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Abstract – DNA microarray technology is one of the most 
powerful techniques used in modern biology and is 
extensively used for identification of sequence (gene/gene 
mutation) and determination of gene expression. A typical 
microarray image consists of a few hundred to several 
thousand spots and the extent of hybridization of these 
spots determines the level of gene expression (abundance) 
in the sample. A major issue in microarray image analysis 
is to accurately quantify spot shapes and intensities. In this 
paper we address this issue by performing accurate spot 
segmentation of a microarray image, using morphological 
image analysis techniques. This allows for estimation of the 
shape of the segmented spots using B-Splines or other 
parametric shape model. 
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I. INTRODUCTION 
 
Gene microarray images permit estimation of the relative 
expression levels of thousands of genes simultaneously. 
Basically two mRNA (messenger RNA) samples, namely 
control sample and treatment sample, are reverse transcribed 
into cDNA (complementary DNA) samples and then tagged 
with two different dyes [1]. Further these two samples are 
mixed and scanned to produce a spotted image depicting the 
variations in fluorescent intensities. The results are color-
coded, so that the most active genes (with the greatest degree 
of hybridization) are colored red, and genes that are repressed 
(hybridized the least) are colored green [2]. A sample 
microarray image is shown in Fig.1. The overall intensity 
within each spot is a measure of the level of gene expression or 
equivalently the mRNA abundance in the sample. As gene 
microarrays can suffer from a high-level background noise 
level, spot segmentation is essential for quantifying this 
intensity. This paper applies mathematical morphology 
methods to accomplish this segmentation and to quantify spot 
shape variability. 
 
 

 
 

Fig. 1 A sample microarray image 
 
 

II. MORPHOLOGICAL METHODS  
FOR SPOT SEGMENTATION 

 
In this section we briefly present the basic principles, definitions 
and notations used in mathematical morphology. Let f be an 
image defined on and B be a planar structuring element such 
that B ⊆ . Also, let 

2\
2\ ψ  be an image operator, which 

transforms an image f into another image according to some 
specific task . The erosion (dilation) is defined by  
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where, b is known as the structuring function and 
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for some structuring element B. Erosion replaces the value of the 
image f at a pixel (x,y) by the infimum of the values of f over a 
structuring element B. Whereas dilation replaces the value of an 
image f at a pixel (x,y) by the supremum of the values of f over a 
structuring element Bc (reflection of B around the origin) [3], [4] 
.   
         Structural opening (structural closing) is defined by 
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and is used to undo the effect of erosion (dilation) by applying 
the associated dilation (erosion). It is important to note that 
openings (closings) are increasing, anti-extensive (extensive) and 
idempotent [5]. These both are smoothing filters and are used for 
smoothing contours of an image, suppressing small islands and 
cutting narrow isthmuses. The amount of smoothing is 
determined by the size and shape of the structuring function 
applied. Note that supremum of openings is also an opening and 
infimum of closings is also a closing. We summarize some of 
these operations below 
 

          Area opening is defined by 
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where, F(t) is a cross-section of the image intensity f and {Fi(t): i 
= 1,2,3…} are grains of the cross-section and α is the threshold 
level [10]. Area opening is used to remove grains with area 
below a given value from the cross sections of a grayscale image. 
On the other hand area closing is defined by 
  

        ( , )( , ) [ ( *, )( , )]*aclo aopnf x y f x yψ α ψ α=          (7) 
 
and is used to fill in the holes whose area is below a given value 
in the image cross sections. 
          Morphological gradient [6] is defined by  

 

                    
1

( ) [ ]
2grad f f B fψ = ⊕ − B                   (8) 

 
External morphological gradient (internal morphological 
gradient) is defined by  
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and also note, 

                                (11) ( ) ( ) ( )grad grad gradf fψ ψ ψ+ −= +
 
Opening top-hat operator (closing top-hat operator) is defined by  
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and is used to produce peaks (hollows) and ridges (ravines) in the 
topographic model of the image [9].  
         A morphological operator ψ is said to be a morphological 
filter, if it is increasing and idempotent. The combination of 
different morphological filters also results in a morphological 
filter. Alternating filters are combination of closings and 
openings and are defined as  
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We can combine alternating filters to form alternating sequential 
filters (ASF) [10], which are given by 
 
                                 1 1( ) .... ( )k k kf fµ π π π−=

or,                                                   (16) 1 1( ) .... ( )k k kfυ ρ ρ ρ−= f
  . 

