection system and are typically modeled as an additive component to (2.1) in-

dependent of the emission source λ [40, 41, 45]. These effects are straightforward to

include in the formulation of the likelihood function but will generally be neglected

in this dissertation.

2.4 Continuous Measurement Likelihood Function

As shown in [10,84], the joint density of the list-mode measurement vector y and

the number of measurements p (conditioned on being detected within some fixed time

period [0, T ] from a source parameterized by λ) can be split into two components,

p(y
1
, . . . , y

p
, p|λ, D, T ) = p(y

1
, . . . , y

p
|p,λ, D, T )P (p|λ, D, T )

where p(y
1
, . . . , y

p
|p,λ, D, T ) is the joint density of exactly p detected measurements,

while P (p|λ, T,D) is the probability of detecting p measurements in a fixed time T

from a source parameterized by λ. Most authors drop this explicit conditioning on

D, but we will keep it for notational clarity.
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The density p(y
1
, . . . , y

p
|p,λ, D, T ) can be further simplified by the fact that for a

homogeneous1 Poisson point process, the measurements are statistically independent

of each other. As for the probability P (p|λ, T,D), the total number of measurements

p detected in time T for a Poisson point process is itself Poisson distributed with

parameter (TµD) where µD =
∑N

j=1 λjsj is the total detected emission rate (in emis-

sions per unit time) [97]. Using these results we obtain the following form for the

joint density,

p(y
1
, . . . , y

p
, p|λ, D, T ) =

p∏
i=1

p(y
i
|λ, D)

e−(TµD)(TµD)p

p!
(2.11)

with the associated log-likelihood function of λ conditioned on a particular detected

list-mode data sequence {Y 1, Y 2, . . . , Y p} is given (after a bit of manipulation) by

l(λ) =

p∑
i=1

ln

[
T

N∑
j=1

aj(Y i)λj

]
− T

N∑
j=1

λjsj − ln(p!). (2.12)

2.5 Continuous Measurement Fisher Information

The Fisher Information Matrix (FIM) F is defined as the expected value of the

curvature of the log-likelihood function [103]

Fij = Ey

[
− ∂2

∂λi∂λj

l(λ)

]
, (2.13)

and quantifies the information efficiency of a measurement system [57]. The inverse

of the FIM gives a lower bound on the variance of an unbiased estimate of the vector

parameter λ from the measurements y. The FIM will be used extensively in chapters 4

and 5.

For list-mode measurements, the expectation over all measurements y is condi-

tioned on those detected within fixed time T. Thus, the number of counts p is a r.v.

1Strictly speaking this is not a homogeneous process due to radioactive decay. However for a
single species we can rescale time to account for this.
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which we take into account by averaging over all counts,

Fij =
∞∑

p=0

P (p|λ, D, T )Ey

[
− ∂2

∂λi∂λj

l(λ)|p,λ, D, T
]

= E [p|λ, D, T ]

∫
S

p(y|λ, D, T )
ai(y)aj(y)

µ(y)2
dy

= T

∫
S

ai(y)aj(y)

µ(y)
dy. (2.14)

Here the last line comes from the fact that for a Poisson point process, the mean

number of counts detected in a fixed time E [p|λ, D, T ] = TµD, and the mean detected

intensity rate µ(y) = µD p(y|λ).

2.6 Discrete Measurement Likelihood Function

We have been assuming up to now that all measurements are continuous valued.

Although it might be argued that physical processes are mostly continuous (to within

quantum uncertainty), measurements will eventually be digitized by a finite precision

analog-digital converter. Typically, the digitization is done further upstream in data

acquisition by the hardware. For example, in a digital camera focal plane, the con-

tinuous photon position on the array is quantized to a discrete pixel row and column

position while the total number of photons detected in a given pixel is measured in-

directly by the total energy accumulated over a given time. Quantization can also be

done in software by processing, as when the energy measurement of a single photon is

acquired from an Anger camera photo-multiplier tube, resulting in an accumulation

of photon counts in a detection bin.

We will generalize the detection bins as a set of cells {S1, . . . , SM} that partition

the set S ⊂ Rk of all possible detected measurements over the detector surfaces. This

specifies a quantization of the measurements y. The quantization operator can be

written as

Q(y) =
{
y

i
: y ∈ Si

}
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corresponding to a quantization of the k-dimensional measurement y into one of M

disjoint cells. This will be covered in more detail in Chapter 4.

Let y = [y1, . . . , yM ]T be a M × 1 random vector, where yi =
∑p

i=1 I(Y i ∈ Sl)

is the integer number of list-mode measurement vectors detected in the fixed time

interval [0, T ] in the quantization cell Sl ⊂ Rk, l = 1, . . . ,M . Since the continuous

list-mode measurement vector Y is a realization from a Poisson point process, the

total detections in the fixed time interval [0, T ] in the lth quantizer cell is Poisson

distributed with mean given by integral of the intensity rate function over the cell [97],

E[yl] = T

∫
Sl

µ(y) dy

= Tµl. (2.15)

The Poisson distribution gives the probability of collecting exactly m events in a fixed

time T , assuming the events occur independently at a constant rate. The probability

mass function of the integer number of measurements yl detected in the cell Sl is

P (yl = m) =
(µlT )me−(µlT )

m!
. (2.16)

The probability aij that an emission from the jth source voxel is detected and

assigned to the ith quantization bin is called the transition probability. It is simply

the integral of (2.6) over the ith cell Si,

aij =

∫
Si

aj(y) dy. (2.17)

The sensitivity sj of detecting a measurement given an emission from the jth source

voxel is given by

sj =

∫
S

aj(y) dy

=
M∑
l=1

∫
Si

aj(y) dy

=
M∑
l=1

aij. (2.18)
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Finally, the mean detection rate in the ith measurement bin is the integral of (2.9)

over the cell Si,

µi =

∫
Si

µ(y) dy

=

∫
Si

N∑
j=1

aj(y)λj dy

=
N∑

j=1

[∫
Si

aj(y) dy

]
λj

=
N∑

j=1

aijλj, (2.19)

with mean total detection-rate µD as per (2.10).

Let µ = [µ1, ..., µM ]T be an M × 1 vector. Let aij be the (i, j)th entry of the

M × N matrix A. Then in vector-matrix notation (ignoring randoms, which would

introduce an additive λ-independent term to µ),

µ = Aλ

which is a linear systems of equations for the parameter vector λ given the binned

measurements mean intensity vector µ. The mean intensity vector µ is the expected

number of detections in each bin per unit time, i.e. E [y] = Tµ, which is simply the

vector form of (2.15).

Let the vector Y = [Y1, . . . , YM ]T be a realization of the integer number of quan-

tized detected measurements in each of the cells {S1, . . . , SM}. By combining (2.16)

and (2.19) along with property that the number of detections in each bin is indepen-

dent, we arrive at the quantized-data likelihood function [94,104],

l̂(λ) =
M∑
l=1

Yl ln

(
T

N∑
j=1

aljλj

)
− T

N∑
j=1

aljλj − ln(Yl!). (2.20)
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2.7 Discrete Measurement Fisher Information

By following the same procedure as in section (2.5), the (i, j)th-element of the

quantized measurement Fisher Information Matrix F̂ is given by

F̂ij = T
M∑
l=1

alialj

µl

(2.21)

It can be shown that F − F̂ is a non-negative definite matrix. This follows directly

from the data processing theorem [28]. Intuitively, F̂ is less informative than F since

the measurements y can always be partitioned in order to calculate the bin values y,

but the total number of measurements in each bin is not sufficient to recover y. Note

that the difference between the Fisher Information matrices F and F̂ can be written

as a summation over the M quantizer cells,

[F − F̂ ]ij = T
M∑
l=1

[∫
Sl

ai(y)aj(y)

µ(y)
dy − alialj

µl

]
(2.22)

where µ(y) and µ = [µ1, ..., µM ]T are the continuous and discrete forward projections

of the parameter vector λ. Thus, for Poisson measurements, the difference between

the Fisher Information matrices F and F̂ will be a function of λ (i.e. image de-

pendent) as well as the quantizer partitioning {S1, . . . , SM}. Analyzing as well as

optimizing the quantizer partitions will be discussed at length in Chapter 4.

2.8 Source Intensity Estimator

From our earlier assumption that the source intensity function λ(x) can be mod-

eled as a linear combination of basis functions (2.5), estimating the source inten-

sity λ(x) can be posed as a parametric estimation problem where the source coef-

ficients (equivalently, the image pixels) are the parameters of interest. This can be

posed as an optimization problem. For a given list-mode measurement realization

{Y 1, Y 2, . . . , Y p}, the maximum-likelihood estimate of the source distribution is the
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value λ̂ML that maximizes the likelihood function (2.12),

λ̂ML = arg max
λ≥0

l(λ). (2.23)

Because tomographic image reconstruction is an ill-posed problem, maximizing the

likelihood function often leads to noisy images, even when the true source distribution

is a smooth function. In order to reduce the noise and enforce smoothness in the

estimated source distribution, one can include a penalty term R(λ) to the likelihood

function that biases the estimate towards smooth images [40,41,100]. The result is still

an optimization problem, but for a modified objective function Φ(λ) = l(λ)−βR(λ),

where the likelihood l(λ) gives a measure of data fit, while the penalty R(λ) enforces

smooth estimates and β ≥ 0 is a scalar parameter that allows for tradeoff between

the two,

λ̂MAP = arg max
λ≥0

Φ(λ)

= arg max
λ≥0

l(λ)− βR(λ). (2.24)

When the penalty β = 0, the penalized estimator λ̂MAP reduces to the maximum-

likelihood estimator λ̂ML. For the purposes of this dissertation we will restrict our-

selves to estimators which maximize the likelihood function (2.12). There are multiple

different numerical optimization algorithms available to maximize this objective func-

tion [16,29,31,41–44]. However, for this dissertation, we will restrict our attention to

the Maximum-Likelihood Expectation-Maximization (ML-EM) algorithm [30,84].

The list-mode ML-EM estimator of λ for a finite number p of list-mode measure-

ments {Y 1, Y 2, . . . , Y p} is an iterative algorithm given by

λ̂k+1
j =

λ̂k
j

Tsj

p∑
i=1

[
aj(Y i)∑N

l=1 al(Y i)λ̂
k
l

]
(2.25)

where λ̂k = [λ̂k
1, ..., λ̂

k
N ]T is the estimate of λ at the k iteration. A derivation of (2.25)

is given in Appendix A. Derivations for the binned-data ML-EM estimator can be
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found in multiple references [70,94,104]. The end result is

λ̂k+1
j =

λ̂k
j

Tsj

M∑
i=1

[
aijYi∑N
l=1 ailλ̂k

l

]
. (2.26)

Note the similarity with the list-mode ML-EM estimator (2.25), which is equivalent

to (2.26) when the number of counts in each bin Yi = 1.
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CHAPTER 3

Compton SPECT

Compton SPECT is a form of emission tomography which uses electronic colli-

mation by means of coincidence measurements to reduce the location uncertainty of

detected γ-ray photons, as compared to traditional SPECT cameras which rely upon

mechanical collimators. The advantage of Compton SPECT compared to traditional

systems is extremely high detection sensitivity. For example, up to 4x increase in

sensitivity for imaging technetium (99Tc, 140.5keV) and up to 20x increase for iodine

(131I, 364.4keV) has been estimated for a Compton SPECT camera compared to a

representative SPECT camera [23,72].

A Compton SPECT camera consists of a pair of detectors, which measure where

an emitted γ-ray scatters from one detector and where it is absorbed in a second

detector. This forms a coincidence measurement, which is defined as when multiple

measurements of a γ-ray’s interaction with a detection system occur within some small

time window so as to be considered occurring instantaneously. Since γ-ray photons

travel at the speed of light, a set of measurements from two different detectors that

occur within some small time window (determined by the imaging volume viewed by

the camera, and typically on order of nanoseconds) can be presumed to be different

attribute measurements of the same γ-ray photon. Figure 3.1 illustrates this detection

process.

By the Compton scatter energy-angle relationship (3.3), measurement of the en-
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Figure 3.1: Compton SPECT detection process.

ergy deposited in the first detector can be used to calculate the scattering angle

relative to the initial γ-ray photon’s direction. With the additional two position

measurements, one can define the γ-ray’s initial direction to within the surface of a

cone defined by the scattering angle with apex located at the first detector position

measurement, as shown in figure 3.2. If multiple γ-rays from the same source are

measured, the “uncertainty cones” associated with each measurement would ideally

intersect at the source location.

If noiseless detectors existed, the image reconstruction problem for a point source

would conceptually reduce to determining the locus of intersections of every single

cone from every single measurement. However, detectors are noisy and measurements

are imperfect. Rather than having conic sections intersecting at points, there are

intersecting “fuzzy” conical surfaces forming regions of where the incident photon

most probably came from.
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Figure 3.2: Conical ambiguity of the γ-ray emission source location.

3.1 Photon Transport and Measurement Statistics

A Compton SPECT camera coincidence measurement vector y ∈ Rk consists

of a collection of measurements {e2, z2, e1, z1} of a scattered photon. The (scalar)

energy measurements e1, e2 are of the energy deposited in the 1st and 2nd detector,

and z1, z2 are the respective position measurement vectors resulting in a k = 8

dimensional measurement vector y. Note that for a thin planar detector (such as a

silicon chip) the measurement is often thought of as 2D since only the rows/columns

of the chip are read out. In this case, the physical position of the chip can be used

as an approximation of the missing 3rd dimensional component.

In Compton SPECT imaging, the dominant uncertainties are due to Compton

scattering, Doppler broadening, detector energy efficiency and position uncertainty,

and attenuation [71]. In this chapter we will introduce an overall detection proba-

bility and a measurement probability model that incorporates these dominant error

sources. The technique involved is to model each step of the measurement process

as a conditional probability, and then to combine them to determine the overall
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probability. Note that no mention was made of scattering inside the source, false

coincidences, multiple scatters, or random detections. These are important effects in

any coincident-event detection system, but for now will be either assumed negligible

or ignored outright.

Let y′ ∈ Rk be the noise-free value of the bias- and noise-corrupted measurement of

y. The statistics of y′ are determined by the underlying image or object of interest λ(x)

and the physics that describe the image formation process (i.e. collimators, photon

transport, scatter, etc.). The statistics of y, conditioned on y′, depend on the noise

characteristics of the sensors acquiring the measurements. Borrowing the notation of

[10], the probability density function of an individual measurement p(y|λ,D) (2.11)

can be expanded out as

p(y|λ,D) =

∫
pm(y|λ,D, y′)pi(y

′|λ,D) dy′, (3.1)

where pm(y|λ,D, y′) describes the statistics of the detected measurement y of the

noiseless photon attribute vector y′ and pi(y
′|λ,D) describes the image formation

process. Models for these two terms are developed in the next four sections.

3.2 Compton Scattering and Doppler Broadening

Although position and energy measurement errors in the first and second detec-

tors will add uncertainty to the position of the emitted γ-ray, by far the dominant

error source for low energy Compton scatter imaging is Doppler broadening [71]. To

understand the effect of Doppler broadening, we will first examine the classic Comp-

ton scatter angle-energy relationship. Compton scatter [13, 67] is when an incoming

photon interacts with the electron shell of an atom, transfers energy e1 to a recoil

electron, and scatters off in some direction Ω = Ω(ϕ, θ) relative to its initial direc-

tion. The recoil electron is re-absorbed and releases energy e1, and by conservation

of energy the scattered γ-ray has energy eγ = eo − e1. The geometry of a Compton
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scatter event is illustrated in figure 3.3.

Figure 3.3: Geometry of a Compton scatter event.

Without any prior knowledge, the scattering angles and energy are random vari-

ables with joint probability density function (jpdf) of the form p(ϕ, θ, e1). Under the

assumptions of incoherent scattering of an unpolarized photon scattering off a free

electron at rest, the out-of-plane scattering angle ϕ is independent of the in-plane

scattering angle θ and uniformly distributed over the range [−π, π) [67]. By conser-

vation of energy and momentum, one can derive the relationship between the energy

eo of the incoming γ-ray photon, the energy deposited e1, the energy eγ of the scat-

tered γ-ray photon, the in-plane scattering angle θ, and the electron rest mass ee−

(nominally 511keV).

cos θ = 1 +
ee−

e0
− ee−

eγ

(3.2)

= 1 +
ee−

e0
− ee−

eo − e1
(3.3)

By measuring the energy e1 deposited by the recoil electron into a detector, ideally

one can calculate the scattering angle θ = θ(e1) via (3.3) to within a margin of error

determined by the measurement accuracy of e1.

The marginal density p(θ) of the scattered γ-rays with respect to solid angle can

be obtained from the Klein-Nishina (KN) Differential Cross Section (DCS) formula

fKN(θ) = Zr2
e

(
1

1 + κ(1− cos θ)

)2(
1 + cos2 θ

2

)
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(
1 +

κ2(1− cos θ)2

[1 + cos2 θ)(1 + κ(1− cos θ)]

)
, (3.4)

where Z is the atomic number of the atom scattered off, r2
e is the classical electron

radius, and κ = eo/ee− [9,67]. However, this formula gives the differential scattering

cross-section with respect to solid angle relative to the effective scattering area of the

electron shell. A simple normalization and a conversion from solid to planar angle

gives the form of a density for θ,

p(θ) = KfKN(θ) sin θ (3.5)

where K is a scale factor such that
∫ π

0
p(θ)dθ = 1. Note that there is an implicit

conditioning on the event that a Compton scatter event occurred.

An interesting interpretation of (3.3) comes from the identity p(θ, e1) = p(e1|θ)p(θ).

The conditional density p(e1|θ) is the density of e1 conditioned on a fixed value of θ.

However, there is a deterministic relationship between e1 and θ via equation (3.3),

thus e1 is not random given θ. With this in mind, the conditional density p(e1|θ) can

be modeled as a delta-function, p(e1|θ) = δ(e1−e1(θ)), where e1 = e1(θ) is the unique

solution to (3.3). The density p(e1) can be solved for by integrating p(e1, θ) over θ,

p(e1) =
ee−

(eo − e1)2
fKN(θ(e1)). (3.6)

Figure 3.4 shows the distribution of scattering angles and associated energy de-

posited for a Compton scattering event for an incident γ-ray energy of 140.4keV as

predicted by the Klein-Nishina equations (3.5, 3.6). Note the maximum energy de-

posited of e1 = 49.8keV corresponding to a θ = 180 deg scatter in (3.3). This feature

is referred to as the Compton edge [67].

In the classical Klein-Nishina treatment of Compton scatter (3.2 - 3.6), the in-

cident electron is assumed to be at rest. A more accurate description is given by

the relativistic impulse response approximation (IA) [88]. The non-zero momentum

distribution of the electron struck by the incoming γ-ray results in a random momen-
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Figure 3.4: Klein-Nishina Compton scattering angle distribution p(θ) (left) and asso-
ciated energy distribution p(e1) (right) for an incident γ-ray energy of 140.4keV.

tum transfer, and the Compton energy-angle relationships of (3.2, 3.3) are no longer

deterministic.

