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Abstract

We consider the problem of estimating the endpoints (source and destination) of a transmission
in a network based on partial measurement of the transmission path. Sensors placed at various points
within the network provide the basis for endpoint estimation by indicating that a specific transmission
has been intercepted at their assigned locations. During a training phase, test transmissions are made
between various pairs of endpoints in the network and the sensors they activate are noted. From these
possibly noisy measurements, we develop necessary constraints that any feasible network topology must
satisfy. Randomized rounding of the solution to a semidefinite programming relaxation generated from
the constraints is used to produce samples of network topologies defined over the feasible set. When
a subset of the deployed sensors are activated, corresponding to the occurrence of a transmission with
unknown endpoints, a monte carlo approximation of the posterior distribution of source/destination pairs
given the activated sensors is computed by averaging over the topology samples and used in maximum
a posterior estimation of the endpoints. We illustrate the method using simulations of power-law random

topologies.
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Fig. 1. Diagram of the measurement appartus on a sample network. Probing endpoints are labeled (s1, d1) and
(s2, d2). A box on a link represents a sensor that indicates when a transmission path intercepts that link.

I. INTRODUCTION

We present a method to estimate the endpoints (source and destination) of a data transmission
in a network whose logical topology is unknown. We assume there are a number of asynchronous
sensors placed on some subset of the links in a network. A sensor is activated, and its activation
recorded, whenever the path of a data transmission is intercepted on the link where the sensor
is situated. If multiple sensors are activated by a single transmission, they are not capable
of providing the order in which they were activated. During a preliminary training phase, the
network is probed by transmitting data packets between various pairs of externaKiedas},
and the link sensorg activated by each transmission are recorded. The measurement apparatus
is illustrated on a sample network in Fig. 1.

The resulting datd{(s,d, p);} is processed by the system shown in Fig. 2 so that when a
sensor configuratiop, with unknown endpoints (referred to as teaspect transmissidns
noted, estimates of its source and destinafiond,) may be provided.

Some information about the network topology is necessary in order to estimate the endpoints

of the suspect transmission, however the topology of our network is unknown. We use the data
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Fig. 2. Diagram of the transmission endpoint estimation system, assuming internal link sensors have already been

deployed.

obtained in the probing phase to precisely describe the space of feasible topologies by translating

the data into linear constraints that a topology’s adjacency matrix representation must satisfy.

The constraints are in the for@z = b where(@ is a 0-1 matrix,b is an integer vector, and is

a vectorized version of the 0-1 adjacency matrix. The definitiod)and b naturally depends

upon whether the network of interest is directed or undirected; both cases are considered. Given

2 andb the computation of feasible solutions to the linear constraint equation is no small task,

in fact it is known to be an NP-Complete problem [1]. We consider the associated minimum

norm problemmin ||Qx — b7, wherexz € {0,1}" and |-, is a quadratic norm with respect

to the positive definite matrixl’. It is known that combinatorial optimization problems of this

type may be successfully approximated by ’lifting’ them into a higher dimensional matrix space

where X;; = z;z; and X € {0,1}™*" [2].

With the advent of polynomial time interior point methods for linear programming that can

be extended to semidefinite programming [3], [4], it is convenient to consider a semidefinite

programming (SDP) relaxation of the higher dimensional problem. Indeed, SDP relaxations

have proven to be powerful tools for approximating hard combinatorial problems [5], [6], [7],

[8]. The SDP, however, is solved over a continuous domain so it is necessary to retrieve a 0-1
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solution from the possibly fractional SDP solution. One possibility is a branch and bound scheme
whereby certain variables are fixed and the SDP is repeated until a discrete solution is found
[1], [8]. The branch and bound algorithm can take an exponential amount of time, depending
on how tight the desired bound is. A randomized rounding scheme was developed in [6] for
SDP relaxations of the MAXCUT and MAX2SAT problems. This scheme is shown to produce
solutions of expected value at least 0.878 times the optimal value in [6]. We develop an SDP
relaxation of the 0-1 minimum norm problem and apply the randomized rounding method to
produce a number of network topology adjacency matricés that approximately satisfy the
linear constraints)xz = b. We derive an expression for the expected value of the squared error
E|Qz — bH%V} of samples produced in this way. This expression depends on the solution of
the SDP relaxation, but an upper bound on the error independent of the SDP solution is also
given.

The network topology samples are used in conjunction with prior distributions on endpoints
P(s,d) and topologiesP,(A) to compute a Monte Carlo approximation of the posterior distri-
bution of endpoints given the suspect transmisgign, d|p,.) via Bayes rule. Bayes formula for
this problem essentially reduces to the expected value of a functional of the topéjooyr
approximation of the endpoint posterior thus becomes a weighted averaged of the values of this
functional at each sample topology where the weights are determined by the prior distribution
P,(A). It is readily apparent that this functional requires the conditio#¥ls, |s, d, A) for all
s,d and A (the path likelihood functions). We propose a likelihood model for which longer paths
between a specific source/destination are no more likely than shorter paths between the same pair.
Furthermore, instead of normalizing the conditionals over all feasible patlie normalize over
the k-shortest paths, which can be computed in polynomial time using an algorithm described
in [9]. With the posterior distribution”(s,d|p,) in hand, we can immediately give the MAP
estimate of(s,,d,) or an a posteriori confidence region of probable source/destination pairs.

