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ciated with the example endpoint posterior distribution shown in Fig. 3.5. The largest

and second largest values of the marginal posteriors are indicated–it is these values that

are used in computing the resolution ratios Λs and Λd, calculated as Λs(k) = 0.58 and

Λd(k) = 0.59. It is clear in this example that the endpoints of this transmission (source

number 6 and destination number 3) will be correctly estimated by the individual MAP

estimates as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Plots of proportion of endpoint estimates correct for a given set (L or Lc) versus the

resolution ratios of Eq. (3.34) averaged over the corresponding set for the two simulation

cases: 100% sensor coverage in the first column and 75% sensor coverage in the second.

Circles indicate averages over paths from set L and pentagrams indicate averages over

paths from set Lc. The first row (Λu) is for joint MAP estimation of uk = (sk, dk)
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reference lines are also plotted: a horizontal line indicating the chance line for randomly

selecting endpoints (1/36 for joint estimation and 1/6 for individual estimation), and a

vertical line at 0.68. Note that above Λ(k) = 0.68, an approximately linear behavior is

observed. This behavior is somewhat washed out for the marginalized estimates, however

marginalizing tends to increase the percent of correct estimates. It is not surprising that

there appears to be some degradation in the quality of the estimates when only 75% of

the links are equipped with sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1 Diagram of the measurement apparatus on a sample network. Probing sites are sources

Σ = {σ1, σ2} and destinations ∆ = {δ1, δ2}. Sensors are Γ = {γ1, γ2, γ3, γ4, γ5}. A box

on a link or node represents a sensor that indicates when a transmission path intercepts

that link/node. We see γ1 and γ2 monitor nodes while γ3, γ4, and γ5 monitor links. . . . 86

4.2 Example logical topology for the monitored network in Figure 4.1. The vertex set of the

logical network consists of sensors Γ = {γi}5i=1 and probing sites Σ = {σ1, σ2}, ∆ =

{δ1, δ2}. The edges summarize logical adjacencies among sensors and probing sites with

any intervening unmonitored elements short-circuited. . . . . . . . . . . . . . . . . . . . 91

4.3 Diagram of the hierarchical Bayesian models. The model for our present online system is

given in A, while the model of [46] for offline estimation is in B. Vertical arrows represent

prior dependencies, while right arrows indicate data used in updating parameter estimates,

and left arrows indicate the associated probability models. The model introduces routing

and tracking parameters into the hierarchy in order to adaptively account for changes in

network routing or suspect location. The method in [46] processes a batch of data offline,

so there is no need for adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



4.4 Operational diagram of the online system. Heavy horizontal arrows indicate transitions

between stages of operation (initialization, training, and monitoring), while light vertical

arrows indicate the flow of computation within each stage. The system is initialized by

formulating and solving a semidefinite program (SDP) associated with the prior equality

constraints Q(A) = v on the logical adjacency matrix A. Once online operation com-

mences, we have a training phase in which probes are scheduled and routing parameter

estimates are recursively updated in response to probe observations. Next we monitor the

network for suspect transmissions, and update tracking and routing parameter estimates

whenever a suspect is observed. Refer to Figure 4.3 for parameter definitions and relations. 96

4.5 Example permutation clustering trees. Here, just two sensors 1 and 2 are activated. The

tree A utilizes the parameter sequence S̃k = ((1, 2), (1, d), (s, 1), (2, 1), (s, 2), (2, d)), while

tree B uses the sequence S̃k = ((1, 2), (s, 1), (2, d), (2, 1), (s, 2), (1, d)). Nodes 1a and 1b

are formed after the first element in the sequence ((1, 2) for both A and B) is appended,

nodes 2a, 2b, 2c, and 2d are formed after the second element in the sequence ((1, d) for

A and (s, 1) for B) is appended, and so on. Each tree produces a complete enumeration

of the permutation set with characteristic quantities given in the tables to the right. For

tree A, nodes 5b and 6b give the complete permutation set, while nodes 3d and 6b are

the complete permutation set in tree B. It is clear from this example that the order of the

parameter sequence S̃k will have a large impact on the formation of the tree. A greedy

heuristic for selecting this is described and justified in the next section. . . . . . . . . . . 113

4.6 Illustration of the permutation sum approximation accuracy. In A, we have the exact

endpoint posterior of a suspect transmission activating six sensors. Darker color indicates

higher value in this two dimensional distribution. The true endpoints of this suspect were

source 3 and destination 45; so we see that the correct destination is clearly pinpointed

while there is a bit of ambiguity in the source estimate. Plot B shows the error (in

a logarithmic scale) when permutation clustering is used to approximate this endpoint

posterior. The number of leaves in the clustering tree were varied from 24 up to 648 in

steps of 24. Asterisks connected by a solid line indicate the actual error (as on the left

side of Eq. (4.51)), while X’s connected by a dotted line indicate the error bound on the

right side of Eq. (4.51). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Instantaneous source posterior probability of Eq. (4.54) as a function of clock tick. The

solid line represents P1(k), the dotted is P2(k), and the dashed is P3(k). Vertical lines are

drawn at each transition time (from source 1 to source 2, and from source 2 to source 3).

We see that the estimator is able to correctly locate the suspect at each point in time, as

indicated by the larger value of Ps(k) for the correct s. . . . . . . . . . . . . . . . . . . 123

4.8 Plots of average entering probability in A and average exit distribution entropy in B as

defined in Eqs. (4.55) and (4.56) respectively. The values are are normalized to the

maximum in each plot. The solid line represents quantities associated with source 1, the

dotted represents source 2, and the dashed represents source 3. Vertical lines are drawn

at each transition time (from source 1 to source 2, and from source 2 to source 3). These

indicators also point to the correct source location at the correct time as indicated by

a rise in the appropriate entering probability Es(k), and a drop in the appropriate exit

distribution entropy Hs(k). At transition points, there is a decay of the previous extreme

quantity with decay time determined by the forgetting factor b. . . . . . . . . . . . . . . 123

4.9 Plots of average entering probability in A and average exit distribution entropy in B as

defined in Eq. (4.57) for sensor 1. The values are are normalized to the maximum in

each plot. A vertical line is drawn at the point where sensor 1 fails. We see a drop in the

entering probability and a rise in the exit entropy beginning at the failure point; of course

there is a decay time determined by the forgetting factor a. . . . . . . . . . . . . . . . . 125

viii



4.10 Reward shaped distribution entropy −
∑

i wi(k) log wi(k) as a function of clock tick were

w(k) is defined in Eq. (4.53). The entropy is normalized by its initial value. We see that

the entropy deviates very little from its maximum value in 200 clock ticks. This indicates

that probes are essentially drawn from a uniform distribution throughout the simulation

(since the other component of p in Eq. (4.53) is uniform). . . . . . . . . . . . . . . . . . 126

5.1 Model of the internally-sensed network tomography measurement system. ut represents

the source/destination pair used to excite the system at time t, yt is the ordered set

of sensors activated in the network Γ parameterized by some set of parameters Θ. Rt

generates the observed elements: an unordered set of the elements of yt, denoted yt,R,

along with a probability distribution on possible orderings P (Rt = ρ) = Pt(ρ). Also, for

t ∈ Aτ ut is known, and for t ∈ Mτ = Tτ −Aτ ut is unknown but chosen from the known

distribution Pt(u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2 Examples of allowed and unallowed connections in undirected graphs that are uniquely

represented by an adjacency matrix with all zeros along the diagonal. . . . . . . . . . . 138

ix



LIST OF TABLES

Table

2.1 Element orderings, state vectors, and corresponding state vector permutations for the

isomorphisms of G0 on the edit grid as shown in Figure 2.3. The vector of edit grid graph

elements is denoted by ρ, the state vectors are denoted by ηA, ηB , and ηC , and the state

vector permutations are denoted by πA, πB , and πC for the corresponding isomorphism

in Figure 2.3. Note that the numbering of the edit grid vertices ωi shown in Figure 2.2 is

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Proportion of graphs correctly recognized and average classifier ratio for each edit type

category averaged over all graphs in that category. These are computed by marginalizing

the plots in Figure 2.10 over the horizontal axis (number of edits, M). The first number

in each pair is the proportion correctly recognized and the second number is the average

classifier ratio (PC, CR). The GED metrics perform better in the case of edge edits, vertex

relabelings, and random edits (1, 4, and 5); indeed, the GEDo metric correctly recognizes

at least 75% of graphs in these categories. Only the MCS1 metric performs well in the

case of vertex deletions and insertions (2 and 3) with at least 75% correct recognition in

both cases. The GEDo metric (GED with optimal costs) has the lowest average CR in all

categories but one, indicating reduced classification ambiguity. . . . . . . . . . . . . . . 43

3.1 Squared error values for compliance of samples with linear prior information Q(Ā) =
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CHAPTER I

Introduction

1.1 Network Models and Message Endpoint Localization

A network or graph is a mathematical structure that summarizes connections be-

tween some objects of interest. The objects, referred to as nodes or vertices in the

network, may be anything from computers and telephones to humans and atoms.

Connections between the objects, called links or edges, signify the existence of some

relevant relationship between the two objects connected. Links in a telephone net-

work might represent physical telephone lines; links in a network of humans (called

a social network) might indicate the connected individuals have had lunch together

in the last week; links in a chemical graph can indicate bonded atoms. The power

of networks as tools for representing relationships is clearly immense. An extensive

review of current network models and research in this area is given in [70]. In many

applications, it is useful to have a means for comparing two networks. For exam-

ple, the pharmaceutical industry frequently maintains databases of chemical graphs

representing the molecular structures of known drugs. When designing a new medi-

cation, it is useful to compare the graphs in the database to some query structure in

order to avoid patent infringements while getting ideas from existing medications. A

distance metric for graphs is clearly fundamental to this operation. We develop such
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Figure 1.1: Diagram of the measurement apparatus on a sample network for the message endpoint local-
ization problem. Probing sites are sources Σ = {σ1, σ2} and destinations ∆ = {δ1, δ2}. A box
on a link or node represents a sensor that indicates when a transmission path intercepts that
link/node. We see γ1 and γ2 monitor nodes while γ3, γ4, and γ5 monitor links.

a metric, analyze its properties, and give efficient computational approximations in

this thesis.

Very often a network is organized for purposes of communication. That is, nodes

in the network communicate by transmitting messages along links in the network.

This purpose is certainly intrinsic to telephone and computer networks. A com-

mand and control structure is a natural example of a social network organized for

communication. Here, some central figure of authority might issue orders to one of

his closest lieutenants. These orders are then passed along by the subordinate to

some appropriate foot soldiers for execution. Consider also a social network formed

for the purposes of covertly distributing some product (such as weapons technology

or a controlled substance). Suppliers of the product communicate with consumers

through some number of middlemen. Similarly, one might be interested in large

scale financial transactions initiated by some influential individuals and proceeding

through a network of banks and brokers.

In the context of communication networks such as those described above, a useful

2



bit of information is the source and destination of some transmission that is inter-

cepted along its path through the network. The transmission is intercepted by some

sensors in the network–these may be ’boxes’ placed on telephone lines, informants in

a social network, or cooperative brokers in a financial network (see Figure 1.1). This

information would allow one to infer the identities of parties that are significantly

altering the nature of their assets, determine central figures in a command structure,

or discover the locations of some callers in a telephone network. Due to various

legal, technological, and human shortcomings, the content of an intercepted message

is very often insufficient for determining its source and destination. We might then

turn to knowledge of the transmission’s path through the network (as measured by

where it was intercepted) to determine the source and destination. This approach is

complicated still by the fact that we may not know the true structure of the network

of interest. Even worse, our sensors might not be synchronized; in other words we

may not know the chronological order in which a single message was intercepted by

several sensors. In spite of these deficiencies of knowledge, there is hope for estimat-

ing the transmission source and destination if some training data is available. The

estimates are further strenghtened by any prior information about the structure of

the network and synchronization of sensors that might be available. The present

thesis develops a suite of tools to tackle this problem.

1.2 Survey of Topics

Many estimators are defined with respect to some distance norm; consider for

example the classic least squares estimator. We will be concerned with inference

problems involving networks; the Euclidean norm as is, certainly does not apply

to combinatorial structures like networks. Chapter 2 therefore develops a distance
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metric for labeled networks known as the graph edit distance. As the name suggests,

the graph edit distance is constructed from a set of edit operations that incur some

cost. A general formulation for editing graphs is used to derive a graph edit distance

that is proven to be a metric provided the cost function for individual edit operations

is a metric. Then, a binary linear program is developed for computing this graph

edit distance, and polynomial time methods for determining upper and lower bounds

on the solution of the binary program are derived by applying solution methods for

standard linear programming and the assignment problem. A recognition problem

of comparing a sample input graph to a database of known prototype graphs in the

context of a chemical information system is presented as an application. The costs

associated with various edit operations are chosen by using a minimum normalized

variance criterion applied to pairwise distances between nearest neighbors in the

database of prototypes. The new metric is shown to perform quite well in comparison

to existing metrics when applied to a database of chemical graphs.

After defining a useful distance metric for graphs, we move to the precise state-

ment of the endpoint localization problem in Chapter 3. We consider the problem

of estimating the endpoints (source and destination) of a transmission in a network

based on partial measurement of the transmission path. Sensors placed at various

points within the network provide the basis for endpoint estimation by indicating

that a specific transmission has been intercepted at their assigned locations. During

a training phase, test transmissions are made between various pairs of endpoints

in the network and the sensors they activate are noted. Sensor activations corre-

sponding to transmissions with unknown endpoints are also observed in a monitor-

ing phase. A semidefinite programming relaxation is used in conjunction with the

measurements and linear prior information to produce likely sample topologies given
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the data. These samples are used to generate Monte Carlo approximations of the

posterior distributions of source/destination pairs for measurements obtained in the

monitoring phase. The posteriors allow for maximum a posteriori (MAP) estimation

of the endpoints along with computation of some resolution measures. We illustrate

the method using simulations of random topologies.

The endpoint estimation techniques of Chapter 3 assume a batch mode of op-

eration and are therefore not suitable for online implementation. In Chapter 4,

we present online techniques for estimating the source and destination of a suspect

transmission through a network based on the activation pattern of sensors placed

on network components. We utilize a hierarchical Bayesian model relating routing,

tracking, and topological parameters. A controlled Markovian routing model is used

in conjunction with a recursive EM algorithm to derive adaptive routing and tracking

parameter estimates. Previously developed semidefinite programming methods are

used to account for any prior topological information through Monte Carlo estimates

of the topology parameters. We prove convergence of the routing and tracking param-

eter estimates and show that their asymptotic estimates are fixed points of an exact

EM algorithm. We present and analyze approximate methods based on permutation

clustering to reduce the complexity of sums that arise in the estimator formulas.

A multiarmed bandit approach to the design problem of online probe scheduling is

also presented. Finally, we illustrate the effectiveness of the new methods through

a variety of tracking simulations involving real Internet data. We observe speedy

performance and a high degree of accuracy.

Chapter 5 presents a theoretical development of an additional set of endpoint

localization methods based on a Markov chain Monte Carlo (MCMC) algorithm.

The Metropolis-Hastings algorithm is applied to develop estimators from routing
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models used in previous chapters. Since MCMC methods are notoriously slow and

computationally difficult, it is unlikely that these methods could compete with the

speed of those in prior chapters (especially the online techniques of Chapter 4).

However, it remains to be seen whether simulated experiments will reveal improved

accuracy. We finally conclude in Chapter 6 with some summarizing remarks and

suggestions for future research.

1.3 Contributions

This thesis contains a number of new developments. Although the graph edit

distance has been known for some time [94], the edit grid development of Chapter

2 is novel, as is the proof of metric properties and the binary linear programming

formulation. The development of the endpoint localization problem using linear

priors and ordering distributions as in Chapter 3 is new, along with the adaptation

of the semidefinite programming rounding method [31] for incorporating the linear

prior. The online estimation methods of Chapter 4 are novel as well, along with the

MCMC endpoint localization techniques of Chapter 5. The following publications

have resulted from this thesis.

[45] D. Justice and A. Hero. ”A binary linear programming formulation of the

graph edit distance.” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 28(8), Aug. 2006.

[46] D. Justice and A. Hero. ”Estimation of message source and destination from

network intercepts.” IEEE Transactions on Information Forensics and Security, 1(3),

Sept. 2006.

[47] D. Justice and A. Hero. ”Online methods for network endpoint localization.”

Technical report, Dept. of Electrical Engineering and Computer Science, University
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of Michigan, Ann Arbor, MI, July 2006.

We work with the abstract graphical representation of a network throughout the

thesis without appealing to specific properties of any certain type of network, and

any models are introduced with a minimal number of assumptions. The techniques

described are therefore developed at a sufficiently general level so as to make them

applicable to a wide variety of problems in network monitoring and surveillance.
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CHAPTER II

A Binary Linear Programming Formulation of the Graph
Edit Distance

2.1 Introduction

Attributed graphs provide convenient structures for representing objects when

relational properties are of interest. Such representations are frequently useful in

applications ranging from computer-aided drug design to machine vision. A familiar

machine vision problem is to recognize specific objects within an image. In this

case, the image is processed to generate a representative graph based on structural

characteristics, such a region adjacency graph or a line adjacency graph, and vertex

attributes may be assigned according to characteristics of the region to which each

vertex corresponds [76]. This representative graph is then compared to a database of

prototype or model graphs in order to identify and classify the object of interest. Face

identification [42] and symbol recognition [58] are among the problems in machine

vision where graphs have been utilized recently. In this context, a reliable and speedy

method for comparing graphs is important. Many heuristics and simplifications have

been developed and employed for this purpose in a variety of applications [87].

Comparing graphs in the context of graph database searching has also found signif-

icant application in the pharmaceutical and agrochemical industries. The attributed

graphs of interest are so called chemical graphs which are derived from chemical
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structure diagrams. Graphical representations are of great utility here because of the

similar property principle, which states that molecules with similar structures will

exhibit similar chemical properties [44]. Thus databases of these chemical graphs are

often searched by comparing with a query graph to aid in the design of new chemicals

or medicines [23]. Various techniques have been designed for processing the graphs

for structural features and generating bit strings (referred to as fingerprints) based

on the presence or absence of such features [80]. Since the fingerprints can be rapidly

compared, some pre-screening or clustering is often done based on these to eliminate

all but the most similar graphs to a given input graph. The remaining graphs may

then be compared to the query using a more sophisticated (and more computationally

demanding) method. Distance metrics based on the maximum common subgraph

are frequently used in this role [104, 81].

Although computing the maximum common subgraph (MCS) is no small task

(indeed, it is an NP-Hard problem [29]), several graph distance metrics have been

proposed that use the size of the MCS. One such metric is given in [13], with a slight

modification presented in [101]. A different MCS-based metric is presented in [43]

specifically for application to chemical graphs. An alternate metric that uses the

MCS along with the minimum common supergraph has also been proposed [27]. For

related structures, such as attributed trees, it is often possible to derive distance

metrics based on the maximum common substructure that operate in polynomial

time [92]. An intimate relationship between graph comparison and graph (or sub-

graph) isomorphism is readily apparent in these examples because the MCS defines

subgraphs in the two graphs being compared that are isomorphic. Indeed, computing

a graph distance metric often requires the computation of some sort of isomorphism

(aka matching) between graphs.
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An exact graph isomorphism defines a mapping between the nodes of two at-

tributed graphs so that their structures (vertex attributes along with edges) exactly

coincide. As one might expect, this is also a challenging computational problem in

general although it has not been shown to be NP-Complete [29]. As with subgraph

isomorphism, polynomial time algorithms are available for certain restricted classes

of graphs [34]. Algorithms for general graph isomorphism that are shown to be quite

speedy in practice are given in [61, 21]. Such algorithms typically take advantage

of vertex attributes to efficiently prune a search tree constructed for finding an iso-

morphism. Graphs obtained from real objects are rarely isomorphic, however, so

it is useful to consider inexact or error-correcting graph isomorphisms (ECGI) that

allow for graphs to nearly (but not exactly) coincide [94]. As the name suggests, the

lack of exact isomorphism can be caused by measurement noise or errors in a sample

graph when compared to a model graph. On the other hand, when comparing two

model graphs one might interpret such ’errors’ as capturing the essential differences

between the two graphs.

Error-correcting graph matching attempts to compute a mapping between the

vertices of two graphs so that they approximately coincide, realizing that the graphs

may not be isomorphic. Many suboptimal approaches exist to tackle this problem

[2, 96, 32, 97]. The adjacency matrix eigendecomposition approach of [96] gives

fast suboptimal results, however it is only applicable to graphs having adjacency

matrices with no repeated eigenvalues. Graphs with a low degree of connectivity

will often have adjacency matrices with multiple zero eigenvalues. Heuristics are

used in the graduated assignment type methods of [32, 97] to significantly reduce

the exponential complexity of the original problem. These methods can be applied

to very large graphs; however they require several tuning parameters to which the
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performance of the algorithm is quite sensitive. Unfortunately, no systematic method

for choosing these parameters is provided. The linear programming approach of [2]

gives good results in a reasonable amount of time for graphs having the same number

of vertices. The authors of [2] use the linear program to minimize a matrix norm

similarity metric.

The graph edit distance (GED) is a convenient and logical graph distance metric

that arises naturally in the context of error-correcting graph matching [94, 11, 12].

It can also be viewed as an extension of the string edit distance [100]. The basic

idea is to define graph edit operations such as insertion or deletion of a node/vertex

or relabeling of a vertex along with costs associated with each operation. The graph

edit distance between two graphs is then just the cost associated with the least costly

series of edit operations needed to make the two graphs isomorphic. The optimal

error-correcting graph isomorphism can be defined as the resulting isomorphism af-

ter performing this optimal series of edits. Furthermore, it has been shown that

the optimal ECGI under a certain graph edit cost function will find the MCS [11].

Enumeration procedures for computing such optimal matchings have been proposed

[41, 62, 94]. These procedures are applicable for only small graphs. In [67, 84, 6],

probabilistic models of the edit operations are proposed and used to develop MAP

estimates of the optimal ECGI. It is not clear in all applications, however, what is

the appropriate model to use for the edit probabilities. As with previous metrics,

efficient algorithms have been developed for computing edit distances on trees with

certain structures [107, 102, 49].

The graph edit distance is parameterized by a set of edit costs. The flexibility

provided by these costs can be very useful in the context of a standard recognition

problem described earlier of matching a sample input graph to a database of known
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prototype graphs [75]. If chosen appropriately, the costs can capture the essential

features that characterize differences among the prototype graphs. Recently, meth-

ods for choosing these costs that are best from a recognition point of view have been

presented. In [69], the EM algorithm is applied to assumed Gaussian mixture mod-

els for edit events in order to choose costs that enforce similarity (or dissimilarity)

between specific pairs of graphs in a training set. An application for matching im-

ages based on their shock graphs [86] uses the tree edit distance algorithm in [49]

and chooses edit costs based on local shape differences within shock graphs corre-

sponding to similar images. In a chemical graph recognition application, heuristics

are used to choose the edit costs of a string edit distance between strings formed

from the maximal paths between vertices in the graphs [36]. Related studies have

also been done into the effectiveness of weighting the presence or absence of certain

substructures differently when comparing fingerprints derived from chemical graphs

[105].

In this chapter, we provide a formulation of the graph edit distance whereby

error-correcting graph matching may be performed by solving a binary linear pro-

gram (BLP–that is a linear program where all variables must take values from the

set {0, 1}). We first present a general framework for computing the GED between

attributed, unweighted graphs by treating them as subgraphs of a larger graph re-

ferred to as the edit grid. It is argued that the edit grid need only have as many

vertices as the sum of the total number of vertices in the graphs being compared.

We show that graph editing is equivalent to altering the state of the edit grid and

prove that the GED derived in this way is a metric provided the cost function for

individual edit operations is a metric. We then use the adjacency matrix represen-

tation to formulate a binary linear program to solve for the GED. Since solving a
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BLP is NP-Hard [29], we show how to obtain upper and lower bounds for the GED

in polynomial time by using solution techniques for standard linear programming

and the assignment problem [72]. These bounds may be useful in the event that the

problem is so large that solving the BLP is impractical.

We also present a recognition problem [75] that demonstrates the utility of the

new method in the context of a chemical information system. Suppose there is a

database of prototype chemical graphs to which a sample graph is to be compared

as described earlier. The experiment proceeds in two stages: edit cost selection

followed by recognition of a perturbed prototype graph via a minimum distance

classifier. We provide a method for choosing the edit costs that is purely nonpara-

metric and is based on the assumption (or prior information) that the graphs in the

database should be uniformly distributed. The edit costs are chosen as those that

minimize the normalized variance of pairwise distances between nearest neighbor

prototypes, thereby uniformly distributing them in the metric space of graphs define

by the GED. Note that a metric which uniformly distributes nearest neighbors in

the database essentially equalizes the probability of classification error with a min-

imum distance classifier, thereby minimizing the worst case error. This method is

similar to the use of spherical packings for error-correcting code design, where the

distances between all nearest-neighbor code points are the same [20]. Also, provid-

ing such homogeneous sets of graphs is desirable in chemical applications for certain

structure-activity experiments [23]. This computation involves matching all pairs

of prototypes in a neighborhood and tabulating the edits between them. These are

provided as inputs to a single convex program to solve for the optimal edit costs.

This is one possible method for choosing edit costs; other methods might certainly

be concocted to accommodate whatever prior information about the data at hand is
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available.

We test our algorithm on a database of 135 chemical graphs derived from a set

of similar biochemical molecules [25]. Our GED metric is compared with the MCS

based metrics proposed in [43, 13]. Indeed, the similarity of molecules in this database

indicates it is a good candidate for our method of edit cost selection. We first compute

the optimal edit costs as previously described and show that our metric equipped with

these costs more uniformly distributes the prototype graphs than either MCS metric.

The recognition problem is investigated next by generating sample graphs through

random perturbations on the prototype graphs; thus we consider a scenario where the

ECGI is used to ’fix’ errors between sample and model graphs. Each sample graph is

matched to every prototype in the database in an effort to recognize which prototype

was perturbed to create the sample graph, and a classification ambiguity index is

computed. The GED metric is found to perform better with respect to certain types

of edit and worse with respect to others than the MCS metrics. However, when

random edits are applied, the GED typically performs better.

This chapter is organized as follows. Section II presents the bulk of the theory.

Within Section II, we first present the general framework for computing the GED

and prove that it results in a metric provided the edit cost function is a metric. This

is followed by the development of the binary linear program to compute the graph

edit distance along with a description of polynomial-time solutions for upper and

lower bounds on the GED. Finally a description of edit cost selection for a graph

recognition problem is given, and it is shown that the resulting problem is a convex

program. Section III presents the results of the graph recognition problem applied

to a database of chemical graphs, and Section IV provides some concluding remarks.
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2.2 Theory

We first introduce a framework for edits on the set of unweighted, undirected

graphs with vertex attributes based on relabeling of graph elements (vertices and

edges). Suppose we wish to find the graph edit distance between graphs G0 and G1.

The graph to be edited G0 is embedded in a labeled complete graph GΩ referred to as

the ’edit grid.’ Vertices and edges in GΩ may possess the special null label indicating

the element is not part of the embedded graph; such an element is referred to as

’virtual’ and allows for insertion and deletion edits by simply swapping a null label

for a non-null label or vice versa. The state of the edit grid is altered by relabeling

its elements until the graph G1 surfaces somewhere on the grid. Assuming a cost

metric on the set of labels (including the null label), we prove the existence of a set

of graph edits with minimum cost that occur in one transition of the edit grid state.

We also show that the graph edit distance implied by this cost is a metric on the set

of graphs.

Next, we consider the adjacency matrix representation in order to develop the

binary linear programming formulation of the graph edit optimization as a practical

implementation of the general framework. We show how to use this formulation to

obtain upper and lower bounds on the graph edit distance in polynomial time.

Finally, we offer a minimum variance method for choosing a cost metric. This

metric is appropriate for a graph recognition problem wherein an input graph is

compared to a database of prototypes. It is based on the assumption that the pro-

totype graphs should be roughly uniformly distributed in the metric space described

by the graph edit distance.
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G0(V0, E0, l0) G1(V1, E1, l1)

Figure 2.1: Example undirected unweighted graphs with vertex attributes. The attribute alphabet is given
by Σ = {α, β, γ}.

2.2.1 Editing Graphs and the Graph Edit Distance

Let G0(V0, E0, l0) be an undirected graph to be edited where V0 is a finite set of

vertices, E0 ⊆ V0 × V0 is a set of unweighted edges, and l0 : V0 → Σ is a labeling

function that assigns a label from the alphabet Σ to each vertex. We assume there

is at most one edge between any pair of vertices. The vertex labels in Σ capture the

attribute information. We define the label φ /∈ Σ as φ is a special vertex label whose

purpose will be introduced shortly. These assumptions are made implicitly for every

graph in this chapter so that we need not mention them again. Some example graphs

are shown in Figure 2.1.

Let Ω = {ωi}N
i=1 denote a set of vertices; accordingly Ω×Ω is the set of undirected

edges connecting all pairs of vertices in Ω. We refer to the complete graph GΩ(Ω, Ω×

Ω, lΩ) as the edit grid. N , the number of vertices in the edit grid, may be as large as

necessary. We will argue later that for computing the graph edit distance between

G0(V0, E0, l0) and G1(V1, E1, l1) N need be no larger than |V0| + |V1|. An example

edit grid with five vertices is shown in Figure 2.2.

For the purposes of editing, we let the graph G0(V0, E0, l0) be situated on the edit

grid, i.e. V0 ⊂ Ω and E0 ⊂ Ω×Ω; equivalently, G0 is a subgraph of GΩ. Vertices in V0

are assigned the appropriate label from Σ determined by the labeling function l0, that
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Figure 2.2: Example edit grid GΩ(Ω, Ω× Ω, lΩ) with five vertices.

A B C

Figure 2.3: Isomorphisms of the graph G0 on the edit grid GΩ. Vertex labels are noted; dotted lines
indicate virtual edges (label 0) while solid lines indicate real edges (label 1). The vertex
numbering in Figure 2.2 is used therefore the standard placement is shown in A.

is lΩ(ωi) = l0(vi) for all ωi ∈ V0. Vertices in Ω− V0 are assigned the vertex null label

φ so lΩ(ωi) = φ for all ωi ∈ Ω−V0. The null label indicates a virtual vertex that may

be made ’real’ during editing by changing its label to something in Σ. Since edges

are unweighted, they take labels from the set {0, 1} where 1 indicates a real edge and

0 (the edge null label) indicates a virtual edge. Accordingly, lΩ(ωi, ωj) = 1 for all

edges (ωi, ωj) ∈ E0 and lΩ(ωi, ωj) = 0 for all edges (ωi, ωj) ∈ (Ω×Ω)−E0. When the

graph G0 is placed on the first |V0| vertices of GΩ (i.e. ωi = vi for i = 1, 2, . . . , |V0|),

we refer to this as the standard placement. Some placements of the graph G0 from

Figure 2.1 on the edit grid of Figure 2.2 are shown in Figure 2.3. These are clearly

isomorphisms of G0 on the edit grid.