The joint density p(θ, eγ) of the scattered γ-ray energy and angle with respect to

solid angle can be obtained from Compton Double Differential Cross Section (DDCS)

model [19] based on the IA formula,

fIA(θ, eγ) =
1

α

r2
e

2

eγ

eo

XJ ′(p′z)

qc
√

1 + (αp′z)
2

(3.7)

where

α fine structure constant ≈ 1/137

re classical electron radius

eo initial photon energy

eγ scattered photon energy

θ in-plane scattering angle

J ′ normalized Compton momentum profile

p′z normalized projection of electron momentum

= −
(eo − eγ)− (eoeγ)

ee−
(1− cos θ)

αqc
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qc =
√
e2o + e2γ − 2 e2o e

2
γ cos θ

X = (R/R′) + (R′/R) + 2(1/R− 1/R′) + (1/R− 1/R′)2

R = (eo/ee−)[
√

1 + (αp′z)
2 + (1/qc)(eo − eγ cos θ)(αp′z)]

R′ = R− (eo/ee−)(eγ/ee−)(1− cos θ)

Similar to (3.4), this formula gives the differential scattering cross-section with respect

to energy and solid angle relative to the effective scattering area of the electron shell.

There are both analytical results and experimental measurements for the Compton

momentum profile function J ′ [14,33,87]. However, one needs to use appropriate data

because momentum distribution in molecular orbitals is important in Compton scatter

imaging. Detailed models for the DDCS will take into account the binding energy of

individual electron shells, where the overall profile is a weighted summation. However,

they are difficult to calculate from first principles. In addition, the data available

for typical detector materials such as Silicon or Germanium is from experimental

measurements. They specify an overall profile function where the effect of binding

energy is “lumped” into the overall profile. With these approximation in mind, one

can model the joint density for θ and eγ by appropriate normalization of (3.7)

p(θ, eγ) = KfIA(θ, eγ) sin θ. (3.8)

As in (3.5), K is a scale factor such that
∫∞

0

∫ π

0
p(θ, eγ) dθ deγ = 1, along with an

implicit conditioning on the event that a Compton scatter event occurred.

Figure 3.5 shows the joint density p(e1, θ) for a 140.4 keV γ-ray scattering off

Silicon, along with the associated marginal density functions and how they compare

to the Klein-Nishina model. The lower-right panel of figure 3.5 shows the conditional

scattering-angle distribution for a nominal energy deposited in a Compton interaction

of 17keV. Even with perfect energy resolution in the first detector, there can still be

significant uncertainty in the amount of energy deposited (and thus angle) of the

scattered γ-ray.
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Figure 3.5: Compton scattering joint energy-angle distribution p(e1, θ) of a 140.4keV
γ-ray interacting with Silicon (top-left), and associated marginal distributions p(e1)
(top-right), p(θ) (bottom-left), along with conditional scattering angle distributions
for a nominal deposited energy of 17keV (bottom-right). The Klein-Nishina marginal
distributions are overlaid in comparison.

3.3 Energy Resolution

For a solid state silicon detector such as that used in the experimental Compton

camera of [71], a fairly simple model of the energy resolution takes into account the

uncertainty in the number of electron hole-pairs generated by each γ-ray interacting

with the detector [9]. The quantity of electrons N liberated created by each γ-ray

photon interacting with the detector is proportional to the actual energy e′ deposited

by the recoil electron and the mean ionization energy w of creating an electron hole-
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pair,

N =
e′

w
. (3.9)

Ideally the quantity of electrons liberated would be exactly N . However, there is

a statistical element to the number of electrons liberated with an observed variance

proportional to N . The Fano factor f [9] is used to model the variance in the quantity

of electrons liberated,

σ2
N =

fe′

w
. (3.10)

The electronics of the silicon detector also have a read-out noise associated with the

actual charge measurement, which is typically modeled as a zero-mean gaussian r.v.

with variance σ2
ro. A reasonable assumption is that the read-out noise is independent

of the ionization noise since they are due to completely separate physical processes.

The total variance σ2
T is simply the sum of the component variances. Since σ2

ro and σ2
T

are typically given in units of (eV )2 whereas the ionization noise σ2
N given in (3.10)

is in units of (electrons)2, there is a conversion factor of w2,

σ2
T = w2σ2

N + σ2
ro

= fwe′ + σ2
ro. (3.11)

The measured energy e to a given noiseless energy e′ can then be modeled as a

gaussian r.v. with conditional density

p(e|e′) =
1√

2πσ2
T

e
−1

2

(e− e′)2

σ2
T (3.12)

where σ2
T is given in (3.11). For silicon at room temperature, w ≈ 3.62 ( eV

e−
) and

f ≈ 0.14.

The 2nd detector in the experimental Compton camera is an Anger camera, con-

sisting of a grid of photo-multiplier tubes behind a slab of scintillating crystal. Since
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the energy resolution is nearly an order of magnitude worse than a solid state detec-

tor, and there are large number of errors sources due to tube calibration, incomplete

absorptions in the scintillator, etc., a simpler model is used. One is to calibrate the de-

tector with a mono-energetic source and give the energy resolution as a percent-ratio

of the photopeak width to the source energy, assuming an approximately Gaussian

response of the detector energy measurement. The energy e measured for a noiseless

energy e′ deposited can also be modeled as a Gaussian r.v. with conditional density

p(e|e′) =
1√

2π
√
ke′

e
−1

2

(e− e′)2

ke′ (3.13)

where k is the energy resolution factor determined by calibration. For the NaI 2nd

detector used in the experimental Compton camera, typical FWHM energy resolutions

are ≈ 9%− 15% of the source energy [58,71].

3.4 Position Resolution

For the experimental Compton camera [71], the 1st detector is a Silicon chip

with pixel size ≈ 1.4mm × 1.4mm × 0.03mm, while the 2nd detector is an Anger

camera with spatial resolution ≈ 3mm × 3mm with a scintillation crystal 1.27cm

thick. We will assume that the spatial errors due to quantization are negligible, thus

the measured position z is approximately identical to the noiseless position z′. A

reasonable model for the position measurement conditional densities is

p(z|z′) = δ(z − z′). (3.14)

3.5 Transmission and Attenuation

Given a photon pencil-beam with initial flux Φ0 transmitting a distance r through

a material or mixture of materials with path-dependent linear attenuation coefficient

function µ(r), the resulting flux Φ(r) is given by Beer’s law [78],

Φ(r)/Φ0 = e−
∫ r
0 µ(l) dl
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which models the Probability of Transmission of a photon through an attenuating

medium. Note that the linear attenuation coefficient function is dependent on the

photon energy e, i.e. µ = µ(r, e). For notational simplicity we will implicitly assume

this energy dependence in the following derivations.

Define T as the event that a photon transmits a distance r through a material

with attenuation coefficient µ(r). The probability of transmission P (T ) as a function

of r is given by

PT (r) = e−
∫ r
0 µ(l) dl (3.15)

for r ∈ [0,∞). Define A as the event that a photon is absorbed within (i.e. does not

transmit through) the material. Since the event A is mutually exclusive of the event

T, the probability of absorption P (A) as a function of r is given by

PA(r) = 1− PT (r)

= 1− e−
∫ r
0 µ(l) dl. (3.16)

The absorption density pA(r) = d
dr
PA(r) is therefore

pA(r) = e−
∫ r
0 µ(l) dlµ(r), (3.17)

and for any ro ∈ [0, r) the absorption density pA(r) can be rewritten as

pA(r) = e−
∫ ro
0 µ(l) dl e−

∫ r
ro

µ(l) dlµ(r)

= PT (ro) e
−

∫ r
ro

µ(l) dlµ(r).

For r ≥ ro we can define the conditional density pA(r|ro) as

pA(r|ro) = e−
∫ r

ro
µ(l) dlµ(r) (3.18)

which gives

pA(r) = PT (ro)pA(r|ro) (3.19)
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and ∫ r

ro

pA(r) dr = PT (ro)

∫ r

ro

pA(r|ro) dr

= PT (ro)
(
1− e−

∫ r
ro

µ(l) dl
)

= PT (ro)PA(r|ro). (3.20)

Thus the probability of absorption within the interval [ro, r) is simply the product of

the probability of transmission PT (ro) through the interval [0, ro) and the conditional

probability of absorption PA(r|ro) within the interval [ro, r).

In order to calculate the probability of absorption of a photon by an object,

we need to integrate over all space subtended by the object. Consider a point-source

photon emitter at spatial location x0 and an arbitrary object O as shown in Figure 3.6.

Because of the form of the attenuation equations, spherical coordinates with origin

at x0 are the most convenient way to solve this problem. For notational simplicity

we will express the direction on the unit sphere as a unit vector Ω rather then as a

pair of angles.

Figure 3.6: Attenuation geometry through an arbitrary object.

Let SΩ be the set of all unit direction vectors Ω with origin at x0 subtended by

the object O, let dΩ be a differential solid angle about the unit vector Ω, and let

[ra, rb) = [ra(Ω), rb(Ω)) be the interval intercepted by the object O in the direction Ω

relative to origin x0. The dependence of the integration limits ra, rb on Ω is due to
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the different path lengths through the object as a function of path direction Ω. The

total probability of absorption within the object O conditioned on an emission from

x0 is thus given by integrating (3.19) over S and r,

P (A|x0) =

∫
SΩ

PT (ra(Ω))

∫ rb(Ω)

ra(Ω)

pA(r|ra(Ω),Ω, x0)p(Ω|x0) dr dΩ (3.21)

where pA(r|ra(Ω),Ω, x0) is simply (3.18), conditioned on a particular radial interval

defined by Ω and x0. By substituting the inner integral over r in equation (3.21)

with (3.20) and assuming a uniform distribution of emission directions over the unit

sphere (i.e. p(Ω|x0) = 1
4π

) gives

P (A|x0) =
1

4π

∫
SΩ

PT (ra(Ω))PA(rb(Ω)|ra(Ω),Ω, x0) dΩ. (3.22)

Solving for the outer integral over Ω will (in general) not have a closed-form

solution and must be solved using numerical techniques [1, 46]. More important,

however, is the technique of modeling the overall probability of an event as a chain

of conditional probabilities. This will be used extensively throughout this chapter.

3.6 Detection

Let A1 be the event that a γ-ray is absorbed by the 1st detector, let C1 be the

event that the γ-ray Compton scatters off the 1st detector, and let E1 be the event

that an energy measurement occurs within the measurement threshold of the 1st

detector. Let A2 be the event that a γ-ray is absorbed by the 2nd detector and let E2

be the event that an energy measurement occurs within the measurement threshold

of the 2nd detector. Define the overall detection event D as the intersection of the

events A1, E1, C1, A2, E2. The overall probability of detection, conditioned on an

emission from x0, is

P (D|x0) = P (E2, A2, C1, E1, A1|x0). (3.23)

Coincidence event measurements in a Compton SPECT camera are typically given

as a vector y with components {e2, z2, e1, z1}, where e1, e2 are the (scalar) energy

38



measurements from the 1st and 2nd detector and z1, z2 are the respective position

measurement vectors. With this in mind, the previous expression for P (D|x0) can

now be expressed as an integral over all measurements y within the set of detectable

measurements S,

P (D|x0) =

∫
S

P (C1|y, x0)p(y|x0) dy, (3.24)

where dy = de2 dz2 de1 dz1, dx = dx dy dz, and S = (Se2 , Sd2, Se1 , Sd1) is the set of

all possible measurements (e2, z2, e1, z1) that are counted as valid measurements

and/or within the detection threshold. Note that the event C1, the event that the

γ-ray undergoes a Compton scatter, is not directly measurable.

Since the physics modeling photon scatter and attenuation are easier to describe

in spherical coordinates, we will express the event measurement vector in terms of

their spherical coordinate equivalents. Let y′ = (e′2, z
′
2, e

′
1, z

′
1) be the noiseless event

vector of the γ-ray’s journey through the detectors. Given z′1, z
′
2, define two spherical

coordinates with origins at x0 and z′1. For now, we will express the direction on the

unit sphere as a unit vector Ω′ = Ω′(ψ′, φ′) rather than as a pair of angles (ψ′, φ′)

where

r′1 = ‖z′1 − x0‖, (3.25)

Ω′
1 =

z′1 − x0

r′1
, (3.26)

r′2 = ‖z′2 − z′1‖, (3.27)

Ω′
2 =

z′2 − z′1
r′2

, (3.28)

as shown in Figure 3.7.

Let b′ = (e′2, r
′
2,Ω

′
2, e

′
1, r

′
1,Ω

′
1) be the noiseless measurement vector y′ represented

in spherical coordinates. Integrating over all possible noiseless measurement b′ gives

P (D|x0) =

∫
S

∫
P (C1|b′, x0)p(b

′|x0)p(y|b′, x0) db
′ dy, (3.29)
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Figure 3.7: Geometry of coincidence measurements in Compton SPECT.

where p(y|b′, x0) is the response function of the measurement y to a particular noise-

less value b′ and initial emission point x0 (i.e. the measurement blur kernel). The

expression P (C1|b′, x0)p(b
′|x0) db

′ inside (3.29) can be re-written by iterating condi-

tional distributions, and noting that db′ = de′2 dr
′
2 dΩ

′
2 de

′
1 dr

′
1 dΩ

′
1.

P (C1|b′, x0)p(b
′|x0) db

′ =

p(e′2|r′2,Ω′
2, e

′
1, C1, r

′
1,Ω

′
1, x0)pA(r′2|Ω′

2, e
′
1, C1, r

′
1,Ω

′
1, x0)

p(Ω′
2, e

′
1|C, r′1,Ω′

1, x0)P (C|r′1,Ω′
1, x0)pA(r′1|Ω′

1, x0)

p(Ω′
1|x0)de

′
2 dr

′
2 dΩ

′
2 de

′
1 dr

′
1 dΩ

′
1 . (3.30)

For a typical γ-ray detector of finite size, the integral over r′1 will be over some

finite interval [r′1a, r
′
1b), in which r′1a is the radial distance where the pencil-beam in

the direction of Ω′
1 first intercept the 1st detector, and likewise for the integral over

r′2. Substituting equation (3.19) into the absorption density terms in (3.30) gives

pA(r′1|Ω′
1, x0) = pA(r′1|r′1a,Ω

′
1, x0)PT (r′1a|Ω′

1, x0), (3.31)

and

pA(r′2|Ω′
2, e

′
1, C1, r

′
1,Ω

′
1, x0) =

pA(r′2|r′2a,Ω
′
2, e

′
1, C1, r

′
1,Ω

′
1, x0)PT (r′2a|Ω′

2, e
′
1, C1, r

′
1,Ω

′
1, x0). (3.32)
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Each term can now be identified by inspection.

• p(Ω′
1|x0) dΩ

′
1

Probability of a γ-ray emission from x0 emitted in direction Ω′
1. Nominally

distributed uniformly over the unit sphere, i.e. p(Ω′
1|x0) = 1

4π
.

• PT (r′1a|Ω′
1, x0)

Probability of transmission from the point x0 in direction Ω′
1 for a distance r′1a.

This is also referred to as the source attenuation factor.

• pA(r′1|r′1a,Ω
′
1, x0) dr

′
1

Conditional probability of absorption within interval [r′1a, r
′
1a + dr′1) inside the

first detector, conditioned on a γ-ray emission from x0 emitted in direction Ω′
1.

• P (C|r′1,Ω′
1, x0)

Probability of a Compton scatter, conditioned on a γ-ray emission from x0

emitted in direction Ω′
1 being absorbed by the 1st detector at position r′1. For

the purposes of this paper, this probability is given by the ratio of the Compton

scatter cross-section to the total material cross-section (µc

µt
). Note that bulk

properties are assumed, and any directionally-dependent crystalline effects are

ignored.

• p(Ω′
2, e

′
1|C1, r

′
1,Ω

′
1, x0) dΩ

′
2 de

′
1

Probability of a γ-ray depositing energy e′1 and scattering in direction Ω′
2. Nom-

inally given by the Compton scattering jpdf (3.8).

• PT (r′2a|Ω′
2, e

′
1, C1, r

′
1,Ω

′
1, x0)

Probability of transmission from the point r′1 in direction Ω′
2 for a distance r′2a.

When the path between the two detectors is through air, this term is negligible.

However, for certain detector geometries where the path between the 1st and

2nd detector is through tissue [111], this term may also include attenuation.
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Note the energy dependence on e′1, since the transmitted photon has energy

eo − e′1, where eo is the initial photon energy.

• pA(r′2|r′2a,Ω
′
2, e

′
1, C1, r

′
1,Ω

′
1, x0) dr

′
2

Conditional probability of absorption within interval [r′2a, r
′
2a + dr′2) inside the

second detector, conditioned on a γ-ray Compton scattering at location r′1 and

heading off in direction Ω′
2 with energy eo − e′1.

• p(e′2|r′2,Ω′
2, e

′
1, C1, r

′
1,Ω

′
1, x0) de

′
2

Probability of depositing energy e′2 in 2nd detector, conditioned on all the pre-

vious terms. Assuming complete absorption, it is given by δ(e′2 − (eo − e′1)).

The Compton scattering jpdf (3.8) is typically given as a function of the noiseless

out-of- and in-plane scattering angles (ϕ′, θ′). The noiseless in-plane scatter angle θ′

can be calculated directly from the incoming and outgoing γ-ray direction vectors Ω′
1

and Ω′
2.

cos θ′ = Ω′
1
T
Ω′

2. (3.33)

The expression for the out-of-plane scattering angle ϕ′ is a bit involved. However, a

reasonable assumption is that the incoming γ-ray is unpolarized1 before scattering.

Then the out-of-plane angle ϕ′ is uniformly distributed over [−π, π), and is inde-

pendent of the in-plane scattering angle θ′ and the energy deposited e′1. Under this

condition the Compton scattering jpdf is equivalent to the following expression,

p(Ω′
2, e

′
1|C1, . . .) = p(ϕ′, θ′, e′1|C1, . . .)

= p(ϕ′|C1, . . .)p(θ
′, e′1|C1, . . .)

=
1

2π
p(θ′, e′1|C1, . . .), (3.34)

1Compton scatter does polarize the γ-ray, which must be taken into account when modeling mul-
tiple scattering events. At the particle energies involved in gamma-ray astronomy [65] the probability
of multiple scattering events is significant.
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where p(θ′, e′1|C1, . . .) is the expression given earlier in (3.8) after substituting e′γ =

eo − e′1.

Spherical coordinates have been used to model the scattering physics up to now.

Since most detectors can be modeled as blocks or thin plates, we will convert to

cartesian coordinates as needed in order to simplify some expressions for the overall

detection sensitivity and for the measurement probability expression to be derived

later.