where, k = size or order of the filter.  
          Distance function d(•,•) is a map from \ x\ into the 
set and has the following properties for every  
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where, d(u,v) is distance between points u and v [10]. Using the 
distance function, we can define the distance transform Df(u) of a 
binary image f⊆ at a point  as 2\ 2u ∈\
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∈
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The non-zero values of Df(u) (distance transform of the 
foreground) gives the minimum distance of a pixel in 
background from the foreground boundary, while the non-zero 
values of Df 

c (u) (distance transform of the background) gives 
the minimum distance of a pixel in foreground from the 
foreground boundary.  
          A regional minimum, M, of an image f is a connected 
component of pixels in f with a given value v, such that every 
pixel in neighborhood of M has a value strictly larger than v. 
Every regional minimum M has a catchment basin C(M) 
associated with it, which is collection of all points of the 
topographic surface of f, such that a drop of water falling at p 
slides along the surface until it reaches M [8], [11].  
          Now, if we flood the topographic surface of an image from 
its regional minimum and if we prevent the merging of water 
coming from different sources, we partition the image into two 
different sets; the catchment basins and the watershed lines, 
where each catchment basin contains one and only one regional 
minimum Mi [10]. We can define the watershed transform as 
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where, D is connected domain of the image f  [11]. In the next 
section we apply these morphological techniques to spot 
segmentation in gene microarray images. 
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III. SPOT SEGMENTATION OF  
MICROARRAY IMAGE 

 
Image Segmentation is defined as the process of isolating objects 
in the image from the background i.e., partitioning the image into 
disjointed regions, such that each region is homogeneous with 
respect to some property [6]. Therefore, spot segmentation can 
be defined as the process of extracting the appropriate 
homogenous spots, having the desired homogeneity property, 
from a microarray image.  
         We will use morphological techniques, discussed briefly 
above, for spot segmentation of a microarray image [3], [4], [8], 
[9], [10]. A portion of the original image’s grayscale version is 
shown in Fig. 2.1(a). It can be seen, that there are bright regions 
inside the spots, which will cause faulty binarization of the 
image. Applying an area opening (6) solves this problem and the 
result is depicted in Fig. 2.1(b). Thresholding the image in (b) 
produces the binary image shown in Fig. 2.1(c). The number of 
spots produced during thresholding is determined by the 
threshold level we select and thus can be used to filter those spots 
with weak hybridization levels. 
         Two iterations of the alternating sequential filter (ASF), 
characterized by a cross structuring element having radius of 1 
pixel, are applied to the image in (c) while using the sequence of 
opening followed by closing operators (14), (16). The 
topographic model of the resulting image is shown in Fig. 2.1(d). 
Next we find the regional maxima of the image in (d), according 
to the connectivity defined by cross structuring element. These 
regional maximums act as markers for each cell, as seen from the 
resulting image in Fig. 2.1(e). 
         Now we apply the watershed transform (18) to the negation 
of the original image using the markers found previously (shown 
in (e)) and using the box-structuring element to define 
connectivity. These watershed lines are used to act as external 
markers, which mark the crest lines of the original image (a). 
Further we locate the regional minima of the original image and 
use them as internal markers. These external markers and 
internal marks are united to result in a combined marker, which 
is shown in Fig. 2.1(f) overlaid over the original image. From (f) 
it is seen that the spot boundaries are constrained between 
external and internal markers.  
         The watershed transform is applied to the gradient of the 
image (shown in Fig. 2.1(g)) using the combined marker and the 
cross structuring element described above. The resulting 
watershed lines are shown in Fig. 2.1(h) and are overlaid over the 
original image in Fig. 2.1(i). The final image (i) shows that there 
are no oversegmentaion problems. Oversegmentation arises 
when the gradient operator is overly sensitive to grayscale 
variation and noise, creating a large number of irrelevant 
catchment basins. The procedure described above produces 
accurate spot segmentation of the microarray image with very 
low segmentation noise. 

    
 
 
 

 
 

 

Fig. 2.1(a) grayscale version  
of original microarray image 

 

Fig. 2.1(b) result after  
application  

of area opening 
 

                                     

 
 

 

Fig. 2.1(c) result after 
application of thresholding 

Fig. 2.1(d) topographical model
of image after apply ASF. 

 
 

  
 

Fig. 2.1(e) regional 
 maximums which act as 

markers for spots 

Fig. 2.1(g) gradient of the 
original  

 microarray image 
                              

 
 

 

     Fig. 2.1(f) combined 
internal and external marker 

Fig. 2.1(h) watershed lines  
resulting after applying 
watershed transform on  

gradient of the 
 original image  

and the combined  
marker in (f) 

 
 

                      
  Fig. 2.1(i) watershed lines overlaid  
          over the original image 
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IV. QUANTIFICATION OF SPOT SHAPE 
 