Here it is appropriate to provide a quick note on indexing notation used through-

out this chapter. Superscript indices index elements within a vector while subscript

indices index the entire vector (such as when it occurs in a sequence). For example,
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i ρi ηi
A ηi

B ηi
C πi

A πi
B πi

C

1 ω1 α β φ 1 4 5
2 ω2 β φ φ 2 1 4
3 ω3 β β β 3 3 3
4 ω4 φ α β 4 5 2
5 ω5 φ φ α 5 2 1
6 (ω1, ω2) 1 0 0 6 8 15
7 (ω1, ω3) 1 1 0 7 13 14
8 (ω1, ω4) 0 1 0 8 15 12
9 (ω1, ω5) 0 0 0 9 11 9
10 (ω2, ω3) 1 0 0 10 7 13
11 (ω2, ω4) 0 0 0 11 9 11
12 (ω2, ω5) 0 0 0 12 6 8
13 (ω3, ω4) 0 1 1 13 14 10
14 (ω3, ω5) 0 0 1 14 10 7
15 (ω4, ω5) 0 0 1 15 12 6

Table 2.1: Element orderings, state vectors, and corresponding state vector permutations for the isomor-
phisms of G0 on the edit grid as shown in Figure 2.3. The vector of edit grid graph elements
is denoted by ρ, the state vectors are denoted by ηA, ηB , and ηC , and the state vector permu-
tations are denoted by πA, πB , and πC for the corresponding isomorphism in Figure 2.3. Note
that the numbering of the edit grid vertices ωi shown in Figure 2.2 is used.

x2
5 refers to the second element in the x5 vector (fifth vector in a sequence of {xk}).

Similar indexing schemes are adopted for matrices: A34
1 refers to the (3, 4) element

in matrix A1. Also, a single superscript index on a matrix indexes the entire row, so

that A3
1 denotes the third row of matrix A1.

Let η ∈ (Σ ∪ φ)N × {0, 1} 1
2
(N2−N) denote the state vector of the edit grid. We

assign an ordering to the graph elements (vertices and edges) of the edit grid so

that the ith element of η contains the label of the ith element of the edit grid (i.e.

ηi = lΩ(ρi) for ρi ∈ Ω ∪ (Ω × Ω)). For example, the element orderings and state

vectors for the graphs in Figure 2.3 are shown in Table 2.1.

We perform a finite sequence of graph edits to transform the graph G0(V0, E0, l0)

situated on the edit grid GΩ(Ω, Ω×Ω, lΩ) into the graph G1(V1, E1, l1) (such that V1 ⊂

Ω and E1 ⊂ Ω×Ω). Vertex edits consist of insertion, deletion, or relabeling to some

other symbol in Σ. Edge edits consist of insertion or deletion. Using the null labels

introduced above, we may interpret all graph edits as relabeling of real and virtual

18



elements. For example, changing the label of a virtual edge from 0 to 1 corresponds

to the insertion of that edge into the graph G(V, E, l). Similarly, relabeling an edge

from 1 to 0 amounts to deleting that edge. Vertex insertion or deletion is a bit

more complex in that it also typically involves edge edits; however there is a natural

decomposition of the vertex edit that is consistent with this framework. Consider

a vertex deletion whereby a vertex is removed from the graph along with all edges

adjacent to that vertex. We may delete the vertex by changing its label σ ∈ Σ to

φ and relabeling all edges adjacent to it from 1 to 0. Vertex insertion may involve

attaching the new vertex to the existing graph via an edge. Again this process is

easily decomposed by relabeling a virtual vertex from φ to some desired label σ ∈ Σ

and changing the label of an appropriate virtual edge from 0 to 1. Thus it suffices

to consider the transforming of edge and vertex labels as the fundamental operation

for editing.

Edits essentially serve to alter the state of the edit grid. Thus we may specify a

sequence of edits by noting the sequence of edit grid state vectors {ηk}M
k=0 resulting

from these edits. Suppose we wish to transform a graph G0 into a graph G1 by

performing edit operations. Assume at this point that the initial state of the edit

grid η0 contains G0 in its standard placement. We must have the final state ηM be

such that it describes G1 situated in some fashion on the edit grid. Thus if Γ1 is

the set of state vectors corresponding to all isomorphisms of G1 on the edit grid, we

must have ηM ∈ Γ1. Two different state sequences for transforming the example G0

into the example G1 of Figure 2.1 are shown in Figure 2.4.

The set of all isomorphisms of a graph Gn on the edit grid, Γn, may be defined in

terms of the standard placement of Gn denoted by ηn and Π–the set of all permutation
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η0 η1

η0 η1 η2

Figure 2.4: Two different edit grid state sequences for transforming G0 of Figure 2.1 into G1. The upper
sequence requires only one state transition, while the lower sequence requires two. In both
cases, the initial state is the standard placement of G0, and the final state represents an
isomorphism of G1 on the edit grid. Using the vertex numbering scheme of Fig. 2.2, the
following non-trivial edits are made in the single transition of the upper sequence: (ω1, α →
φ), (ω2, β → φ), (ω4, φ → γ), ((ω1, ω2), 1 → 0), ((ω1, ω3), 1 → 0), ((ω2, ω3), 1 → 0), and
((ω3, ω4), 0 → 1). In the first transition of the lower sequence we have (ω1, α → φ), (ω2, β → φ),
(ω3, β → φ), ((ω1, ω2), 1 → 0), ((ω1, ω3), 1 → 0), ((ω2, ω3), 1 → 0), and in the second transition
of the lower sequence: (ω1, φ → β), (ω2, φ → γ), ((ω1, ω2), 0 → 1). For a metric cost function
c, the cost of the upper sequence is given by c(α, φ) + c(β, φ) + c(φ, γ) + 4c(0, 1), and the cost
of the lower sequence is c(α, φ) + 3c(β, φ) + c(φ, γ) + 4c(0, 1).

mappings describing isomorphisms of the edit grid GΩ–as in Eq. (2.1).

(2.1) Γn =
{

η | ∃π ∈ Π s.t. ηi = ηπi

n

}
Note that Π does not contain all possible permutations of the elements of the state

vector η because elements of Π must describe an isomorphism of the edit grid. For

example, an edit grid with two vertices Ω = {ω1, ω2} has only two isomorphisms:

ω′1 = ω1, ω′2 = ω2 and ω′1 = ω2, ω′2 = ω1. Assuming the graph elements are indexed

as ρ = (ω1, ω2, (ω1, ω2)), there are only two permutations of the state vector that

comprise Π: π1 = (1, 2, 3) and π2 = (2, 1, 3). Indeed, it will always be the case that

|Π| = N !. The permutations of the state vector corresponding to the isomorphisms

of G0 in Figure 2.3 are given in Table 2.1.
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We define a cost function c : (Σ∪φ)2∪{0, 1}2 → <+ that assigns a nonnegative cost

to each graph edit. The cost of an edit grid state transition denoted as C(ηk−1, ηk)

is simply the sum of all edits separating the two states, i.e.

(2.2) C(ηk−1, ηk) =
I∑

i=1

c(ηi
k−1, η

i
k)

where I = N + 1
2
(N2−N) is the total number of graph elements (vertices and edges)

in the edit grid. Similarly, the cost of a sequence of state transitions is simply the

sum of the costs of individual transitions. We consider only cost functions that are

metrics on the set of vertex and edge labels as characterized by Definition II.1.

Definition II.1. A cost function c : (Σ ∪ φ)2 ∪ {0, 1}2 → <+ is a metric if the

following conditions hold for all (x, y) ∈ (Σ ∪ φ)2 ∪ {0, 1}2:

1. Positive definiteness: c(x, y) = 0 if and only if x = y.

2. Symmetry: c(x, y) = c(y, x).

3. Triangle inequality: c(x, y) ≤ c(x, z) + c(z, y) for all (x, z) and (z, y) in (Σ ∪

φ)2 ∪ {0, 1}2.

Assuming a metric cost function, the cost of the upper sequence in Figure 2.4 is

c(α, φ) + c(β, φ) + c(φ, γ) + 4c(0, 1), and the cost of the lower sequence is c(α, φ) +

3c(β, φ)+c(φ, γ)+4c(0, 1). With such a cost function c, we have the following simple

result.

Proposition II.2. If c : (Σ∪φ)2∪{0, 1}2 → <+ is a metric on the set of labels then

C as defined in Eq. (2.2) is a metric on the edit grid state space.

Proof. Expand C in terms of c using the definition in Eq. (2.2) and apply the metric

properties of c to trivially obtain the corresponding properties for C.
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We thus have the following useful Lemma:

Lemma II.3. Let c be a metric and {ηk}M
k=0 be a sequence of edit grid state vectors.

Then for all M ≥ 1, C(η0, ηM) ≤
∑M

k=1 C(ηk−1, ηk).

Proof. The M = 1 case is trivial and the M = 2 case follows from the triangle

inequality. Assume the claim holds for some value M and proceed by induction:

(2.3)

C(η0, ηM+1) ≤ C(η0, ηM) + C(ηM , ηM+1)

≤
∑M

k=1 C(ηk−1, ηk) + C(ηM , ηM+1)

=
∑M+1

k=1 C(ηk−1, ηk)

where the first line in Eq. (2.3) follows from the triangle inequality and the second

line uses the induction hypothesis.

We now define the graph edit distance with respect to a cost function c as

(2.4) dc(G0, G1) = min
{ηk}M

k=1|ηM∈Γ1

M∑
k=1

C(ηk−1, ηk)

where η0 is the standard placement of G0 on the edit grid, Γ1 is the set of state

vectors corresponding to isomorphisms of G1 on the edit grid as in Eq. (2.1), and M

is the maximum number of allowed state transitions (this can be as large as desired,

but we are only concerned with finite graphs implying M will be finite). There is no

loss of generality by fixing the number of terms in the summation of Eq. (2.4), since

for M ′ < M transitions we can simply repeat the final state ηM ′ so that ηk = ηM ′ for

k = M ′ + 1, M ′ + 2, . . . M . Note that since there is a finite number of state vector

sequences {ηk}M
k=1 such that ηM ∈ Γ1, the graph edit distance as defined in Eq. (2.4)

always exists. It essentially finds a state transition sequence of minimum cost that

transforms G0 into G1 (the minimizing sequence need not be unique). Since our cost

function is a metric, it seems logical that we should be able to achieve the minimum
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cost with only one edit grid state transition. The following theorem shows this is

indeed the case.

Theorem II.4. For a given graph edit cost function, c : (Σ∪φ)2∪{0, 1}2 → <+ that is

a metric, there exists a single state transition (η0, η̄1) such that dc(G0, G1) = C(η0, η̄1)

where η0 is the standard placement of G0 and η̄1 ∈ Γ1.

Proof. Assume the initial state η0 describes G0 in its standard placement on the

edit grid, and suppose {η̃k}M
k=1 solves the graph edit minimization in Eq. (2.4)–this

optimal sequence always exists as argued earlier. Define η̄1 = η̃M , then we have

(2.5)

dc(G0, G1) = C(η0, η̃1) +
∑M

k=2 C(η̃k−1, η̃k)

≥ C(η0, η̃M)

= C(η0, η̄1)

where the second line follows from the first by applying Lemma II.3. Now define the

state sequence {η̂k}M
k=1 so that η̂k = η̄1 for all k. Then the positive definiteness of

the metric C gives

(2.6)

C(η0, η̄1) = C(η0, η̂1) +
∑M

k=2 C(η̂k−1, η̂k)

≥ min
{ηk}M

k=1|ηM∈Γ1

∑M
k=1 C(ηk−1, ηk)

= dc(G0, G1)

The second line follows because η̂M = η̄1 = η̃M ∈ Γ1 and the proof is complete.

Theorem II.4 allows the graph edit distance in Eq. (2.4) to be re-expressed equiv-

alently as

(2.7) dc(G0, G1) = min
η̃1∈Γ1

C(η0, η̃1) = min
π∈Π

I∑
i=1

c(ηi
0, η

πi

1 )

where the second equality follows from the definition of Γ1 in Eq. (2.1) and η0 and

η1 are the standard placements of G0 and G1 respectively. Note that this one-state-

transition result is crucial for our binary linear programming formulation, and it
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hinges on the metric properties of the cost function. Under a cost that is not a

metric, there is no guarantee that the graph edit distance can be computed with

just one edit grid state transition. One might consider multiple state transitions in

a greedy algorithm for computing the graph edit distance in this case.

If π solves the minimization in Eq. (2.7), then we have

(2.8)
dc(G0, G1) =

∑I
i=1 c(ηi

0, η
πi

1 )

=
∑

i|ρi∈V0∪V1∪E0∪E1
c(ηi

0, η
πi

1 )

Thus only elements of the edit grid comprising either G0 or G1 contribute to the sum;

all other elements have the null label in both states and therefore have zero cost.

The most terms contribute to the summation in Eq. (2.8) in the case where V0 and

V1 are disjoint. This suggests we need an edit grid with no more than N = |V0|+ |V1|

vertices in order to compute the graph edit distance in Eq. (2.7).

2.2.2 A Metric for Graphs

In addition to justifying the binary linear programming formulation to follow,

Theorem II.4 also provides a simple means for showing that the graph edit dis-

tance (when derived from a metric cost) is a metric itself on the set of undirected,

unweighted graphs with vertex attributes (denoted by Ξ). We need a preliminary

lemma however. We have assumed for simplicity that the graph edit minimization

always starts with the graph G0 in its standard placement on the edit grid. It seems

that this should not be necessary; i.e. that the graph edit distance should be the

same regardless of where G0 is on the edit grid. The following lemma establishes

this.

Lemma II.5. If η̄0 ∈ Γ0 where Γ0 is as defined in Eq. (2.1), then dc(G0, G1) =

min
η̃1∈Γ1

C(η̄0, η̃1) = min
π∈Π

∑I
i=1 c(η̄i

0, η
πi

1 ).
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Proof. Let η̄i
0 = ηπ̄i

0 for the standard placement η0 then we have

(2.9)

dc(G0, G1) = min
π∈Π

∑I
i=1 c(ηi

0, η
πi

1 )

= min
π∈Π

∑I
j=1 c(ηπ̄j

0 , ηππ̄j

1 )

= min
π̃∈Π

∑I
j=1 c(η̄j

0, η
π̃j

1 )

where the second line follows by reordering the sum with index change i = π̄j, and

the third by noting that applying π̄ to any permutation π in Π results in another

permutation π̃ in Π.

We now prove that the graph edit distance is a metric.

Theorem II.6. If the cost function c : (Σ∪φ)2∪{0, 1}2 → <+ is a metric, then the

associated graph edit distance dc : Ξ2 → <+ is a metric.

Proof. Let G0, G1, and G2 all be graphs in Ξ.

1. Positive definiteness: Apply Theorem II.4 to give dc(G0, G1) = C(η0, η̄1). Clearly

dc is nonnegative because it is a sum of nonnegative edit costs. Now since C

is a metric, C(η0, η̄1) = 0 if and only if η0 = η̄1. This occurs if and only if

G0 is isomorphic to G1. In other words the standard placement of G0, η0, also

describes an isomorphism of G1 on the edit grid, i.e. η0 ∈ Γ1.

2. Symmetry: Theorem II.4 gives

(2.10)

dc(G0, G1) = C(η0, η̄1)

= C(η̄1, η0)

≥ min
η̃0∈Γ0

C(η̄1, η̃0)

= dc(G1, G0)

where symmetry of the metric C gives the second line, and Lemma II.5 gives

the fourth line from the third. The reverse inequality, dc(G1, G0) ≥ dc(G0, G1),

is established via an identical argument.
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3. Triangle Inequality: The symmetry property gives dc(G0, G2) = dc(G2, G0).

Theorem II.4 gives dc(G2, G0) = C(η2, η̄0) and dc(G2, G1) = C(η2, η̄1) where η2

is the standard placement of G2. But by symmetry of C we have C(η2, η̄0) =

C(η̄0, η2) therefore

(2.11)

dc(G0, G2) + dc(G2, G1) = C(η̄0, η2) + C(η2, η̄1)

≥ C(η̄0, η̄1)

≥ min
η̃1∈Γ1

C(η̄0, η̃1)

= dc(G0, G1)

where the second line follows from the triangle inequality for C, and Lemma

II.5 gives the fourth line from the third.

2.2.3 Binary Linear Program for the Graph Edit Distance

In order to develop a binary linear program for computing the graph edit dis-

tance, we organize the labels in the edit grid state vector using the adjacency matrix

representation. The elements of the adjacency matrix consist of edge labels, and we

associate a vertex label with each row(column) of the matrix (the matrix is symmet-

ric since the graphs of interest are undirected). We adopt the ordering scheme in

Table 2.1, so that if Ak ∈ {0, 1}N×N is the adjacency matrix corresponding to edit

grid state vector ηk then the vertex label ηi
k is associated with the ith row(column) of

Ak for i = 1, 2, . . . , N (i.e. l(Ai
k) = ηi

k), and the upper half of the matrix is given by

Aij
k = η

iN+j− i2+i
2

k for i < j ≤ N–the lower half follows similarly from symmetry. All

zeros lie on the diagonal of Ak. For example, the adjacency matrix representations
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of the isomorphisms in Figure 2.3 (with state vectors in Table (2.1) are given by

(2.12)

AA =



0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 0 0 0

0 0 0 0 0



α

β

β

φ

φ

AB =



0 0 1 1 0

0 0 0 0 0

1 0 0 1 0

1 0 1 0 0

0 0 0 0 0



β

φ

β

α

φ

AC =



0 0 0 0 0

0 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0



φ

φ

β

β

α

where the vertex labels associated with each row/column are printed to the right of

the corresponding row.

The adjacency matrix representation also allows a convenient means for expressing

an isomorphism permutation π ∈ Π. We can represent the first N elements of

π as a permutation matrix P ∈ {0, 1}N×N–recall that the remaining 1
2
(N2 − N)

elements of π correspond to reordering of the edges which is determined by the

vertex permutation in the first N elements. The elements of the permutation matrix

P corresponding to π are given by P ij = δ(πi, j) for i, j = 1, 2, . . . , N where δ : <2 →

{0, 1} is the Kronecker delta function.

We now write the graph edit distance in this framework. First, partition the re-

expression of Eq. (2.7) into summations over state vector entries corresponding to
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vertex and edge elements (assuming an ordering like the one in Table 2.1 is used).

(2.13)

dc(G0, G1) = min
π∈Π

∑N
i=1 c(ηi

0, η
πi

1 ) +
∑I

i=N+1 c(ηi
0, η

πi

1 )

= min
π∈Π

∑N
i=1

∑N
j=1 c(ηi

0, η
j
1)δ(π

i, j) + c(0, 1)
∑I

i=N+1(1− δ(ηi
0, η

πi

1 ))

where the second term in the second line follows because c is a metric.

Let An be the adjacency matrix corresponding to ηn (the standard placement

vector of Gn), l(Ai
n) be the label assigned to the ith row/column of An as previously

described, and B be the set of all permutation matrices on <N×N given by

(2.14) B =

{
X ∈ {0, 1}N×N |

∑
j

Xkj =
∑

i

X ik = 1 ∀k

}

Eq. (2.13) may then be rewritten as

(2.15) dc(G0, G1) = min
P∈B

N∑
i=1

N∑
j=1

c
(
l(Ai

0), l(A
j
1)
)
P ij +

1

2
c(0, 1)

∣∣A0 − PA1P
T
∣∣ij

Note that since An corresponds to the standard placement, only the first |Vn| rows

(columns) will have non-φ labels, and only the upper |Vn| × |Vn| block of An will

have nonzero elements. Also, following the prior argument, we use N = |V0| + |V1|.

In order to make the optimization in Eq. (2.15) linear, we follow the strategy in [2]

by introducing the matrices S̃, T̃ . The graph edit distance dc(G0, G1) is then the

optimal value of the following problem.

(2.16)

min
P,S̃,T̃∈{0,1}N×N

∑N
i=1

∑N
j=1 c

(
l(Ai

0), l(A
j
1)
)
P ij + 1

2
c(0, 1)

(
S̃P + T̃P

)ij

such that (A0 − PA1P
T + S̃ − T̃ )ij = 0 ∀i, j∑

i P
ik =

∑
j P kj = 1 ∀k

where we introduce an extra P in the second term of the objective function, which

does not affect the result because it simply reorders the terms in the sum. Finally,

we make the change of variables S = S̃P , T = T̃P and right multiply the constraint
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equation by P to obtain the following binary linear program (BLP) for dc(G0, G1).

(2.17)

min
P,S,T∈{0,1}N×N

∑N
i=1

∑N
j=1 c

(
l(Ai

0), l(A
j
1)
)
P ij + 1

2
c(0, 1) (S + T )ij

such that (A0P − PA1 + S − T )ij = 0 ∀i, j∑
i P

ik =
∑

j P kj = 1 ∀k

Note that Eq. (2.17) an equivalent representation of the GED minimization, so that

Theorem II.4 assures the existence of an optimal solution. More explicitly, feasibility

of this BLP is seen by taking P as the identity matrix, S as the nonnegative part of

A1 −A0, and T as the nonnegative part of A0 −A1. One might compare Eq. (2.17)

to the linear programming approach for graph matching in [2]. Although [2] seeks to

minimize the difference in adjacency matrix norms for graphs with the same number

of vertices, this is a sort of generalization for the graph edit distance on attributed

graphs. The optimal permutation matrix that solves Eq. (2.17), P∗, can be used

to determine the optimal edit operations whose cost is the graph edit distance as

follows: simply form the permuted adjacency matrix Ā1 = P∗A1P
T
∗ remembering to

also permute row/column labels, then compare the row/column labels of A0 to those

of Ā1 to determine the optimal vertex relabelings, similarly compare elements of A0

and Ā1 to determine optimal edge relabelings.

2.2.4 Bounding the Graph Edit Distance in Polynomial Time

Unfortunately, binary linear programming in general is NP-Hard [72], so for large

problems the graph edit distance as given by Eq. (2.17) may be too hard to compute.

However, we can obtain upper udc(G0, G1) and lower ldc(G0, G1) bounds for the

graph edit distance dc(G0, G1) in polynomial time. The lower bound is obtained

by relaxing the constraints P, S, T ∈ {0, 1}N×N on the variables in Eq. (2.17) to

P, S, T ∈ [0, 1]N×N . This results in the linear programming relaxation given in Eq.
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(2.18).

(2.18)

min
P,S,T

∑N
i=1

∑N
j=1 c

(
l(Ai

0), l(A
j
1)
)
P ij + 1

2
c(0, 1) (S + T )ij

s.t. (A0P − PA1 + S − T )ij = 0 ∀i, j∑
i P

ik =
∑

j P kj = 1 ∀k

0 ≤ P ij ≤ 1, 0 ≤ Sij ≤ 1, 0 ≤ T ij ≤ 1 ∀i, j

For n variables, a linear program can be solved in O(n3.5) time using an interior point

method [85]. Thus the lower bound can be computed in O(N7) time since the linear

program in Eq. (2.18) has O(N2) variables. If ldc(G0, G1) is the optimal value of Eq.

(2.18) then ldc(G0, G1) ≤ dc(G0, G1) because the feasible region of the problem in

Eq. (2.17) is a subset of the feasible region of the problem in Eq. (2.18). It follows

that Eq. (2.18) is always feasible because Eq. (2.17) is always feasible as argued

earlier. Thus the Weierstrass theorem assures existence of an optimal value since we

are minimizing a linear functional over a nonempty compact set [60]. Notice that

since the optimal matrix P∗ that solves Eq. (2.18) is only guaranteed to be doubly

stochastic, not necessarily a permutation matrix, there may not be a set of edit

operations that achieves the lower bound ldc(G0, G1). However in the event that P∗

is a permutation matrix, such a set can be constructed as described in the previous

section, and the optimal value of Eq. (2.18) is in fact the graph edit distance.

The upper bound is obtained in polynomial time by solving the assignment prob-

lem with only the vertex edit term. The assignment problem is given by

(2.19)
min

P∈{0,1}N×N

∑N
i=1

∑N
j=1 c

(
l(Ai

0), l(A
j
1)
)
P ij

such that
∑

i P
ik =

∑
j P kj = 1 ∀k

Note that the optimal value of Eq. (2.19) always exists since there is a finite number

of permutations and the identity always serves as a feasible permutation. Indeed, the
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Hungarian method may be used to solve it in O(N3) time [72]. If P∗ is an optimal

solution of Eq. (2.19), we compute S∗ as the nonnegative part of P∗A1−A0P∗ and T∗

as the nonnegative part of A0P∗−P∗A1 so that (P∗, S∗, T∗) is in the feasible region of

the problem in Eq. (2.17). udc(G0, G1) is then computed by evaluating the objective

function in Eq. (2.17) at (P∗, S∗, T∗). It follows that dc(G0, G1) ≤ udc(G0, G1). Since

P∗ is a permutation matrix for the solution to Eq. (2.19), a set of edit operations

whose cost is the upper bound to the graph edit distance can always be determined.

2.2.5 Selecting a Cost Metric for Uniform Distribution

We have assumed that the cost metric that characterizes the graph edit distance

is available, however, in a given application it may not be clear what is the ’best’ cost

metric to use. We propose an empirical method for selecting a metric based on prior

information suitable for a recognition problem. Suppose there is a set of prototype

graphs {Gi}N
i=1, and we classify a sample graph G0 by selecting the prototype that is

closest to it with respect to a graph distance metric. Prior information might suggest

that the prototypes should be roughly uniformly distributed in the metric space of

graphs defined by the graph edit distance. We can then choose an optimal metric

with respect to this objective. Such a criterion will also have the effect of minimizing

the worst case classification error, since it equalizes the probability of error under

the minimum distance classifier.

Note that for a set of points uniformly distributed in some space, all nearest

neighbor distances are the same. To uniformly distribute the prototypes, we first

determine all pairwise distances using a cost metric that assigns unity to all edits, i.e.

c(0, 1) = 1, c
(
l(Ai

0), l(A
j
1)
)

= 0 if l(Ai
0) = l(Aj

1) and c
(
l(Ai

0), l(A
j
1)
)

= 1 otherwise.

The resulting edit operations under the unit cost matching are then fixed, and we

optimize the normalized variance of pairwise distances over the set of cost metrics.
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To carry out this optimization, we must tabulate the edits necessary to match

each graph with its q nearest neighbors under a unit cost function. If the graphs are

not too large, we may compute a permutation matrix that actually solves the graph

edit distance minimization in Eq. (2.17). If this is not the case a permutation matrix

that solves the assignment problem in Eq. (2.19) with unit weights will serve as a

reasonable approximation. We consider each nearest neighbor pair only once. For

example if Gi has Gj as one of its q nearest neighbors and Gj has Gi as one of its

q nearest neighbors, then the edits necessary to match Gi to Gj are tabulated only

once.

After determining the unit cost matching between all prototype pairs, we order all

distinct edits that occur in any prototype matching and tabulate the vectors {Hj}K
j=1.

H i
j indicates the number of times the ith edit occurs to match the jth pair of nearest

neighbor prototypes (under a unit cost function) and K is the number of distinct

nearest neighbor pairs. If c is a vector containing the corresponding edit costs, then

the graph edit distance between the jth pair is given by dc(Gj0, Gj1) = HT
j c. For

example, consider as prototypes the standard placements of G0 and G1 as shown

in the lower left and lower right respectively of Figure 2.4. If we order the edits

as ({α, β}, {α, γ}, {α, φ}, {β, γ}, {β, φ}, {γ, φ}, {1, 0}) then the vector of counts H

corresponding to this matching is (1, 0, 0, 1, 1, 0, 2). Indeed, the dimension of each

Hj vector will always be 1
2
(|Σ|2 + |Σ|) + 1 for a vertex label set Σ and edge label set

{0, 1}.

Using this notation, the scaled variance of pairwise distances is then given by

(2.20) Kσ2
d = cT

 K∑
i=1

(
Hi −

1

K

K∑
j=1

Hj

)(
Hi −

1

K

K∑
j=1

Hj

)T
 c ≡ cT Qc

We also require the cost function to be a metric. Positive definiteness may be
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enforced by selecting some minimum positive cost for all edits a > 0. Symmetry is

enforced implicitly by binning symmetric edits together in the count vector H and

assigning the same cost to both edits. Finally, we must include linear inequalities

of the form ci + cj − ck ≥ 0 to assure the triangle inequality holds for all sets

of three vertex labels. There are 1
2
|Σ|(|Σ|2 − 1) of these; we define the matrix F

such that Fc ≥ 0 summarizes the triangle inequalities. The variance should be

normalized before optimizing so that the result does not depend on the scale of the

costs (determined by a). If we normalize by the sum of the costs, a convex program

results where any local optimum is also a global optimum [10]. The optimal costs

are then given by the convex program:

(2.21)

min
c

cT Qc
eT c

s.t. Fc ≥ 0

ci ≥ a ∀i

where e is a vector of ones. Note that the problem is always feasible because if we

take ci = a for all i, then all necessary triangle inequalities are satisfied. Furthermore,

the choice of a is irrelevant, provided a > 0; we only need that the costs ci (all of

which correspond to nontrivial edits) be uniformly bounded below away from zero

so that a metric results. For any given a we may choose a′ = κa for some κ > 0,

and the change of variables c′ = κc results in the original optimization problem in

Eq. (2.21). The following proposition establishes the convexity of the problem. A

barrier method will solve the convex program in polynomial time [10].

Proposition II.7. The optimization problem in Eq. (2.21) is convex.

Proof. All inequalities are linear, so we need only show that the objective function is

convex. The objective function is defined over the positive orthant, which is a convex

set, so the function is convex if and only if its Hessian is positive semidefinite [10].
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Let Ψ(c) = cT Qc
eT c

be the objective function of the problem. The Hessian quadratic

form with an arbitrary vector v may be factored as

(2.22)

vT (∇2Ψ(c))v = vT
(

2
(eT c)3

[
(cT Qc)eeT + (eT c)2Q− (eT c)(ecT Q + QceT )

])
v

= 2
(eT c)3

∥∥∥(eT v)Q
1
2 c− (eT c)Q

1
2 v
∥∥∥2

≥ 0

where Q
1
2 is the matrix square root of Q which exists because Q as defined in Eq.