The unit vector Ω′ used throughout the derivation is composed of two spherical

coordinate angles, the azimuthal angle ψ′ ∈ [−π, π) and elevation angle φ′ ∈ [0, π)

where

Ω′ = [sinφ′ cosψ′, sinφ′ sinψ′, cosφ′]T , (3.35)

and the differential solid angle dΩ′ is

dΩ′ = sinφ′ dφ′ dψ′. (3.36)

Since the Jacobian involved in converting between spherical and cartesian coordinates

is |J | = sinφ′ r′2, the differential element db′ becomes

db′ = de′2 dr
′
2 dΩ

′
2 de

′
1 dr

′
1 dΩ

′
1

= sinφ′1 sinφ′2 de
′
2 dr

′
2 dφ

′
2 dψ

′
2 de

′
1 dr

′
1 dφ

′
1 dψ

′
1

= sinφ′1 sinφ′2
de′2 dx

′
2 dy

′
2 dz

′
2

|J2|
de′1 dx

′
1 dy

′
1 dz

′
1

|J1|

=
de′2 dz

′
2

r′2
2

de′1 dz
′
1

r′1
2

=
1

r′2
2

1

r′1
2 dy

′, (3.37)

where z′1 = (x′1, y
′
1, z

′
1)

T , dz′1 = dx′1 dy
′
1 dz

′
1, and similarly for z′2. Substituting these

previous expressions into (3.30) results in

P (C1|b′, x0)p(b
′|x0) db

′ = P (C1|y′, x0)p(y
′|x0)

1

r′2
2

1

r′1
2 dy

′ (3.38)
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and

P (C1|y′, x0)p(y
′|x0)

1

r′2
2

1

r′1
2 dy

′ =

1

8π2

(
µc

µt

)
p(e′2|r′2,Ω′

2, . . .)pA(r′2|r′2a,Ω
′
2, . . .)

PT (r′2a|Ω′
2, e

′
1, . . .)p(θ

′, e′1|C1, r
′
1, . . .)pA(r′1|r′1a,Ω

′
1, . . .)

PT (r′1a|Ω′
1, x0)

1

r′2a
2

1

r′1a
2 dy

′. (3.39)

The measurement conditional density p(y|y′, x0) is the measured response y to a

noiseless measurement y′. A reasonable assumption is to assume the individual event

measurements (e2, z2, e1, z1) in y are conditionally independent of each other and of

the initial source location x0,

p(y|y′, x0) = p(e2|e′2) p(z2|z′2) p(e1|e′1) p(z1|z′1). (3.40)

Combining (3.40), (3.39), and (3.29) gives

P (D|x0) =
1

8π2

(
µc

µt

)∫ ∫
p(e′2|r′2,Ω′

2, . . .)pA(r′2|r′2a,Ω
′
2, . . .)

PT (r′2a|Ω′
2, e

′
1, . . .)p(θ

′, e′1|C1, r
′
1, . . .)pA(r′1|r′1a,Ω

′
1, . . .)

PT (r′1a|Ω′
1, x0) p(e2|e′2) p(z2|z′2) p(e1|e′1) p(z1|z′1)

1

r′2a
2

1

r′1a
2 dy

′ dy. (3.41)

After all is said and done, we are still left with the problem of integrating (3.41)

over all spatial dimensions and two energy measurements along with their noiseless

values, at minimum a 2× 8 = 16 (!) dimensional numerical integral for a 2D source,

evaluated for each source location point x0 of interest. The key is to make a few

simplifying assumptions that allow a relatively straightforward solution to (3.41) but

still capture the dominant measurement errors.

3.7 Simplifications

The following simplifications to (3.41) result in an expression for the detection

probability that only involves a 4-dimensional numerical integral. These simplifying
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assumptions will be violated in some form or another in Sections 3.9 and 3.10. How-

ever, the resulting expression retains the dominant error sources and can be calculated

in a reasonable time using fast adaptive numerical quadrature techniques [46]:

• No attenuation or internal scattering within the source object.

• Attenuation in the open air between the detectors is negligible.

PT (r′1a|Ω′
1, x0) = 1 (3.42)

PT (r′2a|Ω′
2, e

′
1, . . .) = 1 (3.43)

• Constant isotropic attenuation in the detectors, i.e. µ(l) = µ.

• Thin planar first detector.

Note that the term PT (r′2a|Ω′
2, e

′
1, . . .) (3.43) includes the probability of trans-

mission of a photon exiting the first detector. We will assume this occurs with

probability 1.

• Negligible edge effects when integrating over thin first detector.

• Thick planar second detector.

• All spatial measurements are uncorrupted by noise or quantization errors (3.14),

i.e. no finite detector resolution or depth-of-interaction effects.

• Gaussian distributed energy measurement errors in the 1st detector (3.12).

• Gaussian distributed energy measurement errors in the 2nd detector (3.13).

• Complete energy deposition in the 2nd detector

p(e′2|r′2,Ω′
2, . . .) = δ(e′2 − (eo − e′1)). (3.44)
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• The set Se2 of detectable 2nd detector energy measurements e2 is sufficiently

wide to capture all possible events,∫
Se2

p(e2| . . .) = 1. (3.45)

With these assumptions in mind, we start with the sifting property of the δ-function

in which the integrals over all noiseless spatial locations z′1, z
′
2 in (3.41) simplify to

P (D|x0) =
1

8π2

(
µc

µt

)∫
S

∫
∀e′2

∫
∀e′1

p(e′2|r2,Ω2, . . .)pA(r2|r2a,Ω2, . . .)

PT (r2a|Ω2, e
′
1, . . .)p(θ, e

′
1|C1, r1, . . .)pA(r1|r1a,Ω1, . . .)

PT (r1a|Ω1, x0) p(e2|e′2) p(e1|e′1)
1

r2a
2

1

r1a
2
de′1 de

′
2 dy.

Since by assumption there is no attenuation outside the detectors, and thus no other

dependencies on the noiseless energies e′1, e
′
2 besides the terms p(e′2|r2,Ω2, . . .), p(θ, e

′
1),

p(e2|e′2) and p(e1|e′1), we can integrate separately over e′1 and e′2 to account for the

energy measurement error,

p(θ, e1|C1, r1, . . .) =

∫
p(θ, e′1|C1, r1, . . .)p(e1|e′1) de′1

p(e2|r2,Ω2, . . .) =

∫
p(e′2|r2,Ω2, . . .)p(e2|e′2) de′2.

Note that in actual implementation the most efficient method would be to precom-

pute this integral numerically and evaluate by interpolation. Combining with the

assumption of zero attenuation gives

P (D|x0) =
1

8π2

(
µc

µt

)∫
S

p(e2|r2,Ω2, . . .)pA(r2|r2a,Ω2, . . .)

p(θ, e1|C1, r1, . . .)pA(r1|r1a,Ω1, . . .)
1

r2a
2

1

r1a
2
dy.

As for the attenuation term inside the first detectors, it can be simplified by the

following: Let l1 = r1 − r1a be the path length through the first detector from the

front face location r1a to the detection location r1. Next, we will judiciously define

the spherical coordinates (ψ1, φ1) relative to the cartesian coordinates (x1, y1, z1) such

46



that φ1 is the angle of incidence with the (x1, y1) plane of the detector face as in shown

in Figure 3.8. With this definition, the path-length is related to the depth z1 inside

Figure 3.8: Angle of incidence geometry relative to detector face.

the detector by z1 = l1 cosφ1,

pA(r1|r1a,Ω1, . . .)
dx1

r1a
2

= µ(r1) e
−

∫ r1
r1a

µ(ζ) dζ
dz1

dx1 dy1

r1a
2

= µ1 e
−µ1(r1−r1a) dz1

dx1 dy1

r1a
2

= µ1 e
−µ1l1 dz1

dx1 dy1

r1a
2

= µ1 e
−µ1l1

dz1

cosφ1

dx1 dy1 cosφ1

r1a
2

= µ1 e
−µ1l1 dl1

dx1 dy1 cosφ1

r1a
2

, (3.46)

where µ1 is the constant attenuation coefficient of the first detector at the initial

particle energy e0. Noting that dΩ1 = dx1 dy1 cos φ1

r1a
2 , we can evaluate this integral

in spherical coordinates along the radial l1 direction with upper integration limit

l = tz
cos φ1

, where tz is the thickness of the first detector, and then convert back to

cartesian coordinates.∫
Sd1

pA(r1|r1a, . . .)
dx1

r1a
2

=

∫
Sd1

∫ l1= tz
cos φ1

l1=0

µ1 e
−µ1l1 dl1

dx1 dy1 cosφ1

r1a
2

=

∫
Sd1

(1− e
−µ1

tz
cos φ1 )

dx1 dy1 cosφ1

r1a
2
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where r1a is the euclidean distance between the emission point x0 and the measured

detection point x1 in the first detector. Assuming a thin first detector, µ1tz
cos φ1

� 1, we

can linearize the exponential and use the approximation 1− e−x ≈ x,∫
Sd1

pA(r1|r1a, . . .)
dx1

r1a
2
≈ µ1tz

∫
Sd1

dx1 dy1

r2
1a

, (3.47)

where the cosφ1 term cancels out.

A similar expression can be derived for the 2nd detector. By assuming a thick sec-

ond detector that it is effectively an ideal attenuator at all scattered particle energies

e2, the exponential term is approximately unity, (1− e
−µ2

tz
cos φ2 ) ≈ 1 and∫

Sd2

pA(r2|r2a, . . .)
dx2

r2a
2
≈
∫

Sd2

dx2 dy2 cosφ2

r2a
2

, (3.48)

which is simply an integral over all solid angle subtended by the 2nd detector surface

(x2, y2) with respect to an initial scattering point in the first detector.

Note that there is an implicit assumption that the distance terms r1a and r2a do

not vary over the (small) z-axis of the first detector and can be approximated by using

the detector z-axis as an origin in order to avoid an extra integral in the sensitivity

calculation. In addition, we are linearizing the depth dependency in the first detector

and ignoring it in the second detector. This is justified by our assumption of higher

sensitivity of the Compton scatter statistics to depth effects in the first detector than

the absorption of photons in the secondary detector

3.8 Sensitivity and Measurement Probability

Combining these approximations together gives

P (D|x0) =
1

8π2

(
µc

µt

)
(µt tz)

∫
Sd1

1

r2
1a

∫
Sd2

cosφ2

r2a
2

∫
Se1

p(θ, e1|C1, r1, . . .)[∫
Se2

p(e2|r2,Ω2, . . .) de2

]
de1 dx2 dy2 dx1 dy2

By previous assumption, the energy window on the 2nd detector is sufficiently wide

enough such that
∫

Se2
p(e2|r2,Ω2, . . .) de2 ≈ 1. This combined with the assumption of
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negligible source attenuation when exiting the first detector and of ideal attenuation

in the second detector results in no other dependency on e1 besides p(θ, e1|C1, r1, . . .).

The integral over all e1 ∈ Se1 can now be performed,

f(θ) =

∫
Se1

p(θ, e1|C1, r1, . . .) de1 (3.49)

where f(θ) is the unnormalized marginal density of θ of all energy measurements e1

within detection threshold Se1 . Like before, f(θ) can be integrated ahead of time

using numerical techniques and evaluated by interpolation.

The final result for the detection sensitivity is

P (D|x0) =
1

8π2

(
µc

µt

)
(µt tz)

∫
1

r2
1a

∫
cosφ2

r2
2a

f(θ) dA2 dA1 (3.50)

where the integral is over the surface areas A1, A2 of the first and second detectors.

Note that the unnormalized marginal f(θ) can be equivalently expressed as f(cos θ)

since the scattering angle θ varies between [0, π). This is a more efficient representa-

tion since cos θ (along with cosφ) can be calculated directly from the incoming and

outgoing γ-ray direction vectors Ω′
1 and Ω′

2, which avoids a computationally expensive

calculation of a transcendental function.

The list-mode measurement probability (or backprojection) for some measurement

vector y = (e2, z2, e1, z1) is solved for from the definition of the detection probability,∫
S

p(y|D, x0)P (D|x0) dx0 , P (D|x0).

From the assumptions and simplifications outlined earlier, one can easily derive the

following expression for the measurement probability by inspection:

p(y|D, x0)P (D|x0) =
1

8π2

(
µc

µt

)
(µt tz)

(
4z
tz

)
1

r2
1a

cosφ2

r2
2a

p(θ, e1) (3.51)

where µt and (µc/µt) are the linear attenuation coefficient and Compton fraction for

the first detector material at the particle initial energy. The Compton scattering jpdf

p(θ, e1) (3.8), the geometric terms cosφ, r1a, r2a, as well as the fractional depth of
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interaction (4z/tz) in the first detector are calculated from the measured particle

positions z1 and z2 and source pixel position x0. Note that the dependency on the

second detector measured energy e2 drops out since the event E2 = {e2 : e2 ∈

Se2} is assumed to occur with probability 1. Figure (3.9) shows a representative

backprojection sliced by a 2D plane, with the ideal conic section superimposed.

Figure 3.9: Representative Compton backprojection onto a plane (gray) with the
ideal conic section superimposed (white).

In addition, the constant term 1
8π2

(
µc

µt

)
(µt tz) can be left out of (3.50) and (3.51),

since it will cancel out in the ML-EM update equations (2.25) or only contribute an

additive constant to the likelihood function (2.12).
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3.9 Reconstructed Images from Simulated 3D Data

In order to investigate the relative influence of various sources of error, a simulation

study was performed where the various sources of error could be controlled. Compton

SPECT list-mode coincidence data was generated by a Monte Carlo based simula-

tion [107], which included the effects of Doppler broadening, collimator penetration,

incomplete absorptions, detector measurement errors, geometric mis-alignments, and

other phenomena. The simulated data was made up of six different cases. In the first

case, there was no source of error or modeling uncertainty. For each subsequent case,

additional sources of error were included in order to see how they would affect the

reconstructed imagery. Table 3.1 gives an outline of the specific error sources as well

as the reconstructed point-source full-width-half-maximum (FWHM). The simulated

detector geometry was similar to that used in section 3.10. In addition, it included

the effect of a lead collimator between the source and first detector in order to block

any primary detections from occurring in the second detector.

Figures 3.10 - 3.21 show reconstructed γ-ray source distributions from a set of

simulated emission sources. The simulated emission source distribution consisted of

four identical point sources of 131I (364keV). One point source was aligned 10.54cm

in front of the first detector, with the remaining three point sources positioned 1.0cm

away along different axis. The sources were rotated in 10 deg increments during data

collection for a total of 360 deg, and the resulting reconstructed source intensity is fully

tomographic. The reconstruction domain size was 4cm×2cm×4cm with 81×41×81

pixels, for a sampling density of 0.05cm/sample. Over 50000 events were simulated,

and all coincidence events are correctly matched (i.e. no incorrect coincidences). Only

data with 1st-detector energy measurements between 20keV and 150keV were used,

which corresponded to nominal scattering angles ranging from 23 deg to 90 deg.

Images were reconstructed using unregularized Maximum-Likelihood (ML) List-

mode OSEM for 20 iterations, with 5-OSEM subsets per iteration, on 50000 counts.
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Case Error Sources FWHM (cm)

1 None 0.062

2 Doppler broadening 0.091

3 Doppler broadening 0.148
Collimator penetration

4 Doppler broadening 0.225
Collimator penetration
Error in 1st detector energy measurement (2keV)

5 Doppler broadening 0.269
Collimator penetration
Error in 1st detector energy measurement (2keV)
Error in assumed tomographic rotation axis (1mm)

6 Doppler broadening 0.250
Collimator penetration
Error in 1st detector energy measurement (2keV)
Error in assumed collimator position (1mm)

Table 3.1: Sources of error present in each of the simulated data reconstruction cases,
along with the resulting FWHM of the center point source.

The backprojection values outside a cylindrical field-of-view centered about the to-

mographic (vertical) rotation axis as well as below a pre-determined threshold were

set to 0 to enforce a 5%-sparsity in order to minimize disk storage requirements. The

reconstructed images are horizontal planar slices at y=0.0cm, resulting in three point

sources in the field-of-view.

3.10 Reconstructed Images from Measured 2D Data.

Figures 3.22 - 3.27 show reconstructed γ-ray source distributions for a 99Tc (140keV)

point-source and a disk extended-source. The sources were aligned vertically 11cm in

front of the first detector, and data was collected separately for the two sources. For

both sources, the rotation angle was kept fixed. Thus only 2D (i.e no tomographic)

information was collected. The detection energy windows were 20keV–43keV on the

first detector, and ≥ 114keV on the energy sum between the two detectors. Further

details of the detector configuration can be found in [71].
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A total of 105 detections were collected from the point-source, and 77590 detections

were collected from the disk extended source. The two datasets were then combined

and reconstructed as if both sources were present at the same time. List-mode ML-

EM [10,84] was used for reconstruction with two additional approximations. First, to

speed up the computation of the backprojections they were forced to a 10% sparsity by

truncating small values to 0. Second, a 4-subset Ordered Subset EM (OS-EM) [62]

routine was used to speed convergence. For the point-source alone, the observed

FWHM was approximately 8.9mm, while for the combined point and disk extended

source data the central peak FWHM was 11.2mm.

3.11 Discussion

From examination of figures 3.10 and 3.10, it is clear that when the model used

for the backprojection calculation fits the data the resulting images are ideal. In-

deed, the three point sources are almost perfect delta functions to within sampling

error. Closer examination of figure 3.11 shows that the center point does not have

the exact same amplitude as the point 1.0cm away, which could possible be due to

statistical fluctuation in the estimate and/or not running the iterative algorithm to

full convergence.

The addition of Doppler broadening (figures 3.12 - 3.13) appears to broaden the

reconstructed point responses as well as introduce low-level noise. As more uncer-

tainty and error source are introduced into the data, spike-like artifacts along the

periphery of the reconstruction field-of-view begin to appear in the simulated 3D

reconstructions (figures 3.14 - 3.21). A possible source of these artifacts could be

inconsistent data in that the detected measurement was inconsistent with the valid

field-of-view through the collimator. Thus the most “inconsistent” location for a pos-

sible source location would be as far away from the true source positions as allowed

by reconstruction domain.
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What is especially striking in the simulated data reconstructions is the sensitivity

to model parameters such as tomographic center-of-rotation (figures 3.18, 3.19) and

collimator position (figures 3.20, 3.21). A small shift on order of 1mm dramatically

increases the artifacts, presumably due to inconsistent data, as compared to when the

positions were modeled correctly (figures 3.10 - 3.15). The experimental Compton

SPECT system used to collect the 2D data did not have any sort of precision alignment

system, but instead relied upon the experimenter to align and measure by hand. Thus

a tolerance on order of a few millimeters is within reason, which may go towards

explaining the artifacts along the reconstruction domain periphery (figures 3.22 -

3.27).

There is one major discrepancy between the reconstructions of the measured and

simulated data: over an order of magnitude difference in the point source resolution.