Our accurate spot segmentation permits quantification of spot 
shape and other characteristics e.g. noise, background averaging 
and subtraction. Hence we illustrate the utility of segmentation 
for shape quantification. After segmentation of the image, the 
number N of surviving spots in the image is determined (in this 
case N=60) and then an Nx2 matrix is calculated which contains 
co-ordinates of the centroid of each spot. Using the centroid of i-
th spot we calculate sample values of the boundary, which results 
in an NxM matrix for the x and y coordinates of sample points of 
each spot boundary, where M = the number of sample points 
along the boundary. Using the matrix of Cartesian coordinates of 
sample points of the boundary, we transform to polar coordinates 
with respect to centroid of i-th spot. 
        To achieve a low dimensional parameterization of the spot 
shape we investigated planar curve model fitting. There are 
numerous methods available to represent closed boundaries as 
periodic planar curves, such as Fourier descriptors, Bezier 
curves, Beta-Splines and B-Splines. In this paper, we adopt B-
spline boundary model [12] [13]. A B-spline consists of a set of 
K fixed positions, called knots, and piecewise smooth curves, 
called basis functions, connecting each of the knot position. For 
an m-th order B-spline these curves are specified by polynomial 
functions of degree m and a vector of parameters, the B-spline 
co-efficients. To ensure smoothness at each knot, the curve is 
constrained to have continuous derivatives up to order (m - 1). 
Using the centroid matrix, which contains centroid of each spot, 
and the polar coordinates matrix of the sample points of the 
detected spot boundary we apply B-spline fitting to smoothly 
parameterize the shape of each spot. A typical result for one spot 
is show in Fig. 3. 
 

 
 
Fig. 3 B-Spline around the boundary of one spot, and here circles 
are samples of boundary, asterisks are the control points of spline 

and solid line is the B-spline 
 

       After determining the coefficients vector of the B-splines by 
least squares, we developed a database of spot shapes in the 
microarray image. This database was used to query for a possible 
correlation of spot shape to factors such as intensity, background 
noise and microarray print-head. A spot in a microarray image is 
classified into a specified intensity changes and the statistics of 
spot shape can be computed and analyzed as a function of 
intensity level. Any correlation between intensity and shape can 
subsequently be used to improve estimates of overall 
hybridization levels leading to more accurate gene microarray 
analysis. 

V. CONCLUSION 
 

Spot segmentation of a microarray image has been achieved in an 
efficient manner using morphological techniques for image 
analysis, which is insensitive to noise problems leading to 
oversegmentation. The detected boundaries of the valid spots are 
used to obtain B-spline co-efficients of the shape, which can be 
further stored in a database for quantification of spot variations. 
We are in the process of collecting a large database of spot 
shapes which will be used for statistical spot shape analysis  
 

VI. REFERENCES 
 
[1] Chen Y, Dougherty E, Bittner M, “Ratio-Based Decisions 
and the Quantitative Analysis of cDNA Micro-array Images”, 
Journal of Biomedical Optics 2: 364 (1997). 
 
[2] Eisen MB. and Brown PO., “DNA Arrays for Analysis of 
Gene Expression”, Methods Enzymol 303, 179-205 (1999). 
 
[3] J. Serra, “Image Analysis and Mathematical Morphology”, 
London, England: Academic Press, (1982). 
 
[4] C. R. Giardina and E. R. Dougherty, “Morphological 
Methods in Image and Signal Processing”, New Jersey: Prentice 
Hall, (1988). 
 
[5] H. J. A. M. Heijmans, “Morphological Image Operators”, 
Boston: Academic Press, (1994). 
 
[6] J. Serra and P. Soille, “Mathematical Morphology and its 
Applications to Image and Signal Processing”, Dordrecht, The 
Netherlands: Kluwer, (1994). 
 
[7] L. Vincent, “Morphological Grayscale reconstruction in 
image analysis: Applications and efficient algorithms”, IEEE 
Transactions on Image Processing, vol. 2, pp 176-201, (1993). 
 
[8] F. Meyer and S. Beucher, “Morphological segmentation”, 
Journal of Visual Communications and Image Processing, vol. 1, 
pp. 21-46, (1990). 
 
[9] Dougherty, E. R.,“An Introduction to Morphological Image 
Processing”, SPIE Press, Bellingham, (1992). 
 
[10] J. Goutsias and S. Batman, “Morphological Methods for 
Biomedical Image Analysis Handbook of Medical Imaging”, 
Volume 2, Medical Image Processing and Analysis M. Sonka 
and J. M. Fitzpatrick (Eds.) pp. 175-272 (2000). 
 
[11] S. Beucher, “The watershed transformation applied to 
image segmentation”, 10th Conf. on Signal and Image 
Processing in Microscopy and Microanalysis, (1991), 
Cambridge, UK. 
 
[12] Elaine Cohen, Richard F. Riesenfeld and Gershon Elber, 
“Geometric Modeling with Splines: An Introduction”, Natick 
Massachusetts, A K Peters (2001). 
 
[13] G. Farin, “Nurbs: From Projective Geometry to Practical 
Use”. A K Peters Ltd, 2nd edition, (1999).  