(2.20) is obviously symmetric positive semidefinite. The inequality follows because c

is defined over the positive orthant so (eT c)3 > 0; thus ∇2Ψ(c) � 0.

2.3 Chemical Graph Recognition

As an application, we use the graph edit distance to recognize chemical graphs in

the context of a chemical information system. We selected our database of 135 similar

molecules from the Klotho Biochemical Compounds Declarative Database, which

consists of small molecules useful in describing mechanisms of biochemical reactions

[25]. Only molecules with 18 or fewer atoms were used so that we could compute exact

distance measures in reasonable time. Attributed undirected graphs were generated

from the 135 molecules (referred to as chemical graphs), then the optimal edit costs

were computed to uniformly distribute them in the graph metric space. Finally, we

compared the recognition ability of the graph edit distance with optimal costs and

unit costs to that of two maximum common subgraph based distance metrics by

using randomly perturbed prototype graphs from the database.

We first generated chemical graphs from the molecular structure diagrams by

associating atoms with vertices and bonds with edges. Each vertex was labeled

by the chemical symbol of the element to which that vertex corresponded. Our

vertex label alphabet was thus given by Σ = {H, C,O, N,Cl, P, S, Br, Si}. Vertices
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A B C

Figure 2.5: Chemical graphs derived from the familiar molecules from DNA: adenine (A), thymine (B),
and cytosine (C).

in the graph were connected by an edge if and only if their corresponding atoms

were bonded (single bonds, double bonds, etc. were treated equally). For example,

the chemical graphs derived from the molecules adenine, thymine, and cytosine are

shown in Figure 2.5.

In order to compute the optimal edit costs, we treated all 135 molecules as nearest

neighbors (so that the number of nearest neighbor pairs K is given by 1
2
(1352−135) =

9045). Indeed, all molecules in the database are of similar structure and function.

In the context of a larger chemical database consisting of thousands or millions of

molecules, one might suppose our 135 molecules are the result of some clustering

[103] or pre-screening procedure [80] performed using a quickly computed similarity

measure in order to isolate only the most likely matches to a given input. For

example, one might use the lower bound obtained by the LP relaxation in Eq. (2.18)

as a pre-screening criterion. We then wish to homogenize the most likely matches

with respect to the graph edit distance using the optimal edit costs.

We used the permutation matrices that solve the binary linear program in Eq.

(2.17) with unit costs to tabulate the edit operation counts in the vectors {Hj}

necessary for optimizing the cost metric. The publicly available lp solve program

was used to solve the integer program; it implements the simplex method in a branch-

and-bound algorithm [7]. The optimal edit costs were then computed by solving the
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Figure 2.6: Optimal edit costs resulting from the convex program in Eq. (2.21). There is a label associated
with each group of bars. Within the group, the edit cost of changing the group label to an
individual label corresponds to the height of the bar below that individual label. The optimal
edge edit cost c(0, 1) was 0.1.

convex program in Eq. (2.21) with a = 0.1 using a barrier method. The optimal edit

costs for vertex relabelings are shown in Figure 2.6–the optimal edge edit cost was

computed to be c(0, 1) = 0.1. The associated edit counts tabulated over all pairs in

the database matched with unity cost function are shown in Figure 2.7. The most

frequently inserted/deleted atom types in matching the prototypes were H, C, and

O, while the most frequent relabelings were O ↔ H and O ↔ N . Note that there is

roughly an inverse relationship between the number of times a particular edit occurs

and its optimal cost, as one might expect. This does not hold exactly, however,

because the edit costs must also satisfy the necessary triangle inequalities.

The maximum common subgraph (MCS) is frequently used as a similarity measure

for chemical graphs [104]. Also, some graph metrics have been devised based on the

MCS that are appropriate for comparison to our graph edit based metric [43, 13, 101].

There are some variations in the literature on what is meant by ’maximum common

subgraph.’ The differences amount to whether the vertices or the edges are the
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Figure 2.7: Total number of occurrences of each type of vertex edit tabulated over all pairs of database
graphs matched with unit cost function. There is a label associated with each group of bars.
Within the group, the edit cost of changing the group label to an individual label corresponds
to the height of the bar below that individual label. We see that H, C, and O are the most
frequently inserted/deleted atom types, and the most frequent relabelings are O ↔ H and
O ↔ N . Note that edits occurring more frequently are typically assigned a lower cost (Figure
2.6). There were 60974 total edge edits (not shown).

defining feature of the subgraph, resulting in a ’maximum common induced subgraph

(MCIS)’ or a ’maximum common edge subgraph (MCES)’ respectively [81]. The

MCIS is used in [19], while the MCES is used in [79, 35]. We will use the MCIS,

which satisfies the MCS definition given in [11]. A slightly modified version of the

distance metric proposed in [43] appropriate for the MCIS is given by

(2.23) dmcs1(G0, G1) = |V0|+ |V1| − 2|V01|

where G01(V01, E01, l01) is the MCS (MCIS) of graphs G0(V0, E0, l0) and G1(V1, E1, l1).

Note that we are being somewhat careless with language–although we say ’the’ MCS,

it need not be unique. In addition to the MCS metric of Eq. (2.23), we also compared

recognition performance to the following metric that is proposed in [13].

(2.24) dmcs2(G0, G1) = 1− |V01|
max(|V0|, |V1|)
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It has been shown that computing the MCS of graphs G0 and G1 is equivalent

to computing the maximum clique in a modular product graph Gp(Vp, Ep) [55]. In

general finding the maximum clique is NP-Hard, so the worst case complexity is

equivalent to binary linear programming [29]. The modular product graph is defined

by the sets

(2.25)

Vp = {(v0, v1) | v0 ∈ V0, v1 ∈ V1, l0(v0) = l1(v1)}

E+ = {[(v0, v1), (u0, u1)] | v0 6= u0, v1 6= u1, (v0, u0) ∈ E0, (v1, u1) ∈ E1}

E− = {[(v0, v1), (u0, u1)] | v0 6= u0, v1 6= u1, (v0, u0) /∈ E0, (v1, u1) /∈ E1}

Ep = E+ ∪ E−

We computed the MCS by using the algorithm in [71] to find the maximum clique

in the modular product graph.

We calculated all 9045 pairwise distances between prototype graphs in the database

using both the graph edit distance with optimal costs (GEDo) in Figure 2.6 and unit

costs (GEDu), along with the two MCS distance metrics (MCS1 and MCS2) given

in Eqs. (2.23) and (2.24) respectively. Histograms of the resulting pairwise distances

are shown in Figure 2.8. Note that the GEDo pairwise distances are more concen-

trated around a single value than either of the MCS distances or the GEDu; this

indicates the GEDo more uniformly distributes the prototypes in the graph metric

space.

The ability of the four metrics to recognize input graphs as one of the prototype

graphs in the database was tested next. An error-correcting graph isomorphism

is indeed appropriate here, since each input graph was generated by applying a

predetermined number of edits M (where M ∈ {1, 2, 3, 4, 5, 6}) to a randomly chosen

prototype graph. The edits applied fell into one of the following five categories:

1. edge edit: M edges edits are selected with insertion and deletion having equal
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Figure 2.8: Pairwise distance histograms between all 9045 pairs of 135 prototype graphs in the database.
Distances computed with the GEDo are shown in A, those computed with the GEDu are in B,
those computed with the MCS1 metric are shown in C, and those computed with the MCS2
metric are in D. Ideally, all pairwise distances would be the same. Since the GEDo distances are
more concentrated, the GEDo more uniformly distributes the prototype graphs. This should
result in less ambiguity in the graph recognition phase, whereby the distance between a sample
graph and each prototype graph is computed.

probability. Once the M edit operations are selected, pairs of vertices between

which edges should be either inserted or deleted are selected at random.

2. vertex deletion: M vertices are selected to be deleted. First a label to be deleted

is chosen with deletion probabilities given by normalizing the edit counts over

the φ-group in Figure 2.7. Among the vertices having the chosen label, one is

selected at random to be deleted along with all edges connected to it.

3. vertex insertion: M vertices are inserted. First a label to be inserted is chosen

with insertion probabilities given by normalizing the edit counts over the φ-

group in Figure 2.7. A vertex with the chosen label is then connected by a

single edge to an existing vertex in the graph chosen at random.

4. vertex relabeling: M vertices are selected to be relabeled. First a pair of labels

is chosen with probabilities given by normalizing the edit counts in Figure 2.7
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C D

Figure 2.9: Example edits applied to the adenine chemical graph shown in Figure 2.5A. Two edge edits
(one insertion, one deletion) are shown in A with the thick dashed line representing the inserted
edge and the thin dashed line is the deleted edge. Two vertex deletions (represented by dotted
lines and open boxes) are shown in B. C shows two vertex insertions (underlined), and D shows
two vertex relabelings (underlined).

over all non-φ edits. Among the vertices having a label that matches one in the

pair, one is selected at random and its label is changed to the complementary

label in the pair.

5. random: The M edits to be performed are randomly chosen from the above four

categories with each having equal probability.

Note that in performing vertex edits, we used the edit counts in Figure 2.7 as

a guide so that the edits made would represent likely errors, say, in transcribing

the chemical formula of one of the prototype graphs. Also, no regard was given to

physical laws governing bonding, therefore some input graphs may not be physically

realizable molecules. Examples of the different edit types applied to the adenine

molecule are shown in Figure 2.9.

For each of the five edit categories, we generated ten input graphs from randomly

chosen prototype graphs for each value of M (number of edits) ranging from 1 to
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6; this resulted in 6 × 10 × 5 = 300 sample input graphs. We then attempted to

recognize the input graph by computing the distance (using GEDo, GEDu, MCS1,

and MCS2) between the input graph and each of the 135 prototypes. There were

300 × 135 = 40, 500 distinct input graph/prototype pairs matched using each of

the four metrics to determine the corresponding graph distances. Due to the large

number of matchings considered and the exponential complexity of the algorithms

tested, we allowed a maximum of 45 seconds for any distance computation. If an

optimal solution was not found within the allotted time, the best feasible suboptimal

solution available was used. Running on Pentium 4, 2GHz processors, the average

time required to solve the binary linear program necessary for GEDo or GEDu with

lp solve [7] was about 1.3 seconds, while the average time required to compute

the maximum common subgraph using the maximum clique algorithm of [71] was

about 0.1 seconds. Although the MCS routine is about ten times faster here, these

times will vary depending on the particular algorithm/implementation one chooses

for binary linear programming and maximum common subgraph detection.

We say an input graph is correctly recognized if it is closest (with respect to the

appropriate distance metric) to the prototype graph from which it was generated. A

’classifier ratio’ (CR) as given in Eq. (2.26) was computed for each input graph in

order to gauge the level of ambiguity associated with the classification.

(2.26) CR =
d∗
do

Where d∗ is the graph edit distance between the sample graph and the prototype

from which it was generated, and do is the distance between the sample and the

nearest incorrect prototype (’incorrect’ in that the sample was not generated from

this prototype). The lower CR is the less ambiguous the classification.

The proportion of graphs correctly recognized by each metric along with average
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Figure 2.10: Proportion of graphs correctly recognized (PC) and average classifier ratios (CR) for the
five different edit categories: 1) edge edit, 2) vertex deletion, 3) vertex insertion, 4) vertex
relabeling, and 5) random. Within each plot, the letter above a bar denotes the metric used:
A) GEDo (graph edit distance with optimal costs), B) GEDu (graph edit distance with unit
costs), C) MCS1 (max common subgraph metric of Eq. (2.23)), and D) MCS2 (max common
subgraph metric of Eq. (2.24)). Each set of four bars corresponds to a different number of
edits M , indicated along the horizontal axis. Typically, as the number of edits increases, the
proportion correctly recognized drops while the ambiguity of classification (as measured by
the CR) rises. Note that the GED metrics perform better in the case of edge edits, vertex
relabelings, and random edits (1, 4, and 5). The MCS metrics perform better in the case of
vertex deletions and insertions (2 and 3). Marginal values of these distributions (averaged
over M) are given in Table 2.2.
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Metric 1) Edge Edit 2) Vertex Delete 3) Vertex Insert 4) Vertex Relabel 5) Random
GEDo 1.00 , 0.65 0.33 , 0.79 0.65 , 0.71 0.88 , 0.71 0.75 , 0.76
GEDu 0.98 , 0.70 0.25 , 0.85 0.45 , 0.87 0.95 , 0.69 0.65 , 0.80
MCS1 0.67 , 0.83 0.75 , 0.81 0.97 , 0.72 0.63 , 0.87 0.67 , 0.79
MCS2 0.78 , 0.77 0.52 , 0.89 0.55 , 0.87 0.73 , 0.82 0.68 , 0.85

Table 2.2: Proportion of graphs correctly recognized and average classifier ratio for each edit type category
averaged over all graphs in that category. These are computed by marginalizing the plots in
Figure 2.10 over the horizontal axis (number of edits, M). The first number in each pair is
the proportion correctly recognized and the second number is the average classifier ratio (PC,
CR). The GED metrics perform better in the case of edge edits, vertex relabelings, and random
edits (1, 4, and 5); indeed, the GEDo metric correctly recognizes at least 75% of graphs in
these categories. Only the MCS1 metric performs well in the case of vertex deletions and
insertions (2 and 3) with at least 75% correct recognition in both cases. The GEDo metric
(GED with optimal costs) has the lowest average CR in all categories but one, indicating
reduced classification ambiguity.

classifier ratio associated with that metric for the five edit categories are shown

in Figure 2.10. The classifier ratios were averaged only over those graphs that were

correctly classified. The marginal values associated with these distributions averaged

over the number of edits M are given in Table 2.2. Note that the GED metrics had

superior performance in the edge edit, vertex relabeling, and random edit categories;

the GEDo metric correctly recognizes at least 75% of graphs in these categories.

The GED metrics were particularly successful in the edge edit category with all

graphs correctly recognized by the GEDo metric, which also gave a consistently lower

classifier ratio. The MCS1 metric was most robust in the case of vertex deletions

and insertions (having at least 75% correct recognition); indeed both GED metrics

had significant trouble when three or more vertices are deleted and trail off similarly

in the case of vertex insertions. Undoubtedly, the changes on the prototype graph

caused by inserting/deleting three or more vertices were so drastic that a different

prototype was actually closer with respect to the GED to the sample graph produced.

The GED metrics remained strong for up to five vertex relabelings, however, while

the proportion correct for either MCS metric in this case decreased after three. In

Table 2.2, we see that the optimal costs were indeed effective in reducing classification
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ambiguity as measured by the CR since the GEDo metric has the lowest average CR

in all categories but one.

2.4 Conclusion

This chapter develops a linear formulation of the graph edit distance for attributed

graphs. We prove that the derived GED is a metric and show how to compute it

using a binary linear program. Upper and lower bounds for the GED that can be

computed in polynomial time are also given. A chemical graph recognition problem

is presented as an application of the graph matching formalism. The edit costs are

chosen using a normalized minimum variance criterion based on the prior information

that the database graphs should be uniformly distributed in the graph metric space

defined by the GED. This method is shown to give a metric that more uniformly dis-

tributes a database of 135 chemical graphs with similar structure than comparable

maximum common subgraph based metrics. In recognizing chemical graphs gen-

erated by perturbing graphs in the database, the GED metrics with optimal costs

and unit costs are shown to correctly recognize which prototype was perturbed more

often than the MCS metrics in the case of edge edits and vertex relabelings. The

MCS metrics perform better in the case of vertex insertions and deletions. When

random edits are applied, the GED metrics are generally the best. Also, the GED

with optimized edit costs is shown to have its intended effect of reducing the level of

ambiguity associated with the chemical graph recognitions.

Unfortunately, the complexity of binary linear programming makes computing the

GED between large graphs difficult using this method. However, the polynomial-time

upper and lower bounds may be readily employed in this case. Also, these could be

used in pre-screening on large chemical databases. For example, pre-screening may
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be done by rejecting all molecules whose LP lower bound to the query exceeds a

given value. Although we have developed a metric for unweighted graphs, it can be

directly extended to graphs with edge weights provided the cost of editing these edges

is proportional to the absolute difference in the weights with positive proportionality

constant k. Indeed, one could proceed from Eq. (2.17) with weighted adjacency

matrices A0, A1 used instead and c(0, 1) replaced by k. However, Eq. (2.17) would

become a mixed integer program since, depending on the weights, S and T may not be

binary matrices. Incorporating edge weights would yield a method applicable to 3-D

structure searching of chemical graphs where weights are assigned to the graph edges

based on the length of the bond they represent [23], along with other applications

of weighted graphs. We anticipate the results of this chapter are applicable in any

setting where it is necessary to compare graphical models.
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CHAPTER III

Estimation of Message Source and Destination from
Network Intercepts

3.1 Introduction

We present a method to estimate the endpoints (source and destination) of a data

transmission in a network whose logical topology is unknown. We assume there are

a number of asynchronous sensors placed on some subset of elements (links or nodes)

in a network. A sensor is activated, and its activation recorded, whenever the path of

a data transmission is intercepted on the element where the sensor is situated. The

measurement apparatus is illustrated on a sample network in Fig. 3.1. Measurements

are taken at discrete time instances, and the subscript k is used throughout the

chapter to index time. If multiple sensors are activated by a single transmission,

they may not be capable of providing the precise order in which they were activated.

In general, a probability distribution on the possible orders of activation Pk(ρ) is

observed for each measurement; here the argument ρ ∈ {1, 2, . . . , } is simply a natural

number used to indicate a specific ordering of the sensors activated at time k. For

example, a transmission with endpoints u1 = (σ1, δ1) in Fig. 3.1 might activate

y1 = {γ2, γ3}–suppose this is the first measurement so k = 1. The ordering (γ2, γ3),

corresponding to ρ = 1, might have probability P1(1) = 3
4

, while the ordering

(γ3, γ2), where ρ = 2, has probability P1(2) = 1
4
. Since the orderings are defined
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Figure 3.1: Diagram of the measurement apparatus on a sample network. Probing sites are sources Σ =
{σ1, σ2} and destinations ∆ = {δ1, δ2}. A box on a link or node represents a sensor that
indicates when a transmission path intercepts that link/node. We see γ1 and γ2 monitor nodes
while γ3, γ4, and γ5 monitor links.

over distinct sensor sets, we implicitly assume the transmission does not cycle in its

path–that is, a particular sensor is activated at most once by a single transmission.

During a preliminary training phase, the network is probed by transmitting data

packets between various pairs of probing sites {uk = (σk, δk)}Ko−1
k=1 , and the sensors

{yk}Ko−1
k=1 activated by each transmission are recorded along with the distributions on

orderings {Pk(ρ)}Ko−1
k=1 . A monitoring phase begins at time instant Ko and continues

until some final time K, whereby we observe sensor activation sets {yk}K
k=Ko

and

associated ordering distributions {Pk(ρ)}K
k=Ko

for which the endpoints are unknown.

The probing data {xk}Ko−1
k=1 ≡ {uk, yk, Pk(ρ)}Ko−1

k=1 , the monitored data {xk}K
k=Ko

≡

{yk, Pk(ρ)}K
k=Ko

and some prior information about the network topology are processed

by the system shown in Fig. 3.2 to produce Monte Carlo estimates of the posterior

distributions of possible endpoints of those transmissions observed in the monitoring

phase. We allow prior information of the form Q(Ā) = b on the logical ({0, 1})

adjacency matrix A describing connections among sensors and probing sites. Ā is

some subset of the elements of A, Q is a fixed linear operator, and b is a vector. Thus

47



Figure 3.2: Diagram of the transmission endpoint estimation system, assuming sensors have already been
deployed.

the prior information is essentially a set of linear equalities that the adjacency matrix

A ought to satisfy. The linear operator Q can be expressed as an equivalent matrix

if the elements of Ā are organized in a vector a. The linear prior information is then

of the form Qa = b. In general, we make no assumptions about the structure of Q,

so that given arbitrary Q and b the computation of feasible solutions to the linear

equation is known to be an NP-Complete problem [72]. We consider the associated

minimum norm problem min ‖Qa− b‖2
Λ where a ∈ {0, 1}n and ‖·‖Λ is a quadratic

norm with respect to the positive definite matrix Λ. It is known that combinatorial

optimization problems of this type may be successfully approximated by ’lifting’

them into a higher dimensional matrix space where Xij = aiaj and X ∈ {0, 1}n×n

[59].

With the advent of polynomial time interior point methods for linear programming

that can be extended to semidefinite programming [85, 39], it is convenient to consider

a semidefinite programming (SDP) relaxation of the higher dimensional problem.

Indeed, SDP relaxations have proven to be powerful tools for approximating hard

combinatorial problems [1, 31, 30, 38]. The SDP, however, is solved over a continuous

domain so it is necessary to retrieve a 0-1 solution from the possibly fractional SDP

solution. One possibility is a branch and bound scheme whereby certain variables

48



are fixed and the SDP is repeated until a discrete solution is found [72, 38]. The

branch and bound algorithm can take an exponential amount of time, depending on

how tight the desired bound is. A randomized rounding scheme was developed in [31]

for SDP relaxations of the maximum cut (MAXCUT) and maximum 2-satisfiability

(MAX2SAT) problems. This scheme is shown to produce solutions of expected value

at least 0.878 times the optimal value in [31]. We develop an SDP relaxation of the 0-1

minimum norm problem and apply the randomized rounding method in conjunction

with samples from the ordering distributions {ρm
1:K}M

m=1 to produce a number of

network topology adjacency matrices {Am}M
m=1 that approximately satisfy the linear

prior information Q(Ā) = b. We derive an expression for the expected value of

the squared error E
[
‖Qa− b‖2

Λ

]
of samples produced in this way. This expression

depends on the solution of the SDP relaxation, but an upper bound on the error

independent of the SDP solution is also given.

We wish to produce posterior distributions given the data and prior information of

the endpoints of transmissions observed in the monitoring phase P (uk|x1:K , Q(Ā) =

b) for k ≥ Ko. The network topology and sensor ordering samples are used in

conjunction with prior distributions on the endpoints of measurements made during

the monitoring phase Pk(u) for k = Ko, Ko + 1, . . . , K to compute Monte Carlo

approximations of the desired posterior distributions via Bayes rule. Bayes formula

for this problem essentially reduces to the expected value of a functional of the

topology A and sensor ordering ρ; our approximation of the endpoint posterior thus

becomes an average of the values of this functional at each sample topology Am and

ordering set ρm
1:K . It is readily apparent that this functional requires the conditionals

P (y|u, ρ, A)–these path likelihood functions are the conditional probabilities of a

sensor activation set y given the endpoints u and activation order ρ in a topology
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A. We propose a path likelihood model inspired by shortest path routing, whereby

the length of a path determines its probability. Since the model is probabilistic, it is

also well suited to dynamic algorithms, such as distance vector routing [90], which

may not always choose the same path for a single endpoint pair. With the endpoint

posterior distribution in hand, we can immediately give the MAP estimate of uk

(with k ≥ Ko) or an a posteriori confidence region of probable source/destination

pairs.

The related area of network tomography has recently been a subject of substan-

tial research. It refers to the use of traffic measurements over parts of a network

to infer characteristics of the complete network. Some characteristics of interest in-

clude the following: source/destination traffic rates [98, 56], link-level packet delay

distributions [88, 95, 52], link loss [14], and link topology [17, 24]. For an overview

of relevant tomography problems see [53, 18]. In many applications, the tomography

problem is ill posed since data is insufficient to determine a unique topology or delay

distribution.

Our work is related to the internally sensed network tomography application de-

scribed in [93, 78]. These works propose a methodology for estimating the topology

of a telephone network using the measurement apparatus illustrated in Fig. 3.1.

The data transmissions are of course telephone calls and the asynchronous sensors

are located on trunk lines. A simple argument in [78] demonstrates that the number

of topologies consistent with the data measured during the probing phase {xk}Ko−1
k=1

is exponential in the number of sensors. Indeed the problem is ill-posed as the data

required to provide a reasonable estimate of the topology will never be available

in practice. We sidestep the difficulties of developing a single topology estimate

by averaging over many probable topologies in computing the endpoint posterior
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distribution.

The solution approach we develop is very general, and we suspect it might have

application in all sorts of networks: including telephone networks as described in

[93], the Internet, social networks (such as command and control structures), or bi-

ological networks (such as protein-protein interaction networks) [70, 66]. Since we

allow for sensor placement on arbitrary network elements, the method is equally ap-

plicable to networks where it may be more convenient to monitor nodes (as in the

Internet) or monitor links (as in the telephone network of [93]). Also, the ordering

distributions allow for situations involving sensors ranging from asynchronous to per-

fectly synchronized. At one extreme, the sensors are exactly synchronized–in which

case the distribution Pk(ρ) reduces to a delta function with all mass concentrated

on the known ordering of sensors. A natural source of such information would be

the noisy time stamp assigned by each sensor to when it saw the message. Indeed,

this is an issue faced in many active probing scenarios. Methods involving GPS

and calibration of PC clocks have been described in [73] and [74] respectively for

addressing asynchronous sensors in active probing of technological networks. One

might derive the ordering distributions from some noise model for the time stamps.

In the present work, we assume the ordering distributions themselves are provided

since the chronological order in which the sensors intercept a message is the crucial

information.

Although the monitored network topology is unknown, the linear prior informa-

tion permits inclusion of reasonably available information relevant to the topology.

This is a generalization of the frequently used vertex degree prior. Vertex degree

priors are used quite often due to the fact that many real world networks are char-

acterized by specific degree distributions [4]. For example, studies have suggested a
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power-law distribution describes vertex degrees in the Internet [26]. Such priors have

recently been applied to research involving models of social and biological networks

[70, 66, 33]. Since the degree of a vertex is equal to the sum over the row of the

adjacency matrix describing connections to that vertex, one can easily construct a

linear operator Q so that Q(Ā) = b expresses the degree prior for a given vector of

vertex degrees b. Necessary conditions for connectivity among certain segments of

the logical topology can also be expressed in this formalism by defining Q in terms

of appropriate row sums.

The approach described here might also find utility in systems conveniently mod-

elled by graphs, such as finite state automata. The problem of machine identification

is a classic problem in the theory of automata testing [65, 54]. Here, we are given

a black box with an automaton inside whose transition function is unknown. Based

on the response of the system to certain input sequences, we wish to reconstruct the

transition function. The link to the network topology recovery aspect of our prob-

lem is clear, since a graph provides a convenient representation for the transition

function of interest. The probing sites chosen in the probing phase of our problem

is analogous to the input sequences to the black box automaton. Similarly, link sen-

sors correspond to events in the automaton’s observable event set. An exhaustive

algorithm for solving this problem is given in [65] and shown to have exponential run

time. Our methods might be adapted to provide a polynomial time approximation

algorithm. This would involve partitioning measurements with cycles (whereby an

observable event occurs more than once in the same string) to satisfy the direct path

assumption and selecting a different conditional path likelihood P (y|u, ρ, A) since

the shortest path routing model we suggest might not be appropriate.

The outline of this chapter is as follows. We review the problem, describe in
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detail each component of the endpoint estimation system (Fig. 3.2), and analyze

its complexity in Section II. In Section III, we provide some simulations of random

graphs. In Section IV we conclude with some extensions of the method presented

here and give directions for future work utilizing feedback for adaptive probing.

3.2 Model and Theory for Source-Destination Estimation

Let G(V, E, f) be a simple graph defined by the vertex set V , edge set E, and

incidence relation f : E → V × V giving the vertices connected by each edge.

We allow G to be either directed or undirected; however, it should be known a

priori which is the case. In our application, E defines the set of links in the network

topology, V defines the routers or switches connected by these links, and f determines

the pair of routers/switches connected by each link. The graph G is unknown to us.

Let Γ denote a set of sensors we place in the network. Sensors are placed on

some subset of graph elements; that is sensors may be placed on vertices, edges, or

both. A sensor will indicate whenever a transmission through the network passes

the element it is monitoring. Probing sites are selected from the vertex set V . The

source vertex set Σ ⊆ V is the set of vertices from which transmissions may originate,

and the destination vertex set ∆ ⊆ V are those vertices at which transmissions may

terminate. A path observed at time k < Ko between probing sites sk ∈ Σ and dk ∈ ∆

is given by yk ⊆ Γ, where yk contains the sensors activated by the transmission from

sk to dk. We assume the first Ko − 1 measurements correspond to probes of the

network (i.e. active measurements) so that the sources and destinations of these

measurements are known (since we choose them). Because the sensors are in general

asynchronous, the paths are unordered sets. However, along with each yk, a discrete

probability distribution Pk(ρ) is observed on possible orderings indexed by ρ of the
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set yk; the observation data is then xk ≡ (uk, yk, Pk(ρ)) for k < Ko. We assume

a transmission does not cycle in its path from source to destination, so that only

orderings of distinct elements of yk are considered. It follows that if yk has |yk|

distinct elements, then Pk(ρ) is defined over |yk|! different orderings. Note that the

case of perfectly synchronized sensors is easily handled in this framework: simply

take Pk(ρ) = δ(ρ − ρk) where ρk is the known order in which the sensors yk were

activated.

At time Ko we proceed with monitoring of the network, that is observing acti-

vated sensor sets with unknown source and destination. The observation data in the

monitoring phase is xk ≡ (yk, Pk(ρ)) for k ≥ Ko. The purpose of our system is to es-

timate the source and destination uk = (sk, dk) of an activated sensor set yk. In order

to estimate the endpoints of such a measurement, it is necessary to have some idea

of the logical topology of the network. Instead of considering the logical adjacencies

implied by the actual network G(V, E, f), we are concerned with adjacency relation-

ships among only those elements (vertices and edges) that are either monitored with

a sensor or used as a probing site. For example, we cannot hope to pinpoint the

position of a link e in the original network that is not monitored by a sensor. We

assume unmonitored elements are essentially ’short-circuited’ in the original network

G. The idea here is to assure two elements are logically adjacent even if they are

physically separated by an element (or subgraph of elements) that is not monitored.