Two possibilities come to mind to explain this. First, the “point” source used in the

experiment was actually a finite-extent radioactive source placed in a small test tube.

Second, the simulated data did not include the possibility of mis-matched coincidence

detections.

A natural solution for dealing with inconsistent data would be regularization.

Each spike-like artifacts only affect a pixel or two, a local smoothing penalty between

neighboring pixels would help suppress these artifacts at the cost of smearing the

true reconstructed point-source. However, exploring the benefits of different types of

regularization was not pursued.
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Figure 3.10: Reconstruction from simulated 3D data: No Doppler broadening, no
collimator penetration.

Figure 3.11: Cross-section through reconstruction from simulated 3D data: No
Doppler broadening, no collimator penetration.
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Figure 3.12: Reconstruction from simulated 3D data: Doppler broadening, no colli-
mator penetration.

Figure 3.13: Cross-section through reconstruction from simulated 3D data: Doppler
broadening, no collimator penetration.

56



Figure 3.14: Reconstruction from simulated 3D data: Doppler broadening and colli-
mator penetration.

Figure 3.15: Cross-section through reconstruction from simulated 3D data: Doppler
broadening and collimator penetration.
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Figure 3.16: Reconstruction from simulated 3D data: Doppler broadening, collimator
penetration, and 2keV FWHM first-detector energy measurement error.

Figure 3.17: Cross-section through reconstruction from simulated 3D data: Doppler
broadening, collimator penetration, and 2keV FWHM first-detector energy measure-
ment error.
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Figure 3.18: Reconstruction from simulated 3D data: Doppler broadening, collimator
penetration, 2keV FWHM first-detector energy measurement error, and 1mm-offset
in tomographic center of rotation.

Figure 3.19: Cross-section through reconstruction from simulated 3D data: Doppler
broadening, collimator penetration, 2keV FWHM first-detector energy measurement
error, and 1mm-offset in tomographic center of rotation.
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Figure 3.20: Reconstruction from simulated 3D data: Doppler broadening, collimator
penetration, 2keV FWHM first-detector energy measurement error, and 1mm vertical
offset in collimator slot position.

Figure 3.21: Cross-section through reconstruction from simulated 3D data: Doppler
broadening, collimator penetration, 2keV FWHM first-detector energy measurement
error, and 1mm vertical offset in collimator slot position.
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Figure 3.22: Reconstruction from measured 2D data of a point source.
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Figure 3.23: Cross-section through reconstruction from measured 2D data of a point
source.
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Figure 3.24: Reconstruction from measured 2D data of a disk-shaped extended source.
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Figure 3.25: Cross-section through reconstruction from measured 2D data of a disk-
shaped extended source.
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Figure 3.26: Reconstruction from combined measured 2D data of a point source and
disk-shaped extended source.
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Figure 3.27: Cross-section through reconstruction from combined measured 2D data
of a point source and disk-shaped extended source.
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CHAPTER 4

Simplifying Tomographic Reconstruction with

Optimized Binning

This chapter concerns acceleration of image reconstruction for emission tomo-

graphic modalities where equally-spaced measurement binning is impractical due to

the very high dimensional detector measurement space. The techniques described

herein are generally applicable to inverse problems with Poisson statistics.

Traditionally in emission tomographic modalities such as 2D SPECT and PET,

the detected photon measurements are quantized to one of a finite number of possible

measurement bins. This quantization is either done mechanically according to the

geometry of the detectors (i.e. PET detector ring elements, SPECT detector arrays)

or electronically in software (i.e. energy windows, binning of continuous position es-

timates). Typically, the measurements are binned uniformly with equal-sized bins

along each measurement dimension. For example, a 2D PET sinogram will have bins

spaced equally in angle and in radius, where the position of the bins are determined

by the relative acceptance angles and locations of the finite-size detector element pairs

in the PET ring. As pointed out in [10] and in previous chapters, when the dimen-

sionality of the measurement space is greater than 4 or more, uniform quantization

about each measurement axis becomes impractical. One wants fine binning along

each axis in order to minimize measurement error due to quantization or to exploit

the full resolution of the detectors. However, the total number of bins is geometrically
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increasing with the number of dimensions. This makes storage impractical for large

dimensional measurement spaces.

In list-mode reconstruction [10, 84], multiple attributes of each photon such as

position, energy, scatter angle, etc., are recorded as a point in a multi-dimensional

detector space. Each photon contributes individually to the likelihood function, and

the underlying source distribution can be estimated using maximum-likelihood based

estimation techniques. A failing of list-mode reconstruction is that it scales linearly

with the number of counts. Since each individual detection contributes to the over-

all likelihood function, the computational complexity and storage requirements are

proportional to the total number of counts. For example, given N source pixels to

estimate and M � N detections, list-mode ML-EM requires the calculation of an

M × N system matrix requiring B = o(ρMN) bytes of random access memory and

o(MN2) operations per iteration, assuming that the measurement back-projection

have an average sparsity of ρ < 1. Alternatively, for a fixed amount B, ρ, and N , the

maximum total number of measurement bins is M = o( B
ρN

).

For PET or mechanically collimated SPECT systems, the storage requirement is

not so bad since the back-projection sparsity ρ is on the order of a few percent. How-

ever, for imaging modalities that have non-sparse back-projections (such as Compton

SPECT), this is a major problem. For a “typical” 2-dimensional tomographic imaging

problem involving O(106) detections and O(1002) reconstruction pixels, the storage

requirement for the system matrix can easily be in the gigabyte range and an order

of magnitude larger for fully 3-dimensional tomographic imaging.

For Compton SPECT, several authors have proposed simplifying the system ma-

trix by factoring [56], exploiting symmetries [91], or simplifying the forward- and

back-projection operations [106]. Others have proposed variations on analytical cone-

beam [39] reconstruction algorithms including inverse filtering in spherical coordi-

nates [11,83]. Although analytical reconstruction techniques promise fast reconstruc-
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tion times, they suffer from the problems common to all analytical reconstruction

techniques: they rely on specific geometric assumptions (such as hemispherical de-

tectors), and they do not take into account the Poisson counting statistics and other

noise sources. In other areas of emission tomography, authors have proposed different

forward- and back-projection models in order to reduce the computational burden [64].

However, they suffer from noise artifacts precisely due to this mis-match [50,110].

As for statistically-based reconstruction, there has been much work in algorithms

that quickly maximize the likelihood function in the first few iterations such as Or-

dered Subsets1 EM (OSEM) based reconstruction techniques [34, 62], block-iterative

updates [20], and variations on algebraic reconstruction techniques [18,29] (of which

OSEM is a special case). Although one still needs to pre-compute the system matrix

or compute on-the-fly at each iteration, the reconstruction process can be sped up

considerably by a block-by-block update of the estimated source distribution, result-

ing in an effective operation count of O( M
Ns
N2) where Ns is the number of subsets

or blocks used in the block-by-block update. However, convergence properties and

image quality of the resulting estimates from some of these algorithms are still open

to debate [99]. In either case, the scalability issue remains as high efficiency fully 3D

modalities (N ≥ O(1003)) which collect massive amounts of counts (M ≥ O(106)) are

developed. Thus we are faced with the choice of either keeping all the measurements

in their full resolution and accepting the storage requirements for the backprojections,

or binning the data and accepting the loss in both measurement and reconstruction

fidelity due to quantization.

As a study of how quantization affect reconstruction image quality, we investigated

how various PET sinogram sampling rates would change reconstructed image quality.

We simulated 106 coincidence detections for a 2D PET system, and reconstructed

the emission source density using List-mode MLEM. As a comparison, we binned

1Note that the idea of splitting the data into subsets appeared a few years earlier in [56].
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the data at various levels and reconstructed using the binned data. The resulting

emission density estimates were compared against the known true density and the

mean-squared error was calculated. The result was that after a certain sampling

density, there was no increase in image quality as measured by the reconstructed

image MSE, as shown in figure 4.1. From this we see that there is a tradeoff between

Figure 4.1: Reconstructed image MSE vs. number of quantizer cells for simulated 2D
PET data. The limiting case for 106 cells corresponds to list-mode reconstruction.

the level of measurement quantization and the quality of the reconstructed image. If

we can analytically predict this tradeoff, then we could choose the optimal binning

level for reconstruction for a desired image quality. Since the reconstruction would

be on binned data, there could be a dramatic decrease in the computation involved

as compared to a list-mode reconstruction.

A concept well known in the fields of information theory and communications is

Vector Quantization (VQ) [49,52]. Vector quantization is a multi-variable generaliza-

tion of simple binning. When the measurement bins are equally spaced about each

dimension, the intersection of the bins form equally-sized squares, cubical volumes,
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or hyper-cubical quantization regions. This concept can be generalized by defin-

ing the quantization regions by the intersection of multiple hyperplanes at arbitrary

(rather then orthogonal) orientations, resulting in non-uniform, variable size convex

polytopes which partition each quantization region in the measurement space. For

a k-dimensional measurement space with M -bins, rather than distributing O(M1/k)

bins uniformly along each dimension, one can conceivably place more bins in regions

of the detector space that are “more important” in some sense using a vector quan-

tizer. In the communications and source coding literature, this is referred to as a

bit allocation problem [3, 21, 22, 51, 89], in that one has log2(M) bits to allocate to

various dimensions. Allocation has a measurable effect on the quality of digitally

encoded measurements, and one would like to do so in an optimal manner. Vector

quantization has appeared in the medical imaging literature in the context of image

compression and classification [36, 37, 73] and the associated image quality loss [27]

has been studied. However, to our knowledge, little has been published on the design

of VQ’s specifically for image reconstruction tasks.

Just as in traditional uniform binning, the total number of detections in each

partition under VQ binning is a Poisson random variable, and the underlying source

distribution can be estimated using ML techniques. This concept applies to both

electronic collimation, where the binning can be done in software, along with finite-

size detectors that have already binned their measurements during data acquisition.

Indeed, the detections from multiple detectors can be summed into a single “meta-

bin”.

Since quantizing the continuous list-mode measurements into a finite number of

discrete bins involves information loss and a resulting reduction in image quality,

one obviously would want to find a quantizer that minimizes this loss. The mean

squared-error (MSE) distortion d(y,Q(y)) = E[‖y − Q(y)‖2] is the most commonly

used distortion measure for assessing the average effect of quantization. However, in
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many applications minimizing the squared-error distortion is far from optimal. For

example, in speech coding based on quantized linear-prediction coefficients, a popular

distortion measure is the log-spectral distortion [47]. In imaging, there are various

perceptual quality measures of interest besides squared-error [35].

In nuclear medical imaging, the difference between a radiotracer image of a patient

before and after the emergence of a tumor would manifest itself as a subtle variation

of a few pixels against an similar background image. Thus one is concerned not with

dramatic changes between two images, but rather with sensitivity to detecting small

changes in an initial image. Under this condition the fidelity of the image is not of

direct interest, but rather how image fidelity affects the performance of the detection

task [6–8,79]. An appropriate distortion function in this case would be the Kullback-

Liebler (KL) discrimination [15,28] as well as the loss in performance as measured by

the area under the Receiver Operating Characteristic (ROC) curve.

Previous authors have worked the problem of the loss in discrimination and gen-

eralized Ali-Silvey distances due to quantization [12, 85, 86], but only for the one-

dimensional (scalar) quantizers. For the multi-dimensional case, when the (non-

difference) distortion measure is a continuous non-negative locally-quadratic function,

the distortion of a high-rate vector quantizer (equivalently, a large number of parti-

tions) can be approximated by a weighted Euclidean norm of the true value y and

quantized value Q(y) [74, 76,77],

d(y,Q(y)) ≈ (y −Q(y))T B(y)(y −Q(y))

where B(y) is a k×k-dimensional matrix proportional to the Hessian of the distortion,

B(y) =
1

2
∇2d(y,Q(y))

∣∣∣y=y
l

which can be a function of the input vector y.

Gupta [53,54] solved for discrimination and ROC-curve optimal vector quantizers

by introducing the concept of a covariation profile matrix which is related to the
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normalized moment of inertia traditionally used in asymptotic quantization theory.

In this chapter, we will apply and extend Gupta’s work. We will present an optimal

vector quantizer that minimizes the reduction in the Kullback-Liebler discrimination

of the source due to quantizing its projections. This quantizer is dependent on the

source only through its projections, and can be quickly designed directly from the ob-

served list-mode measurements. The derivation of a discrimination-optimal quantizer

will follow the method outlined in [54]. In addition, we will derive optimal quantizers

with a variable point-density along with a fast and more efficient but sub-optimal

lattice-based quantizer.

4.1 Vector Quantization Background

An M -point, k-dimensional vector quantizer (VQ) [80] consists of a partition

S = {S1, . . . , SM} of Rk into M unique quantization cells, and a codebook C =

{y
1
, . . . , y

M
} consisting of M quantizer values2 in Rk. A k-dimensional vector y with

probability density p(y) is quantized to one of M codebook values by a quantization

rule Q(y),

Q(y) =
{
y

l
: y ∈ Sl, l = 1, . . . ,M

}
(4.1)

A block diagram of the VQ operator is given in Figure 4.2.

Figure 4.2: Block diagram of a vector quantizer.

The quantization rule is typically designed to minimize a function that measures

the error or distortion between y and Q(y). An example of a one-dimensional quan-

2The quantized values are also referred to as codevectors or reproduction vectors, which we will
use interchangeably.

70



tizer illustrating the codevector locations and quantization regions is shown in fig-

ure 4.3. Some example two-dimensional quantizers are shown in figure 4.4.

Figure 4.3: Example quantizer in R1, detailing the codevector locations and quanti-
zation regions.

Figure 4.4: Example quantizers in R2. The quantizers on the left and middle are
lattice quantizers and have a uniform point density, while the quantizer on the right
has a non-uniform point density.

4.2 MSE-Optimal Vector Quantizer

As mentioned above, the mean squared-error (MSE) d(y,Q(y)) = E[‖y−Q(y)‖2]

is the most commonly used distortion measure for assessing the average effect of

quantization. The mean-squared error normalized by the dimension k is given by

d(y,Q(y)) =
1

k

∫
S

p(y)‖y −Q(y)‖2 dy

=
1

k

M∑
l=1

∫
Sl

p(y)‖y − y
l
‖2 dy (4.2)

When the number of cells M is large and the corresponding quantization cells are

small, and assuming that the density p(y) is smooth over the extent of each cell, then
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the average distortion in (4.2) may be approximated by

d(y,Q(y)) ∼=
1

k

M∑
l=1

p(y
l
)

∫
Sl

‖y − y
l
‖2 dy

=
M∑
l=1

p(y
l
)m(Sl)V (Sl)

1+2/k, (4.3)

where “∼=” means to within an error of o(‖y − y
l
‖2), V (Sl) =

∫
Sl
dy is the volume of

the cell Sl, and m(Sl) is the normalized moment of inertia of the cell.

4.2.1 Normalized Moment of Inertia

Following the example of [52], we define the normalized moment of inertia of the

cell Sl about the point y
l
with respect to squared-error distortion as

m(Sl) =

∫
Sl
‖(y − y

l
)‖2 dy

kV (Sl)
1+2/k

. (4.4)

The normalized moment of inertia (NMI) is proportional to the mean-squared

quantization error in the cell Sl. The value of m(Sl) depends on the shape of the cell

and is invariant to its orientation or scale. For example, given a scaled version of a

cell αS = {u : ∃y ∈ S s.t. u = αy, u ∈ Rk}, it is trivial to show that m(αS) = m(S).

With this definition the interval (k = 1), square (k = 2), and cube (k = 3) all have

the same NMI of m = 0.0833. In dimension k = 2, the cell shape with the smallest

NMI that can partition R2 is the hexagon with m∗
2 ≈ 0.080188. In higher dimensions,

the values of the smallest possible NMI is not known, but lower bounds exists [26].

Figure 4.5 gives some examples of quantizer cells in R2 along with their associated

NMI. The key feature is that quantizer cells that are “rounder” have a smaller NMI.

Figure 4.5: Example quantizer cells in R2, along with their associated NMI.
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When the components of y have different dimensions or units, one may want to

weight the MSE calculation to normalize or whiten y. Thus, similar to the definitions

given in [74], we will also define a weighted normalized moment of inertia of the k-

dimensional quantization cell Sl with respect to a k× k-dimensional positive-definite

symmetric weighting matrix B as

mB(Sl) =

∫
Sl

(y − y
l
)T B(y − y

l
) dy

kV (Sl)
1+2/k

. (4.5)

The relationship between (4.4) and (4.5) can be shown by making the following change

of variables. Let u = B− 1
2y. Define the transformation of the region S by the matrix

B as

B[S] = {u : ∃y ∈ S s.t. u = By, u ∈ Rk}.

Then

mB(S) =

∫
S
(y −Q(y))T B(y −Q(y)) dy

kV (S)1+2/k

= |B|
1
k

∫
H

(u−Q(u))T (u−Q(u)) du

kV (H)1+2/k

= |B|
1
km(H) (4.6)

where H = B
1
2 [S].

Note that the matrix B can be a function of the input vector y. This results in

quantizer cells whose orientation varies from location to location and aligned with the

eigenvectors of B(y) (figure 3.6, pp. 74 of [54]). For the purposes of this dissertation

we will restrict ourselves to the case where B is a constant positive-definite matrix.

4.2.2 Covariation Profile

The normalized moment of inertia is invariant to cell orientation, and thus does

not give any information about the alignment of the cell axis. Gupta [54] defined

the normalized covariation profile of the cell to capture this orientation information.
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Although the covariation profile does not appear in the asymptotic analysis for the

quantizer MSE (section 4.2.3), it will be used extensively in the analysis of other

distortion measures.

The normalized covariation profile M(Sl) of the cell Sl about the point y
l

is a

k × k-dimensional matrix function,

M(Sl) =

∫
Sl

(y − y
l
)(y − y

l
)T dy

kV (Sl)
1+2/k

. (4.7)

Whereas the normalized moment of inertia m(S) is related to the mean-square er-

ror due to quantization, the normalized covariation profile M(S) is related to the

quantization error autocorrelation matrix [109].

The normalized covariation profile with respect to a positive-definite symmetric

weighting matrix B is given by

MB(S) =
B

1
2

∫
S
(y −Q(y))(y −Q(y))T dyB

1
2

kV (S)1+2/k
(4.8)

Similar to the normalized moment of inertia, the weighted and un-weighted normal-

ized covariation profile can be related by the change of variables u = B− 1
2y,

MB(S) =
B

1
2

∫
S
(y −Q(y))(y −Q(y))T dyB

1
2

kV (S)1+2/k

= |B|
1
k

∫
H

(u−Q(u))(u−Q(u))T du

kV (H)1+2/k

= |B|
1
k M(H). (4.9)

As with the NMI, the normalized covariation profile MB(S) is invariant to scaling of

the cell partition S and is related to the normalized moment of inertia via

m(S) = tr (M(S))

≥ k|M(S)|1/k. (4.10)

When the cell is symmetric the quantization error components are uncorrelated [109],

resulting in covariation profile that is a scalar multiple of the identity matrix and

equality in (4.10).
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4.2.3 Asymptotic MSE

To explore the asymptotic distortion as the number of cells M grows large, we

will define the point density ζ(y) of quantization points as

ζ(y) ∼=
1

MV (Sl)
if y ∈ Sl, (4.11)

where the fraction of quantization points in a small regionA is approximately ζ(y)V (A).