The particular topology we consider is then GA(VA, EA) where VA = Γ∪Σ∪∆ is the

set of sensors and probing sites, and EA ⊆ VA × VA describes the logical adjacencies

among these elements. GA may be undirected or directed depending upon the nature

of the network G. For computational purposes, we represent GA by its adjacency

matrix A where Aij = 1 if and only if (i, j) ∈ EA for i, j ∈ VA and Aij = 0 otherwise.
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Figure 3.3: Example logical topology GA(VA, EA) for the monitored network G in Fig. 3.1. The vertex
set of GA consists of sensors Γ = {γi}5i=1 and probing sites Σ = {σ1, σ2}, ∆ = {δ1, δ2}, so that
VA = Γ ∪ Σ ∪∆. The edges of GA summarize logical adjacencies among sensors and probing
sites with any intervening unmonitored elements short-circuited.

An example logical topology GA is given in Fig. 3.3 for the monitored network G in

Fig. 3.1.

We assume independence of measurements at different times and utilize a Bayesian

framework to produce suitable approximations of the endpoint posterior distribution:

(3.1)
P (uk|x1:K , Q(Ā) = b) =

EA,ρ1:K

[
P (yk|uk,ρk,A)Pk(uk)∑

u P (yk|u,ρk,A)Pk(u)
| x1:K , Q(Ā) = b

]
Where the expression is obtained quite simply by using the law of total probabil-

ity to expand the distribution P (uk|x1:K , Q(Ā) = b) over the random variables A,

{ρk}K
k=1 ≡ ρ1:K and applying Bayes rule with appropriate independence assumptions

to P (uk|x1:K , ρ1:K , A). Of course k ≥ Ko in Eq. (3.1) so that we are considering the

endpoint posterior of a passive measurement. We have available linear prior infor-

mation on some of the logical adjacency elements Ā (a submatrix of A) of the form

Q(Ā) = b where Q is a fixed linear operator and a prior distribution on endpoints

Pk(u). It is assumed the endpoint pair of a passive measurement is independent of the

particular topology A, in other words, the parties communicating do not know the
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network topology either. However, if there is no connection between a given endpoint

pair u in a topology A, one would expect such a pair to have probability zero; we shall

use a model for the term multiplying Pk(u) to ensure the product is zero in this case.

Here x1:K ≡ {xk}K
k=1 represents all measured data (xk ≡ (uk, yk, Pk(ρ)) for k < Ko

and xk ≡ (yk, Pk(ρ)) for k ≥ Ko), and ρk is the ordering of the sensors activated

in measurement yk. The conditional expectation is therefore taken over all logical

adjacency matrices A and sensor orderings for all measurements ρ1:K . We introduce

a shortest path routing model for the conditional path probabilities P (y|u, ρ, A).

The conditional expectation in Eq. (3.1) is approximated in a Monte Carlo fash-

ion by summing over the argument evaluated at a number of adjacency matrix and

sensor ordering samples. The sensor orderings ρ1:K are drawn independently from

observed distributions Pk(ρ) for k = 1, 2, . . . , K. These are used in conjunction with

the solution to a semidefinite programming relaxation that incorporates the prior

information Q(Ā) = b to produce adjacency matrix samples A that are likely given

both the data and the prior information. With the approximate endpoint posterior

distribution in hand, we can provide MAP estimates of the endpoints of the passive

measurement and compute appropriate error measures.

In the following, we first elaborate on probing of the network and the characteriza-

tion of measurements obtained. Then we describe the distribution P (A, ρ1:K |x1:K , Q(Ā) =

b) and how it may be efficiently sampled using the given ordering distributions and

a semidefinite programming relaxation. Next we discuss how the samples are used

to approximate the endpoint posterior and produce MAP estimates. Finally, we

analyze the complexity of our algorithm.
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3.2.1 Probing the Network and Taking Measurements

The set of all available measurements {xk}K
k=1 is partitioned into two disjoint

sets. The measurements for k = 1, 2, . . . Ko − 1 correspond to a training phase for

the probing sites Σ, ∆. For each k < Ko, we select a probing pair uk ∈ Σ × ∆

and pass a transmission between this pair to observe the sensors yk activated and

a distribution Pk(ρ) on the |yk|! possible orderings of the activated sensors. The

measurement data therefore consists of both the endpoints and the activated sensor

set/ordering distribution xk = (uk, yk, Pk(ρ)) for k < Ko. Such a measurement

is referred to as an active measurement. The remaining measurements are due to

monitored transmissions so that the endpoints are not available: xk = (yk, Pk(ρ)) for

Ko ≤ k ≤ K. These are referred to as passive measurements since they were not due

to active probing of the network on our behalf. It is assumed that the endpoints of

these measurements are realizations of a random probing site pair described by the

known distribution Pk(u) defined on Σ × ∆. We desire to estimate the particular

probing site pair between which a transmission was passed resulting in a given passive

measurement.

3.2.2 Problem Statement

Our goal is to produce a MAP estimate of the endpoints uk of some suspect

observation (yk, Pk(ρ)) taken at time k given all observations x1:K and the linear

prior equalities Q(Ā) = b on the logical adjacency matrix. The MAP estimate is

given by

(3.2) ûk = arg max
u∈Σ×∆

P (u|x1:K , Q(Ā) = b)

If the posterior distribution P (u|x1:K , Q(Ā) = b) was known exactly, it would be

simple to compute ûk because the optimization in Eq. (3.2) is over a discrete set.
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Unfortunately, the computation of this posterior is of combinatorial complexity. We

must therefore approximate this distribution and then use the approximation to

produce the MAP estimate ûk. We will shortly describe a semidefinite program-

ming driven Monte Carlo method to calculate an approximate endpoint posterior

P̂ (u|x1:K , Q(Ā) = b). Our actual endpoint estimate is given as follows by plugging

in the approximate posterior.

(3.3) ûk = arg max
u∈Σ×∆

P̂ (u|x1:K , Q(Ā) = b)

3.2.3 Generating Topology and Sensor Ordering Samples

In order to produce a Monte Carlo estimate of the conditional expectation in Eq.

(3.1), we need to specify and sample from the distribution P (A, ρ1:K |x1:K , Q(Ā) = b).

We first expand this distribution as

(3.4)
P (A, ρ1:K |x1:K , Q(Ā) = b) =

P (A|x1:K , ρ1:K , Q(Ā) = b)
∏k

k=1 P (ρk|x1:K , Q(Ā) = b)

where independence over the measurement time index k is used to write the second

term in product form. We now note that each measurement xk contains a distribu-

tion over orderings Pk(ρ) for the activated sensor set. Since these distributions are

observations, it is reasonable to suspect that all topological considerations are folded

into them. We therefore assume that given the ordering distributions, the particular

orderings ρk are independent of the linear prior on topology. Eq. (3.4) therefore

becomes

(3.5)
P (A, ρ1:K |x1:K , Q(Ā) = b) =

P (A|x1:K , ρ1:K , Q(Ā) = b)
∏K

k=1 Pk(ρk)

The factored form of the distribution in Eq. (3.5) suggests the first thing we should

do in generating our samples is to select orderings ρk independently from the dis-
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tributions Pk for each k = 1, 2, . . . , K. This is a simple matter since each Pk is a

discrete distribution defined over a finite number of orderings.

Consider now what a measurement xk equipped with an ordering ρk implies about

the adjacency matrix A. Let xkρk
denote the ordered sensor activation set where,

if xk is an active measurement, the source probing site is taken as the first element

followed by the ordering ρk of the activated sensors and the destination probing site

is taken as the last element. If xk is a passive measurement, xkρk
is simply the

ordering ρk of the activated sensors. The fact that the transmission passes from the

lth element of xkρk
, given by xl

kρk
, to xl+1

kρk
implies there must be a logical connection

between xl
kρk

and xl+1
kρk

. Thus if we select an ordering ρk for each measurement (i.e.

for k = 1, 2, . . . K), then every adjacency element in the set Axρ must be 1, where

Axρ is defined by

(3.6) Axρ =
{
Aij | ∃k, l : (xl

kρk
, xl+1

kρk
) = (i, j)

}
Once we draw orderings ρ1:K as previously described, the adjacency matrix ele-

ments in Axρ are immediately fixed at unity by these. It remains, however, to select

the remaining adjacency elements. In drawing these, we must account for the prior

information Q(Ā) = b. Since Q is a linear operator, we may re-express this infor-

mation as Qa = b where Q is now understood to be a matrix and a ∈ {0, 1}n is

a vectorized version of the adjacency elements Ā. For arbitrary Q, finding a 0-1

vector a that satisfies the equation Qa = b is an NP-Complete problem [29]. We will

shortly discuss how randomized rounding of a semidefinite programming relaxation

may be used to find approximate solutions. The randomized rounding will induce a

distribution on P (A|x1:K , ρ1:K , Q(Ā) = b), the remaining factor in Eq. (3.5). The

induced distribution will have the desirable property that it assigns high probability

to samples that approximately satisfy the linear constraint Q(Ā) = b.
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Consider the matrix equation Qa = b equivalent to the linear prior information

Q(Ā) = b. Producing vectors a that satisfy this equation amounts to finding several

solutions to the problem

(3.7)
find a ∈ {0, 1}n

such that Qa = b

Unfortunately, the problem in Eq. (3.7) is NP-complete for an arbitrary, unstruc-

tured matrix Q [29]. We consider an equivalent restatement of Eq. (3.7)

(3.8)
minimize (Qa− b)T Λ(Qa− b)

such that a ∈ {0, 1}n

where Λ is a (symmetric) positive definite matrix that may be chosen to emphasize

the relative importance of the different constraints. Obviously any optimal solution

of the problem in Eq. (3.8) with zero value solves the feasibility problem in Eq. (3.7).

The problem in Eq. (3.8) is no easier than the original statement, however, it has

been shown that problems of this type (0-1 quadratic programs) can be approximated

quite well using a semidefinite relaxation [30].

We now proceed to derive the SDP relaxation of Eq. (3.8). Our relaxation is

similar to the one derived in [31] for MAX2SAT. First note that the optimization in

Eq. (3.8) is equivalent to

(3.9)
minimize aT Da− 2dT a

such that a ∈ {0, 1}n

where D = QT ΛQ and d = QT Λb. This is easily seen by expanding the objective in

Eq. (3.8) and dropping the constant term. Now note that a2
i = ai since ai ∈ {0, 1};

this fact this allows Eq. (3.9) to be re-expressed as

(3.10)
minimize

∑
i,j Dijaiaj − 2

∑
j dja

2
j

such that a ∈ {0, 1}n
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We now introduce variables wi ∈ {−1, 1} for each ai ∈ {0, 1} for i = 1 . . . n along

with an additional wn+1 ∈ {−1, 1} so that the change of variables is given by

(3.11) ai =
1

2
(1 + wn+1wi)

The identities in Eq. (3.12) follow from this change of variables.

(3.12)

aiaj =

1
4
[(1 + wiwj) + (1 + wn+1wi) + (1 + wn+1wj)− 2]

−aiaj =

1
4
[(1− wiwj) + (1− wn+1wi) + (1− wn+1wj)− 4]

If we introduce a negative sign in the objective, then the optimization in Eq. (3.10)

becomes

(3.13)
max 1

4

∑
i,j [Bij(1 + wiwj) + Cij(1− wiwj)− 4Dij]

such that w ∈ {−1, 1}n+1

where e is a vector of ones and matrices B, C are given by

(3.14)

B =

 0 2d

2dT 0


C =

 D De

(De)T 0


In order to obtain a semidefinite program, define the matrix W = wwT . It is simple

to show that W = wwT for some vector w if and only if W � 0 (i.e. W is positive

semidefinite) and rank(W ) = 1. We drop the nonconvex rank-1 constraint to obtain

the SDP relaxation

(3.15)

maximize Tr [(B − C)W ]

such that
diag(W ) = e

W � 0
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where Tr[·] indicates the trace operation and the constraint diag(W ) = e is added

to enforce w2
i = 1. The equivalence of the objective functions in Eq. (3.15) and Eq.

(3.13) can be seen easily by replacing wiwj with Wij and dropping constant terms.

The SDP in Eq. (3.15) may be solved in polynomial time using a primal-dual path

following algorithm [39]. The result of this optimization W ∗ will in general be a

non-integer symmetric positive semidefinite matrix. In [31], a randomized rounding

methodology is proposed to recover a -1,1 vector w from the SDP solution W ∗.

The strategy is to first perform the Cholesky factorization W ∗ = V T V . A random

hyperplane through the origin with normal vector r is then chosen by selecting r

from the uniform distribution on the surface of the unit hypersphere Sn = {r ∈

Rn+1|rT r = 1}. The value of wi is then determined by whether the corresponding

column vi of V lies above or below the hyperplane, i.e. wi = 1 if vT
i r ≥ 0 and

wi = −1 if vT
i r < 0. The ith element of the vectorized adjacency sample â is then

given by

(3.16) âi =


1 if sign(vT

i r) = sign(vT
n+1r)

0 if sign(vT
i r) 6= sign(vT

n+1r)

This result can be seen by applying the rounding method and then using the change

of variable formula given in Eq. (3.11).

We now proceed to derive the mean squared error E
[
‖Qâ− b‖2

Λ

]
of the sample

adjacency in Eq. (3.16) and thereby quantify how close the samples produced in this

way come to satisfying the linear prior information on average. First note that the

rounding scheme used implies the following identities.

(3.17)
E[1 + wiwj] = 2P

(
sign(vT

i r) = sign(vT
j r)
)

E[1− wiwj] = 2P
(
sign(vT

i r) 6= sign(vT
j r)
)
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where r is a random vector from the uniform distribution on Sn as previously defined.

We may evaluate the probabilities in Eq. (3.17) quite easily via the observation in

[31]. Note that symmetry of the distribution implies P
(
sign(vT

i r) 6= sign(vT
j r)
)

=

2P
(
vT

i r ≥ 0, vT
j r < 0

)
. And if θ = arccos(vT

i vj) is the angle between the vectors

vi and vj then it follows P
(
vT

i r ≥ 0, vT
j r < 0

)
= θ

2π
since the distribution of r is

uniform on Sn. A similar argument applies to the case of matching sign. The results

are summarized below.

(3.18)
P
(
sign(vT

i r) = sign(vT
j r)
)

= 1− 1
π

arccos(vT
i vj)

P
(
sign(vT

i r) 6= sign(vT
j r)
)

= 1
π

arccos(vT
i vj)

If we define the matrix Z such that Zij = arccos(W ∗
ij) where W ∗ is the solution of the

SDP relaxation in Eq. (3.15) and note that the objective function in Eq. (3.13) is

exactly equal to bT Λb−‖Qâ− b‖2
Λ, then we may take the expectation of the objective

in Eq. (3.13) and apply the identities in Eqs. (3.17) and (3.18) to obtain the mean

squared error as

(3.19) E
[
‖Qâ− b‖2

Λ

]
= ‖Qe− b‖2

Λ −
1

2π
Tr [(C −B)Z]

where e is a vector of ones.

We may obtain a bound on the expected value of the squared error in Eq. (3.19)

independent of the solution to the SDP. As in [31], define the constant α

(3.20) α = min
z∈[0,π]

2

π

z

1− cos z

From this definition of α, the following identities follow immediately

(3.21)

1
2
α(1 + cos z) ≤ 1− 1

π
z

1
2
α(1− cos z) ≤ 1

π
z
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We take the expected value of the objective function in Eq. (3.13) and apply the

identities in Eq. (3.21) with Zij = arccos(W ∗
ij) to give

(3.22)
bT Λb− E

[
‖Qâ− b‖2

Λ

]
≥

α1
4

(∑
i,j [Bij + Cij] + Tr [(B − C)W ∗]

)
− eT De

Now suppose the equation Qa = b has at least one feasible solution a0. Let w0 be

the corresponding -1,1 vector and W 0 = w0(w0)T . We then have

(3.23)
0 = ‖Qa0 − b‖2

Λ = eT De + bT Λb−

1
4

(∑
i,j [Bij + Cij] + Tr [(B − C)W 0]

)
But since W ∗ solves the SDP in Eq. (3.15), it follows

(3.24)
Tr [(B − C)W ∗] ≥ Tr [(B − C)W 0] =

4eT De + 4bT Λb−
∑

i,j [Bij + Cij]

We may now combine the inequalities in Eqs. (3.22) and (3.24) and rearrange to

obtain a bound on the expected value of the squared error that is independent of the

SDP solution

(3.25) E
[
‖Qâ− b‖2

Λ

]
≤ (1− α)

(
||Qe||2Λ + ||b||2Λ

)
In practice, the bound in Eq. (3.25) tends to exceed the true expected value in Eq.

(3.19) by a large amount. However, it is of theoretical interest since it gives a general

idea of how close samples produced in this way will come to satisfying the linear prior

information, given the matrix Q and vector b specifying this information. One must

be careful to apply this bound only when all elements of Q and b are nonnegative

(such as when a vertex degree prior is used). A similar bound can be derived when

some elements of Q or b are negative, but we will omit it here.

A naive procedure for generating the necessary samples using these procedures

would be to first draw the ordering variables ρ1:K then fix the adjacency elements
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in Axρ corresponding to the draw. One could then reduce the system Q(Ā) = b by

eliminating elements in Ā ∩ Axρ and proceed to formulate and solve the SDP for

use in randomized rounding. This approach is computationally prohibitive, however,

because it requires solving a new SDP for every single sample. Instead, we prefer to

solve a single SDP and use its solution to generate all samples. The single SDP is

derived from the system Q(Ā) = b where the eliminated variables Aij are those whose

probability of being in the set Axρ exceeds a threshold. The probability P (Aij ∈ Axρ)

is computed from the ordering distributions Pk(ρ) as

(3.26) P (Aij ∈ Axρ) = max
k

∑
ρ | ∃l : xl

kρ=i,xl+1
kρ =j

Pk(ρ)

Note that by fixing the variables that are likely to be in Axρ and eliminating them

from the prior constraints Q(Ā) = b, we are throwing away some prior information.

Provided the threshold is fairly high, the eliminated variables will most often be

set to unity anyway due to the ordering samples. In the interest of keeping down

computational costs, this is a reasonable approach.

There may be adjacency matrix elements that are not in Ā and have zero prob-

ability of being in Axρ. Define Ao ≡ {Aij | Aij /∈ Ā, P (Aij ∈ Axρ) = 0}; Ao then

denotes the adjacency matrix elements that we have no information about. We adopt

the principle of parsimony and assume all elements in Ao are zero. A summary of

our procedure for generating M sample adjacency matrices and orderings follows.

• Compute P (Aij ∈ Axρ) for all Aij ∈ Ā as in Eq. (3.26).

• Eliminate {Aij | P (Aij ∈ Axρ) ≥ δ} from Ā and adjust the system Q(Ā) = b

with these variables fixed at 1.

• Solve the SDP corresponding to Q(Ā) = b for the optimum W ∗.
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• Compute and store the Cholesky factor V of the SDP solution W ∗.

• For m = 1, 2, . . . M

– Draw ρk from Pk(ρ) for k = 1, 2, . . . , K.

– Determine Axρ as in Eq. (3.6) and set Aij = 1 for all Aij ∈ Axρ.

– Draw r from the uniform distribution on Sn.

– Take inner products of the Cholesky factors with r to determine Aij /∈ Axρ

that are organized in the vector a as shown in Eq. (3.16).

– Set all remaining adjacency elements to 0.

We may now write down the conditional distribution P (A|x1:K , ρ1:K , Q(Ā) = b)

from which the SDP rounding method is sampling. First define the set H(Aij) as

(3.27)

H(Aij) =
{r ∈ Sn | sign(vT

ijr) = sign(vT
n+1r)} if Aij = 1

{r ∈ Sn | sign(vT
ijr) 6= sign(vT

n+1r)} if Aij = 0

where Sn is the surface of the unit hypersphere and vij is the appropriate column of

the Cholesky factor V corresponding to the variable Aij as defined earlier. Since the

only random elements of A given x1:K , ρ1:K and Q(Ā) = b are those in Ā−Axρ, the

desired conditional distribution is given by

(3.28) P (A|x1:K , ρ1:K , Q(Ā) = b) =
V ol

(⋂
Aij∈Ā−Axρ H(Aij)

)
V ol(Sn)

The expression in Eq. (3.28) is a rather complicated distribution shaped by the

prior data Q and b through the solution of the SDP in Eq. (3.15) formulated from

this data. Luckily, we do not need to evaluate it. The crucial point is that samples

from this distribution will approximately satisfy the prior information Q(Ā) = b. In
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order to investigate the quality of individual samples, define the sublevel set Sε of

adjacency matrices as follows:

(3.29) Sε =

{
A ∈ {0, 1}n×n | ||Q(Ā)− b||2Λ

||Q(eeT )||2Λ + ||b||2Λ
≤ ε

}
where we have resumed the operator notation for Q and eeT is a matrix of ones used

to coincide with the vectorized notation in Eq. (3.25). It follows from the definition

that if ε1 ≤ ε2 then Sε1 ⊆ Sε2 . Ideally we would prefer samples from S0 so that the

prior linear equalities are exactly satisfied, however we settle for adjacency samples

from the larger set Sε for some tolerance ε > 0. For ε ≥ 1− α ≈ 0.88, we can apply

the Markov inequality along with the bound in Eq. (3.25) to give the following

general result for sample adjacencies Â produced using this method.

(3.30) P (Â ∈ Sε) ≥ 1− 1− α

ε

Although the method is capable (in principle) of producing any adjacency matrix

in S∞, a lower bound for the proportion of samples falling in the tolerance set Sε

is given by Eq. (3.30). One might investigate further the shape of the sampling

distribution in Eq. (3.28) in order to determine the relative likelihood of different

adjacencies, however we will conclude our analysis here.

3.2.4 Approximating the Endpoint Posterior

We use the topology and sensor ordering samples obtained in the previous section

to derive an approximate endpoint posterior distribution of a passive measurement

indexed by k as given in Eq. (3.1). If {Am}M
m=1 are the topology samples and

{ρm
1:K}M

m=1 are the sensor ordering samples (for each measurement), then the strong

law of large numbers suggests a Monte Carlo estimate of the conditional expectation
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given by

(3.31)
P̂ (uk|x1:K , Q(Ā) = b) =

1
κ

∑M
m=1

P (yk|uk,ρm
k ,Am)Pk(uk)∑

u P (yk|u,ρm
k ,Am)Pk(u)

where κ is a normalization constant inserted to ensure the total mass of the ap-

proximate posterior is unity. Since we are given a distribution on the endpoints of

the passive measurement Pk(u), we need only specify a model for the conditional

path probability P (y|u, ρ, A) in order to approximate the posterior as in Eq. (3.31).

Routing mechanisms and traffic data might figure prominently into such a model.

We propose a simple model whereby the length of a path determines its probability

(as in shortest path routing). If |yρ| denotes the length of the ordered path yρ, and

yu,A
ρ denotes the shortest ordered path between endpoints u in topology A, then the

conditional distribution is given by

(3.32) P (y|u, ρ, A) =



θ if |yρ| = |yu,A
ρ | < ∞

1− θ if |yu,A
ρ | < |yρ| < ∞

0 if |yρ| = ∞

The model basically says that the shortest path between endpoints u in topology

A is chosen with probability θ, and all other valid paths (that is, paths of finite

length) have probability 1 − θ. If a path does not connect the endpoints u in the

given topology A, then naturally it has zero probability. Note that for arbitrary θ,

we need to run Dijkstra’s algorithm (or some other shortest path routing algorithm)

for each topology sample Am in order to compute the conditional path probability

in Eq. (3.32) [72]. This is not necessary, however, in the case that θ = 1
2
.

We may give maximum a posteriori (MAP) estimates of the endpoints uk of a

passive measurement yk after computing the posterior distribution estimate in Eq.
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(3.31). Indeed, the MAP estimate is simply given by

(3.33) ûk = arg max
u∈Σ×∆

P̂ (u|x1:K , Q(Ā) = b)

Recall that u ≡ (s, d), thus MAP estimates of sk or dk individually may be obtained

by maximizing the appropriate marginal P̂ (s|x1:K , Q(Ā) = b) or P̂ (d|x1:K , Q(Ā) = b)

respectively.

We use as an error measure the ratio Λu(k) below for the estimated endpoints ûk.

(3.34) Λu(k) = P̂ (ûk|x1:K ,Q(Ā)=b)

P̂ (ûk|x1:K ,Q(Ā)=b)+ max
u∈Σ×∆−ûk

P̂ (u|x1:K ,Q(Ā)=b)

It is also useful to compute the corresponding ratios associated with the marginalized

distributions Λs(k) and Λd(k), as it may be the case that either the source or des-

tination of a passive measurement is more accurately determined individually than

are both collectively. These are defined exactly as in Eq. (3.34), except u is replaced

with s or d throughout (so that the appropriate marginal distribution is considered).

It is clear that the ratio in Eq. (3.34) must lie in the interval [1
2
, 1]. Larger values of

this ratio in a sense indicates more ’confidence’ in the MAP estimate since a value

of 1 is achieved only when all of the mass of the estimated posterior distribution is

concentrated at the MAP estimate.

3.2.5 Algorithm Complexity

We now analyze the complexity of the source/destination estimation scheme de-

veloped here. The two fundamental quantities that determine the size of the problem

are denoted by N and h; N is the total number of sensors plus probing sites, so that

N = |Γ| + |Σ ∪ ∆|, while h is the maximum number of activated sensors in any

measurement, so that |yk| ≤ h for all k = 1, 2, . . . , K. The maximum number of

hops h may be a function of N , depending upon the type of network considered.
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For networks that obey the small world effect, as many real world networks do, h

will remain approximately constant with increasing N [64, 70]. The number of mea-

surements K and the number of Monte Carlo samples M also affect the complexity;

however we shall see the complexity dependence on these is always linear.

First note that we must store the ordering distributions Pk(ρ) for all measure-

ments. Since each distribution is defined over O(h!) orderings, this requires O(Kh!)

space. The adjacency matrix A considers all logical connections among sensors and

probing sites, so that A has O(N2) elements. In the worst case, the linear prior in-

formation Q(Ā) = b will constrain all elements of this matrix so that Ā = A. It will

therefore take O(KN2h!) time to compute P (Aij ∈ Axρ) for all Aij ∈ Ā. Now in the

worst case, thresholding these probabilities will produce a negligible reduction in the

size of the system Q(Ā) = b, so that we still have to contend with O(N2) variables

in solving the SDP relaxation. Typically interior point methods are used to solve

SDP’s to within ε of the optimal solution. These are based on Newton’s method;

therefore at each iteration it is necessary to solve a linear system of equations for

the Newton directions (O(n3) for a system of size n). An algorithm given in [57]

is shown to take O(| log ε|
√

n) iterations for a problem of size n–this performance is

typical for all interior point algorithms. Our problem has dimension O(N2), thus

solving the SDP takes O((N2)3.5) or O(N7) time. A Cholesky factorization is then

performed on the SDP solution, which takes O((N2)3) or O(N6) time.

After solving the SDP, the M topology and ordering samples may be produced

relatively quickly. For each sample, we need to draw an ordering for each of the K

measurements, thus requiring O(MK) time to produce the ordering samples. Given

the K orderings for a single sample, Axρ may be generated in O(Kh) time. Finally, we

may draw the vector r and take inner products to determine the remaining elements
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of the topology sample. Since the time required for each inner product is linear, it

takes a total of O(MN2 + MKh) time to produce the M topology samples.

The final step is to compute the Monte Carlo approximation of the endpoint

posterior distribution of a passive measurement. A quick inspection of Eq. (3.31)

reveals that we need to determine the conditional path probabilities P (y|u, ρ, A)

for every endpoint pair u–there are O(N2) such pairs. Also, computing each path

probability for a given ordered path yρ requires tracing this path through the topology

A, which takes O(h) time. Now, if θ 6= 1
2

we must take O(MN3) time to run a shortest

path algorithm on each sample [72]. Therefore, it takes O(MN2h+MN3) to produce

the approximate endpoint posterior for θ 6= 1
2
; this reduces to O(MN2h) for θ = 1

2
.

The factors that give some cause for concern in this algorithm are the h! in

considering all possible orderings and the N7 in the SDP solution complexity. If we

are dealing with small world networks, then h might be around four or five so that

h! is still manageable. And if this is not the case, one would hope that the ordering

distributions Pk(ρ) are nonzero only over a reasonable number of orderings since

we need only consider ρ with Pk(ρ) > 0. In practice, the actual SDP complexity

is likely to be significantly less than the worst case bound of O(N7) after reducing

the system Q(Ā) = b, especially if the original prior only constrains some small

subset of the adjacency elements. The complexity might be significantly reduced,

however, if there is some natural decoupling of the equalities. In this way, one might

solve several smaller SDP’s rather than a single large one. Our algorithm would still

benefit from speedy SDP algorithms as solving the relaxation takes the most time in

the worst case. A parallel implementation of an interior point algorithm for SDP’s

might reduce the time requirements if multiple processors are available [68].
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A B C

Figure 3.4: Example sparsity patterns for the adjacency matrices of three undirected random graphs with
25 nodes and 40 randomly selected links. The method is illustrated by simulating on topologies
of this type. 12 of the 25 nodes are selected as probing sites: 6 of these are taken as sources
Σ and 6 are taken as destinations ∆. We assume in one case that sensors are placed on all 40
links (100% sensor coverage) and in another that sensors are placed on 30 randomly selected
links (75% sensor coverage). Active measurements consist of 18 of the 36 distinct pairs in
Σ×∆ randomly selected for use in the probing phase, denoted L. The remaining 18 pairs are
denoted Lc. Passive measurements consist of sensor activations monitored between all pairs
in Σ×∆. Shortest path routing is used to determine the transmission path.

3.3 Simulations

We performed some numerical simulations to demonstrate the utility of the method

described in this chapter. We generated undirected random graphs with 25 nodes

to serve as test networks. The number of edges in each graph was fixed at 40 by

randomly selecting 40 of the possible 300 vertex pairs and connecting the selected

pairs by an edge. The adjacency matrix sparsity patterns for three example graphs

are shown in Fig. 3.4. We randomly chose 12 of the 25 nodes to serve as probing

sites–this set was then partitioned in half so that both the source set Σ and des-

tination set ∆ each had 6 distinct elements. Sensors were placed on links in the

network for two cases: 100% sensor coverage (in which all 40 links were monitored

by a sensor) and 75% sensor coverage (in which 30 of the 40 links were selected at

random for hosting a sensor). In the 75% coverage case, networks were generated in

a rejection sampling manner so that every measurement (whether passive or active)

activated at least one sensor.

In order to probe a network, we randomly selected 18 of the 36 distinct pairs

in Σ × ∆ to serve as endpoints for active measurements. This set of 18 endpoint

72



pairs is denoted L ⊂ Σ × ∆; the remaining pairs are denoted by Lc ≡ Σ × ∆ − L.

Sensor activations in response to transmissions between all pairs in Σ × ∆ were

observed in the monitoring phase. All transmissions were routed through the net-

work using shortest path routing, and activated sensor sets yk were observed. Thus

for each network we had K = 54 data points: Ko − 1 = 18 active measurements

x1:18 ≡ (u1:18, y1:18, P1:18(ρ)) and 36 passive measurements x19:54 ≡ (y19:54, P19:54(ρ)).

For each data point (k = 1, 2, . . . K), a distribution on the order in which sensors were

activated Pk(ρ) was generated as follows: first the true ordering of sensors ρk was

noted, then noise n(ρ) was drawn independently from the Uniform[0, 0.2] distribu-

tion for ρ = 1, 2, . . . |yk|!, finally the distribution Pk(ρ) was generated by normalizing

the corrupted delta function distribution as in Eq. (3.35).

(3.35) Pk(ρ) =
δ(ρ− ρk) + n(ρ)∑|yk|!

ρ=1 δ(ρ− ρk) + n(ρ)

The linear prior information was generated from degree information on the logical

topology A. Indeed vertex degree information is a commonly used special case of

the more general linear prior specified by Q(Ā) = b [66, 33]. The sensor degree,

that is the number of sensors bi to which the ith vertex in the logical topology is

adjacent, was known for all vi ∈ VA. In addition to knowing the sensor degrees of

vertices in the logical topology GA, a random subset consisting of no more than 60%

of the sensors not adjacent to a given vertex were also known. For the ith vertex,

the ith row of the operator Qi(Ā) therefore sums over the elements of A for which

adjacency to vertex i is uncertain, and the ith element of b, bi, is simply the known

sensor degree of vertex i. As an example, consider vertex γ5 of the logical topology

in Fig. 3.3. Vertex γ5 is adjacent to sensors {γ2, γ4}, therefore its sensor degree is

two. Since there are two sensors not adjacent to γ5, b2 ∗ 60%c = 1 sensor, say γx, is

selected at random from the set {γ1, γ3}. Let Γi denote the set of sensors known to
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be nonadjacent to vertex i, so that Γγ5 = {γx} in this example. The row of the prior

Q(Ā) = b corresponding to γ5 is then given by
∑

j∈Γ−γ5−Γγ5
Aγ5j = 2. Similarly, we

construct the entire operator Q for the topology in Fig. 3.3 as follows

(3.36) Q(Ā) =



∑
j∈Γ−γ1−Γγ1

Aγ1j∑
j∈Γ−γ2−Γγ2

Aγ2j∑
j∈Γ−γ3−Γγ3

Aγ3j∑
j∈Γ−γ4−Γγ4

Aγ4j∑
j∈Γ−γ5−Γγ5

Aγ5j∑
j∈Γ−Γσ1

Aσ1j∑
j∈Γ−Γσ2

Aσ2j∑
j∈Γ−Γδ1

Aδ1j∑
j∈Γ−Γδ2

Aδ2j


The vector b for this example topology is

(
1 3 2 2 2 2 1 2 2

)T

obtained

simply by reading the number of sensors (γ vertices) adjacent to each vertex in Fig.

3.3.

Given the sensor degree prior information and the ordering distributions, we elim-

inated those adjacency elements whose probability of being in the set Axρ exceeded

1
2

from Ā, where P (Aij ∈ Axρ) was computed as in Eq. (3.26). The reduced sys-

tem Q(Ā) = b was then used to formulate the SDP relaxation in Eq. (3.15) for

the minimum norm solution with the weight matrix Λ taken as the identity. The

relaxation was solved with a predictor-corrector path following algorithm given in

[39]. A publicly available C implementation of this algorithm was used [9]. The SDP

solution was used along with the ordering distributions Pk(ρ) to produce M = 500

samples of measurement orderings ρ1:K and adjacency matrices A for computing the

Monte Carlo estimates of the endpoint posteriors.
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We assumed the endpoint priors Pk(u) were uniform over Σ×∆ for all 36 passive

measurements k = 19, 20, . . . , 54. Also, the parameter θ in the conditional path

probabilities of Eq. (3.32) was taken as 1
2

so that it was not necessary to run a

shortest path routing algorithm on every sample topology. The 500 ordering and

topology samples were then used to compute the approximate endpoint posteriors

for all passive measurements as given in Eq. (3.31). These were used to produce

joint MAP estimates of the transmission endpoints and to compute the resolution

measures Λu(k). An example endpoint posterior is given in Fig. 3.5, for which the

correct endpoint pair is source no. 6 and destination no. 3. It is clear that the MAP

estimate will result in the correct pair in this case. Also indicated in the Figure

is the second most likely pair u = (6, 5); this is used in computing the resolution

measure Λu as in Eq. (3.34)–Λu(k) = 0.60 for this case. Marginal distributions

of the approximate posterior are given in Fig. 3.6. These were used in individual

MAP estimation of source and destination. It is clear that the individual estimates

will match the joint estimate for this case; the resolution measures were a bit lower

though with Λs(k) = 0.58 and Λd(k) = 0.59. This completes the simulation process

for a single graph.

We repeated the simulation procedure for 30 networks with 100% sensor cover-

age and 30 networks with 75% sensor coverage. Table 3.1 demonstrates the effec-

tiveness of the SDP randomized rounding algorithm for producing topology sam-

ples that approximately agree with the sensor degree prior information. It lists

the normalized squared topology sample error 1
||Qe||2+||b||2

1
M

∑
m ‖Qâm − b‖2 aver-

aged over the M = 500 samples along with the normalized expected squared error

1
||Qe||2+||b||2E

[
‖Qâ− b‖2] as in Eq. (3.19) for each graph. The bound derived in Eq.

(3.25) assures the expected squared error can never exceed 1 − α ≈ 0.12. We see
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A B

Figure 3.5: Example endpoint posterior distribution P̂ (uk|x1:K , Q(Ā) = b) for a passive measurement at
time k ≥ Ko with endpoints u = (s, d) = (6, 3). In plot A, the probabilities are grouped by
source, with each of 6 bars in a group corresponding to a different destination (noted above
the individual bar). Plot B displays the same information except probabilities are grouped
by destination with source number noted above each individual bar. The largest and second
largest values of the posterior are indicated–it is these values that are used in computing the
resolution ratio Λu of Eq. (3.34), calculated as Λu(k) = 0.60. It is clear in this example that
the endpoints of this transmission will be correctly estimated by the joint MAP estimate.

A B

Figure 3.6: Marginal distributions (P̂ (sk|x1:K , Q(Ā) = b) in A and P̂ (dk|x1:K , Q(Ā) = b) in B) associated
with the example endpoint posterior distribution shown in Fig. 3.5. The largest and second
largest values of the marginal posteriors are indicated–it is these values that are used in com-
puting the resolution ratios Λs and Λd, calculated as Λs(k) = 0.58 and Λd(k) = 0.59. It is
clear in this example that the endpoints of this transmission (source number 6 and destination
number 3) will be correctly estimated by the individual MAP estimates as well.
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that graphs with 75% sensor coverage tend to have lower error values.

Plots of proportion of passive measurement endpoint estimates correct for a given

set (L or Lc) versus the resolution ratio from Eq. (3.34) averaged over the corre-

sponding set are given in Fig. 3.7. Plots are shown for joint estimates of uk via the

joint distribution as well as for individual estimates of sk and dk from the marginals.

We observe an approximately linear relation between the proportion of correct esti-

mates and the appropriate Λ ratio when the Λ ratio exceeds 0.68. In this regime, the

Λ ratio might be used as a measure of confidence in the endpoint estimates. Also

note that transmissions in set L tend to have higher Λ ratios (and are correct more

often) than those in set Lc because it is the transmissions in set L that are used

in training the probing sites. We see that marginalized MAP estimates are often

better than joint MAP estimates. Marginalization certainly blurs the linear relation

in the higher confidence regime. We also observe some degradation in the quality

of the estimates when only 75% of the links are equipped with sensors; this is to

be expected though. Recall that these results are obtained with completely random

placement of sensors and random choices for the (s, d) pairs to use in the probing

phase. These two factors will clearly affect the estimates of passive measurement

endpoints, and therefore provide an interesting direction for future work.

3.4 Summary and Extensions

In this chapter, we have developed a methodology for estimating the endpoints of

a transmission in a network using link-level transmission interceptions. The estima-

tion is done using Monte Carlo simulation in a Bayesian framework. A semidefinite

programming relaxation is used to generate logical network topology samples that

approximately agree with linear prior information. It is possible to envision applica-
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100% Avg 100% Exp 75% Avg 75% Exp
0.0211 0.0208 0.0142 0.0145
0.0229 0.0214 0.0110 0.0113
0.0195 0.0200 0.0108 0.0111
0.0247 0.0241 0.0119 0.0117
0.0178 0.0170 0.0146 0.0146
0.0247 0.0257 0.0152 0.0156
0.0189 0.0200 0.0139 0.0133
0.0247 0.0236 0.0154 0.0155
0.0230 0.0221 0.0143 0.0138
0.0222 0.0221 0.0121 0.0123
0.0243 0.0244 0.0135 0.0141
0.0241 0.0229 0.0118 0.0117
0.0217 0.0209 0.0139 0.0136
0.0190 0.0182 0.0125 0.0125
0.0248 0.0235 0.0127 0.0125
0.0195 0.0198 0.0131 0.0140
0.0257 0.0261 0.0133 0.0138
0.0180 0.0182 0.0147 0.0143
0.0236 0.0237 0.0137 0.0131
0.0214 0.0213 0.0122 0.0113
0.0250 0.0237 0.0112 0.0117
0.0253 0.0255 0.0128 0.0119
0.0191 0.0207 0.0135 0.0139
0.0186 0.0196 0.0150 0.0142
0.0200 0.0219 0.0142 0.0140
0.0272 0.0245 0.0119 0.0122
0.0212 0.0221 0.0110 0.0109
0.0188 0.0188 0.0112 0.0114
0.0244 0.0249 0.0128 0.0130
0.0269 0.0269 0.0116 0.0110

Table 3.1: Squared error values for compliance of samples with linear prior information Q(Ā) = b. Sample
topology errors (Avg) averaged over the 500 samples produced for each of the thirty graphs in
the two simulation cases (100% coverage and 75% coverage) are given along with the theoretical
expected value of the error (Exp). Once the elements of Ā are organized in the vector a, the
normalized average sample error (Avg) is simply 1

||Qe||2+||b||2
1
M

∑
m ‖Qâm − b‖2 for the mth

sample âm produced by the SDP rounding method. The normalized expected error (Exp)
1

||Qe||2+||b||2 E
[
‖Qâ− b‖2

]
as derived in Eq. (3.19) is also given. Note that the bound in Eq.

(3.25) assures (Exp) never exceeds 1− α ≈ 0.12. We see also that the graphs with 75% sensor
coverage typically have lower squared error values.
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A: Λu, 100% coverage B: Λu, 75% coverage

C: Λs, 100% coverage D: Λs, 75% coverage

E: Λd, 100% coverage F: Λd, 75% coverage

Figure 3.7: Plots of proportion of endpoint estimates correct for a given set (L or Lc) versus the reso-
lution ratios of Eq. (3.34) averaged over the corresponding set for the two simulation cases:
100% sensor coverage in the first column and 75% sensor coverage in the second. Circles in-
dicate averages over paths from set L and pentagrams indicate averages over paths from set
Lc. The first row (Λu) is for joint MAP estimation of uk = (sk, dk) from joint distribution
P̂ (uk|x1:K , Q(Ā) = b). The second row (Λs) is for individual estimation of sk from marginal
distribution P̂ (sk|x1:K , Q(Ā) = b). The third row (Λd) is for individual estimation of dk from
marginal distribution P̂ (dk|x1:K , Q(Ā) = b). Some reference lines are also plotted: a horizon-
tal line indicating the chance line for randomly selecting endpoints (1/36 for joint estimation
and 1/6 for individual estimation), and a vertical line at 0.68. Note that above Λ(k) = 0.68,
an approximately linear behavior is observed. This behavior is somewhat washed out for the
marginalized estimates, however marginalizing tends to increase the percent of correct esti-
mates. It is not surprising that there appears to be some degradation in the quality of the
estimates when only 75% of the links are equipped with sensors.
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tions of the method in all sorts of networks, or systems with key features modeled

by networks. We have displayed simulations of its utility on some random networks.

We now discuss some extensions of the theory presented here and possibilities for

future work on this problem.

It is possible to extend our algorithm for source/destination estimation to the

cases of noisy sensors and sensor excitation due to multiple transmissions without

much trouble. Consider first when the sensors are noisy: then the observed set of

activated sensors y may not match the true set of sensors ỹ passed by a particular

transmission. Suppose that each sensor γ ∈ Γ has an associated miss probability

αm(γ) = P (γ /∈ y|γ ∈ ỹ) and false alarm probability αf (γ) = P (γ ∈ y|γ /∈ ỹ).

The probing mechanism then repeats the data transmission from σk to δk N times

for each k. These N measurements are used to construct a maximum likelihood

estimate ŷk of each path ỹk according to the following model. Along the lines of

a generalized likelihood approach, the measurement mechanism passes along the

maximum likelihood path estimates for each ỹk for use in approximating the endpoint

posterior. Note that we will likely have to settle for N = 1 for passive measurements.

Define the path indicator vector ν whose elements are given by ν(j) = Iy(γj) for

all j = 1, 2, . . . |Γ| where IA : A → {0, 1} is the usual indicator function. If we assume

sensor errors are independent across paths and measurements, then the joint prob-

ability mass function of the N observed path vectors for a given source/destination

pair νi is

(3.37)

P (ν1, ν2, . . . νN |ν̃) =∏N
i=1

∏|Γ|
j=1 αm(γj)

(1−νi(j))ν̃(j)βm(γj)
νi(j)ν̃(j)

αf (γj)
νi(j)(1−ν̃(j))βf (γj)

(1−νi(j))(1−ν̃(j))

where βm(γ) ≡ 1−αm(γ) and βf (γ) ≡ 1−αf (γ). If we define the likelihood function
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L(ν̃) as the logarithm of the expression in Eq. (3.37), then it may be written explicitly

as

(3.38)

L(ν̃) =∑|Γ|
j=1

(
N log βf (γj) +

∑N
i=1 νi(γj) log

αf (γj)

βf (γj)

)
+∑|Γ|

j=1

(
N log

αm(γj)

βf (γj)
+
∑N

i=1 νi(γj) log
βe(γj)

αe(γj)

)
ν̃(γj)

where αe(γ) ≡ αm(γ)αf (γ) and βe(γ) ≡ βm(γ)βf (γ). Since only the second term in

Eq. (3.38) depends on ν̃ and ν̃ ∈ {0, 1}|Γ|, the maximum likelihood path estimate

may be written quite compactly as

(3.39)
ŷ ={

γj ∈ Γ |N log
αm(γj)

βf (γj)
+
∑N

i=1 νi(j) log
βe(γj)

αe(γj)
≥ 0
}

As another extension, suppose that for passive measurements the activated sensor

set yk is due to transmissions passed between n source/destination pairs uki for

i = 1, 2, . . . , n where n is known. The strategy here is to introduce a random variable

ηk for each passive measurement that represents a partition of the activated sensor

set yk into sets yki for i = 1, 2, . . . , n, where the sensors in each yki are activated in

response to a single transmission. We may then split the single measurement yk into

n different passive measurements yki according to the value of the partition variable

ηk and proceed with the previous theoretical development. In this case, the endpoint

posterior of Eq. (3.1) becomes

(3.40)
P (uk|x1:K , Q(Ā) = b) =

EA,ρ1:K ,ηKo:K

[
P (yk|uk,ρk,A)Pk(uk)∑

u P (yk|u,ρk,A)Pk(u)
|x1:K , Q(Ā) = b

]
where we must now also take the expectation over partition variables ηKo:K of all

passive measurements. The first step of the Monte Carlo sampling would then be

to draw a partition variable for each passive measurement from some (presumably
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available) distribution Pk(η). Given the partition variable, appropriate orderings

may be drawn and so on as before.

One can similarly account for the case of random linear prior information Q(Ā) =

b. Suppose that instead of being given a fixed operator Q and vector b, we are given

a distribution on these P (Q, b). This might occur, for example, when we know that

the vertex degrees follow a power-law distribution [26]– in which case a distribution

on b is induced. We must now also take the expectation over Q and b, so that the

endpoint posterior becomes

(3.41)
P (uk|x1:K) =

EA,ρ1:K ,Q,b

[
P (yk|uk,ρk,A)Pk(uk)∑

u P (yk|u,ρk,A)Pk(u)
| x1:K

]
A Monte Carlo approximation of Eq. (3.41) would therefore require drawing Q and

b then proceeding as before. Unfortunately, a new SDP must be solved for every

Q and b in order to produce topology samples A. If the SDP relaxation is not too

large, this might be reasonable. If the size is prohibitive, one might approximate

the expectation by selecting only a few of the most likely realizations of (Q, b) and

solving the SDP for these. The distribution P (Q, b) is then restricted to be nonzero

only at elements of this preselected dictionary so that the Monte Carlo simulation

selects those only those values for which we have already solved the SDP.

An interesting direction for future work would be to develop an adaptive probing

scheme. It is obvious that the quality of endpoint estimates for suspect transmissions

will depend on which endpoints were used in the probing phase. The idea here is

to use the approximate endpoint posterior distributions to suggest additional active

measurements that should be made in order to improve the estimates. One can

hypothesize criteria for determining the new probing pairs. For example, nodes

that tend to have similar posterior probabilities over several suspect paths might
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be selected for probing so as to distinguish them more explicitly in the constraints.

The question of efficient online implementation naturally arises in this context. A

forgetting factor could be used in conjunction with existing topology and ordering

samples so that an entirely new batch would not be required at each probing cycle.
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CHAPTER IV

Online Methods for Network Endpoint Localization

4.1 Introduction

We present efficient, recursive techniques for estimating the source and destina-

tion (endpoints) of a suspect transmission through a network based on the activation

pattern of sensors placed on network components. Our results lead to significant re-

duction in computational complexity and permit online tracking of possibly changing

endpoint locations of a suspect message over time. Estimation is based on a hier-

archical Bayesian model relating routing, tracking, and topological parameters. Es-

timates are derived and analyzed using a recursive expectation-maximization (EM)

algorithm and semidefinite programming (SDP) methods. Under a complete lack

of ordering information, the recursive and exact EM algorithms require a number

of operations at each iteration that grow exponentially with the number of sensors

activated by a given path. To cope with this problem, we present approximate meth-

ods based on permutation clustering that reduce the complexity to only quadratic

growth in the number of activated sensors. Some ideas are also given for the design

problem; we apply a recursive algorithm to control a multiarmed bandit model for

online probe scheduling. Finally, we illustrate the effectiveness of the new methods

through experiments involving Internet data.
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The measurement apparatus for the system is identical to that described in [46].

It consists of a number of asynchronous sensors, denoted Γ, placed on some subset

of elements (links or nodes) in a network. A sensor is activated, and its activation

recorded, whenever the path of a data transmission is intercepted on the element

where the sensor is situated. We suppose transmissions originate at some source

nodes in a set Σ and terminate at some destination nodes in a set ∆, activating

sensors in Γ along the way. The apparatus is illustrated on a sample network in

Fig. 4.1. Individual transmissions produce measurements recorded at discrete time

instances, and the subscript k is used throughout the chapter to index time. If

multiple sensors are activated by a single transmission, they may not be capable of

providing the precise order in which they were activated. In general, a probability

distribution Pk(ρ) on the possible orders of activation is observed for each measure-

ment; here the argument ρ ∈ {1, 2, . . . , } is simply a natural number used to indicate

a specific ordering of the sensors activated at time k. For example, a transmission

with endpoints (σ1, δ1) in Fig. 4.1 might activate sensors y1 = {γ2, γ3}–suppose this

is the first measurement so k = 1. The ordering (γ2, γ3), corresponding to ρ = 1,

might have probability P1(1) = 3
4

, while the ordering (γ3, γ2), where ρ = 2, has

probability P1(2) = 1
4
. We are able to probe the network by scheduling a message

to be passed from some source σ ∈ Σ to some destination δ ∈ ∆ and observing

the activated sensor set y and ordering distribution P (ρ). Based on the results of

our probing observations, we wish to determine the unknown endpoints (source and

destination in Σ×∆) of suspect observations, each consisting of an activated sensor

set and ordering distribution.

A Monte Carlo method for endpoint estimation was developed in [46]. This ap-

proach averages over feasible sample topologies given a batch of measurements in
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Figure 4.1: Diagram of the measurement apparatus on a sample network. Probing sites are sources Σ =
{σ1, σ2} and destinations ∆ = {δ1, δ2}. Sensors are Γ = {γ1, γ2, γ3, γ4, γ5}. A box on a link
or node represents a sensor that indicates when a transmission path intercepts that link/node.
We see γ1 and γ2 monitor nodes while γ3, γ4, and γ5 monitor links.

order to produce endpoint posteriors. It is not clear how one might recursively

update posteriors produced in this fashion. We address the updating problem here.

Fundamentally, the online model utilizes a generalization of the homogeneous Marko-

vian routing assumption in [77]. We suppose that the next hop in a message’s path

depends only on its current position and its final destination. This model induces

a set of routing parameters θd
ij that represent the probability of going from element

i to element j given that the final destination is d. Since the ordering of activated

sensors is uncertain, up to a probability distribution P (ρ), the probabilty of any mea-

sured path under the Markovian assumption takes the form of a multinomial mixture

distribution parameterized by θ. Endpoint posterior distributions then immediately

follow from this model given plug-in estimates of the routing parameters θ̂d
ij and sus-

pect endpoint priors P (s, d). In order to avoid a growing memory problem, we use a

recursive form of the EM algorithm [91] to update approximate MAP estimates of the

routing parameters when new measurements are made. This is the first of three key

approximations necessary to make our method practical for online implementation.

The recursive EM method requires that we retain only an information state that
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summarizes all past measurements, rather than the measurements themselves. We

are able to prove, however, that the asymptotic estimates produced by the recursive

EM are fixed points of an exact EM algorithm that uses all measurements directly.

Because of the multinomial form of the path likelihoods, it is analytically conve-

nient to make use of Dirichlet priors on the routing parameters [89]. The Dirichlet

priors are defined by the hyperparameters βij for all sources/destinations/sensors

i, j. We can then track the endpoints of suspect transmissions by using the suspect

observations to compute estimates of the hyperparameters in an empirical Bayes

framework [82]. This scheme not only allows the use of suspect measurements to

augment the probes in forming a more complete picture of routing in the network,

but also localizes which elements of the network are being utilized by the suspects,

and thereby tracks them. EM recursions, similar to those used for estimation of the

routing parameters θd
ij, update approximate MAP estimates. Any prior information

taking the form of linear equalities constraining the unknown network topology’s

adjacency matrix can be included through a Dirichlet hyperprior on the tracking

parameters βij. Such a characterization is useful because common priors, includ-

ing vertex degree information and necessary conditions for connectivity of certain

network components, can be written as linear constraints on the logical topology’s

adjacency matrix. The hyperprior is parameterized by γij, where these are estimated

by averaging over approximately feasible topologies produced using a semidefinite

programming (SDP) relaxation generated from the linear prior equalities. The com-

putation of γij is done only during an initialization step, so the burden of solving an

SDP online is not an issue. This second key approximation allows us to include any

topological information with a polynomial time algorithm. Analysis and performance

guarantees for the SDP algorithm are presented in [46].
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Our models lead to estimator update equations that involve sums over all ac-

tivated sensor set orderings ρ. The number of such orderings grows exponentially

with the number of activated sensors. We may have sufficient synchronization to

rule out many of the possible permutations (i.e. Pk(ρ) = 0 for most values of ρ).

Without such information, however, computing the necessary sums quickly becomes

intractable when the number of activated sensors exceeds six or seven. This prob-

lem motivates our final crucial approximation, which is to form permutation clusters

[16] and use these to compute the sums. The clusters are defined using a sort of

augmented generating tree whose construction is driven by the particular estimate

values appearing in the sum to be approximated. The tree is built to some depth and

then truncated when either the approximation error is tolerable or the number of

clusters is too large. In the case that the tree is not truncated, it represents the exact

sum by enumerating every possible permutation. The idea of using generating trees

for enumerating permutations was first proposed in [16]. It has more recently been

applied to the enumeration of restricted permutations [99], and extended to allow

for the enumeration of a wide variety of combinatorial objects [5]. Our technique of

clustering the permutations is also similar to the separable operator approximations

used in [8]. By grouping permutations into clusters, we are effectively decoupling

many of the terms that appear in the full sum. This allows us to approximate the

full sum with fewer terms that separate according to the clusters.

In addition to estimation and tracking, we can implement probe scheduling online

using an algorithm developed for the nonstochastic multiarmed bandit [3]. The idea is

to treat each source/destination pair as a different arm on a multiarmed bandit. The

multiarmed bandit is a classic problem model used to capture the tradeoff between

exploration and exploitation [83]. Imagine a slot machine with several arms, each
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giving some unknown reward. The objective is to decide a strategy for pulling the

arms so as to maximize your reward over time. The slot machine has a cost per

play, so exploration in the form of trying different arms is costly; however if a single

arm is played always, one might miss out on exploiting an arm with higher payoff.

In our scenario, the reward associated with scheduling a probe between a specific

pair is determined by the reduction in the entropy of suspect endpoint posterior

distributions resulting from the probe. This sort of information gain criterion has

found successful application to sensor management [40, 50]. Under this framework,

we can directly apply the Exp3 algorithm of [3]. Exp3 draws the probing pair to

be scheduled from a mixture distribution containing two components: a uniform

component and a shaped component determined by normalizing some weights. The

weights, in turn, are recursively updated in response to observed rewards. The

two components of the mixture distribution reflect the explore/exploit tradeoff; the

uniform component promotes even exploration, while the shaped component exploits

the high payoff of certain arms. Several performance guarantees are proven for

the algorithm in [3]. Along with the performance guarantees, the computational

simplicity and recursive nature of the algorithm makes it very suitable for online

scheduling.

As in [46], we utilize an abstract network model that does not appeal to any phys-

ical specifications. These techniques are therefore applicable to endpoint localization

in a wide variety of networks, such as those describing partially observed techno-

logical, social, or biological structures [70]. Also, the methods may be adapted to

produce an online topology inference scheme to address the problem considered in

[77]. The method for permutation clustering tackles the general problem of reduced

complexity approximations, and may well find applications beyond this present work.
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The chapter is organized as follows. Section II presents the hierarchical Bayesian

model used to explain observed measurements. Section III derives recursive, adaptive

estimators for parameters appearing in the hierarchical model, while Section IV

analyzes the convergence properties of these estimators. In Section V, we describe

the permutation clustering method for approximating certain combinatorial sums

that appear in the estimate update equations. Section VI discusses the application

of an algorithm for control of the multiarmed bandit to the problem of online probe

scheduling. A variety of tracking simulations that apply the new methods to real

Internet data collected by Rabbat et. al. [77] are presented in Section VII. We

conclude our discussion in Section VIII with a summary and propositions for future

work.

4.2 Hierarchical Bayesian Model

The basis for our online estimation scheme is a hierarchical Bayesian model. A

diagram illustrating the relationships among variables in the model is shown in Figure

4.3A. At the highest level, we have parameters γij associated with characteristics

(such as vertex degree and connectivity) of the logical topology of the network.

The logical topology considers adjacency relationships among only those elements

(vertices and edges) that are either monitored with a sensor or used as a probing

site. For example, we cannot hope to pinpoint the position of a link in the original

network that is not monitored by a sensor. We assume unmonitored elements are

essentially ’short-circuited’ in the logical network. The idea here is to assure two

elements are logically adjacent even if they are physically separated by an element

(or subgraph of elements) that is not monitored. An example logical topology is

given in Figure 4.2 for the monitored network in Figure 4.1.
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Figure 4.2: Example logical topology for the monitored network in Figure 4.1. The vertex set of the logical
network consists of sensors Γ = {γi}5i=1 and probing sites Σ = {σ1, σ2}, ∆ = {δ1, δ2}. The
edges summarize logical adjacencies among sensors and probing sites with any intervening
unmonitored elements short-circuited.

The topology parameters serve as priors for the tracking parameters βij. The

tracking parameters indicate the extent to which the suspects are utilizing specific

parts of the network; they are therefore updated in response to new observed sus-

pects. The routing parameters θd
ij appear next in the hierarchy. These are updated

by the probing measurements, and serve as parameters in a controlled Markovian

routing model for observed message paths. One might compare this model to the

measurement model of [46], which is depicted in Figure 4.3B. This model explains

observed message paths using only the logical topology Aij, which is constrained by

linear equalities in the same way that our γij are constrained. The method in [46]

processes a batch of data offline, so that there is no need for adaptation. Our model

introduces routing and tracking parameters into the hierarchy in order to adaptively

account for changes in network routing or suspect location. We will proceed to de-

scribe in detail each of the components in the model of Figure 4.3A from the bottom

up.
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A B

Figure 4.3: Diagram of the hierarchical Bayesian models. The model for our present online system is given
in A, while the model of [46] for offline estimation is in B. Vertical arrows represent prior
dependencies, while right arrows indicate data used in updating parameter estimates, and left
arrows indicate the associated probability models. The model introduces routing and tracking
parameters into the hierarchy in order to adaptively account for changes in network routing
or suspect location. The method in [46] processes a batch of data offline, so there is no need
for adaptation.

4.2.1 Controlled Markov Routing Model

We use a generalization of the Markovian routing model supposed in [77]. The

basic assumption is that the next hop in a message’s path through the network

depends only on its current position and its final destination. Note that this is a fair

assumption for many modern routing algorithms [90]. In contrast, [77] assumes the

next hop in a path depends only on the current position of a message, irrespective of

the final destination. We let θd
ij denote the probability that a message currently at

element (source/sensor) i will go next to element (sensor/destination) j given that

its final destination is d. Under this assumption, we can interpret each θd (for all

i, j) as the transition matrix of some Markov chain. Indeed, one may view this as

a controlled Markov model where d serves as the control [51]. The model in [77]

utilizes a single transition matrix since it does not treat d as a control; note that

although our model might be more realistic, it does require more parameters.