Lastly, define the continuous inertial profile function m(y) as the normalized moment

of inertia of cells in the neighborhood of y. Combining this definition and (4.11) with

(4.3) results in

d(y,Q(y)) ∼=
1

M2/k

M∑
l=1

p(y
l
)
m(y

l
)

ζ(y
l
)2/k

V (Sl). (4.12)

Since (4.12) is an approximation of a Riemann integral, by using a few continuity and

convergence assumptions [80] we can show that

lim
M→∞

M2/kd(y,Q(y)) =

∫
S

p(y)
m(y)

ζ(y)2/k
dy. (4.13)

Equation (4.13) is known as Bennett’s Integral and shows that asymptotically, distor-

tion falls off as a rate of M−2/k with a constant term that depends on the distribution

p(y), the local quantizer cell NMI m(y), and quantizer cell density ζ(y).

By Hölder’s inequality, one can solve for the optimal point density function ζ∗(y)

that minimizes the squared-error distortion in (4.13)

ζ∗(y) =
[p(y)m(y)]

k
k+2∫

S
[p(y)m(y)]

k
k+2dy

, (4.14)

and substituting (4.14) into (4.13) gives an expression for the distortion of an M -point

quantizer in Rk with the optimal cell density ζ∗(y),

d(y,Q(y)) ∼=
1

M2/k

[∫
S

[p(y)m(y)]
k

k+2 dy

] k+2
k

. (4.15)

As for the normalized moment of inertia m(y), according to Gersho’s conjecture [48]

for large values of M the cells of an optimal k-dimensional vector quantizers are
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congruent to the minimum NMI tessellating polytope in Rk. The definition of NMI is

scale invariant resulting in a constant m(y) = m∗
k for the optimal NMI in dimension

k. Substituting m∗
k into (4.15) gives an expression for the least-possible mean-squared

error distortion of any M -point quantizer in Rk,

d(y,Q(y)) ∼=
m∗

k

M2/k

[∫
S

p(y)
k

k+2 dy

] k+2
k

. (4.16)

4.3 A-optimal Vector Quantizer

For image reconstruction problems, the parameters of interest θ are indirectly

related to the measurements y through a statistical measurement equation. MSE-

optimal quantization of the measurements y is not directly useful since it says noth-

ing about the quality of the estimates of θ based on quantized measurements Q(y).

However, the variance of the estimate of θ is directly related to the quantized measure-

ment Fisher information (FIM) (2.21) through the Cramèr-Rao Bound. As mentioned

before in section 2.7, for Poisson measurements the difference between the continu-

ous measurement FIM F (2.14) and quantized measurement FIM F̂ (2.21) will be a

function of the quantizer partitioning {S1, . . . , SM}.

In optimal experiment design [38,66], when the Fisher information is a function of

some parameters, the optimal choice of those parameters would be the ones that max-

imize some function of the Fisher information. Examples of these include maximizing

the determinate (D-optimal design), and maximizing the trace (A-optimal design).

An example of optimal design for sensor placement in a manufacturing setting is given

in [105].

For our purposes, the Fisher information parameter of interest is the quantizer

partitioning {S1, . . . , SM}. Since the quantity we want to estimate θ ∈ RN , the

Fisher information F̂ ∈ RN×N where N is the number of pixel in the reconstructed

image. Thus, evaluating the determinate |F̂ | is intractable. However, under the

condition of a large number of partitions (equivalently, high-rate VQ), we can derive
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a tractable expression for the asymptotic difference in the trace of the continuous and

quantized measurement FIM. Optimizing the partitioning of S in order to minimize

the difference in the trace results in an A-optimal quantizer, in that it minimizes the

loss in the FIM due to quantization.

4.3.1 Loss in the Fisher Information trace

For any two non-negative functions f, g, Schwarz’s inequality [1] states that∫
Sl

f(y)2 dy

∫
Sl

g(y)2 dy ≥
[∫

Sl

f(y)g(y) dy

]2

.

If we define f(y) =
aj(y)

µ(y)
1
2

and g(y) = µ(y)
1
2 , then Schwartz’s inequality and a little

algebra results in ∫
Sl

a2
j(y)

µ(y)
dy ≥

a2
lj

µl

. (4.17)

Evaluating the difference in the trace ∆tr of Fisher information matrices F and F̂

and incorporating (4.17) results in

∆tr = trace(F )− trace(F̂ )

= T
N∑

j=1

M∑
l=1

[∫
Sl

a2
j(y)

µ(y)
dy −

a2
lj

µl

]
= ≥ 0. (4.18)

Thus ∆tr ≥ 0 for any measurement partitioning {S1, . . . , SM} of S. Therefore the

difference in trace between the continuous measurement FIM (2.14) and quantized

measurement FIM (2.21) corresponds to an overall loss in A-optimality due to mea-

surement quantization.

When the number of cells M is large and the corresponding quantization cells are

small, and assuming that the density p(y) is smooth over the extent of each cell, the

difference term in (4.18) can expanded out in a Taylor series expansion about y
l
up

to terms of order o(‖y − y
l
‖2),
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∫
Sl

a2
j(y)

µ(y)
dy −

a2
lj

µl

∼= p(y
l
)

N∑
j=1

[
∇T

y

(
aj(yl

)

p(y
l
)

)∫
Sl

(y − y
l
)(y − y

l
)T dy∇y

(
aj(yl

)

p(y
l
)

)]
(4.19)

where the gradient operator ∇y = [∂/∂y1, . . . , ∂/∂yk]
T is a k-dimensional column

vector, and
∫

Sl
(y − y

l
)(y − y

l
)T dy is the covariation profile of the cell Sl.

4.3.2 Asymptotic loss in the Fisher Information trace

In [54], the covariation profile was used to analyze the performance of a discrimination-

optimal quantizer that had non-symmetric, elliptical cells that quantized the log-

likelihood ratio of a binary hypothesis test. For this dissertation we will restrict our

analysis to quantizer cells S that are stretched and transformed version of a symmet-

ric cell H. This is similar to the assumption of ellipsoidal cells in [54]. Under these

restrictions the covariation profile reduces to a multiple of the identity matrix, and

the resulting asymptotic expression for the loss in the FIM-trace ∆tr (4.18) has a

form similar to Bennett’s integral (4.13). Let B− 1
2 be a positive definite symmetric

matrix, and let S = B− 1
2 [H]. By combining (4.8 - 4.10) the weighted covariation

profile of S reduces to the following,

MB(S) = |B|1/km(H)

k
I (4.20)

which when combined with (4.7, 4.18, and 4.19) results in the following for the loss

in the FIM trace,

∆tr ∼=
m(H)

M2/k

M∑
l=1

p(y
l
)

∑N
j=1

∥∥∥∇y

(
aj(yl

)

p(y
l
)

)∥∥∥2

U

ζ(y
l
)2/k

V (Sl) (4.21)

where the matrix U = B−1|B|1/k, and ‖ ‖2
U is a weighted 2-norm with respect to

U . Since (4.21) is an approximation of a Riemann integral, taking the limit in the

78



number of quantizer cells M results in the following expression

lim
M→∞

M2/k∆tr = m(H)

∫
S

p(y)

∑N
j=1

∥∥∥∇y

(
aj(y)

p(y)

)∥∥∥2

U

ζ(y)2/k
dy. (4.22)

Similar to Bennett’s Integral (4.13) for a MSE-optimal quantizer, equation (4.22)

shows that asymptotically the loss ∆tr falls off at a rate ofM−2/k with a constant term

that depends on the distribution p(y), the quantizer cell shape m(H), and quantizer

cell density ζ(y).

4.3.3 Optimal point density

Using Hölder’s inequality to solve for the optimal point density function ζ∗(y) of

a quantizer that minimizes the distortion in (4.22) leads to

ζ∗(y) =

{
p(y)

∑N
j=1

∥∥∥∇y

(
aj(y)

p(y)

)∥∥∥2

U

} k
k+2

∫
S

{
p(y)

∑N
j=1

∥∥∥∇y

(
aj(y)

p(y)

)∥∥∥2

U

} k
k+2

dy

. (4.23)

Substituting (4.23) into (4.22) gives the following expression for least-possible loss in

the FIM-trace of any M -point quantizer in Rk whose cells are a scaled version of a

symmetric cell H,

∆tr ∼=
m(H)

M2/k

∫
S

{
p(y)

N∑
j=1

∥∥∥∥∇y

(
aj(y)

p(y)

)∥∥∥∥2

U

} k
k+2

dy


k+2

k

. (4.24)

As before, if the cell is the minimum NMI tessellating polytope in Rk then substituting

m(H) = m∗
k into (4.24) gives an expression for the least-possible trace-FIM distortion

of any M -point quantizer in Rk.

4.3.4 Loss in Fisher information trace for 1D example

As a simple study, we investigated how different quantization strategies would

affect the Fisher information for a simple 1D estimation problem. Given a continuous

source corrupted by spatial blurring, the task was to estimate N discrete pixel values

79



of a discretized version of the source from M quantized measurements. A plot of the

observed measurement density p(y), the point-density function ζ(y), as well as the

quantizer cell locations for a M = 32 level quantizer is shown in figure 4.6. Note

that the trace-FIM quantizer places cells near regions of change in the density, rather

than in proportion to the density as like the MSE-optimal quantizer. The quantized

Figure 4.6: Comparison of optimal point densities and bin location for a 32-bin,
MSE-optimal and tr-FIM-optimal 1D quantizer.

measurement Fisher information, its inverse, as well as the trace. The numerical

values for a M = 150 level quantizer are given in table 4.1. The trace-FIM optimal

Quantizer 1
N

tr(F̂ ) 1
N

tr(F̂−1)

uniform 28.5283 3.350× 106 3.00× 1010

mse 27.1602 ∞ 3.25× 1017

trace-FIM 28.6227 6.128× 106 1.02× 1012

Table 4.1: Numerical values for the trace of the Fisher information and inverse Fisher
information matrices, for three different quantizer point densities, for an M = 150
level quantizer.
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quantizer does maximize the trace relative to the other quantizers, but at a cost. The

condition number of the FIM is increased. All of the condition numbers we very large,

corresponding to the ill-conditioned nature of the FIM for deconvolving significant

blur. The worst quantizer, in terms of maximizing the trace, is the standard MSE-

optimal quantizer with to numerical precision was singular.

4.4 Minimum Discrimination Loss Vector Quan-

tizer

For image reconstruction problems, the parameters of interest θ are indirectly

related to the measurements y through a statistical measurement equation. MSE-

optimal quantization of the measurements y is not directly useful since it says nothing

about the quality of the estimates of θ based on quantized measurements Q(y). A

more relevant metric for medical imaging would be the detection performance of a

lesion detection task [7, 8, 60]. Gupta [54] developed a discrimination-optimal quan-

tizer for testing a binary hypothesis that minimized the loss in discrimination due to

quantization between the densities under the two hypothesis.

In medical imaging applications, one is certainly concerned with dramatic changes

between two radically different measurement densities. However, such changes are

trivial to detect. Here we focus on the more challenging problem of ensuring high

sensitivity to small relevant changes in an initial density. For example, the difference

between a radiotracer image of a patient before and after the sudden appearance of

a tumor would manifest itself as a subtle variation of a few pixels against a similar

background image. One could consider the background image as an image parameter

vector θ and would want to be sensitive to a small change ∆θ appearing somewhere

in the background. The Kullback-Liebler discrimination function [15,28] is related to

the probability of error of deciding that the true parameter is θ when it is actually

θ + ∆θ through the Chernoff bound. It is also related to the false alarm- and miss-
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rate for binary hypothesis testing of presence or absence of the tumor. With this in

mind, we will extend the work of Gupta by introducing a distortion measure based

on the loss in discrimination due to quantization.

4.4.1 Binary Hypothesis Testing

In hypothesis testing, one must process a sequence of measurements in order to

decide which out of a set of hypothesis is true given the measurements. In general, the

observations are assumed to come from a family of probability distributions, where the

particular form of the distribution is different depending on which of the hypotheses is

true. For our purposes, we will consider the simpler problem of deciding between two

hypothesis H0 and H1 (typically referred to as the null and alternative hypothesis,

respectively), given a set of n i.i.d. k-dimensional observations y = [y(1), . . . , y(n)]

from one of two known probability distribution p0(y), p1(y). The probability densities

associated with each hypothesis is given by

H0 : y ∼ p
(n)
0 (y)

H1 : y ∼ p
(n)
1 (y)

where p
(n)
0 (y) =

∏n
i=1 p0(y

(i)) and p
(n)
1 (y) =

∏n
i=1 p1(y

(i)) are known functions of yi.

We have assumed that the measurements y are i.i.d.

Let the set S ⊂ Rk be the common support set of the two densities p0(y), p1(y),

and let S(n) be the set of all n-tuples [y(1), . . . , y(n)] from either of the two densities.

Our hypothesis test is a decision rule that partitions the set of all possible observations

into two disjoint regions S
(n)
0 and S

(n)
1 . If the observation y ∈ S(n)

0 , then we say that

the hypothesis H0 is true. Similarly, if y ∈ S(n)
1 then H1 is true.

There are two quantities that define the performance of any decision rule: the

probability of false-alarm and the probability of detection (or equivalently, the prob-

ability of miss). Define the probability of false-alarm α = Pr(decide H1|H0 true) as

the probability of deciding that the observation vector y comes from density under
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hypothesis H1 when it actually came from the density under H0. Similarly, define

the probability of miss β = Pr(decide H0|H1 true) as the probability deciding that

y came from hypothesis H0 when it actually came from the density under H1.

α =

∫
S

(n)
1

p
(n)
0 (y)dy

β =

∫
S

(n)
0

p
(n)
1 (y)dy

4.4.2 Neyman-Pearson Test and ROC Curve

The Neyman-Pearson test [103] for deciding between two simple hypotheses is to

compare the log of the ratios of the likelihood functions under the two hypothesis

against a scalar threshold,

Λ(y) = ln
p1(y)

p0(y)

H1

≶
H0

T

The Neyman-Pearson Theorem [15, 28, 103] establishes the optimality of the above

test in that under the constraint of a fixed miss rate β ≤ β∗, the best possible false

alarm α is achieved by a likelihood-ratio test where the decision threshold T depends

on the minimum allowable miss rate β∗. The likelihood-ratio also appears in the ideal

observer [7,79], but where the optimal threshold and associated false alarm and miss

rate are determined by the prior probabilities of the two hypothesis.

By varying the value of the decision threshold T , one obtains a family of decision

rules with specific values of (α, β) parameterized by the threshold T . The tradeoff

between α and β can be shown graphically by plotting the Probability of Detection

(1− β) and Probability of False Alarm (α) parametrically with the threshold T , and

is referred to as the receiver operating characteristic (ROC) curve.
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4.4.3 Asymptotic Performance of Hypothesis Test

The ROC curve can be approximated parametrically by large deviation represen-

tations of α and β using Sanov’s Theorem [15, 28]. This parameterization depends

on a quantity called the Kullback-Liebler (KL) divergence. The KL divergence is a

measure of similarity between two densities. Given two continuous densities p and q

defined over some common support set S ⊂ Rk, the Kullback-Liebler discrimination

or relative entropy between the two densities is given by

D(q‖p) =

∫
S

q(y) ln
q(y)

p(y)
dy (4.25)

Similarly, the discrimination between two different discrete probability mass functions

(PMF) P = {P1, ..., PM}, Q = {Q1, ..., QM} is given by

D(Q‖P ) =
M∑
i=1

Qi ln
Qi

Pi

(4.26)

The discrimination is always non-negative, and equals zero iff the two densities are the

same. For the purposes of this paper we will be using the natural (base-e) logarithm

in the definitions of equations (4.25, 4.26), resulting in a discrimination with units of

nats.

Stein’s lemma states that for a binary hypothesis test between two densities p0 and

p1 with a fixed miss-rate β, the best possible false-alarm rate α∗ among all possible

decision rules of n-total i.i.d. observations is exponential in the discrimination between

p0 and p1,

lim
n→∞

(α∗n)1/n = e−D(p1‖p0)

Sanov’s theorem gives a more general result for both the false alarm-rate α and

miss-rate β as a function of the Neyman-Pearson test threshold T . Define the tilted

density pλ(y) as the geometric mixture of p0(y) and p1(y),

pλ(y) =
p1−λ

0 (y)pλ
1(y)∫

S
p1−λ

0 (y)pλ
1(y)dy
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where λ ∈ [0, 1] is implicitly defined by the Neyman-Pearson threshold T ,

T =

∫
S

pλ(y) ln
p0(y)

p1(y)
dy

= D(pλ‖p1)−D(pλ‖p0).

Then for large number of observations n the false alarm-rate α and miss-rate β are

exponential in the discriminations D(pλ‖p0) and D(pλ‖p1) [15, 28],

α ∼= e−nD(pλ‖p0) (4.27)

β ∼= e−nD(pλ‖p1) (4.28)

A similar result holds for the discrete case for the asymptotic false alarm- and mis-

rates, where the integrals are replaced with summations.

4.4.4 Small Signal Perturbation Analysis

Let the density under the alternative hypothesis be a small additive perturbation

p∆(y) of the density under the null hypothesis p(y). Then the normalized densities

under H0, H1 are given by

H0 : p0(y) = p(y)

H1 : p1(y) =
1

1 + ε
p(y) +

ε

1 + ε
p∆(y)

where ε � 1. Under this small perturbation model, the divergence of the tilted

density pλ(y) with respect to p0(y) and p1(y) simplify to

D(pλ‖p0) =
1

2
λ2ε2(2D − 1) + o(ε3) (4.29)

D(pλ‖p1) =
1

2
(λ− 1)2ε2(2D − 1) + o(ε3) (4.30)

where D is given by

D =
1

2

∫
S

p2
∆(y)

p(y)
dy (4.31)
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As for quantized measurements, given a Vector Quantizer Q(y) defined over the

partition {S1, . . . , SM} of S, we can define the discrete probability mass function

(PMF) of the fraction of quantized measurements in each cell P = {P1, ..., PM},

where the probability of the continuous measurement y being quantized to the lth

value is given by the integral over the lth quantizer partition (i.e. Pl =
∫

Sl
p(y) dy).