The Markov chain assumption implies the following path likelihood model for an
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activated sensor set y given the ordering ρ and endpoints s, d:

(4.1)
P (y|ρ, s, d, θ) = θd

sy1
ρ

∏|y|−1
n=1 θd

yn
ρ yn+1

ρ
θd

y
|y|
ρ d

=
∏

(i,j)∈χρ
θd

ij

where yρ ≡ (y1
ρ, y

2
ρ, . . . , y

|y|
ρ ) indicates the particular ordering ρ of the activated sensor

set y and χρ ≡ {(s, y1
ρ), (y

1
ρ, y

2
ρ), (y

2
ρ, y

3
ρ), . . . (y

|y|−1
ρ , y

|y|
ρ ), (y

|y|
ρ , d)}. From this model,

we easily get the endpoint posterior distribution of a suspect measurement y as

(4.2) P (s, d|y, θ) =
1

κ

∑
ρ

P (y|ρ, s, d, θ)P (ρ)P (s, d)

where P (ρ) is the ordering distribution associated with the measurement, P (s, d) is

the endpoint prior, and κ is a normalization constant independent of ρ.

4.2.2 Dirichlet Priors

Because Eq. (4.1) is in the form of a multinomial distribution, and its parameters

θd
i lie on the probability simplex for all d, i, the Dirichlet prior, which is conjugate

to the multinomial distribution, provides an analytically tractable scheme for incor-

porating additional information about θ [89]. The prior is given by

(4.3) P (θ|β) =
1

κ′

|∆|∏
d=1

|Γ|+|Σ|∏
i=1

|Γ|+1∏
j=1

(θd
ij)

β0βij

where conditional independence is assumed across transition matrices indexed by d

and rows indexed by i. Although it appears that we have also assumed independence

over columns j, there is in fact coupling over columns since all rows θd
i must satisfy∑

j θd
ij = 1. The tracking parameters βij in the prior are nonnegative and satisfy∑

j βij = 1 for all i. Also in Eq. (4.3), we have a normalization constant κ′ and a

positive precision parameter β0 that allows one to scale the strength of the prior.

We utilize the law of total probability as follows to derive a likelihood model for

an ordered path given the tracking parameters β.

(4.4) P (y|ρ, s, d, β) = E [P (y|ρ, s, d, θ) | β]
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where the expectation is taken over θ with respect to the prior P (θ|β). In order

to evaluate this expectation in closed form, we require that all paths be loopless

i.e. ym
ρ 6= yn

ρ for all m 6= n. This ensures that distinct terms {θd
ij} appearing in

Eq. (4.1) are conditionally independent (given β) since they all come from different

rows of the transition matrix θd (recall in defining the prior, we assumed conditional

independence over rows). Applying conditonal independence and plugging in from

Eq. (4.1) allows the expectation to be written as

(4.5)
P (y|ρ, s, d, β) =

∏
(i,j)∈χρ

E
[
θd

ij|β
]

=
∏

(i,j)∈χρ
(1 + β0βij)/(|Γ|+ |∆|+ β0)

where the second line follows from inserting the mean of the Dirichlet distribution

in Eq. (4.3). This is the only result that requires a loopless path. One might still

apply these techniques to paths with cycles, however it would then be necessary to

compute higher order moments of the Dirichlet distribution and revise subsequent

estimators.

As mentioned previously, each row of the tracking parameter matrix also lies in

the probability simplex. Again given the multinomial-like product factorization of

the likelihood in Eq. (4.5), it is convenient to assume a Dirichlet prior on these given

by

(4.6) P (β|γ) =
1

κ′′

|Γ|+|Σ|∏
i=1

|Γ|+|∆|∏
j=1

(βij)
γ0γij

Conditional independence (given γ) over rows is assumed as before. The topology

parameters γij define this prior, along with a positive scale factor γ0. We may set

the scale factor based on our confidence in the topological information.

Although the exact logical topology of the monitored network is unknown to

us, we have available some prior information of the form Q(A) = v. Here, A ∈
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{0, 1}(|Γ|+|Σ|+|∆|)×(|Γ|+|Σ|+|∆|) is the adjacency matrix of the logical topology, Q is a

linear operator, and v is a vector. Through appropriate choices of Q and v, it is

possible to define various network priors including cliques, vertex degrees, or even

some known portions of the topology. See [46] for some concrete examples of these.

We define the topology parameter γij as the probability that a logical connection

exists between element i and element j given the prior information; i.e.

(4.7) γij = E[Aij | Q(A) = v]

In this way, one might also use the topology parameters, along with associated pre-

cision parameters β0 and γ0, to account for knowledge of stable network routing

components.

In contrast to independence assumptions for the tracking and routing parameters,

it is clear that the topology parameters might share complicated dependencies due

to coupling of adjacency elements Aij by the prior equalities. This observation not

only strengthens our conditional independence assumptions made earlier, but also

illustrates an advantage of the hierarchical Bayesian model. It is usually topological

aspects of a network that induce dependencies among routes. We might assume inde-

pendence of parameters related to routing, provided we condition on topology. Since

the topology parameters are placed at the highest level of the Bayesian hierarchy, we

are able to exploit independence to simplify computations at lower levels.

4.3 Parameter Estimation

We now proceed to derive estimators for the parameters introduced in the model

of the previous section. It is useful, however, to first give a high level view of the

flow of computations necessary for the online system. The system is first initialized

by formulating and solving a semidefinite program using prior information about
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Figure 4.4: Operational diagram of the online system. Heavy horizontal arrows indicate transitions be-
tween stages of operation (initialization, training, and monitoring), while light vertical arrows
indicate the flow of computation within each stage. The system is initialized by formulat-
ing and solving a semidefinite program (SDP) associated with the prior equality constraints
Q(A) = v on the logical adjacency matrix A. Once online operation commences, we have a
training phase in which probes are scheduled and routing parameter estimates are recursively
updated in response to probe observations. Next we monitor the network for suspect transmis-
sions, and update tracking and routing parameter estimates whenever a suspect is observed.
Refer to Figure 4.3 for parameter definitions and relations.

the network that is linear in the logical topology’s adjacency matrix (such as vertex

degrees). We average over samples produced using the rounding scheme of [46]

in order to estimate the topology parameters. With these, we move into online

operation of the system. For some initial training period, a probe of the network

is made at each tick of the clock. A probe consists of sending a message between

some known source and destination and observing the activated sensor set y and

ordering distribution P (ρ). We update routing parameters in response to the results

of each new probe. After the training phase ends, we begin monitoring for suspect

transmissions–i.e. transmissions whose source and destination are unknown. Each

suspect measurement includes an activated sensor set y, ordering distribution P (ρ),

and prior over possible endpoints P (s, d). When a suspect is observed, the tracking

parameters are updated, which forces an update in the routing parameters. The best

available estimates of the routing parameters may be used at any given time to build

endpoint posteriors of observed suspects. An operational diagram of the system is

given in Figure 4.4.
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In the following, we will first define the precise estimation problems that we wish

to solve. We then proceed to derive the estimators associated with each stage of

the system: initialization (topology parameters), training (routing parameters), and

monitoring (tracking parameters).

4.3.1 Estimation Objectives and Problem Statement

Assuming the probability of each edge Aij is unknown, our goal in the initialization

phase is to produce a suitable Monte Carlo approximation of the expectation in Eq.

(4.7) in order to estimate the topology parameters. Once this is done, we move to

online operation.

We desire estimators of the routing and tracking parameters to be recursive (so

as to avoid growing memory problems) and scalable (so that online computation

does not become intractable as the size of the problem increases). We also want

estimators that adapt to changes in routing protocols and suspect locations. With

that in mind, we choose the following penalized likelihood objective for estimation

of the routing parameters.

(4.8) φk(θ) =
∑

t

ak−tlt(θ) + log P (θ|β̂(k))

where a ∈ [0, 1) is a forgetting factor, and β̂(k) is a plug-in estimate of the prior

parameters β at time k. Note that here and throughout the chapter, k indexes the

current clock tick. The log-likelihood is explicitly given by

(4.9) lt(θ) = log

(∑
ρ

P (yt|ρ, st, dt, θ)Pt(ρ)

)

where P (yt|ρ, st, dt, θ) follows from the model in Eq. (4.1).

Note that the objective in Eq. (4.8) would be precisely the maximum a posteriori

(MAP) objective under an i.i.d. measurement model if the forgetting factor was
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unity. The introduction of the factor a < 1 is a common heuristic used in the design

of adaptive algorithms to reduce the effect of old measurements on current parameter

estimates [82]. One might set a using knowledge of dynamic routing in the network;

e.g. the more quickly standard routes are expected to change in the network, the

closer to zero a should be set. Alternatively, there exists a Dirichlet type generative

model for measurements taken over time for which the objective in Eq. (4.8) yields

precisely the MAP estimate. It is straightforward to write down such a model, so we

omit it here.

The Dirichlet prior on θ serves to condition the routing parameters θd
ij by the

tracking parameters βij. A reasonable way to estimate β is to make use of the

observed suspect transmissions. If the suspect frequently utilizes the link from i to

j, we would like βij to be closer to one. In this way, we fill in gaps in the probing

measurements by making direct use of the suspects to form a more complete picture

of routing in the network. Note also, that by taking account of the links being

used by the suspects, we are essentially tracking their positions in the network as

characterized by sensor activations. The estimates of β can be combined with the

endpoint posterior distribution to provide additional information about the suspects’

locations.

The estimation of the tracking parameters β is formalized through the use of

empirical Bayes techniques [82]. We choose a similar sort of adaptive MAP objective

for estimation of the tracking parameters.

(4.10) φk(β) =
∑

t

bk−tlt(β) + log P (β|γ̂)

Again, a forgetting factor b ∈ [0, 1) is used to discount old suspect measurements,

and γ̂ is the static plug-in estimate of the prior parameters γ. The log-likelihood is
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given by

(4.11) lt(β) = log

(∑
s,d

∑
ρ

P (yt|ρ, s, d, β)Pt(ρ)Pt(s, d)

)
where P (yt|ρ, s, d, β) is the likelihood of some suspect measurement yt given in Eq.

(4.5). In order to allow for adaptation, one might tune b by knowledge of a suspect’s

motion through some network.

Ideally, our routing and tracking parameter estimates at time k, θ̂(k) and β̂(k),

would maximize the objective functions in Eqs. (4.8) and (4.10) respectively. The

goal in online estimation is therefore to develop scalable, recursive algorithms to

optimize these functions. We shall see that the key qualifiers ’scalable’ and ’recursive’

will necessitate certain approximations to be made. Our estimates will therefore only

approximately optimize the selected objective functions. By plugging in routing

parameter estimates, we can also compute the endpoint posterior distributions of

suspect measurements as given in Eq. (4.2).

4.3.2 Initialization with Topology Information

If the edge probabilities P (Aij = 1) in the logical topology are unknown, except

for some prior constraints on the logical adjacency matrix Q(A) = v, we must ap-

proximate the expectation of Eq. (4.7). Let {Am}M
m=1 be the sample adjacencies

produced from a semidefinite program (SDP) formulated to approximately solve the

prior equalities Q(A) = v as described in [46]. We produce a Monte Carlo estimate

of the expectation in Eq. (4.7) as follows

(4.12) γ̂ij =
1

M

∑
m

Am
ij

Note that solving an SDP is typically a very demanding computational task (O(N7)

for a matrix of size N × N [57]). Fortunately, we need only solve the SDP once,

during an offline initialization phase.
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4.3.3 Online Routing Parameter Estimation

The form of the likelihood in Eq. (4.9) suggests the EM algorithm as a natural

candidate for implementing the estimator [22]. Exact maximization of Eq. (4.8)

via EM would require storing all past probing measurements. In order to avoid this

growing memory problem, we utilize a recursive form of the EM algorithm described

in [91] to update the maximum value of an approximation to Eq. (4.8). Recursive EM

approximates the likelihood term
∑

t a
k−tlt(θ) by Lk(θ), which is obtained recursively

as follows:

(4.13) Lk(θ) = E
[
log P (yk|ρ, sk, dk, θ) | yk, sk, dk, Pk(ρ), θ̂(k − 1)

]
+ aLk−1(θ)

where L0(θ) = 0 and P (yk|ρ, sk, dk, θ) is taken as 1 if a probe is not scheduled at time

k (in order to remain consistent with the likelihood term in Eq. (4.8)). Evaluating

the expectation in Eq. (4.13) over orderings ρ and regrouping terms yields

(4.14) Lk(θ) =
∑
d,i,j

cd
ij(θ̂(k − 1); k) log θd

ij + aLk−1(θ)

with cd
ij(θ; k) given by the following for d = dk:

(4.15) cd
ij(θ; k) =

∑
ρ | (i,j)∈χk,ρ

P (yk|ρ, sk, dk, θ)Pk(ρ)∑
ρ P (yk|ρ, sk, dk, θ)Pk(ρ)

We have cd
ij(θ; k) = 0 if d 6= dk; also cd

ij(θ; k) = 0 for all d if a probe is not scheduled

at time k. If we define the recursion for c̄(k) as

(4.16) c̄d
ij(k) = cd

ij(θ̂(k − 1); k) + ac̄d
ij(k − 1)

with c̄d
ij(0) = 0 for all d, i, j, then we can express the function Lk(θ) simply as

(4.17) Lk(θ) =
∑
d,i,j

c̄d
ij(k) log θd

ij
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The routing parameter estimates at time k are then given by

(4.18)

θ̂(k) = arg max
θ|

∑
j θd

ij=1∀d,i

φ̃k(θ)

= arg max
θ|

∑
j θd

ij=1∀d,i

∑
d,i,j

(
c̄d
ij(k) + β0β̂ij(k)

)
log θd

ij

A simple application of the KKT conditions to this concave maximization gives the

following routing parameter estimates:

(4.19) θ̂d
ij(k) =

c̄d
ij(k) + β0β̂ij(k)∑
l c̄

d
il(k) + β0β̂il(k)

Eqs. (4.16) and (4.19) define the recursive routing parameter estimator. Note that

these parameter estimates, although derived from a stochastic routing model, will

indeed converge to a deterministic route if for a given element i we always observe

a transition to element j∗ when the destination is d. The forgetting factors a, b < 1

ensure that the estimates θ̂d
ij will be driven to some minimal value (depending on γij,

γ0, and β0) for all j 6= j∗ with almost all of the mass of θ̂d
i concentrated on θ̂d

ij∗

4.3.4 Online Tracking Parameter Estimation

Comparing Eqs. (4.10) and (4.8) indicate tracking parameter estimation problem

is almost identical to routing parameter estimation. The only fundamental difference

in computation, is that a sum over source/destination pairs also appears inside the

logarithm of Eq. (4.11). This is a consequence of our lack of knowledge of suspect

endpoints. We again apply the recursive EM approximation for the likelihood term

in the objective:

(4.20) Lk(β) = E
[
log P (yk|ρ, s, d, β) | yk, Pk(s, d), Pk(ρ), β̂(k − 1)

]
+ bLk−1(β)

where L0(β) = 0 and P (yk|ρ, s, d, β) is taken as 1 if a suspect is not observed at time

k. After evaluating the expectation over ordering ρ and endpoints s, d, we can write
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Lk(β) as

(4.21) Lk(β) =
∑
i,j

ḡij(k) log(1 + β0βij)

with ḡ(k) defined recursively as

(4.22) ḡij(k) = gij(β̂(k − 1); k) + bḡij(k − 1)

where ḡij(0) = 0 for all i, j. The factor depending on the new measurement gij(β; k)

is given by

(4.23) gij(β; k) =

∑
ρ,s,d | (i,j)∈xk,ρ

P (yk|ρ, s, d, β)Pk(ρ)Pk(s, d)∑
ρ,s,d P (yk|ρ, s, d, β)Pk(ρ)Pk(s, d)

with gij(β; k) taken as zero if a suspect is not observed at time k.

We replace the likelihood term
∑

t b
k−tlt(β) in Eq. (4.10) with Lk(β) from Eq.

(4.21) to arrive at the following expression for β̂(k)

(4.24)

β̂(k) = arg max
β|

∑
j βij=1∀i

φ̃k(β)

= arg max
β|

∑
j βij=1∀i

∑
i,j ḡij(k) log(1 + β0βij) + γ0γ̂ij log βij

If one attempts to apply the KKT conditions as before, a system of quadratic equa-

tions results. We encounter this problem because of the sum inside the first logarithm.

The familiar structure suggests a generalized EM framework wherein another EM

iteration is used to increase the likelihood as an alternative to solving the quadratic

system. We add ḡij log 2
β0+2

to the objective and combine with the first term to give

(4.25) β̂(k) = arg max
β|

∑
j βij=1∀i

∑
i,j

ḡij(k) log

(
2

β0 + 2
+

β0

β0 + 2
2βij

)
+ γ0γ̂ij log βij

We now recognize the first term as the logartihm of a uniform and linear mixture

distribution. Applying EM to Eq. (4.25) in the standard way gives the operator fk,

defined component-wise as

(4.26) fk
ij(β) =

ḡij(k)
β0βij

1+β0βij
+ γ0γ̂ij∑

l ḡil(k) β0βil

1+β0βil
+ γ0γ̂il
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Action Online Computation

Probe Scheduled 1. c̄d
ij(k) =

∑
ρ | (i,j)∈xk,ρ

P (yk|ρ,sk,dk,θ̂(k−1))Pk(ρ)∑
ρ P (yk|ρ,sk,dk,θ̂(k−1))Pk(ρ)

+ ac̄d
ij(k − 1)

2. θ̂d
ij(k) = c̄d

ij(k)+β0β̂ij(k)∑
j′ c̄d

ij′ (k)+β0β̂ij′ (k)

Suspect Observed 1. ḡij(k) =
∑

ρ,s,d | (i,j)∈xk,ρ
P (yk|ρ,s,d,β̂(k−1))Pk(ρ)Pk(s,d)∑

ρ,s,d P (yk|ρ,s,d,β̂(k−1))Pk(ρ)Pk(s,d)

+bḡij(k − 1)

2. fk
ij(β) =

ḡij(k)
β0βij

1+β0βij
+γ0γ̂ij∑

j′ ḡij′ (k)
β0β

ij′
1+β0β

ij′
+γ0γ̂ij′

3. β̂(k) = fk ◦ fk ◦ . . . fk(β̂(k − 1)) = (fk)N (β̂(k − 1))

4. θ̂d
ij(k) = c̄d

ij(k)+β0β̂ij(k)∑
j′ c̄d

ij′ (k)+β0β̂ij′ (k)

Table 4.1: Summary of online computations.

The new estimate β̂(k) is the fixed point of the operator fk. Provided γ̂ij > 0 for

all i, j, the optimization in Eq. (4.25) is strictly concave. Since the Q-function from

which Eq. (4.26) is derived is also continuous in both arguements, it follows that

EM will converge to the unique global maximum [28]. Thus the fixed point of fk is

unique. In practice, we can obtain β̂(k) by initializing (with perhaps β̂(k − 1)) and

then successively applying the operator fk until ||(fk)N(β) − (fk)N−1(β)|| < ε for

some tolerance ε. So that

(4.27) β̂(k) = fk ◦ fk ◦ . . . fk(β̂(k − 1)) = (fk)N(β̂(k − 1))

where N is chosen large enough to satisfy a desired tolerance ε. In practice, we have

observed that this internal EM iteration converges very quickly; our simulations

indicated an N value of 2 or 3 was typically sufficient to obtain convergence with a

tolerance of ε = 10−8. The recursions in Eqs. (4.22) and (4.27) define the tracking

parameter estimator. Table 4.1 provides a summary of all online computations.

4.4 Convergence Analysis

An asymptotic analysis of the unconstrained recursive EM algorithm is presented

in [91] by using a quadratic expansion of the likelihood to relate the algorithm to
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a stochastic approximation method. When constraints are present, the mathemat-

ical form of the expansion’s optimum no longer reveals an obvious mapping to the

stochastic approximation. We will argue convergence of our algorithms directly, in-

stead of attempting to derive such a mapping. We also show that the recursive

approximation produces asymptotic estimates that are fixed points of the EM algo-

rithm applied to the exact objective for MAP estimation.

Before beginning, note that the quantities we consider are in fact random vari-

ables, so that all equalities or inequalities hold with probability one. Consider first

the sequences ḡ(k) and c̄(k) as defined in Eqs. (4.22) and (4.16) respectively.

Lemma IV.1. The sequence ḡ(k) converges to some limit ḡ(∞) as k → ∞. Simi-

larly, c̄(k) → c̄(∞) as k →∞.

Proof. The recursive expression in Eq. (4.22) can be written in closed form as follows

(4.28) ḡij(k) =
k∑

t=1

bk−tgij(β̂(t− 1); t)

Now from the definition in Eq. (4.23), we see that 0 ≤ gij(β; k) ≤ 1 for all k because

all involved probabilities are nonnegative and every term in the numerator sum also

appears in the denominator sum. It follows that ḡij(k) is a monotone nondecreasing

sequence. Furthermore, we have

(4.29)

ḡij(k) ≤
∑k

t=1 bk−t

= 1−bk

1−b

≤ 1
1−b

since b < 1. Thus ḡij(k) is also bounded from above for all k. It follows that the

sequence must converge to some value ḡij(∞) as k →∞. We have thus established

convergence of each i, j component; we therefore have ḡ(k) → ḡ(∞). An identical

argument establishes c̄(k) → c̄(∞) as k →∞.
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The parameter estimates as defined in Eqs. (4.18) and (4.24) are the optimal

values of strictly concave functions. Given that c̄ and ḡ define these functions and

converge, we argue convergence of the estimates through uniform convergence of the

functions they optimize. The following lemma is key to this argument.

Lemma IV.2. Let {fk} and f∞ be strongly concave functions over a compact, convex

set C such that fk converges to f∞ uniformly over C as k → ∞. If xk denotes the

maximum of fk over C for all k ∈ {1, 2, . . .∞}, then xk exists and is unique for all

k, and furthermore xk → x∞ as k →∞.

Proof. Since each function fk is strongly concave, we have immediately that its op-

timizer over a compact, convex set exists and is unique. Now suppose xk does not

converge to x∞, so there exists ε∗ > 0 such that ||xk − x∞|| ≥ ε∗ for all k < ∞. A

Taylor expansion of fk about the maximum gives

(4.30) fk(x∞) = fk(xk) +∇fk(xk)
T (x∞ − xk) +

1

2
(x∞ − xk)

T∇2fk(z)(x∞ − xk)

where z = αxk + (1 − α)x∞ ∈ C for some α ∈ [0, 1]. Optimality of xk ensures

−∇fk(xk)
T (x∞ − xk) ≥ 0, and strong concavity of fk implies there is some m > 0

such that −∇2fk(z) � mI for all k [10]. We therefore rearrange Eq. (4.30) and

apply these inequalities to arrive at

(4.31) fk(xk)− fk(x∞) ≥ m

2
ε2
∗

for all k < ∞.

Now uniform convergence of fk to f∞ ensures that for all ε > 0, there is some n(ε)

such that |fk(x)− f∞(x)| < ε for all k ≥ n(ε) and any x ∈ C. Consider any index k∗

satisfying k∗ ≥ n
(

m
8
ε2
∗
)
; uniform convergence gives

(4.32)
fk∗(xk∗) < f∞(xk∗) + m

8
ε2
∗

fk∗(x∞) > f∞(x∞)− m
8
ε2
∗
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But the inequality in (4.31) must hold for all k, so we may substitute the inequalities

from (4.32) into (4.31) to obtain

(4.33) f∞(xk∗)− f∞(x∞) ≥ m

4
ε2
∗

This contradicts the assumption that x∞ is the unique maximizer of f∞ over C.

In order to apply Lemma IV.2, we must decide on a compact, convex set C over

which uniform convergence holds. Because of the log(θd
ij) term in Eq. (4.18), it is

convenient to bound the routing parameter estimates away from zero. Note that

this can be achieved by including a sample adjacency matrix consisting of all ones

into the sum of Eq. (4.12); the extra sample would ensure positivity while having

a negligible effect on the topology parameter estimates, provided M is sufficiently

large. Indeed, we have γ̂ij ∈ [1/M, 1] for all i, j. This filters down to β̂(k) and θ̂(k)

through Eqs. (4.19) and (4.26). One can easily verify that β̂(k) ∈ Cβ and θ̂(k) ∈ Cθ

for all k, where Cβ and Cθ are compact, convex sets defined by

(4.34)

Cβ ≡
{

β ∈
[

γ0(1−b)
M(|Γ|+|∆|)(1+γ0(1−b))

, 1
](|Γ|+|Σ|)×(|Γ|+|∆|)

|
∑

j βij = 1∀i
}

Cθ ≡
{

θ ∈
[

γ0β0(1−b)(1−a)
M(|Γ|+|∆|)(|Γ|+1)(1+γ0(1−b))(1+β0(1−a))

, 1
](|Γ|+|Σ|)×(|Γ|+1)×|∆|

|
∑

j θd
ij = 1∀d, i

}
Enforcing positivity in this fashion allows us to ignore the inequality constraints in

deriving the expressions in Eqs. (4.19) and (4.26), since they automatically satisfy

the bounds by design.

This leads to the primary convergence theorem below.

Theorem IV.3. The tracking and routing parameter estimates converge as k →∞;

that is β̂(k) → β̂(∞) and θ̂(k) → θ̂(∞).
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Proof. We first show uniform convergence of φ̃k(β) as defined in Eq. (4.24) to

(4.35) φ̃∞(β) ≡
∑
ij

ḡij(∞) log(1 + β0βij) + γ0γ̂ij log βij

Lemma IV.1 implies that for all ε > 0, there is some ng(ε) such that ||ḡ(k) −

ḡ(∞)|| < ε for all k ≥ ng(ε). In order to show uniform convergence, we take

n∗1 ≡ ng

(
ε

(|Γ|+|Σ|)(|Γ|+|∆|) log(1+β0)

)
for any given ε > 0. For any k ≥ n∗1 we have

(4.36)

∣∣∣φ̃k(β)− φ̃∞(β)
∣∣∣ =

∣∣∣∑i,j log(1 + β0βij)(ḡij(k)− ḡij(∞))
∣∣∣

≤
∑

i,j | log(1 + β0βij)||ḡij(k)− ḡij(∞)|

< ε
(|Γ|+|Σ|)(|Γ|+|∆|) log(1+β0)

∑
i,j | log(1 + β0βij)|

≤ ε

where β ∈ Cβ. Thus we have uniform convergence of φ̃k(β) to φ̃∞(β) over Cβ. Since

γ̂ij ≥ 1/M for all i, j, the functions φ̃k(β) and φ̃∞(β) are strongly concave over Cβ;

so Lemma IV.2 immediately gives convergence of β̂(k) to β̂(∞) (the maximum value

of φ̃∞(β)).

In a similar fashion, we show uniform convergence of φ̃k(θ) as defined in Eq. (4.18)

to

(4.37) φ̃∞(θ) ≡
∑
d,i,j

(
c̄d
ij(∞) + β0β̂ij(∞)

)
log θd

ij

Lemma IV.1 ensures that for all ε > 0, there is some nc(ε) such that ||c̄(k)−c̄(∞)|| < ε

for all k ≥ nc(ε). And let nβ(ε) ensure ||β̂(k) − β̂(∞)|| < ε for all k ≥ nβ(ε).

To show uniform convergence, take n∗2 ≡ max
{

nc

(
ε

2κ| log θmin|

)
, nβ

(
ε

2β0κ| log θmin|

)}
where κ ≡ |∆|(|Γ| + |Σ|)(|Γ| + 1) and θmin is the lower bound in Cθ of Eq. (4.34).

We then have for any k ≥ n∗2

(4.38)∣∣∣φ̃k(θ)− φ̃∞(θ)
∣∣∣ ≤

∑
d,i,j | log θd

ij|
(
|c̄d

ij(k)− c̄d
ij(∞)|+ β0|β̂ij(k)− β̂ij(∞)|

)
< ε
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Again the functions are strongly concave over Cθ since β̂ij(k) > 0; we therefore apply

Lemma IV.2 to give convergence of θ̂(k) to the maximum value of φ̃∞(θ), denoted

θ̂(∞).

We can use the convergence results just established to analyze the relationship

between the recursive approximation and the exact EM algorithm for large k. Before

proceeding, we establish a useful lemma about the limit points of the sequences ḡ(k)

and c̄(k).

Lemma IV.4. The limit points ḡ(∞) and c̄(∞) alluded to in Lemma IV.1 are given

explicitly by

(4.39)
ḡij(∞) = lim

k→∞

∑k
t=1 bk−tgij(β̂(∞); t)

c̄d
ij(∞) = lim

k→∞

∑k
t=1 ak−tcd

ij(θ̂(∞); t)

for all d, i, j.

Proof. It is useful to first establish Lipschitz continuity of the functions gij(β; k) and

cd
ij(θ; k) over Cβ and Cθ respectively. The derivative of gij(β; k) as in Eq. (4.23)

satisfies

(4.40)∥∥∥∂gij

∂β
(β; k)

∥∥∥ ≤ 2 ((|Γ|+ |Σ|)(|Γ|+ |∆|))1/2
(∑

ρ,s,d P (yk|ρ, s, d, β)Pk(ρ)Pk(s, d)
)−2

≤ 2 ((|Γ|+ |Σ|)(|Γ|+ |∆|))1/2 (|Γ|+ |∆|+ β0)
2(|Γ|+1)

= Lg

where the second line follows from Eq. (4.5), with β ∈ Cβ. We therefore have that Lg

is a Lipschitz constant over Cβ independent of k and i, j [48]. In a similar fashion,

one can establish a Lipschitz constant for cd
ij(θ; k) over Cθ as Lc = 2κ1/2θ

−2(|Γ|+1)
min

where θmin and κ are as defined in the proof of Theorem IV.3.

We proceed now with the main result. By Theorem IV.3 β̂(k) converges, and

Lipschitz continuity of gij(β; t) implies that for all ε > 0 there is some n(ε) such that
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|gij(β̂(k − 1); t) − gij(β̂(∞); t)| < Lgε for all k ≥ n(ε). For any given ε > 0, take

n∗ ≡ n
(

(1−b)ε
2Lg

)
+ max

{
1, log((1−b)ε/2)

log b
− 1
}

. We then have for all k ≥ n∗

(4.41)

|ḡij(k)−
∑k

t=1 bk−tgij(β̂(∞); t)| ≤
∑k

t=1 bk−t|gij(β̂(t− 1); t)− gij(β̂(∞); t)|

< (1−b)ε
2

∑k

t=n(
(1−b)ε
2Lg

)
bk−t +

∑n(
(1−b)ε
2Lg

)−1

t=1 bk−t

< ε
2

+ bk−n((1−b)ε/(2Lg))+1

1−b

< ε

where the second term in the second line follows because gij(β; t) ∈ [0, 1] for all β, t.

The argument for c̄d
ij(∞) is identical.