The PMFs under H0, H1 are

H0 : P0 = P

H1 : P1 =
1

1 + ε
P +

ε

1 + ε
P∆

with the associated divergence of the tilted PMF Pλ with respect to P0 and P1 of

D(Pλ‖P0) =
1

2
λ2ε2(2D̄ − 1) + o(ε3) (4.32)

D(Pλ‖P1) =
1

2
(λ− 1)2ε2(2D̄ − 1) + o(ε3) (4.33)

where D̄ is the quantized version of D

D̄ =
1

2

M∑
i=1

P 2
∆i

Pi

(4.34)

As an example calculation, Figure 4.7 shows the Null and Alternative hypothesis

densities for the simple case of p(y) ∼ uniform[−4, 4] and the perturbation density

p∆(y) ∼ N(0, 1) on the interval S = [−4, 4], with a perturbation weighting of ε =

10−2. The corresponding discriminations with respect to the tilted densities D(pλ‖p0),

D(pλ‖p1) are shown in Figure 4.8, and the asymptotic ROC curve for n = 105 i.i.d.

measurements is shown in Figure 4.9. Both Figures 4.8 and 4.9 show that the value of

the discrimination functions D(pλ‖p0), D(pλ‖p1) as well as the resulting ROC curve

calculated using (4.25) are well-approximated by (4.29) and (4.30).
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Figure 4.7: Null hypothesis and alternative hypothesis for 1D example.
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Figure 4.8: True and approximate discrimination functions for 1D example.

4.4.5 Discrimination Loss

Let ∆D(pλ‖p0) and ∆D(pλ‖p1) be the loss in discrimination of the tilted density

due to quantization,

∆D(pλ‖p0) = D(pλ‖p0)−D(Pλ‖P0)

= λ2ε2∆D + o(ε3) (4.35)

and

∆D(pλ‖p1) = D(pλ‖p1)−D(Pλ‖P1)

= (λ− 1)2ε2∆D + o(ε3) (4.36)
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Figure 4.9: True and approximate ROC curve for 1D example.

where

∆D =
1

2

[∫
S

p2
∆(y)

p(y)
dy −

M∑
i=1

P 2
∆i

Pi

]
. (4.37)

From the Cauchy-Schwartz inequality, it can be easily shown that ∆D ≥ 0. Thus

there is a loss in discrimination due to quantization. Let α̂ and β̂ be the false alarm-

and miss-rate for a hypothesis test using quantized data. By substituting (4.35, 4.36)

into (4.27, 4.28), we arrive at the following expressions relating the change in the

ROC curve due to quantization,

α̂ ∼= α en∆D(pλ‖p0) (4.38)

β̂ ∼= β en∆D(pλ‖p1). (4.39)

Since ∆D is non-negative, there is an increase due to quantization in the false alarm-

rate α and miss-rate β, since they are exponential in ∆D(pλ‖p0) and ∆D(pλ‖p1),
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which in turn are linear in ∆D. For a given quantizer partition, one can calculate

the loss ∆D and the associated change in the ROC curve. Alternatively, by finding

a quantizer partition that minimizes ∆D, one minimizes the loss in the ROC curve

due to quantization. Since the quantizer cells {S1, . . . , SM} are a partition of S, the

integral in (4.37) can be written as a summation of integrals over each cell,∫
S

p2
∆(y)

p(y)
dy =

M∑
l=1

∫
Sl

p2
∆(y)

p(y)
dy

When the number of cells M is large and the corresponding quantization cells are

small, and assuming that the density p(y) is smooth over the extent of each cell, the

difference term in (4.37) can expanded out in a Taylor series expansion about y
l
up

to terms of order o(‖y − y
l
‖2),∫

Sl

p2
∆(y)

p(y)
dy − P 2

∆l

Pl

∼= p(y
l
)∇T

y

(
p∆(y

l
)

p(y
l
)

)[∫
Sl

(y − y
l
)(y − y

l
)T dy

]
∇y

(
p∆(y

l
)

p(y
l
)

)
(4.40)

where the gradient operator ∇y = [∂/∂y1, . . . , ∂/∂yk]
T is a k-dimensional column

vector, and
∫

Sl
(y − y

l
)(y − y

l
)T dy is the covariation profile of the cell Sl.

4.4.6 Asymptotic Discrimination Loss

As before, for this dissertation we will restrict our analysis to quantizer cells S that

are stretched and transformed version of a symmetric cell H. Under these restrictions

the covariation profile reduces to a multiple of the identity matrix, and the resulting

asymptotic expression for the discrimination loss ∆D (4.37) has a form similar to

Bennett’s integral (4.13). Let B− 1
2 be a positive definite symmetric matrix, and let

S = B− 1
2 [H]. By combining (4.8 - 4.10) the weighted covariation profile of S reduces

to the following,

MB(S) = |B|1/km(H)

k
I (4.41)
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which when combined with (4.40, 4.7) results in the following for the discrimination

loss,

∆D ∼=
1

2

m(H)

M2/k

M∑
l=1

p(y
l
)

∥∥∥∇y

(
p∆(y

l
)

p(y
l
)

)∥∥∥2

U

ζ(y
l
)2/k

V (Sl) (4.42)

where the matrix U = B−1|B|1/k is the normalized weighting along each dimension

and ‖ ‖2
U is a weighted 2-norm with respect to U . Since (4.42) is an approximation

of a Riemann integral, taking the limit in the number of quantizer cells M results in

the following expression

lim
M→∞

M2/k∆D =
1

2
m(H)

∫
S

p(y)

∥∥∥∇y

(
p∆(y)

p(y)

)∥∥∥2

U

ζ(y)2/k
dy. (4.43)

Similar to Bennett’s Integral (4.13) for a MSE-optimal quantizer, equation (4.43)

shows that asymptotically the discrimination loss ∆D falls off at a rate of M−2/k with

a constant term that depends on the distribution p(y), the quantizer cell shape m(H),

and quantizer cell density ζ(y). In addition, the discrimination optimal quantizer also

depends on the magnitude-square of the gradient ratio between the background and

perturbation density. For small signal perturbations, the magnitude of the density

ratio gradient is equivalent to the magnitude of the log-likelihood ratio gradient,∥∥∥∥∇y ln
p1(y)

p0(y)

∥∥∥∥2

=

∥∥∥∥∇y

(
p∆(y)

p(y)

)∥∥∥∥2

ε2 + o(ε3). (4.44)

Gupta [54] referred to the squared magnitude of the log-likelihood ratio (4.44) as the

discriminability, and noted that it is a measure of the usefulness of a measurement y

in deciding between the hypotheses H0 and H1.
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4.4.7 Optimal point density

Using Hölder’s inequality to solve for the optimal point density function ζ∗(y) of

a quantizer that minimizes the discrimination loss distortion in (4.43) leads to

ζ∗(y) =

{
p(y)

∥∥∥∇y

(
p∆(y)

p(y)

)∥∥∥2

U

} k
k+2

∫
S

{
p(y)

∥∥∥∇y

(
p∆(y)

p(y)

)∥∥∥2

U

} k
k+2

dy

. (4.45)

Substituting (4.45) into (4.43) gives the following expression for least-possible dis-

crimination loss of any M -point quantizer in Rk whose cells are a scaled version of a

symmetric cell H,

∆D ∼=
1

2

m(H)

M2/k

∫
S

{
p(y)

∥∥∥∥∇y

(
p∆(y)

p(y)

)∥∥∥∥2

U

} k
k+2

dy


k+2

k

. (4.46)

4.5 Quantizer Design

The fully optimal VQ has minimum discrimination loss ∆D (4.46) for a fixed large

number of cells (equivalently, codebook size). However, without further constraints,

it has a high implementation complexity in both storage and computational load.

This high complexity is primarily due to the fact that each cell is uniquely defined

as the voronoi partition about each codebook vector. Direct implementing of the

quantization rule in (4.1) involves a brute-force search over all M cells for a given

value of y by calculating ‖y − y
l
‖2, l = 1, . . . ,M and choosing the codevector with

minimum distortion. A M -cell quantizer of a k-dimensional measurement y with b-

bits for each component of y results in a storage requirement of O(Mkb) bits to store

the codebook, along with an computational complexity of O(3Mk) per sample.

Optimal unstructured minimum-MSE quantizers can be generated via the well-

known Linde-Buzo-Gray (LBG) [75] or generalized Lloyd algorithm. Given a training

set of p realizations of random training vectors along with the desired number M of

quantizer cells / codevectors, the LBG algorithm iteratively processes the training set
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until it arrives at a solution where each training vector is associated with a codevector

via a nearest-neighbor (voronoi) mapping, and that the codevectors are the centroids

of each cell. The resulting quantizer partition will be MSE optimal, assuming it does

not settle in a local minimum configuration.

Each iteration of the LBG algorithm involves quantizing p-total, k-dimensional

training vectors to one of M -different codevectors, involving a brute-force search over

all M codevectors for a resulting computational complexity of o(3MNk) per itera-

tion. The “rule of thumb” for designing large quantizers is for the number of training

samples p ≈ 50N or more. Thus designing a quantizer becomes quite challenging for

large data-sets (large N) with fine quantization (large M). The communications and

source-coding literature refers to the Rate of a codebook R = 1/k log2(M) as the aver-

age number of bits per component needed to enumerate M -total k-dimensional code-

vectors. The complexity of an unstructured quantizer is given by kR, thedimension-

Rate product. Although with modern computers it is possible to store the codevectors

associated with a large dimension-Rate product quantizer, a practical upper limit on

designing an unstructured quantizer is for kR ≈ 14 or equivalently a maximum code-

book size M ≈ 16× 103.

There are fast-search methods for searching over the M codevectors of an un-

structured vector quantizer, of which [52] has an excellent survey. There are also

sub-optimal algorithms such as tree-structured vector quantizers [5,22] that enforce a

structure on the codevector locations, are much more efficient to implement, and can

be searched in O(log(M)) per sample. We will focus on the applications of Lattice

Quantizers for fast quantization. As we will see, a Lattice Quantizer has a triv-

ial computational complexity of O(k2) per sample with negligible design overhead

and storage requirements, but comes at the expense of a sub-optimal uniform point

density ζ(y).
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4.6 Lattice Quantizer

Borrowing the notation of [2], a lattice L ⊂ Rk can be defined as integer combi-

nations of a set of basis vectors bi ∈ Rk, i = 1, . . . , k,

L =
{
y : y = u1b1 + . . .+ ukbk

}
where ui ∈ Z are integers. The matrix B whose rows are the basis vectors is

referred to as the generator matrix of the lattice,

B = [b1, b2, . . . , bk]
T

Note that the basis vectors do not have to form a complete basis, resulting in what

is known as a degenerate lattice. For this dissertation, we will only be concerned

with non-degenerate lattices. The lattice L can be expressed in terms of its k × k-

dimensional generator matrix B as

L =
{
y ∈ Rk : (B−1)Ty ∈ Zk

}
(4.47)

From the definition of a lattice (4.47), the quantization rule (4.1) for a lattice-

based vector quantizer QL(y) that maps an input vector y onto a point in L can be

expressed as a pair of matrix multiplications and a rounding operation,

y
l
= BT round{(B−1)Ty} (4.48)

with a corresponding computational complexity of o(k2) per sample (and o(k) for di-

agonal B). Note that the only quantizer design issue involved with Lattice quantizers

is choosing the generator matrix B. The nearest-neighbor or voronoi region of the

lattice defined by the generator matrix B has volume | det B|, and the normalized mo-

ment of inertia and other properties for various lattices are well documented [24,26].

The simplest possible lattice quantizer is the uniform scalar quantizer, with code-

vectors {. . . ,−2∆,−∆, 0,∆, 2∆, . . .} and associated quantization function

Q(y) = i∆, if (i− 1/2)∆ ≤ y < (i+ 1/2)∆
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which corresponds to a 1-dimensional generator matrix B = ∆. Figure 4.10 shows a

2-dimensional lattice with rectangular cells (B = [2 0; 0 1]) as well as hexagonal cells

(B = [2 0; 1
√

3]).
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Figure 4.10: Example 2D lattice with rectangular cells (left) and hexagonal cells
(right), with codevector location marked with “x” at centroid of each cell.

4.6.1 Discrimination Loss for Lattice Quantizer

Since the codevectors of a lattice quantizer are equally spaced, the associated

point density is constant. Let SL be the support set of the lattice quantizer. We will

assume that the support set of the lattice contains the support set of the measurement

density, i.e. S ⊆ SL. Since the point density integrates to unity over the support set

of the quantizer, the point density of a lattice quantizer is given by ζ(y) = 1/V (SL),

with a resulting discrimination loss of

∆D =
1

2
m(H)

(
V (SL)

M

)2/k ∫
S

p(y)

∥∥∥∥∇y

(
p∆(y)

p(y)

)∥∥∥∥2

U

dy. (4.49)

4.6.2 Discrimination Loss Calculation for 1D example

As in Section 4.4.4, let the null and alternative hypothesis densities be for the

simple case of p(y) ∼ uniform[−4, 4] and the perturbation density p∆(y) ∼ N(0, 1)

on the interval S = [−4, 4], with a perturbation weighting of ε = 10−2.
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For a uniform quantizer in 1D, the cells consists of equal-size intervals over the

real line. The M = 2 quantizer consists of the two quantizer cells {[−4, 0], [0, 4]},

the M = 3 quantizer consists of the cells {[−4,−2/3], [−2/3, 2/3], [2/3, 4]}, etc. For

each quantizer (equivalently, each value of M), we calculate the discrimination term

D(P1‖P0) of the quantized measurements. Figure 4.11 shows the discrimination of

each quantizer versus the number of cells, as well as the maximum possible discrimi-

nation D(p1‖p0) of using continuous measurements.
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Figure 4.11: Discrete measurement discrimination D(P1‖P0) versus continuous mea-
surement discrimination D(p1‖p0) for a 1D uniform scalar quantizer.

In Figure 4.12, the actual discrimination loss ∆D(p1‖p0) = D(P1‖P0)−D(p1‖p0)

is plotted for each quantizer, as well as the asymptotic limit predicted by (4.49). Note

that for M ≥ 6 the discrimination loss ∆D(p1‖p0) is well predicted by the asymptotic

expression.
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Figure 4.12: Actual loss in discrimination ∆D(p1‖p0) due to quantized measurements
versus asymptotic limit for uniform scalar quantizer.

In Figure 4.13, the ROC curve for continuous measurements is compared against

an M = 6, M = 8, and M = 10 level uniform scalar quantizer, with the resulting loss

in false-alarm and detection-rate calculated from equations (4.38, 4.39)

4.6.3 Discrimination Loss Calculation for 2D PET

For illustration we will study the effect of measurement quantization in 2D PET for

a lesion detection task. In PET, the source density λ(x) is not directly observable, but

rather indirectly by multiple measurements y ∈ R2 of γ-ray photon pairs measured in

coincidence by an external detector ring surrounding the patient. Each measurement

y = {θ, r} consists of the angular and radial offset of the line-of-response between

each pair of detected γ-rays.

Let the unknown parameters under hypotheses H0, H1 be θ and θ + ∆θ, where
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Figure 4.13: Loss in ROC curve due to quantization for 1D example.

θ ∈ RN is some non-random parameter vector and ∆θ is a perturbation of θ. We will

model the emission source density λ(x) as an 100× 100-pixel, 2-dimensional (planar)

image over a 50 × 50cm FOV. The associated parameter vector θ corresponds to

a tomographic slice through a simulated anthropomorphic phantom [93] while the

perturbation parameter ∆θ corresponds to a 3cm circular lesion in the bottom of the

left lung, as shown in Figure 4.14.

The associated detection intensity rates under the two hypothesis are

H0 : µ0(y) = µ(y|θ)

H1 : µ1(y) = µ(y|θ) + µ(y|∆θ),

where the last line comes from the fact that in emission tomography the measurement

intensity rate is linear in the parameter θ. Let µD =
∫

S
µ0(y)dy and µD + µ∆ =∫

S
µ1(y)dy be the total intensity rate under H0 and H1. Let ε = µ∆

µD
� 1 be the ratio
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Figure 4.14: Simulated 2D PET emission source (left), emission source with 3cm
circular lesion (right)

of detected measurements from the background parameter θ and the perturbation

parameter ∆θ. Define the normalized background and perturbation densities p(y),

p∆(y) as

p(y) =
1

µD

µ(y|θ)

p∆(y) =
1

µ∆

µ(y|∆θ)

The PET detection ring is not a continuous measurement device, but rather con-

sists of B discrete elements resulting in a measurement space S that is partitioned

into (at most) B(B − 1) uniquely ordered detector pair combinations. In a typical

system, however, only some fraction of other blocks in an arc directly opposite will

be used. The resulting line-of-response measurements y = {θ, r} are quantized to

one of M possible values with an inherent sampling in {θ, r} (Figure 4.15). Thus a

PET detection ring can be modeled as a hardware-based vector quantizer where the

inherent quantization as well as loss in discrimination will decrease as the number of

detector blocks increase.

For this study we will assume that the total number of possible measurements

M = Na ∗Nr, where Na is the number of parallel projection measurements over [0, π]

and Nr is the number of radial samples per projection angle. From the Fourier Slice
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Figure 4.15: Line-of-Response for 2D PET with continuous (right) and Discrete (left)
measurements.

Theorem [63] one can derive a Nyquist sampling condition of Na/Nr = π/2 where for

this study Nr = 100 (the number of pixels across the FOV) and Na = 157, resulting

in a measurement space with M = 15700 bins as the number required to estimate a

100× 100 pixel parameter vector θ. For this study the total number of measurement

bins M is varied by scaling the radial and angular sampling equally but keeping the

ratio between them constant at π/2. The ratio was fixed so that the NMI was kept

constant, and thus the asymptotic expression for discrimination loss (4.49) would

apply.

Note that by decreasing the number of samples along each dimension we are not

coarsely sub-sampling the measurement space, but rather each measurement bin is

an integral over an increasingly larger partition area where the resulting sinogram

bins are rectangular with constant normalized moment of inertia. Figure 4.16 is of a

PET measurement space (or sinogram) sampled at (Na, Nr) = (94, 60) corresponding

to M = 5640 total bins. Figure 4.17 is a sinogram sampled at (Na, Nr) = (157, 100)

corresponding to M = 15700 bins. Whereas Figure 4.16 and 4.17 are of the measure-

ment density p(y), Figure 4.18 is the perturbation density p∆(y), otherwise known as

the forward projection of ∆θ.
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Figure 4.16: PET Sinogram with M = 5640 samples
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Figure 4.17: PET Sinogram with M = 15700 samples
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Figure 4.18: Forward Projection of Lesion with M = 15700 samples

The total detected counts is N = 106, with 103 counts from the lesion, for a per-

turbation parameter of ε = 10−3. Figure 4.19 shows the discrimination of quantized

sinogram measurements with an extrapolated limit of the continuous measurement

discrimination overlaid. Figure 4.20 shows the discrimination loss of quantized sino-

gram measurements with an extrapolated limit of the continuous measurement dis-

crimination overlaid along with the discrimination loss predicted by equation (4.49).

Since these calculation depend on the ratio between the lesion density p∆(y) and

the measurement density p(y), it is dependent on both. By changing the measurement

density or even shifting the lesion density, the resulting discrimination loss curve

would be offset by a factor proportional to the discriminability 4.44 while the M−2/k

trend would remain.
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Figure 4.19: Discrimination versus number of sinogram cells
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Figure 4.20: Discrimination Loss versus number of sinogram cells
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4.6.4 Lattice Quantizer with Support Constraints

One argument against quantization is that at high dimensions, there will be more

possible quantization bins than measurements [10]. As noted before though, design-

ing a k-dimensional quantizer as a product code of k different scalar quantizers is

extremely wasteful since most of the quantizer codepoints (and associated coding

bits) will be wasted on regions of low or zero probability. Figure 4.21 shows a repre-

sentative 2D PET sinogram sampled with M = 1450 bins along with a few thousand

random measurement realizations. To a first order, a more efficient method would be
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Figure 4.21: Non-adaptive lattice quantization of 2D PET sinogram, M = 1450 bins.

to simply quantize the measurements that actually occur and do not bother quantizing

regions that do not have any measurements, as shown in Figure 4.22. For this partic-

ular case, the total number of non-zero measurement bins is M = 984 representing a

storage savings of 68%. Alternatively, as shown in Figure 4.23, for a fixed number of

bins M = 1450 one can use finer quantization3 which results in smaller quantization

error and corresponding loss in discriminability. These quantizer support-constraints

3In PET the sampling is determined by the number of detector blocks and ring radius, however
as a thought experiment for a system with a continuous measurement space the concept still applies.
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Figure 4.22: Adaptive lattice quantization of 2D PET sinogram, M = 984 bins.

are determined by the particular random realization of measurements {Y 1, Y 2, . . .}

and are thus data dependent and can not be pre-computed and stored ahead of time.

However, the volume of the support set as well as the discrimination loss can be

estimated directly from the measurements themselves without having to quantize.

A random variable y ∼ p(y) can take all values within its support set S ⊂ Rk,

however in general some regions will be “more likely” then others. Realizations of a

random variable with a highly localized density function will tend to cluster, while at

the other extreme, realizations of a uniform distributed random variable will equally

likely take all values in the support set S. More formally, the Asymptotic Equipar-

tition Property [28] from information theory gives a bound on the probability that a

random variable will occur within a volume.

The differential entropy h(y) of the continuous random variable y ∼ p(y) with

support set S ⊂ Rk is defined as

h(y) = −
∫

S

p(y) ln p(y) dy (4.50)

Let Y 1, Y 2, . . . , Y n be n iid realizations of the random variable y. From the weak law
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Figure 4.23: Adaptive lattice quantization of 2D PET sinogram, M = 1450 bins.

of large numbers

− 1

n
ln p(Y 1, . . . , Y n) → E[− ln p(y)] in probability

Define the typical set A
(n)
ε of the above sequence as

A(n)
ε =

{
(y

1
, . . . , y

n
) ∈ Sn s.t. | − 1

n
ln p(y

1
, . . . , y

n
)− h(Y )| ≤ ε

}
where p(y

1
, . . . , y

n
) =

∏n
i=1 p(yi

). The volume V (A
(n)
ε ) of the typical set can be in-

terpreted as the “effective volume” of Rk⊗n that will contain the sequence whose

empirical entropy is within ε of the true entropy. Random variables with high clus-

tered densities have low entropy, and small typical support volumes, while those with

diffuse densities (such as uniform random variables) will have large entropy and cor-

respondingly large typical support volumes. More formally, we can define bounds on

the probability of the n realizations occurring within some volume by the following

properties [28]

V (A(n)
ε ) ≤ en(h(y)+ε),

V (A(n)
ε ) ≥ (1− ε)en(h(y)−ε),
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Pr(A(n)
ε ) > 1− ε.

Thus we can bound the volume in Rk⊗n of the typical set of n realizations to within

a confidence of 1 − ε. By taking the nth-root and manipulating the inequalities, we

arrive at the following approximation for the effective volume of the support set S of

the random variable y,

V (S) ≈ eh(y) (4.51)

From this we can derive a measure of the performance gain of support-constrained lat-

tice quantization versus a simple product scalar quantizer (i.e. binning independently

along each measurement axis).

Let w1, . . . , wk be the range of the components of y along each dimension. Then

a product-code of uniform scalar quantizer will have a k-dimensional hyper-cube

support set Su with volume V (Su) =
∏k

i=1wi. The ratio ρ of the effective support set

volume V (S) vs. that of a product-code uniform scalar quantizer is given by

ρ =
eh(y)

V (Su)

which measures the packing efficiency of using a support constrained lattice vs. an

uniform lattice over k-dimensions. Alternatively, for a fixed number of quantization

bins M , the average quantization error is reduced by a factor of ρ−2/k by using an

adaptive support-constrained lattice quantizer.

A quick numerical calculation of the measurement density p(y) gives a differential

entropy h(y) ∼ 4.59 and estimated support-set volume of e4.59 ∼ 98.7. The uncon-

strained lattice quantizer (Figure 4.21) is over a support volume of V (Su) = π×50cm,

which results in a packing efficiency of ρ ∼ 63% as compared to the value of ∼ 68%

found by taking the ratio of bins in Figures 4.21 and 4.22.
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CHAPTER 5

Uniform Cramèr-Rao Bound for Image

Reconstruction

The variance of an image, or alternatively the Signal-to-Noise Ratio (SNR), is

often used as a measure of image quality. Since image reconstruction problems are

ill-posed inverse problems, unbiased estimators result in very noisy, high-variance

images. Typically, smoothness constraints and a priori information are used to reduce

variance at the cost of biasing the estimator, as illustrated in Figure 5.1. For such

Figure 5.1: Tradeoff between reconstructed image noise and bias.

problems there exists an inherent tradeoff between the recovered spatial resolution

of an estimator, overall bias, and its statistical variance; lower variance can only be

bought at the price of decreased spatial resolution and/or increased overall bias. For

a particular choice of regularized estimator, this tradeoff between bias and variance

can be expressed as a parametric curve indexed by the estimator’s regularization

parameter.

However, total image variance depends not only on the imaging system but also

108



on the estimator used to create the image. In order to measure of the performance

capability of an imaging system, a desired goal is to to decouple the variance due to

the inherent limitations of the photon imaging system and the choice of algorithm

used to process the data. The classical Cramèr-Rao (CR) bound [28, 103] gives an

estimator-independent lower bound on variance and can be used find fundamental

limitations of an imaging system. However, it only applies to unbiased estimators.

An example bound calculation for an unbiased estimator in an imaging application

is given in [108].

The general form of the CR bound for biased estimators (5.5) is not estimator

independent, but is a function of the gradient of the estimator bias. Most estimators

of interest in image reconstruction problems are biased, and thus have associated

with them a bias-gradient vector. The bias-gradient vector is simply a measure of

the sensitivity or coupling of a particular estimator’s bias function with respect to

variations in the surrounding pixels of the image.

The Uniform Cramèr-Rao bound (UCRB) [57] is a generalization of the CR bound

that decouples the variance contributions of the biased estimator and the imaging

system. The idea behind the Uniform Cramèr-Rao Bound (UCRB) [57] is that the

length or norm of the bias-gradient vector can be viewed as a measure of the total

bias-error of an estimator. Among all possible estimators with a given bias-gradient

length, there exists an ideal minimum variance estimator whose variance is a lower

bound among all possible estimators with that choice of bias-gradient length.

In actual implementation, one does not actually solve for the ideal estimator

function. Instead, one solves for the bias-gradient vector of an ideal estimator whose

bias-gradient norm is fixed and has minimum variance via a constrained optimization

problem. It turns out that this hypothesized ideal estimator’s bias-gradient vector

and associated variance are a function of the Fisher Information of the measurements

and thus independent of the estimator itself.

109



As mentioned before, for a particular regularized estimator, this tradeoff between

bias and variance can be expressed as a parametric curve indexed by the estimator’s

regularization parameter. Underneath this parametric curve lies another curve given

by the hypothesized ideal minimum variance estimator. The margin between these

two curves give a measure of the performance margin between the particular regu-

larized estimator in question, and the fundamental performance limit of the imaging

system. For an estimator whose variance lies on this curve, lower estimator variance

can only be achieved at the price of an increased estimator bias gradient norm and

vice versa.

Hero et al [57] showed that a) the estimator bias gradient norm is an upper bound

on the maximal squared variation of the estimator bias function over an ellipsoidal

neighborhood, and b) for single pixel estimation, is equivalent to the error between

the estimator’s local impulse function to a point source and an ideal impulse response.

Thus the norm of the estimator bias-gradient would seem to be a natural measure of

resolution. However, for single pixel estimation, one can specify a variety of different

estimator point response functions that have identical bias-gradient norm but with

widely different resolution properties. This has lead to some counter-intuitive results

and interpretation difficulties when using the Uniform CR Bound in performance

studies of imaging systems. We now extend this tradeoff concept by introducing the

2nd-moment of the point response function as a measure of resolution for single-pixel

estimation tasks.

5.1 Cramèr-Rao Bound

Let θ = [θ1, . . . , θN ]T ∈ Θ be a column vector of unknown, nonrandom parameters

that parameterize the conditional density pY (y|θ) of the observed random variable

Y . The parameter space Θ is assumed to be an open subset of the N -dimensional

Euclidean space RN . For a fixed θ, let θ̂j = θ̂j(Y ) be a scalar estimator of the jth
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component of θ. Let this estimator have mean value

mθ = Eθ[θ̂j], (5.1)

bias

bθ = mθ − θj, (5.2)

and variance

σ2
θ = Eθ[(θ̂j −mθ)

2]. (5.3)

In the context of image reconstruction and restoration, Y corresponds to a noise

and blur degraded measurement of the true image θ, and θ̂j is an estimate of the

jth pixel of the true image θ. Bias bθ is due to mismatch between the estimation

algorithm and truth. Variance σ2
θ arises from statistical fluctuations due to statistical

uncertainty in the observed data Y . Resolution, in our context, is defined as the

effective width of the estimation algorithm’s local point response.

Note that the scalar estimator θ̂j can be expressed in terms of the vector estimator

θ̂ = θ̂(Y ) by the inner-product θ̂j = eT
j θ̂, where ej = [0, . . . , 1, . . . , 0]T is the jth unit

basis vector. Thus the gradient of the estimator bias function ∇bθ and the gradient

of the estimator mean function ∇mθ are related by

∇mθ = ∇bθ + ej. (5.4)

For the remainder of this chapter, the gradient ∇bθ of the estimator bias-function

bθ will be referred to as the “bias-gradient”, and the gradient ∇mθ of the estimator

mean-response function mθ as the “mean-gradient”.

For a biased estimator θ̂j of the jth pixel, the Cramèr-Rao Bound of estimator

variance is given by

σ2
θ ≥ ∇mθ

T F +
Y ∇mθ

= (∇bθ + ej)
T F +

Y (∇bθ + ej) (5.5)
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where the n× n Fisher Information matrix FY is given by

FY = Eθ

[
[∇θ log pY (Y |θ)] [∇θ log pY (Y |θ)]T

]
(5.6)

and F +
Y is the Moore-Penrose pseudo-inverse of the (possibly singular) Fisher In-

formation Matrix. Note that if the Fisher Information Matrix is full-rank and the

estimator θ̂j is unbiased (equivalently, the bias-gradient vector ∇bθ = 0), then equa-

tion (5.5) reduces to the unbiased-estimator CR Bound σ2
θ ≥ eT

j F−1
Y ej, i.e. the jth

diagonal element of F−1
Y .

5.2 Bias-gradient

An estimator θ̂j whose bias function is constant is as good as unbiased, in that the

bias can be removed without knowledge of θ. Additionally, the integral of the bias-

gradient specifies the overall bias to within an additive constant. Lastly, the variance

lower-bound (5.5) is a function of the bias-gradient. Thus from the standpoint of

fundamental tradeoffs, it is the bias-gradient ∇bθ that is of interest.

Define the norm δ = ‖∇bθ‖C of the bias-gradient vector with respect to a positive-

definite matrix C as

δ2 = ∇bθT C∇bθ. (5.7)

The norm of the bias-gradient at some point u = θ is a measure of the sensitivity

of the estimator to changes in u over some neighborhood about θ. More specifi-

cally, the maximum bias variation about some ellipsoidal neighborhood C(θ,C) ={
u : (u− θ)T C−1(u− θ) ≤ 1

}
centered about θ is bounded above by the norm of

the bias-gradient,

max
u∈C

|bu − bθ| ≤ ‖∇bθ‖C

and with equality when the estimator bias is linear in θ [57].
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5.3 Local Impulse Response and Mean-gradient

As before, let θ̂(Y ) be a vector estimator of the parameter vector θ, given an

observation vector Y drawn from the conditional density pY (y|θ). Let µ(θ) be the

expected value of the estimator θ̂(Y ),

µ(θ) = Eθ[θ̂(Y )]

=

∫
θ̂(y)pY (y|θ) dy. (5.8)

Let ε be a small perturbation in the pth pixel of the source θ. For an estimator with

mean µ(θ), define the local impulse response h of all reconstructed pixels due to a

perturbation in the pth pixel of θ as

hp(θ) = lim
ε→0

µ(θ + εep)− µ(θ)

ε

,
∂

∂θp

µ(θ). (5.9)

As noted in [45], this definition of impulse response reflects the space-varying nature

of nonlinear estimators. It is space-varying through its dependence on the perturbing

pixel index p and object-dependent through θ. The mean-gradient and local impulse

response are related by

∂

∂θp

mθ =
∂

∂θp

Eθ[θ̂j]

= hp
j(θ), (5.10)

or more compactly as

∇mθ =
[
h1

j(θ), . . . ,hN
j (θ)

]T
. (5.11)

Whereas the local impulse response describes the coupling to all reconstructed

pixels due to a perturbation in a single source pixel, the mean-gradient describes the

coupling into a single reconstructed pixel due to perturbations in all source pixels. In

general they are not equivalent except under certain conditions [45,57]. Consider the
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case of an estimator with mean linear in θ: µ(θ) = Lθ for some square matrix L.

The local impulse response hj(θ) due to a perturbation in the jth source pixel is the

jth column of L, while the mean-gradient ∇mθ = ∇Eθ[θ̂j] is the jth row of L. Thus,

when L is symmetric, the mean-gradient is equivalent to the local impulse response.

A typical measure of resolution is the full-width half-maximum (FWHM) of the

local impulse response. This resolution measure only takes into account the width

of the center lobe while sidelobes or slowly decaying tails are ignored, resulting in

different local impulse response functions possibly having the same FWHM but widely

different resolution. A more discriminating measure of resolution is the 2nd-moment

γ of the local impulse response at the jth pixel1,

γ2 =

N∑
k=1

(k − j)2(∇mθ)
2
k

N∑
k=1

(∇mθ)
2
k

where we assume the mean-gradient and local impulse response are equivalent. Since

the mean-gradient is the sum of the ideal response ej and the bias-gradient ∇bθ, the

previous equation can be re-written as the ratio of two quadratic forms,

γ2 =
(∇bθ + ej)

T Mj (∇bθ + ej)

(∇bθ + ej)
T (∇bθ + ej)

(5.12)

or equivalently,

(∇bθ + ej)
T [Mj − γ2I

]
(∇bθ + ej) = 0 (5.13)

where Mj is a positive semi-definite diagonal sparse matrix with elements propor-

tional to the square of the distance of each pixel from the jth pixel. For the one-

dimensional case, the kth diagonal element of Mj is given by

[Mj](k,k) = (k − j)2δkj

where δkj is (for this expression only) the discrete delta-function.

1This definition is really the 2nd-moment of the squared local impulse response. However it
is equivalent to within a constant factor of both the FWHM and 2nd-moment of gaussian- and
laplacian-shaped impulse responses, and can be expressed as a quadratic form.
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5.4 Constrained CR-Bound

Since the bias-gradient can be viewed as the residual error between the local

impulse response and an an ideal point response, ∇bθ = ∇mθ − ej, the norm of the

bias gradient could be interpreted as a measure of resolution since it is the residual

error due to side-lobes in the local impulse response. In general this does not hold.

In fact, it is possible for local impulse response functions to have identical bias-

gradient norm and FWHM yet have widely varying sidelobe behavior, as illustrated

in figure 5.2. Thus, the 2nd-moment of the local impulse response has been proposed

Figure 5.2: Example of three representative point response functions with identical
bias-gradient norm and central lobe FWHM, but with varying sidelobe behavior.

as an additional constraint on the estimator bias-gradient [68].

For fixed constraints on allowable estimator bias-gradient norm δ and local impulse

response 2nd-moment γ, the variance lower bound among all estimators with bias-

gradient satisfying these constraints is found via a constrained optimization of (5.5)

σ2
θ ≥ (∇bθ + ej)

T F +
Y (∇bθ + ej) (5.14)

≥ min
d∈D

Q(d), (5.15)
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where

Q(d) = (d + ej)
T F +

Y (d + ej) (5.16)

and the set D of allowable bias-gradient vectors satisfy the constraints

D =

{
d :

dT Cd ≤ δ2

(d + ej)
T [Mj − γ2I] (d + ej) ≤ 0

}
. (5.17)

Figure 5.3 shows a graphical interpretation of this constrained minimization prob-

lem. Since the Fisher Information matrix FY is at least positive semi-definite, the

scalar function Q(d) in (5.16) are level-sets of a hyper-ellipse centered at ej. As for

the constraints in (5.17), the bias-gradient norm constraint has the form of an ellipse

centered at the origin, while the resolution constraint on the mean-gradient is that of

a hyper-cone centered at −ej.

Figure 5.3: Graphical interpretation of the constrained minimization problem in-
volved in calculating the UCRB.

5.4.1 Optimal bias-gradient

The constrained minimization problem

dmin = arg min
d∈D

(d + ej)
T F +

Y (d + ej)
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can be solved as an unconstrained minimization by the method of Lagrange multipli-

ers,

dmin = arg min
d

(d + ej)
T F +

Y (d + ej)

+ λ1(d
T Cd− δ2)

+ λ2((d + ej)
T [Mj − γ2I

]
(d + ej)).

After some algebraic manipulations,

dmin = arg min
d

dT
[
F +

Y + λ1C + λ2

[
Mj − γ2I

]]
d

+ 2dT
[
F +

Y − λ2γ
2I
]
ej + eT

j

[
F +

Y − λ2γ
2I
]
ej − λ1δ

2.

Let

A =
[
F +

Y + λ1C + λ2

[
Mj − γ2I

]]
B =

[
F +

Y − λ2γ
2I
]
.

Then

dmin = arg min
d

dT Ad + 2dT Bej + eT
j Bej − λ1δ

2.

Assuming for now that the null-space of F +
Y , C, and [Mj − γ2I] are disjoint, then

A−1 exists and we can re-arrange into terms either dependent or independent of d,

dmin = arg min
d

[
d + A−1Bej

]T
A
[
d + A−1Bej

]
+ eT

j

[
B −BA−1B

]
ej − λ1δ

2.