Suppose we apply standard EM to optimize the tracking parameter objective

φk(β) as in Eq. (4.10). Performing the E step averages over orderings and endpoints

of each individual measurement and results in the following Q-function:

(4.42) Qk(β|β̃) =
∑
i,j

(
γ0γ̂ij log βij + log(1 + β0βij)

k∑
t=1

bk−tgij(β̃; t)

)

If we wish to optimize the routing parameter objective φk(θ) in Eq. (4.8) using exact

EM, the E step averages over orderings only and gives a similar Q-function.

(4.43) Qk(θ|θ̃) =
∑
d,i,j

log θd
ij

(
β0β̂ij(k) +

k∑
t=1

ak−tcd
ij(θ̃; t)

)

Note that each measurement defines g(β; t) or c(θ; t) for a single clock tick t. Thus

we require all past measurements in order to compute the Q functions. The EM

algorithm then proceeds to iteratively maximize the Q functions until a fixed point

is reached. The recursive approximation maintains only a summary of the past

measurements in ḡ and c̄. The following theorem shows that the asymptotic estimates

produced by the recursive approximation will in fact be fixed points of the exact EM

algorithm as k →∞.
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Theorem IV.5. If βQ(k) and θQ(k) denote the maximizers of Qk(β|β̂(∞)) over Cβ

and Qk(θ|θ̂(∞)) over Cθ respectively, then βQ(k) → β̂(∞) and θQ(k) → θ̂(∞) as

k →∞.

Proof. Notice the structure of Qk(β|β̂(∞)) is the same as that of φ̃k(β) as defined

in Eq. (4.24), with the term ḡij(k) replaced by
∑k

t=1 bk−tgij(β̂(∞); t). Similarly,

if we replace c̄d
ij(k) in φ̃k(θ) of Eq. (4.18) with

∑k
t=1 ak−tcd

ij(θ̂(∞); t), we arrive at

Qk(θ|θ̂(∞)). Thus we can use Lemma 3 to construct an argument that exactly

parallels the proof of Theorem IV.3.

Although the parameter estimates arrive at fixed points of the exact EM algorithm

asymptotically, we are not guaranteed that these are in fact maxima of the appro-

priate objective functions. This is because EM might not converge to a maximum of

the likelihood. The work in [106] gives an extensive analysis of this issue.

4.5 Permutation Clustering

The posterior computation in Eq. (4.2) and the update formulas in Eqs. (4.15),

(4.23) require evaluating sums of the form

(4.44)
∑

ρ

Pk(ρ)
∏

(i,j)∈χk,ρ

vij

where v is some parameter (e.g. θd or 1+β0β) and ρ = 1, 2, . . . |yk|! indexes different

permutations. The number of terms in this sum therefore grows exponentially with

the number |yk| of activated sensors. It is not feasible to compute these sums online

when more than 5 or 6 sensors are activated. However, we might have some ordering

information that could rule out many of these permutations, i.e. Pk(ρ) = 0 for

most of the orderings ρ. If no ordering information is available, computing the sums

directly is hopeless for long paths. In the remainder of this section and the next, we
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formulate a combinatorial scheme for approximating the sums under such conditions

where the path is long (say, |yk| > 6) and Pk(ρ) = 1/|yk|! for all ρ. We assume

a uniform ordering distribution throughout this discussion for simplicity, however,

these techniques easily extend to the situation where some permutations have larger

probabilities and the rest are equally likely by simply changing the weighting scheme.

4.5.1 Permutation Approximation Algorithm

A key point to notice in developing an approximation algorithm is that the index

set of Eq. (4.44) satisfies χk,ρ ⊂ Sk ≡ y2
k ∪ Σ × yk ∪ yk × ∆ −

⋃|yk|
n=1(y

n
k , yn

k ) for all

ρ. The number of distinct terms in the product therefore grows only as |yk|2, even

though the total number of terms in the sum grows exponentially in |yk|. Suppose

further that all of the parameters vij for (i, j) ∈ Sk are similar. In this case, we could

obtain a reasonable approximation to the sum in Eq. (4.44) by the following.

(4.45)
∑

ρ

1

|yk|!
∏

(i,j)∈χk,ρ

vij ≈ v̄
|yk|+1
0

where v̄0 is the geometric mean of {vij | (i, j) ∈ Sk}. This approximation essentially

clusters all |yk|! permutations into a single term. Note that we need only that the

geometric mean of {vij|(i, j) ∈ χk,ρ} be similar for all ρ for the approximation in Eq.

(4.45) to hold. Although this is a weaker condition than requiring vij be similar for

all (i, j) ∈ Sk, it is much harder to verify precisely because there is an exponential

number of orderings ρ. We can refine the approximation iteratively by removing

elements from Sk and including all valid permutations over such elements in the

sum. For example, we arrive at a first refinement of the approximation in Eq. (4.45)

by setting C1 ≡ Sk − (i1, j1) and including vi1j1 explicitly in the sum.

(4.46)
∑

ρ

1

|yk|!
∏

(i,j)∈χk,ρ

vij ≈
|yk|!− (|yk| − 1)!

|yk|!
v̄
|yk|+1
1 +

(|yk| − 1)!

|yk|!
vi1j1 v̄

|yk|
2
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where v̄l is the geometric mean of {vij | (i, j) ∈ Cl}, and C2 is defined by all elements

(i, j) ∈ Sk such that the sequence (i, j) could exist in a valid permutation with

the sequence (i1, j1) (we denote this by (i, j) ∼ (i1, j1)). We could continue to

produce refinements of the sum approximation in this way until Sk is empty and all

|yk|! permutations appear in the sum. This describes the essential idea of the sum

approximation algorithm.

We utilize an ordered version of the set Sk, denoted S̃k, along with a binary tree

to organize the terms in the sum. At each refinement step, the first element of S̃k is

removed and used to update the binary tree. Each node of the tree is characterized

by three quantities: Z, α, and C. The characteristic Z is the set of all (i, j) ∈ Sk such

that vij appears explicitly in the sum term represented by that node, α is the number

of permutations that are clustered into the term, and C is the set of all (i, j) ∈ S̃k

such that (i, j) ∼ Z (that is, the set of all (i, j) such that (i, j) ∪ Z might form a

valid permutation). For example, the characteristics associated with first term in

Eq. (4.46) are Z = φ, α = |yk|!− (|yk| − 1)!, and C = Sk − (i1, j1). The pseudocode

for the permutation clustering approximation is as follows.

Algorithm 1. :

• Given a parameter sequence S̃k, define a tree root with characteristics α = |yk|!,

Z = φ, and C = S̃k. Set L = 1.

• While S̃k is nonempty and L ≤ Lmax:

– Set (i∗, j∗) = S̃k(1) and S̃k = S̃k − S̃k(1).

– For all leaves l such that (i∗, j∗) ∈ Cl and αl > 0:

∗ Add a left child to l with characteristics Z = Zl and C = Cl − (i∗, j∗).
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A

B

Figure 4.5: Example permutation clustering trees. Here, just two sensors 1 and 2 are activated. The tree
A utilizes the parameter sequence S̃k = ((1, 2), (1, d), (s, 1), (2, 1), (s, 2), (2, d)), while tree B
uses the sequence S̃k = ((1, 2), (s, 1), (2, d), (2, 1), (s, 2), (1, d)). Nodes 1a and 1b are formed
after the first element in the sequence ((1, 2) for both A and B) is appended, nodes 2a, 2b,
2c, and 2d are formed after the second element in the sequence ((1, d) for A and (s, 1) for B)
is appended, and so on. Each tree produces a complete enumeration of the permutation set
with characteristic quantities given in the tables to the right. For tree A, nodes 5b and 6b
give the complete permutation set, while nodes 3d and 6b are the complete permutation set
in tree B. It is clear from this example that the order of the parameter sequence S̃k will have
a large impact on the formation of the tree. A greedy heuristic for selecting this is described
and justified in the next section.

∗ Add a right child to l with characteristics Z = Zl ∪ (i∗, j∗) and C =

{(i, j) ∈ S̃k | (i, j) ∼ Zl}.

– Number all new leaves and those existing leaves with α > 0 in order of

increasing |Z| with the integers 1, 2, . . . , L.

– For l = L, L− 1, . . . 1:

∗ Set αl = (|yk| − |Zl|)!−
∑

i|i>l,Zl⊂Zi
αi.

• Construct the sum represented by all leaves with α > 0.

Example binary trees produced by this algorithm for two different parameter se-
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quences are given in Figure 4.5. Since at each step we only form new leaves that

might be permutations, it is clear that all permutations will have been enumerated

once S̃k is empty. One might contrast this method with the standard permuta-

tion generating tree due to [16]. The standard method enumerates all permuta-

tions of {1, 2, . . . n} by recursively forming children (k + 1, π1, π2, . . . , πk), (π1, k +

1, π2, . . . , πk), . . . (π1, π2, . . . , πk, k + 1) to a given parent node (π1, π2, . . . , πk). Note

that our method is not strictly a generating tree, since the α characteristic of a child

may depend on nodes other than its parent [99]. Our method is desirable, however,

in that it allows more direct control over the order in which permutations (or partial

permutations) are generated–through the ordering of the set S̃k–without the need

for complicated backtracking through the tree. This is important because we rarely

generate the entire tree in the case of long paths. Indeed, once some maximum

number of leaves Lmax are accumulated, we truncate the tree to obtain the following

approximation:

(4.47)
∑

ρ

∏
(i,j)∈χk,ρ

vij ≈
L∑

l=1

αlv̄
|yk|+1−|Zl|
l

∏
(i,j)∈Zl

vij

where v̄l is the geometric mean of {vij | (i, j) ∈ Cl}.

In the numerators of Eqs. (4.15) and (4.23), it is necessary to compute restricted

versions of the above sum; instead of summing over all ρ we only consider ρ such

that some (i, j) ∈ χk,ρ. The approximation is exactly as in Eq. (4.47) if it happens

that the particular (i, j) has been removed from S̃k and added to Zl for some leaf

l in the tree before truncation. If we truncate before adding (i, j) to the tree, then

we approximate by considering a weighted sum over leaves that might form a valid

permutation with (i, j) (i.e. all leaves l such that (i, j) ∈ Cl). The restricted sum
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approximation is therefore

(4.48)

∑
ρ|(i,j)∈χk,ρ

∏
(i′,j′)∈χk,ρ

vi′j′ ≈
∑

l|(i,j)∈Zl
αlv̄

|yk|+1−|Zl|
l

∏
(i′,j′)∈Zl

vi′j′ if (i, j) /∈ S̃k

(|yk|−1)!∑
l|(i,j)∈Cl

αl

∑
l|(i,j)∈Cl

αlv̄
|yk|+1−|Zl|
l

∏
(i′,j′)∈Zl

vi′j′ if (i, j) ∈ S̃k

When considering sums over permutations with different source/destinations, as in

Eqs. (4.2) and (4.23), we can simply follow this procedure to approximate the sum

over ρ for each pair (s, d).

4.5.2 Permutation Approximation Analysis

The sequence S̃k and the truncation limit Lmax will determine approximations to

the functions c(θ; k) and g(β; k) as defined in Eqs. (4.15) and (4.23), respectively.

Provided matching S̃k and Lmax values are used for the recursive and a comparable

non-recursive EM iteration as in Eqs. (4.43) and (4.42), one can easily verify that all

necessary properties of the functions c(θ; k) and g(β; k) hold to ensure validity of the

previous convergence analysis. The permutation clustering approximation greatly

decreases the complexity associated with computing c(θ; k) and g(β; k). Full com-

putation of these functions requires O(|yk|!) time. The permutation approximation

reduces this to a low order polynomial in |yk|. Suppose we fix Lmax so that it does

not grow with |yk|. Note that each time an element from S̃k is added to the tree,

the number of leaves at most doubles so that we can always ensure truncation before

Lmax is exceeded. The only operation that scales is computation of the characteristic

C associated with new right children, and the geometric mean v̄ corresponding to

this set. In determining C, we need to check that the conditions defining a permu-

tation are not violated if any of the pairs (i, j) ∈ C are added to the set Z. This

can be done recursively by simply removing any elements from the parent’s C char-
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acteristic that might result in any repetitions or incomplete paths from s to d after

augmenting the parent’s Z characteristic with (i∗, j∗). The cardinality of any C is at

most |yk|2 + 2|yk|. It follows that the permutation clustering approximation reduces

the complexity from exponential in |yk| to O(|yk|2).

We now develop some bounds on how well the permutation clustering approxima-

tion agrees with the full sum over all permutations. First note that all permutations

ρ clustered into a given leaf l must satisfy χk,ρ ⊂ Zl ∪ Cl, and Zl ∩ Cl = φ by

definition of these characteristics. If we define v̄l,min as the geometric mean of the

|yk|+1−|Zl| smallest elements of {vij | (i, j) ∈ Cl} and v̄l,max as the geometric mean

of the |yk|+1−|Zl| largest elements of this set, then we have the following inequalities

for any ρ such that χk,ρ ⊂ Zl ∪ Cl.

(4.49)

v̄
|yk|+1−|Zl|
l,min

∏
(i,j)∈Zl

vij ≤
∏

(i,j)∈χk,ρ
vij =

(∏
(i,j)∈χk,ρ∩Cl

vij

)(∏
(i,j)∈Zl

vij

)
≤ v̄

|yk|+1−|Zl|
l,max

∏
(i,j)∈Zl

vij

It is also obvious that v̄
|yk|+1−|Zl|
l

∏
(i,j)∈Zl

vij lies within the bounds of Eq. (4.49),

since v̄l is the geometric mean of all elements in {vij | (i, j) ∈ Cl}. Now, the leaves

represent a partition of the permutation set, so we have

(4.50)
∑

ρ

∏
(i,j)∈χk,ρ

vij =
∑

l

∑
ρ|χk,ρ⊂Zl∪Cl

∏
(i,j)∈χk,ρ

vij

We can then combine Eq. (4.50) with the inequalities in (4.49) and realize that αl

is the number of permutations ρ that satisfy χk,ρ ⊂ Zl ∪Cl to arrive at the following

bound on the approximation error in Eq. (4.47).

(4.51)

∣∣∣∑ρ

∏
(i,j)∈χk,ρ

vij −
∑L

l=1 αlv̄
|yk|+1−|Zl|
l

∏
(i,j)∈Zl

vij

∣∣∣ ≤∑L
l=1 αl

(
v̄
|yk|+1−|Zl|
l,max − v̄

|yk|+1−|Zl|
l,min

)∏
(i,j)∈Zl

vij

One can arrive at bounds for the approximation error associated with Eq. (4.48) in

a similar fashion. When (i, j) /∈ S̃k, the form of the bound is almost identical to that
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in Eq. (4.51) with the only difference being a restriction on the sum (only over l such

that (i, j) ∈ Zl). The bound is looser when (i, j) ∈ S̃k because we do not know the

correct proportions for including each leaf in the sum. There is some loss associated

with the weighted sum approximation in Eq. (4.48). It is straightforward to apply

these results to determine bounds on the acutal estimators when the permutation

clustering approximation is used. Clearly, there is no approximation error if the

geometric mean of the |yk|+1−|Zl| smallest elements of {vij | (i, j) ∈ Cl} is equal to

the geometric mean of the |yk|+1−|Zl| largest elements of the set for all l. Since Cl is

always a subset of S̃k, this suggests a reasonable strategy is to choose the ordering S̃k

so as to reduce the range of {vij | (i, j) ∈ S̃k} as much as possible each time an element

is removed from S̃k. This is a simple greedy approach to the problem of selecting the

parameter sequence, however one might pose some optimization problem for selecting

the sequence that is best in a nonmyopic setting. In most cases, such an optimization

would result in additional online computational strain.

4.6 Online Probe Scheduling

Here we propose some methods for online probe scheduling. Previously, we as-

sumed the training phase occurred before the monitoring phase. In this section, it

is necessary to consider a different training paradigm wherein probes of the network

are scheduled during observation downtime, that is, when a suspect observation is

not observed. These consist of placing a call from some known source to some known

destination and noting the activated sensor set and ordering distribution. Although

they might seem secondary to observing suspects, probes are necessary for us to

learn the routing parameters of the network. It might not be clear which are the

best probes to make until we go online and begin recording measurements. A rapid,
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online scheduling algorithm is certainly advantagesous in this paradigm.

We model the probe scheduling problem as a multiarmed bandit. Each different

source/destination pair, that is each distinct element of Σ×∆, is a separate arm of

the bandit. The reward associated with scheduling some pair (s, d) is given by the

information gained as a result of the probe. We use the change in entropy of the

suspect endpoint posteriors as a measure of information gain. The reward rsd for

scheduling (s, d) is therefore given by

(4.52) rsd =
∑

t

λt∆H(P (s, d|yt, θ̂(k)))

where λt are constants that sum to one and allow a weighted average of the entropy

change ∆H in all observed suspect posteriors. Given the reward function, we can

directly apply the Exp3 algorithm of [3] for control of the multiarmed bandit. Exp3

uses a parameter δ ∈ (0, 1] and is based on the following recursions:

(4.53)

pi = (1− δ) wi(k−1)∑
j wj(k−1)

+ δ
|Σ×∆|

wi(k) =


wi(k − 1) exp

(
δrsd

psd|Σ×∆|

)
if i = (s, d)

wi(k − 1) else

where wi(0) = 1 for all i ∈ Σ×∆. It is clear that p is a mixture distribution over the

endpoint pairs consisting of a uniform component and a component shaped by the

rewards. At each time step, the endpoint pair to be scheduled is chosen from p. There

are several versions of the algorithm with slightly different asymptotic performance

guarantees. We refer the reader to [3] for a thorough theoretical treatment.

4.7 Experimental Results

We applied the new online estimation methods to the traceroute data presented

in [77]. The data was obtained from traceroute probes initiated on October 12,
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2005 from three sources located at the University of Wisconsin-Madison, the Instituto

Superior Tecnico in Lisbon, Portugal, and Rice University in Houston, Texas to fifty

destination web servers of various companies, universities, and governments around

the world. We treat the routers encountered as sensors, and ignore all ordering in-

formation, so that the ordering distributions Pk(ρ) associated with all measurements

ρ are uniform. After processing the data to collapse identical routers–that is routers

that are always activated together across the 150 measurements–we were left with

241 routers and path lengths ranging from 2 to 14 hops, with an average of 7.5. In

light of the long paths and uniform ordering distributions, enumeration of permuta-

tions was infeasible so we had to apply the permutation clustering approximations

to compute parameter estimates. For purposes of initialization, we assumed all edge

probabilities γij were set to 0.5. Precision parameter values of γ0 = 0.0002 and

β0 = 1 were used for all experiments.

Our first simulation illustrates the accuracy of the permutation clustering approx-

imation that is used in subsequent experiments. We next present the core simulation

of a moving suspect. The suspect moves through the network broadcasting from

different sources, and we are able to track its position using the tracking parameter

estimates along with the endpoint posteriors. In the next section, we simulate a

sensor failure and show how the routing parameter estimates are able to detect this.

Finally, we investigate the effectiveness of the multiarmed bandit scheduling algo-

rithm by analyzing the evolution of the distribution from which scheduled probes are

drawn.

4.7.1 Permutation Clustering Approximation Error

We devised an experiment to test the accuracy of the permutation clustering

method for approximating combinatorial sums that arise in our estimators. After
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A: True Endpoint Posterior B: Permutation Clustering Appx. Error

Figure 4.6: Illustration of the permutation sum approximation accuracy. In A, we have the exact endpoint
posterior of a suspect transmission activating six sensors. Darker color indicates higher value
in this two dimensional distribution. The true endpoints of this suspect were source 3 and
destination 45; so we see that the correct destination is clearly pinpointed while there is a
bit of ambiguity in the source estimate. Plot B shows the error (in a logarithmic scale) when
permutation clustering is used to approximate this endpoint posterior. The number of leaves
in the clustering tree were varied from 24 up to 648 in steps of 24. Asterisks connected by a
solid line indicate the actual error (as on the left side of Eq. (4.51)), while X’s connected by a
dotted line indicate the error bound on the right side of Eq. (4.51).

initializing the system as described above, we trained using observed paths between

all 150 possible source/destination combinations. Training was done with minimal

forgetting–that is, a forgetting factor a = 0.999999. Then a single suspect transmis-

sion passed between source 3 and destination 45 was observed during the monitoring

stage. This suspect activated a total of six sensors, thus we were able to compute

its exact endpoint posterior as in Eq. (4.2) by summing over all 720 orderings. The

exact posterior is shown in Figure 4.6A. We then used the permutation clustering

method to approximate the endpoint posterior as in Eq. (4.47) with number of leaves

L ranging from 24 up to 648 in steps of 24. The absolute error as on the left side of

Eq. (4.51) is plotted in Figure 4.6B, along with the derived error bound.

We see that the permutation clustering approximation performs quite well, falling

into the realm of round-off error after about 300 leaves are used in the tree. Fur-

thermore, the actual approximation error is about a hundred times smaller than the
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worst case bound for fewer leaves (24, 48, 72). This suggests it is reasonable to

proceed with application of this method in the following simulations. In all remain-

ing simulations, we utilize permutation clustering trees having at most 24 leaves for

parameter updates and posterior computations.

4.7.2 Suspect Tracking

This experiment simulates the movement of a suspect through the network and

illustrates the tracking abilities of the proposed methods. As before, we begin by

initializing the system and training it using all 150 source/destination pairs with

minimal forgetting. Then, for the first 100 clock ticks of the monitoring phase, we

observe suspect transmissions emanating from source 1 and terminating at random

destinations. We observe transmissions from source 2 to random destinations for the

next 100 clock ticks. For the final 100 clock ticks of monitoring, the suspect moves

to source 3 and broadcasts to random destinations. A forgetting factor of b = 0.9 is

used throughout in estimation of the tracking parameters β.

Our goal is to determine which source node the suspect is broadcasting from at

each tick of the clock. One natural indicator of location is simply the instantaneous

source posterior distribution given by

(4.54) Ps(k) ∝
∑

d

∑
ρ

∏
(i,j)∈χk,ρ

θ̂d
ij(k)

where a uniform endpoint prior P (s, d) is assumed, and proportionality (rather than

equality) is used because we have omitted a normalization constant. In addition

to the instantaneous source posterior, one might look at the values of the tracking

parameters associated with sensors that are exclusive to each source. In particular,

we say a sensor is exclusive to source s if it is only activated when s is probed.

We are able to use our probing measurements from the training phase to determine
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the exclusivity of the various sensors. Based on this notion, we define the average

entering probabilty Es(k) at time k associated with source s as follows.

(4.55) Es(k) ∝ 1

|{j| j is exclusive to s}|
∑

j| j is exclusive to s

∑
i

β̂ij(k)

The name follows from the analogy to a Markov chain: since β̂(k) is the transition

matrix of a Markov chain, the quantity defined in Eq. (4.55) can be interpreted as

the probability of suspect measurements entering sensors exclusive to source s. Thus

the larger Es(k) is, the more messages are entering sensors exclusive to s, and thus it

is more likely that the suspect is broadcasting from s. Also, each row of the matrix

β̂(k) is a probability distribution itself, with β̂ij(k) reprensenting the probability a

suspect measurement exits element i and arrives in element j. We can utilize the

average exit distribution entropy Hs(k) of sensors exclusive to s as another location

indicator. This quantity is defined as

(4.56) Hs(k) ∝ 1

|{i| i is exclusive to s}|
∑

i| i is exclusive to s

∑
j

−β̂ij(k) log β̂ij(k)

We interpret the value of Hs(k) as follows: the smaller Hs(k) is the more information

we have about exit probabilities of sensors exclusive to s, this indicates more suspect

messages are departing from sensors exclusive to s, and it is therefore more likely

that the suspect is broadcasting from s. Recall that a uniform initialization is used

(all γij = 0.5) so that all exit distributions are nominally uniform in the absence of

suspect measurements.

We repeated this experiment 30 times, each time chosing independent random

destinations, in order to average over the effect of randomly chosen destinations.

The indicator quantities of Eqs. (4.54), (4.55), and (4.56) were recorded and aver-

aged over these 30 trials. The averaged quantities are plotted versus clock tick in
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Figure 4.7: Instantaneous source posterior probability of Eq. (4.54) as a function of clock tick. The solid
line represents P1(k), the dotted is P2(k), and the dashed is P3(k). Vertical lines are drawn at
each transition time (from source 1 to source 2, and from source 2 to source 3). We see that
the estimator is able to correctly locate the suspect at each point in time, as indicated by the
larger value of Ps(k) for the correct s.

A: Relative Avg. Entering Probability B: Relative Avg. Exit Entropy

Figure 4.8: Plots of average entering probability in A and average exit distribution entropy in B as defined
in Eqs. (4.55) and (4.56) respectively. The values are are normalized to the maximum in
each plot. The solid line represents quantities associated with source 1, the dotted represents
source 2, and the dashed represents source 3. Vertical lines are drawn at each transition time
(from source 1 to source 2, and from source 2 to source 3). These indicators also point to the
correct source location at the correct time as indicated by a rise in the appropriate entering
probability Es(k), and a drop in the appropriate exit distribution entropy Hs(k). At transition
points, there is a decay of the previous extreme quantity with decay time determined by the
forgetting factor b.
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Figures 4.7 and 4.8. We see that the instantaneous source posterior probability pin-

points the correct suspect location during each 100-tick period. The average entering

probability and exit entropy indicators also point to the correct source at the correct

time. There is, however, some characteristic decay time in these quantities deter-

mined by the forgetting factor b. These simulations suggest our algorithms would be

quite useful when applied to tracking problems.

4.7.3 Sensor Failure

This simulation shows how one might use the routing parameter estimates in

an interleaved probing paradigm such as that described in the online scheduling

section (where probes occur during clock ticks when suspects are not observed). If

suspects are constantly arriving, one might not have enough downtime for excessive

probing. In this case, it is useful to monitor the evolution of the routing parameters

for significant deviation from their nominal values. A large change in the network,

such as failure of a sensor, would prompt such a deviation. It is then necessary to

halt monitoring long enough to train the parameters to the new routing dynamics in

the network.

We simulate such a sensor failure in this example and show how the failure is

reflected in the routing parameter estimates. We suppose probes of the network

from source 1 to random destinations are scheduled for 200 consecutive clock ticks

with a forgetting factor of a = 0.9. Sensor 1 is positioned such that transmissions

from source 1 to any destination always pass it. At time 100, sensor 1 fails–meaning

that messages are still routed through it, but it does not activate in response to

their passing. We computed average entering probability E(k) and exit distribution

entropy H(k) for sensor 1. Similar to the definitions in Eqs. (4.55) and (4.56), these
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A: Relative Avg. Entering Probability B: Relative Avg. Exit Entropy

Figure 4.9: Plots of average entering probability in A and average exit distribution entropy in B as defined
in Eq. (4.57) for sensor 1. The values are are normalized to the maximum in each plot. A
vertical line is drawn at the point where sensor 1 fails. We see a drop in the entering probability
and a rise in the exit entropy beginning at the failure point; of course there is a decay time
determined by the forgetting factor a.

are defined as

(4.57)
E(k) ∝

∑
d

∑
i θ̂

d
i1(k)

H(k) ∝
∑

d

∑
j −θ̂d

1j(k) log θ̂d
1j(k)

We averaged over the effect of random probe orders by repeating this experiment 30

times with independent random probes from source 1 and averaging the quantities

in Eq. (4.57) over those 30 trials. The results are plotted in Figure 4.9.

We observe in Figure 4.9 a signficant change in the nominal values of entering

probability and exit entropy associated with sensor 1 after the failure point. In the

alternative training scheme discussed above, one might set some allowed tolerance

around the nominal. Once this is exceeded, we would have to schedule several probes

to learn the new routing dynamics of the network.

4.7.4 Online Scheduling

We investigate the utility of the multiarmed bandit control algorithm of [3] applied

to online probe scheduling in this example. Here, a single suspect transmission is

observed initially. Then the online scheduling algorithm as described in Section VI is
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Figure 4.10: Reward shaped distribution entropy −
∑

i wi(k) log wi(k) as a function of clock tick were
w(k) is defined in Eq. (4.53). The entropy is normalized by its initial value. We see that the
entropy deviates very little from its maximum value in 200 clock ticks. This indicates that
probes are essentially drawn from a uniform distribution throughout the simulation (since
the other component of p in Eq. (4.53) is uniform).

used to schedule probes for 200 clock ticks. At each probe, the reward (determined

by the resulting change in entropy of the suspect endpoint posterior) is used in the

recursions of Eq. (4.53) to update the distribution from which the next probe is

drawn. Using a parameter δ = 0.1, we are interested in how quickly the shaped

component w(k) of the distribution p is able to concentrate on the best probes to

make for this particular suspect. We therefore plot the entropy of w (given by

−
∑

i wi(k) log wi(k)) as a function of clock tick to measure the concentration. This

plot is shown in Figure 4.10.

We observe from Figure 4.10 that probes are essentially drawn from a uniform

distribution through the entire simulation. The shaped component w(k) concentrates

slightly toward the end, as indicated by a small drop in entropy. One might suggest

simply scaling the reward to speed up the process, however, the theory of [3] requires

a reward between 0 and 1. This simulation seems to indicate that the proposed

bandit scheduling algorithm requires a rather lengthy period of time to be effective.

However, additional investigation of the utility of the algorithm is certainly in order
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for future work.

4.8 Summary and Future Work

We have presented online techniques for adaptively estimating the source and

destination of a suspect transmission through a network based on the activation pat-

tern of sensors placed on network components. In addition to a thorough theoretical

development, we applied the new methods to several tracking experiments involving

real Internet data obtained using the traceroute command. Speedy and accurate

results were observed.

In the way of future work, one might analyze further the permutation clustering

algorithm; in particular, issues related to selection of the parameter sequence S̃k

and tree truncation level. We suggested a heuristic for choosing S̃k based upon the

derived performance bound. Also, we assumed a given number of allowed leaves

Lmax before truncating the tree. One might consider linking these two (S̃k and Lmax)

and solving some optimization problem to give a parameter sequence and truncation

level that balances approximation accuracy and computational burden. The methods

presented here could be applied with few changes to perform topology inference

online, as an alternative to the offline approach of [77]. The probe scheduling method

might also be extended to topology inference with a graph edit distance used to

reward source/destination pairs that activate network segments similar to some prior

structure of interest [45].
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CHAPTER V

Markov Chain Monte Carlo Approach to Endpoint
Estimation

5.1 Introduction

We collect some theoretical results for a Markov Chain Monte Carlo approach

to the endpoint localization problem in this chapter. We assume measurements are

taken at discrete time instances specified by the index t, and Tτ denotes the set of

all indices up to the current time τ (Tτ = {1, 2, . . . τ}). Let Σ denote the set of all

source nodes and ∆ denote the set of all destination nodes. A transmission is sent in

a network ΓΘ between some source/destination pair ut ∈ Σ ×∆ that results in the

excitation of an ordered set of sensors yt. The sensors are ordered in yt depending on

the order they were passed by the transmission due to ut. The set of measurements

performed on the network are partitioned into two types: active and passive. Active

measurements up to and including the current time τ occur at times t ∈ Aτ ⊆ Tτ

and correspond to those where we select the source/destination pair ut. All other

measurements are passive measurements, where ut is unknown but chosen from a

known distribution Pt(u).

At each time instant t, the unobserved ordered set yt generates observations con-

sisting of an unordered set of activated sensors yt,R along with a probability dis-

tribution over all possible orderings P (Rt = ρ) = Pt(ρ). This distribution allows
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Figure 5.1: Model of the internally-sensed network tomography measurement system. ut represents the
source/destination pair used to excite the system at time t, yt is the ordered set of sensors
activated in the network Γ parameterized by some set of parameters Θ. Rt generates the ob-
served elements: an unordered set of the elements of yt, denoted yt,R, along with a probability
distribution on possible orderings P (Rt = ρ) = Pt(ρ). Also, for t ∈ Aτ ut is known, and for
t ∈ Mτ = Tτ −Aτ ut is unknown but chosen from the known distribution Pt(u).

incorporation of any synchronization information available. For example, if Pt(ρ)

is uniform over all possible orderings we have essentially no ordering information,

whereas if Pt(ρ) = δ(ρ − ρo) we know exactly the ordering of the sensors so that

yt = yt,ρo . The random variable Rt depends on sensor reliability and any prior in-

formation about sensor configuration; it is therefore mutually independent with all

other variables in the system. A diagram of the system that illustrates the various

signals involved is given in Figure 5.1.

We assume that the network being monitored, denoted by ΓΘ in Fig. 5.1, is a static

system with respect to the measurement time index t. If Θ is a set of parameters that

specifies all relevant routing mechanisms in the network Γ for producing yt from ut,

we then have the conditional independence P (vt|wt′ , Θ) = P (vt|Θ) for any random

variables vt and wt′ with t 6= t′.

In endpoint estimation, we wish to estimate the endpoints of passive measure-

ments uMτ = {ut|t ∈ Mτ = Tτ − Aτ}. We approach this problem from a MAP

framework, thus the posterior distribution given all measurements up to the current

time τ is required. Using conditional independence implied by the static system ΓΘ,
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the endpoint posterior distribution may be written as

(5.1)
P (uMτ |yTτ ,R, uAτ ) =

∫
P (uMτ |yMτ , Θ)P (Θ|yTτ ,R, uAτ )dΘ

∝
∫ (∏

t∈Tτ
Pt(ut)

∑
ρ P (yt,ρ|ut, Θ)Pt(ρ)

)
P (Θ)dΘ

where P (Θ) is some prior distribution on the parameter set and Pt(ut) ≡ 1 for t ∈ Aτ .

Our strategy for solving the endpoint estimation problem is to generate Monte

Carlo approximations of the posterior distribution by specifying a model for the

fundamental distribution P (y|u, Θ) and using averages of the quantity in Eq. (5.1)

evaluated at samples from the parameter prior P (Θ). The Metropolis-Hastings (M-

H) algorithm is useful for generating samples from the parameter prior because it

does not require a normalized distribution, and the parameter set will often be of

high dimension so we may only know the prior to within a normalization constant

[63, 37, 15]. We now proceed to describe some reasonable possibilities for the routing

model P (y|u, Θ) and derive the corresponding M-H algorithms.

5.2 Shortest Path Routing Model

The shortest path routing model of [46] assumes a message transmitted from

source s = u1 to destination d = u2 will most likely take the shortest path between

s and d. This model has parameters θyu
ij , the weight associated with the logical

link between source/destination/sensor i and source/destination/sensor j, and θu
ij,

the probability a message transmitted from source i to destination j will take the

shortest path between i and j. The shortest path routing model is thus given by

(5.2) P (y|u, Θ) =



θu
u1u2 if |y|θ = |yu|θ

1− θu
u1u2 if |yu|θ < |y|θ < ∞

0 if |y|θ = ∞
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where yu is the shortest path between u1 and u2 with respect to the path length

norm |y|θ = θyu
u1y1 +

∑N
j=2 θyu

yj−1yj +θyu
yNu2 . Presumably, the shortest path will be taken

most often, so θu
u1u2 is near unity.

In order to develop an M-H algorithm for sampling the parameter prior, we desire

candidate samples that are likely to have active and passive measurements corre-

sponding to shortest paths. This will ensure a variety of distinct parameter samples

around the mode of the posterior distribution can be obtained in a reasonable num-

ber of algorithm iterations. To enforce this, we prefer candidate samples wherein

the subgraph induced by selecting elements involved in a single measurement has

sensor nodes all of degree two (or in-degree and out-degree both one in the case of

a directed network) and endpoint nodes both of degree one. This essentially rules

out the possibility of ’short-cuts’ in the measured paths present in our samples. The

strategy for generating candidates for the parameters θyu
ij is then to first generate a

0-1 adjacency matrix θ̄ij so that the subgraph requirements are satisfied as much as

possible. Then, if θ̄ij = 1, we select θyu
ij from some distribution Po(θ

yu
ij |θ̂

yu
ij ) that may

depend on its previous value θ̂yu
ij , otherwise θyu

ij is set to ∞.

The subgraph requirements may be expressed as linear equalities on the 0-1 pa-

rameter matrix θ̄. For active measurements t ∈ At, these are given by

(5.3)

∑
yi∈yt∪{u1

t ,u2
t }

θ̄yiyj
t

= 2 for all j = 1, . . . , N

∑
yi∈yt

θ̄yiu1
t

= 1

∑
yi∈yt

θ̄yiu2
t

= 1

For passive measurements t ∈ Mt, we need only introduce ’slack’ endpoints (σt, δt)

that correspond to the unknown endpoints of the transmission. As with active mea-
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surements, for the undirected case the constraints may then be written as

(5.4)

∑
yi∈yt∪{σt,δt}

θ̄yiyj
t

= 2 for all j = 1, . . . , N

∑
yi∈yt

θ̄yiσt
= 1

∑
yi∈yt

θ̄yiδt
= 1

We shall return to a rigorous derivation of the linear constraints later.

The SDP hyperplane rounding method of [46] may then be used to produce θ̄ij

that approximately satisfy the constraints. We must make a slight modification,

however, so that all θ̄ij, and therefore all θyu
ij , are independent. Recall that the

sample element produced by this method is given by

(5.5) θ̄ij =


1 if sign(vij · r) = sign(vo · r)

0 if sign(vij · r) 6= sign(vo · r)

where vij is the column corresponding to variable θ̄ij in the Cholesky factorization of

the solution to the SDP, vo is the column for the extra variable introduced, and r is a

random vector from the uniform distribution on the surface of the unit hypersphere.

We can ensure independence if instead of using a single random vector r for all i, j,

we choose an independent rij for each θ̄ij. The distribution of θ̄ij is given by

(5.6) P (θ̄ij) =



1− 1
π

arccos(vij · vo) if θ̄ij = 1

1
π

arccos(vij · vo) if θ̄ij = 0

0 otherwise

The distribution of the parameters of interest θyu
ij may then be expanded using the

law of total probability as

(5.7) P (θyu
ij |θ̂

yu
ij ) = I<(θyu

ij )Po(θ
yu
ij |θ̂

yu
ij )(1− 1

π
arccos(vij ·vo))+I∞(θyu

ij )
1

π
arccos(vij ·vo)
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where I : < → {0, 1} is the indicator function. Finally, we need candidate values

for the parameters θu
ij. These may simply be chosen independently from some dis-

tribution that depends on the previous sample θ̂u
ij. Thus the candidate generating

distribution becomes

(5.8) P (Θ|Θ̂) =

(∏
ij

P (θyu
ij |θ̂

yu
ij )

)(∏
ij

P (θu
ij|θ̂u

ij)

)

The M-H algorithm also utilizes a probability of move α(Θ̂, Θ); this is defined as

(5.9) α(Θ̂, Θ) = min

[
P (Θ)P (Θ̂|Θ)

P (Θ̂)P (Θ|Θ̂)
, 1

]

where P (Θ) is the parameter prior from which we wish to sample [15].

The M-H algorithm is then

• Choose some initial iterate Θ0

• for k = 1, 2, . . . M

– Generate Θ from P (Θ|Θk) and a from Unif [0, 1].

– if a ≤ α(Θk, Θ)

∗ Θk+1 = Θ

– else

∗ Θk+1 = Θk

• Return {Θk}.

Early samples corresponding to the transient stage of the Markov chain should of

course be discarded. Once convergence to the invariant distribution occurs, samples

will come from the desired parameter prior.

Note that drawing an independent vector rij for rounding each element of the

adjacency matrix θ̄ij requires some adjustment to the error analysis of the SDP
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rounded solution performed in [46], where it was assumed that the same vector r was

used for all i, j. Recall, in this development Q, b summarized the linear equalities on

x, the vectorized version of the constrained parameters θ̄ij, so that we desire x to

satisfy Qx = b. Let the matrix Z be defined as before so that Zij = arccos(Y ∗
ij) for

the optimal solution of the SDP Y ∗, and the constant matrices derived from Q and b

are B, C, and D. This new rounding method then results in the following expected

error:

(5.10)

E
[
‖Qx− b‖2

W

]
= ‖Qe− b‖2

W − 1

2π
Tr [(C −B)Z] +

(
1

2π
Tr[DZn]− 1

4
‖Qe‖2

W

)
where e is a vector of ones and the terms not in parentheses comprise the error value

when a single r is chosen for all i, j. The term in parentheses can be shown to lie

between −1
4
‖Qe‖2

W and 1
4
‖Qe‖2

W . It follows that the solution independent error

bound is in this case given by

(5.11) E
[
‖Qx− b‖2

W

]
≤ (1− α)

(
‖Qe‖2

W + ‖b‖2
W

)
+

1

4
‖Qe‖2

W

5.3 Controlled Markov Routing Model

We now derive an M-H algorithm when the controlled Markov model of [47] is

used. Consider a message transmitted through the network from source s = u1 to

destination d = u2 and along the way passing y1 then y2 then y3 and so on until yN

is the final sensor passed before d is reached. The basic idea is that when a message

is sitting at sensor yi, its choice about where to go next only depends on yi and d.

The model is therefore Markovian because given yi and d, yi+1 is independent of all

other yj (for notational consistency, define y0 to be s and yN+1 to be d). We can use

the parameters Θ to specify this model by letting θd
yiyj be the probability a message

will go next to yj given it is currently at yi and its ultimate destination is d. Thus Θ
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can be represented as a set of d stochastic matrices, and the required model is given

by

(5.12) P (y|u, Θ) =
N∏

j=1

θu2

yj−1yj

where y0 is taken as u1.

We now proceed to develop an M-H algorithm for sampling from the parameter

prior using the quasi-Markov routing model. This requires specifying a candidate

generating distribution P (Θ|Θ̂) from which the d stochastic matrices θd may be

drawn. Instead of choosing it directly, we will describe a simple means for drawing

the sample Θ given the previous sample Θ̂ and derive the P (Θ|Θ̂) that results from

this scheme.

Θ is generated from Θ̂ as follows:

1. Draw θ̄d
ij from P (x|θ̂d

ij) independently for each d, i, j.

2. Produce θd for each d by setting θd
ij =

θ̄d
ij∑

k θ̄d
ik

.

It is clear that this method will produce the d stochastic matrices required. In order

to derive the candidate generating distribution resulting from this method, we first

note that independence holds over the indices d and i, so we have

(5.13) P (Θ|Θ̂) =
∏

d

∏
i

P (θd
i |θ̂d

i )

Correlation over the j index is introduced because of normalizing over columns to

produce a stochastic matrix. The factors P (θd
i |θ̂d

i ) may be derived as follows. First

define a random vector V as

(5.14) V =

(
θ̄d

i1 θ̄d
i2 . . . θ̄d

in

∑
k θ̄d

ik

)
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Assuming Θ was generated as described above, the distribution of V is then given

by

(5.15) PV (v) = P (vn+1|v1:n)P (v1:n) = Ivn+1(
n∑

k=1

vk)
n∏

j=1

P (vj|θ̂d
ij)

Where I : <+ → {0, 1} is the indicator function. The random vector W is then

generated from V via the invertible transformation G so that W = G(V ) and G is

given by

(5.16) G(V ) =

(
V1

Vn+1

V2

Vn+1
. . . Vn

Vn+1
Vn+1

)
and G−1 is given by

(5.17) G−1(W ) =

(
W1Wn+1 W2Wn+1 . . . WnWn+1 Wn+1

)
Using a change of variables, it is simple to show that the distribution of W may be

written as

(5.18) PW (w) = PV (G−1(w))|J(G−1(w))|

where |J(G−1(w))| is the magnitude of the Jacobian of G−1 evaluated at w as follows

(5.19) |J(G−1(w))| =

∣∣∣∣∣∣∣
wn+1In w1:n

0 1

∣∣∣∣∣∣∣ = wn
n+1

Where In is an identity matrix of dimension n. Since we are interested in the joint

distribution of only the first n elements of W , we need only substitute the necessary

ingredients into Eq. (5.18) and marginalize over Wn+1, thus giving

(5.20) PW1:n(w) = I1(
∑

k

wk)

∫ ∞

0

xn
∏

j

P (wjx|θ̂d
ij)dx

Resuming the original variables Θ, we substitute into Eq. (5.13) to obtain the

candidate generating distribution

(5.21) P (Θ|Θ̂) =
∏

d

∏
i

I1(
∑

k

θd
ik)

∫ ∞

0

xn
∏

j

P (θd
ijx|θ̂d

ij)dx
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With this candidate generating distribution, we define the probability of move as in

Eq. (5.9). The M-H algorithm then proceeds exactly as before.

5.4 Derivation of Linear Constraints on the Adjacency Matrix

In the shortest path routing model, the linear equalities of Eqs. (5.3) and (5.4)

were intuitively derived from internally sensed measurements and used to constrain

sample adjacency matrices. When the adjacency matrix representation of a graph

is used, one typically must consider powers of the matrix to determine existence of

some specified path. For example, the existence of some n hop path between vertices

(i, j) can be accertained by considering the (i, j) element of the adjacency matrix A

raised to the power n. We formally derive the linear constraints in this section and

show that they are necessary and sufficient for the existence of any specified path in

the network.

We consider undirected graphs GA(VA, EA) (i.e. there is no distinction made

between the edges (vi, vj) and (vj, vi)). The vertex set VA is partitioned into the

disjoint sets EI and T , so that VA = EI ∪ T and EI ∩ T = φ. Vertices in EI

are referred to as sensor vertices, and those in T are called external vertices. It is

assumed that no two external vertices are adjacent, so that for all s, d ∈ T , (s, d) /∈

EA. In order to simplify the indexing notation in the development that follows, we

assume the vertices in VA are mapped to the natural numbers so EI = {1, 2, . . . , |EI |}

and T = {|EI | + 1, |EI | + 2, . . . , |EI | + |T |}. We will utilize the adjacency matrix

representation of the graph GA, which is given by

(5.22) Avivj =


1 if and only if (vi, vj) ∈ EA

0 otherwise

It follows from the characterization of undirected edges, that the adjacency matrix is
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Allowed Connections Unallowed Connections

Figure 5.2: Examples of allowed and unallowed connections in undirected graphs that are uniquely repre-
sented by an adjacency matrix with all zeros along the diagonal.

always symmetric. In this chapter, we will only consider graphs GA that are uniquely

described by an adjacency matrix A with all zeros along the diagonal. Figure 5.2

illustrates some allowed and unallowed connections in such graphs.

Given some set of distinct sensor vertices psd, we wish to determine necessary

and sufficient conditions on the adjacency matrix A so that psd describes a path be-

tween distinct external vertices s and d. These conditions are based on the following

definitions of a path and the related concept of a cycle.

Definition V.1. Let psd = {vi}h
i=1 ⊆ EI be a set of distinct sensor vertices associated

with the external vertices s, d ∈ T with s 6= d. In the case that h = 1, psd is a path

if (s, v1) ∈ EA and (v1, d) ∈ EA. In the case that h > 1, psd is a path if there is

some permutation vector π such that (s, vπ1) ∈ EA, (s, v) /∈ EA for v ∈ psd − vπ1 ,

(vπh , d) ∈ EA, (v, d) /∈ EA for v ∈ psd − vπh , (vπi , vπi+1) ∈ EA for i = 1, . . . , h − 1,

and (vπi , vπj) /∈ EA for |i− j| > 1.

Definition V.2. Let p = {vi}h
i=1 ⊆ EI be a set of distinct sensor vertices. p is a cycle

if h ≥ 3 and there is some permutation vector π such that (vπi , vπ(i mod h)+1) ∈ EA for

i = 1, 2, . . . , h and (vπi , vπj) /∈ EA for |(i mod h)− (j mod h)| > 1.

Note that in the preceding definitions and in the results to follow, superscripts
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are used to index vector elements. For example, if the permutation vector is given

by π = (3, 1, 4, 5, 2), then π1 = 3, π2 = 1, π3 = 4, etc. A dichotomy between a paths

and cycles is observed in Lemma V.3.

Lemma V.3. If psd is a path, there is no subset of psd that is a cycle.

Proof. We need only consider connected subsets containing at least three elements

as candidates for cycles. However, the only such subsets from psd are of the form

{vπi , vπi+1 , . . . , vπi+k} with k ≥ 2, and Definition V.1 requires (vπi+k , vπi) /∈ EA. Hence

no subset of psd is a cycle.

Without much effort, we can use Definition V.1 to write down linear constraints on

the adjacency matrix implied by the existence of a path. In fact, when h = |psd| ≤ 3

these constraints are necessary and sufficient for psd to be a path. This result is given

in Theorem V.4.

Theorem V.4. If psd = {vi}h
i=1 is a path, then the following linear constraints on

the adjacency matrix A are satisfied:

(5.23)

∑
v∈psd∪{s,d}

Avvi = 2 for all i = 1, . . . , h

∑
v∈psd

Asv = 1∑
v∈psd

Avd = 1

If h ≤ 3 and the constraints in Eq. (5.23) are satisfied, then psd is a path.

Proof. It is trivial to show the forward implication holds in the case of h = 1, so

consider when h > 1. The only nonzero term in the second equation is Asvπ1 , and

the only nonzero term in the third equation is Av
πhd so these constraints readily

follow. The first constraint for vπ1 has nonzero terms Asvπ1 and Avπ2vπ1 . For vπh ,
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the first constraint has nonzero terms Adv
πh and Av

πh−1v
πh . If h > 2, then for each

i = 2, . . . , h− 1, the nonzero terms are Avπi−1vπi and Avπi+1vπi .

In order to show the reverse implication, note that the second constraint implies

there is exactly one element from psd, call it vπ1 , such that (s, vπ1) ∈ EA. Define the

set V1 = psd−vπ1 . If V1 is nonempty and there is an element from V1 adjacent to vπ1 ,

call this element vπ2–the first constraint ensures there is at most one element from

V1 adjacenct to vπ1 since we have already established s is adjacent to vπ1–and define

V2 = V1 − vπ2 . If V2 is nonempty and there is an element from V2 adjacent to vπ2 ,

call this element vπ3 and define V3 = V2− vπ3 . Suppose this process terminates after

assigning vπj for 1 ≤ j ≤ 3 either because Vj is empty or there is no element from

Vj adjacent to vπj . Since the process has terminated and each vertex s, vπ1 , . . . , vπj−1

has already had its adjacent vertices assigned, the first constraint for vπj requires

that (vπj , d) ∈ EA. It then must be that the process terminated because of Vj being

empty since the fact that |Vj| ≤ 2 prevents the first constraint from being satisfied

for members of Vj. We have thus constructed a path.

The crucial point in proving the reverse implication of Theorem V.4 required the

set Vj have no more than two members. This prevents the sum over only elements of

Vj in the first constraint of Eq. (5.23) from totaling two. If Vj were to have three or

more members, this equality implies the existence of cycles, as indicated by Lemma

V.5. We must then add additional constraints to prevent cycles for necessary and

sufficient conditions in the case that h > 3.

Lemma V.5. If p ⊆ EI is a set of distinct vertices in GA for which the following

equality is satisfied, then some subset of p is a cycle.

(5.24)
∑
v∈p

Avvi = 2 for all vi ∈ p
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Proof. It must be the case that |p| ≥ 3 for the contraints in Eq. (5.24) to hold.

Choose an arbitrary vertex from p, call it vπ1 , and define the set V1 = p− vπ1 . Select

vπ2 as a vertex from V1 with (vπ1 , vπ2) ∈ EA, and define V2 = V1 − vπ2 . There is

now exactly one vertex in V2 that is adjacent to vπ2 since Avπ1vπ2 accounts for one

nonzero term in the constraint of Eq. (5.24) for vπ2 . Let this vertex be vπ3 and define

V3 = V2−vπ3 . Continue this process of choosing vπi+1 from Vi so that (vπi , vπi+1) ∈ EA

and setting Vi+1 = Vi − vi+1 until termination at some step j with 3 ≤ j ≤ |p|–at

which point either Vj is empty or there is no vertex v ∈ Vj with (vπj , v) ∈ EA. It

must then be the case that (vπj , vπ1) ∈ EA since each vertex vπ2 , vπ3 , . . . , vπj−1 has

already had its adjacent vertices assigned. We have then constructed a cycle using

elements from p.

We now specify linear conditions on the adjacency matrix A that eliminates every

conceivable cycle using elements from psd. In order to enumerate every possible cycle,

we use the vectors πlm|hk, where l and m index the particular cycle with k distinct

vertices selected from h = |psd| total vertices. Index m indicates the specific choice

of k distinct vertices included in the cycle and therefore ranges from 1 to
(

h
k

)
, while

index l indicates the particular cycle for those k vertices and thus ranges from 1

to 1
2
(k − 1)! for undirected graphs. For example, suppose h = 4 and we wish to

enumerate all cycles consisting of three distinct vertices (k = 3) using this notation.

These are given in Eq. (5.25).

(5.25) π11|43 = (1, 2, 3) π12|43 = (1, 2, 4) π13|43 = (1, 3, 4) π14|43 = (2, 3, 4)

With this notation, we prove necessary and sufficient conditions on the adjacency

matrix for preventing cycles.

Lemma V.6. Let psd = {vi}h
i=1 be a set of distinct vertices in GA with h ≥ 4.
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There does not exist a cycle consisting only of h − 1 or fewer elements from psd if

and only if the following conditions on the adjacency matrix A are satisfied for all

m = 1, 2, . . . ,
(

h
k

)
, l = 1, 2, . . . , 1

2
(k − 1)!, and k = 3, 4, . . . , h− 1.

(5.26)
k∑

i=1

A
v

πi
lm|hk

v
π
(i mod k)+1
lm|hk ≤ k − 1

Proof. For the forward implication, suppose the inequality in Eq. (5.26) is vio-

lated for some l∗, m∗, k∗. It follows that A
v

πi
l∗m∗|hk∗

v
π
(i mod k∗)+1
l∗m∗|hk∗ = 1 for all i =

1, 2, . . . , k∗. Thus a cycle consisting of k∗ unique elements from psd is given by

{vπ1
l∗m∗|hk∗

, vπ2
l∗m∗|hk∗

, . . . , vπk∗
l∗m∗|hk∗

}.

For the reverse implication, suppose p is a cycle consisting only of elements from

psd. Since all distinct cycles were enumerated by the π vectors, it must be the case

that there is some l∗, m∗ such that this cycle is specified by πl∗m∗|hk∗ . It follows that

A
v

πi
l∗m∗|hk∗

v
π
(i mod k∗)+1
l∗m∗|hk∗ = 1 for all i = 1, 2, . . . , k∗ and so

∑k∗
i=1 A

v
πi

l∗m∗|hk∗
v

π
(i mod k∗)+1
l∗m∗|hk∗ =

k∗, thus violating the inequality constraint.

Augmenting the constraints in Eq. (5.23) with those in Eq. (5.26) then provides

necessary and sufficient linear constraints on the adjacency matrix for psd to be a

path in the case that |psd| ≥ 4. This result is given in Theorem V.7.

Theorem V.7. Let psd = {vi}h
i=1 with h ≥ 4 be a set of sensor vertices in GA. psd

is a path if and only if the constraints in Eq. (5.23) and Eq. (5.26) are satisfied for

the adjacency matrix A.

Proof. Suppose psd is a path, Theorem V.4 then gives that the constraints in Eq.

(5.23) are satisfied. Also, from Lemma V.3, the fact that psd is a path prevents any

subset of psd from being a cycle, thus implying the conditions in Eq. (5.26).

For the reverse implication, proceed exactly as in the corresponding proof in

Theorem V.4 to select the vertices vπ1 and vπ2 and define the sets V1 and V2. Continue
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this process of choosing vπi+1 from Vi so that (vπi , vπi+1) ∈ EA and setting Vi+1 =

Vi− vi+1 until termination at some step j–at which point either Vj is empty or there

is no vertex v ∈ Vj with (vπj , v) ∈ EA. As argued in Theorem V.4, it must be that

(vπj , d) ∈ EA, |Vj| 6= 1, and |Vj| 6= 2. It also cannot be that |Vj| ≥ 3, because in this

case the result of Lemma V.5 would imply a cycle and thus, by Lemma V.6, violate

the constraints in Eq. (5.26). We must have that Vj is empty, and therefore psd is a

path.

It is desired to express the problem of finding an adjacency matrix consistent with

some internally sensed measurements as follows

(5.27)
find x ∈ {0, 1}n

such that Qx = b

where Q and b are derived from the constraints in Eq. (5.23) and (if |psd| ≥ 4)

Eq. (5.26). We introduce 0-1 slack variables to adapt the inequality constraints

of Eq. (5.26) into this form. For each distinct inequality constraint specified by a

permutation πlm|hk, k − 1 0-1 slacks must be introduced. Thus the number of linear

equality constraints introduced by each measured path psd = {vi}h
i=1 is given by

(5.28) h + 2 +
1

2

h−1∑
k=3

h!

k(h− k)!

where the second term is only included if h ≥ 4. Also, in the case that 0-1 slack

variables are needed, the number of such variables is given by

(5.29)
1

2

h−1∑
k=3

(k − 1)h!

k(h− k)!

The formulas in Eqs. (5.28) and Eqs. (5.28) are evaluated for h = 1, 2, . . . , 7 in Table

5.1. For h > 5, the number of constraints/slacks starts becoming unreasonable.
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No. of Hops, h No. of Constraints No. of 0-1 Slacks
1 3 0
2 4 0
3 5 0
4 10 8
5 32 65
6 145 463
7 821 3493

Table 5.1: Number of equality constraints on the adjacency matrix and 0-1 slack variables that must be
added to ensure psd is a path. Due to the combinatorial nature of the constraints in Eq. (5.26),
the problem becomes too large for h = |psd| > 5.

5.5 Conclusion

This chapter derives Markov chain Monte Carlo methods for network endpoint

estimation based on models proposed in [46] and [47]. Although MCMC algorithms

are frequently used tools for estimation, a major drawback that must be kept in

mind is the massive computational burden. The M-H methods in this chapter, how-

ever, might be investigated further in the future and compared to existing endpoint

localization techniques.
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CHAPTER VI

Conclusion

6.1 Remarks

This thesis developed several models and algorithms for network endpoint local-

ization. Chapter 2 focused on the derivation and computation of a general metric

for labeled networks. Chapters 3, 4, and 5 proposed methods specifically for the

problem of endpoint estimation from partially ordered sensor activation sets. The

focus of Chapter 3 is on a Monte Carlo approach driven by a semidefinite program-

ming method. Chapter 4 develops faster, recursive tools that are suitable for online

implementation. Finally, Chapter 5 gives an outline of Markov chain Monte Carlo

methods based on the models of the previous chapters. It would be very exciting

to the author if any or all of the tools described in this thesis found their way into

real systems. It is not an unreal possibility, given that these results sprang from an

application of interest to our sponsors.

6.2 Future Work

The concluding sections of each individual chapter often provides some directions

for future work. As we see it, the most pressing of these is the issue of probe

scheduling. This is alluded to in Chapters 3 and 4, with a concrete approach based

on a multiarmed bandit model given in 4. Careful probe scheduling may result in

145



marked improvement of endpoint estimates, a point we hope will be corroborated

down the road by others interested in this problem.

Dissertations are not finished; they are abandoned.

–Prof. Fred Brooks, University of North Carolina
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ABSTRACT

Inference Methods for Message Endpoint Localization in Networks

by

Derek H. Justice

Chair: Alfred O. Hero III

People often build or organize networks in order to establish lines of communica-

tion. The subjects might utilize a telephone or computer network, or perhaps even

something much more low-tech where certain individuals are designated to deliver

messages in person. When certain parties of interest are communicating, it is de-

sirable to monitor these networks in order to discover their motives, identities, and

locations. Presently, government and private agencies are investing heavily in the

development of equipment for network surveillance and algorithms for gleaning use-

ful information from collected data. This thesis develops several tools for inference

in networks with a focus on determining the locations of the sender and receiver of

an intercepted message.

We begin by deriving a distance metric that allows comparisons between different

network topologies. The metric quantifies the distance between networks by the total

cost of edit operations (such as node or link insertion or deletion) necessary to make



the two networks isomorphic. We derive this graph edit distance through a sort

of embedding scheme, and show how to compute it with a binary linear program.

Upper and lower bounds are computable in polynomial time through relaxation to

an assignment problem and standard linear programming, respectively.

We move next to the estimation of an intercepted message’s source and desti-

nation in a network of unknown topology. Sensors placed on some links or nodes

in the network are capable of indicating whenever a specific message passes their

assigned elements with a limited degree of timing precision. The source and destina-

tion (endpoints) are localized using a possibly unordered sensor activation pattern

along with some prior information on the unknown network topology. We first use a

semidefinite programming driven Monte Carlo approach to build approximate end-

point posterior distributions. Maximum a posteriori endpoint estimates can then be

read directly from these. Next we utilize a hierarchical Bayesian model and a recur-

sive expectation-maximization algorithm to develop online techniques for endpoint

localization. Finally, some preliminary derivations are given for the application of

well-known Markov chain Monte Carlo algorithms to this problem.