Since the 2nd term is independent of d, the optimal bias-gradient is

dmin = −A−1Bej

= −
[
F +

Y + λ1C + λ2

[
Mj − γ2I

]]−1 [
F +

Y − λ2γ
2I
]
ej (5.18)

= d(λ1, λ2).

By adding a second constraint on the estimator resolution (5.12) to the UCRB,

we can now define a minimum-variance surface above which that all estimators must
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lie. This surface is composed of two regions corresponding to which constraints are

active. By analyzing when the two constraints δ, γ are active, it can be shown that

the parametric surface defined by (5.5) and (5.18),

σ2(δ, γ) = (dmin + ej)
T F +

Y (dmin + ej) ,

consists of two regions, where either a) only the bias-gradient constraint is active

(λ1 > 0, λ2 = 0) or b) both constraints are active (λ1 > 0, λ2 > 0). These two

regions are separated by a parametric curve σ2(δ, γ) = σ2(δ, γ∗), where we will refer

to γ∗ as the critical 2nd-moment.

5.4.2 Critical 2nd-moment and minimum-variance surface

When the resolution constraint is not active, the Lagrange multiplier λ2 = 0 and

dmin reduces to

dmin = −
[
F +

Y + λ1C
]−1

F +
Y ej

= d(λ1), (5.19)

which is the minimum-variance bias-gradient with norm δ given in [57].

For a given bias-gradient norm δ, norm matrix C and Fisher Information FY ,

there is a corresponding Lagrange multiplier λ1 ≥ 0 such that δ2 = ‖d(λ1)‖2
C . For

this value of λ1, define γ∗ as the critical 2nd-moment constraint,

γ∗2 =
(d(λ1) + ej)

T Mj (d(λ1) + ej)

(d(λ1) + ej)
T (d(λ1) + ej)

. (5.20)

For values of γ ≥ γ∗, corresponding to a 2nd-moment greater than that of d(λ1),

only the bias-gradient constraint is active and dmin = d(λ1) (5.19). Otherwise, for

γ < γ∗ the 2nd-moment is less that that of d(λ1) and both constraints are active with

the optimal bias-gradient given by dmin = d(λ1, λ2) (5.18). The resulting parametric
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surface σ2(δ, γ) is given by the following expression:

σ2(δ, γ) =


0 δ ≥ δmax

(d(λ1, λ2) + ej)
T F +

Y (d(λ1, λ2) + ej) 0 < δ < δmax, 0 ≤ γ < γ∗

(d(λ1) + ej)
T F +

Y (d(λ1) + ej) 0 < δ < δmax, γ ≥ γ∗

eT
j F +

Y ej δ = 0

(5.21)

where δmax = [C](j,j), the jth-diagonal component of the norm matrix C. Note that

the third case is simply the UCRB of [57], and the last case is the unbiased Cramèr-

Rao bound [28,103] since δ = 0 corresponds to an unbiased estimator.

5.5 UCRB for Image Deconvolution

Figure 5.4 shows a 64x64-pixel mandrill test image along with a noise- and blur-

degraded simulated measurement. Image blur was simulated by convolving with a

5x5 pixel extent, shift-invariant, 1.5-pixel FWHM symmetric gaussian kernel, and

measurement noise was simulated by adding i.i.d. gaussian noise (variance σ2 = 1).

Figure 5.4: Original Image (left), Noisy/Blurred Image (right).

The measurement statistics of the observed blur- and noise-degraded image for

this case can be expressed as

y = Aθ + n, (5.22)
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where θ ∈ RN is the true (noiseless) values of the original pixel intensities, y is the

blur- and noise-degraded pixel intensities (both ordered lexographically as a N × 1

vector), A is a block-Toeplitz matrix which models the 2D convolution operator, and

n ∼ N(0,Σ) is a vector of zero-mean i.i.d gaussian random noise with covariance

Σ = σ2I. Therefore y is also vector gaussian random variable with mean Aθ and

covariance Σ, (i.e. y ∼ N(Aθ,Σ)), and the associated Fisher Information is

FY = ATΣ−1A

=
1

σ2
AT A (5.23)

Figure 5.5 shows the limiting square-root variance vs. bias-gradient norm of an

estimate of pixel (32,32) in the presence of blur and additive gaussian noise calculated

using the expressions in equations (5.6, 5.7, 5.19, and 5.23), otherwise known as the

UCRB [57]. Two different cases are considered: a 1.5-pixel FWHM gaussian blur as

in figure 5.4, along with a more challenging 1.75-pixel FWHM blur. The bias-gradient

norm matrix C used for the bias-gradient length δ (5.7) was the identity matrix I.

With this choice of norm matrix, the bias-gradient norm δ can be interpreted as the

mean-squared estimator bias.

As can be seen in figure 5.5, the minimum-possible variance of pixel intensity

when deconvolving a 1.75-pixel FWHM is larger than that achievable with a 1.5-pixel

FWHM blur. This is to be expected in that estimating a pixel in the presence of

larger blur is a more ill-conditioned problem, and would result in a noisier estimate

for a given total bias.

Figure (5.6) shows two different estimator mean-gradient images for the 1.75-pixel

FWHM blur case with bias-gradient norm δ = 0.1 (left) and δ = 0.5 (right). The

mean-gradient is more spread out with increasing bias-gradient norm, which gives

substance to the interpretation of bias-gradient norm as a measure of resolution.

One problem with the bias-gradient norm as a measure of estimator resolution is

that it is possible for estimators with different mean-gradients to have the exact same
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Figure 5.5: Bounds on single pixel estimation performance in presence of blur and
additive gaussian noise.

bias-gradient norm, but with dramatically different resolution properties. Figure 5.7

shows cross-sectional slices through the mean-gradient of two representative estima-

tors. Their associated bias-gradients both have the same norm δ = 0.5, but their

spread or FWHM are obviously different. By adding a second constraint on the esti-

mator resolution (5.12) to the UCRB, we can now define a minimum-variance surface

(5.21). Figure 5.8 illustrates this surface for the deconvolution problem presented

earlier in figure 5.4.

The variance of a regularized estimator will follows a trajectory in (δ, γ) indexed

by its regularization parameter. By analyzing the distance the particular estimator

lies above the surface, one can determine how far from optimality the estimator is. For

the purposes of this dissertation, we will focus on the penalized weighted least-squares

(PWLS) estimator, mainly due to its analytical tractability.

5.6 Penalized weighted least-squares estimator

For the linear additive gaussian noise model in (5.22), the penalized weighted

least-squares estimator (PWLS) for a measurement realization Y is given by the
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Figure 5.6: Mean-gradients images for two different estimators with different bias-
gradient norm. δ = 0.1 (left), δ = 0.5 (right).

minimizer of the following objective function,

Φ(θ) = [Y −Aθ]TΣ−1[Y −Aθ] + βθT Pθ (5.24)

where β > 0 is a regularization parameter, and P is a positive definite penalty matrix.

The value of θ that minimizes Φ (5.24) can be found explicitly,

θ̂(Y ) = [ATΣ−1A + βP ]−1ATΣ−1Y

= [FY + βP ]−1ATΣ−1Y . (5.25)

The penalty matrix P serves to improve the numerical stability of the matrix inversion

[FY + βP ]−1 in (5.25) for systems with an ill-conditioned Fisher Information matrix.

Common choices for P include the identity matrix I (often referred to as Tikonov

regularization or energy penalty), as well as discrete approximations to the Laplacian

operator to enforce smoothness constraints [40,55].

In (5.25), it was assumed that that matrix A and noise covariance Σ where known

exactly. In general this will not be true, but rather only estimates Ã and Σ̃. The

PWLS estimator with these assumed values is then

θ̂(Y ) = [ÃT Σ̃−1Ã + βP ]−1ÃT Σ̃−1Y

= [F̃Y + βP ]−1ÃT Σ̃−1Y . (5.26)
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Figure 5.7: Mean-gradient cross-sections for two different estimators with fixed bias-
gradient norm δ = 0.5.

where F̃Y is the Fisher information matrix assumed by the estimator from its imper-

fect knowledge of the matrix A and noise covariance Σ.

From the definitions given in (5.1, 5.2, 5.4, and 5.26), the PWLS estimator mean-

gradient ∇mθ and bias-gradient ∇bθ function can be easily derived, resulting in a

mean-gradient

∇mθ = AT Σ̃−1Ã[F̃Y + βP ]−1ej, (5.27)

bias gradient

∇bθ = ∇mθ − ej

=
[
AT Σ̃−1Ã[F̃Y + βP ]−1 − I

]
ej, (5.28)

and estimator variance found by the quadratic form in (5.5).

5.6.1 Matched PWLS estimator

In order to analyze the performance of a PWLS estimator whose parameters are

matched to the data, i.e. Ã = A and Σ̃ = Σ, we calculated the estimator trajectory

for both an identity penalty and a smoothing penalty. As can be seen in figure 5.9,
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there is not a significant gap between the actual estimator variance and the bound

surface for either choice of penalty. Upon closer inspection, the PWLS estimator with

identity penalty (P = I) is found to achieve the bound. This is a property of PWLS

estimators under gaussian statistics. When the choice of bias-gradient norm matrix

is equal to the inverse of the penalty C = P−1, the resulting trajectory achieves the

bound [57].

5.6.2 Mis-matched PWLS estimator

To analyze the effect of when the estimator is mis-matched from the data, we cal-

culated the estimator trajectory for an estimator with Ã corresponding to a 1.75pixel

FWHM blur. Since the original image was convolved with a 1.5pixel FWHM blur,

this corresponds to an estimator that is over compensating. As can be seen in fig-

ures 5.10 and 5.11, there is a significant gap between the actual estimator variance

and the bound surface. Only after significant regularization do the estimator trajec-

tories approach the bound surface, but at the cost of increased bias and resolution

loss. In neither case do the estimator trajectories achieve the bound, which is due

to the mis-match in the assumed value of A. The difference between the estimator

trajectories due to using different penalties can be seen in figure 5.12.

In figure 5.13, we calculated the estimator trajectory for both an identity- and

smoothing-penalized estimator with Ã corresponding to a 1.5pixel FWHM blur, but

for an original image that was convolved with a 1.75pixel FWHM blur. This cor-

responds to an estimator that is under compensating. Even with no regularization

(β = 0) the estimator is biased, which seems logical because of the fundamental

mis-match between the estimator’s choice and actual value of A.
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Figure 5.8: Minimum-variance surface, critical 2nd-moment, and active constraint
regions.

Figure 5.9: PWLS estimator trajectories for both an identity and smoothing penalty.
Both the measurements and estimator are matched with a 1.5pixel FWHM blur.
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Figure 5.10: PWLS estimator trajectory for a smoothing penalty. The measurements
had a 1.5pixel FWHM blur, while the estimator assumed a 1.75pixel FWHM blur.

Figure 5.11: PWLS estimator trajectory for an identity penalty. The measurements
had a 1.5pixel FWHM blur, while the estimator assumed a 1.75pixel FWHM blur.
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Figure 5.12: PWLS estimator trajectory for both an identity and smoothing penalty.
The measurements had a 1.5pixel FWHM blur, while the estimator assumed a
1.75pixel FWHM blur.

Figure 5.13: PWLS estimator trajectory for both an identity and smoothing penalty.
The measurements had a 1.75pixel FWHM blur, while the estimator assumed a
1.5pixel FWHM blur.
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CHAPTER 6

Conclusions

The theme of this dissertation has been the development of techniques for analyz-

ing emission tomography systems with multi-dimensional measurements. In Chap-

ter 2, the relationship between list-mode and quantized measurements was explicitly

defined. Measurement binning, whether by hardware or software, was shown to be

realistically modeled as a finite partitioning of the multi-dimensional continuous mea-

surement space, and naturally falls into the framework of vector quantization.

In Chapter 3, a computationally tractable statistical model for Compton SPECT

was developed that included the dominant error sources of Doppler broadening, energy

resolution, and attenuation in a consistent manner. However, since with list-mode

measurements each detection contributes independently to the likelihood function,

the computational complexity of the maximum-likelihood estimator is linear in the

number of measurements. Thus, in Chapter 4 vector quantizers were investigated as

a possible method to minimize the reconstruction algorithm computation complexity.

The vector quantizer was shown to be a valid model for discrete measurements in

emission tomography systems. Traditionally, asymptotic expressions for distortion in

a vector quantizer have been used to analyze the mean-squared error in the measure-

ment domain due to quantization in the measurement domain. For this dissertation,

we extended the analysis of loss in the Kullback-Leibler discrimination function due

to quantization [54], as well as relating the loss to the asymptotic behavior of the
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Receiver Operating Characteristic (ROC) curve, for a low-contrast lesion detection

task.

Chapter 5 was concerned with the limiting resolution and variance of an emission

tomography system. Once a partitioning of the list-mode measurements is defined,

either by hardware configuration or software based binning, one can define the dis-

crete likelihood function and associated Fisher Information Matrix. It is indirectly

through the FIM that the quantizer partitioning limits the reconstructed resolution

as well as limiting variance. One can solve for an ideal hypothetical estimator that

has minimum variance for a given amount of total bias and resolution. This results in

a parametric surface over bias, resolution and variance which specifies a lower bound

on any estimator satisfying bias, resolution or variance constraints. This surface is a

function of the Fisher information, bias-gradient norm, and resolution parameter and

thus independent of any particular choice of estimation algorithm. The variance of

any given estimator traces out a trajectory, indexed by its regularization parameter,

that is constrained to lie above this minimum-variance surface. The margin between

this trajectory and surface gives the performance margin between the particular reg-

ularized estimator in question and the fundamental performance limit of the imaging

system. For an estimator whose variance lies on this surface, lower estimator vari-

ance can only be achieved at the price of increased estimator bias and/or decreased

resolution.

Future Work

For Compton SPECT system modeling, future areas of work would include the

following: In order to derive expressions for the survival probabilities and list-mode

measurement back-projections given in Chapter 3, it was assumed that attenuation

was negligible in order to arrive at tractable solutions for the survival probabilities

and back-projections. However, under certain system geometries, such as those with
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internal first detectors, this assumption is not valid and practical implementations to

account for attenuation must be developed.

The binned measurement transition probabilities aij were shown to be the integral

over the measurement bin of the list-mode transition probability. However, evaluat-

ing this integral is nontrivial and must be approximated by numerical methods. A

possible fast method of integrating over each bin volume is by the following Monte

Carlo technique: Given p list-mode measurement realizations, the p back-projections

over each of the N pixels can be calculated once and selectively summed over each

of the M bins. The rational behind this is that for a fixed computational burden,

the variance due to statistical fluctuations in a Monte Carlo based technique decays

faster then the deterministic error due to multi-dimensional numerical integration, as

the number of measurements p grows large. The resulting reconstruction algorithm

would be O(M) rather than O(p) per iteration, with a one-time computational hit of

initially calculating p back-projections. This assumes that the M bin locations have

been determined ahead of time.

Another open question is the optimal bin distribution or measurement partition-

ing to minimize the Uniform CR Bound. As mentioned before in Chapter 4, the

measurement partitioning that minimizes the MSE in the quantized measurements is

known. However, it says nothing about the reconstructed image limiting variance, or

of the distortion in the mean image due to under-sampling. One possible distortion

metric motivated by optimal test design is to minimize the determinate or trace of

the inverse Fisher Information F−1. However, this is an intractable expression when

there are more then a handful of parameters.

As for lower bounds on estimator variance, a major difficulty in calculating bound

curves for imaging applications is that they involve inverting a large system of equa-

tions involving the Fisher Information Matrix. For systems with localized impulse

responses (and hence diagonally-dominant system matrices), the resulting FIM is
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sparse and diagonally-dominant, with the system of equations easily solved for using

matrix iteration techniques such as Gauss-Siedel. However, for tomography the im-

pulse response is highly non-local, resulting in a non-sparse, non-diagonally dominate,

poorly conditioned FIM that is difficult to invert. Thus, pre-conditioning the system

of equations with a pre-conditioner matrix tuned explicitly for a tomographic system

would aid in calculating bound curves.
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APPENDIX A

List-mode ML-EM Estimator

Maximizing (2.25) for the maximum-likelihood solution vector λ̂ directly is im-

practical due to the coupling inside the log function. As an alternative, we will fall

back on the old trick of embedding the incomplete observed data into a larger, unob-

served complete dataspace, derive the log-likelihood function as if we had acccess to

the complete data, and then iteratively maximize the resulting surrogate function.

Our observed data {Y i}
p
i=1 is incomplete in that it is not known which voxel j

emitted the photon that resulted in the measurement Y i. Define the random variable

zi as follows:

zi =

{
j if photon emitted from voxel j resulted in measurement Y i

0 otherwise

The collection {Y i, zi}p
i=1 forms our unobserved complete dataspace. Assuming that

we have access to the complete data and that each observation is iid, the joint density

of the complete data is

p(y
1
, z1, . . . , yp

, zp, p|λ, D, T )

=

p∏
i=1

p(y
i
|zi,λ, D)p(zi|λ, D)P (p|λ, D, T ),

with associated log-likelihood function of the complete data lc(λ)

lc(λ) =

p∑
i=1

log (p(Y i|zi,λ, D)p(zi|λ, D)) + logP (p|T,λ, D).
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Taking the expected value of the log-likelihood with respect to zi, conditioned on a

fixed value λ = λ̂k and on detecting the observed data sequence {Y i}
p
i=1,

Ezi

[
lc(λ)|λ̂k, {Y i}

]
=

N∑
j=1

P (zi = j|λ̂k, D, {Y i})
p∑

i=1

log (p(Y i|λ, D, j)p(j|λ, D))

−(TλD) + p log(TλD)− log(p!).

From the definition of zi, the term P (zi = j|λ̂, D, {Y i}
p
i=1) can be brought into the

inner summation since

P (zi = j|λ̂k, D, {Y i}
p
i=1) =

{
P (j|λ̂k, D, Y i) if zi = j
0 otherwise

,

while Bayes’ rule and a little algebra results in

P (j|λ̂k, D, Y i) =
aj(Y i)λ̂

k
j∑N

l=1 al(Y i)λ̂
k
l

and

p(Y i|λ, D, j)P (j|λ, D) =
aj(Y i)λj

λD

.

Plugging it all together gives the following expression ,

Ezi

[
lc(λ)|λ̂k, {Y i}

p
i=1

]
=

M∑
i=1

N∑
j=1

[
aj(Y i)λ̂

k
j∑N

l=1 al(Y i)λ̂
k
l

log (Taj(Y i)λj)

]
− (TλD)− log(p!).

Maximizing with respect to the components of λ results in the set of list-mode ML-

EM update equations,

λ̂k+1
j =

λ̂k
j

Tsj

p∑
i=1

[
aj(Y i)∑N

l=1 al(Y i)λ̂
k
l

]
.
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