The related area of network tomography has recently been a subject of substantial research.
It refers to the use of traffic measurements over parts of a network to infer characteristics of

the complete network. Some characteristics of interest include the following: source/destination
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traffic rates [10], [11], link-level packet delay distributions [12], [13], link loss [14], and link
topology [15], [16]. For an overview of relevant tomography problems for the Internet see [17].
In many applications, the tomography problem is ill posed since data is insufficient to determine
a unique topology or delay distribution.

Our work is related to the internally sensed network tomography application described in [18],
[19]. These works propose a methodology for estimating the topology of a telephone network
using the measurement apparatus illustrated in Fig. 1. The data transmissions are of course
telephone calls and the asynchronous sensors are located on trunk lines. A simple argument in
[19] demonstrates that the number of topologies consistent with the data measured during the
probing phas€{(s,d,p);} is exponential in the number of link sensors. Indeed the problem is
ill-posed as the data required to provide a reasonable estimate of the topology will never be
available in practice. We sidestep the difficulties of developing a single topology estimate by
averaging over many feasible topologies in computing the endpoint posterior distribution of a
suspect transmission.

The solution approach we develop is very general, and we suspect it might have application in
all sorts of networks: including telephone networks as described in [18], ad hoc networks, social
networks, or biological networks [20]. As a provocative example, consider a social network
formed for the purposes of covertly distributing some product (such as weapons technology
or a controlled substance). Here, suppliers of the product would play the role of source nodes
and consumers the role of destination nodes. The link sensors would consist of middlemen
willing to indicate a particular request was processed, but nothing more. The network might be
probed by initiating requests to a specific supplier in the vicinity of a likely consumer. Based on
information from the middlemen, it would be possible to localize likely suppliers and consumers
of a particular transaction using these methods.

The approach described here might also find utility in systems conveniently modeled by graphs,
such as finite state automata. The problem of machine identification is a classic problem in the
theory of automata testing [21], [22]. Here, we are given a black box with an automaton inside

whose transition function is unknown. Based on the response of the system to certain input
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sequences, we wish to reconstruct the transition function. The link to the network topology
recovery aspect of our problem is clear, since a graph provides a convenient representation
for the transition function of interest. The external nodes chosen in the probing phase of our
problem is analagous to the input sequences to the black box automaton. Similarly, link sensors
correspond to events in the automaton’s observable event set. An exhaustive algorithm for solving
this problem is given in [21] and shown to have exponential run time. Our methods might be
adapted to provide a polynomial time approximation algorithm.

The outline of this paper is as follows. We review the problem, describe in detail each
component of the endpoint estimation system (Fig. 2), and analyze its complexity in Section
Il. In Section Ill, we provide some simulations of small power-law random graphs. These are
random graphs whose vertex degrees follow a power law distribution. Such graphs are observed
to occur frequently in natural and synthetic systems [20], [23]. We generate them according
to the configuration model described in [20], [24]. In Section IV we provide some reasonable
extensions of this problem utilizing feedback with the graph edit distance as a metric [25] to

suggest an adaptive system and finally offer some concluding remarks.

[I. SOURCE-DESTINATION ESTIMATION AND SYSTEM MODEL

Let G(V, E, f) be a simple graph defined by the vertex $gtedge setr, and incidence
relationf : £ — V x V. The adjacency matrixl associated witlG is given by

1 if de € E andv;,v; € V such thatf(e) = (v;, v;)
Ajj = 1)

0 otherwise
We allow G to be either directed or undirected; however, it should be known a priori which is
the case. It follows easily that 7 is undirected, them is symmetric. In our application¥
defines the set of links in the network topolody,defines the routers or switches connected by
these links, andf determines the pair of routers/switches connected by each link.
A path between vertices € V andv € V is given byp,, C E, wherep,, contains the edges
passed in the path from to v. Because the sensors are asynchronous, they are not capable of

providing ordering information. Thus we assume the paths are unordered sefs, Cet’ be
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the set of edges on which sensors are placedILetV be the set of external vertices, that is
nodes that can send and/or receive data transmissions.

The purpose of our system is to estimate the source and destination of an activated sensor
setp, corresponding to a transmission whose endpoints are unknown (i.e. suspect transmission).
We utilize a Bayesian framework to produce suitable approximations of the endpoint posterior

distribution:
P(pg|s,d, A)P(s,d)
P(s,d|p,) =
(5oipa) = 3 s~ B Tsnd AP (o)

Fo(A) (2)

by assuming the availability of appropriate prior distributions on communicdtiend) and net-

work topologyP,(A) and introducing a model for the conditional path probabilifi¥g.|s, d, A)

based on shortest path routing. The posterior in Eqg. (2) is approximated by summing over
the argument evaluated at a number of topology samfple$. The solution to a semidefinite
programming relaxation is randomly rounded to produce topology samples that approximately
satisfy linear constraints derived from the measurements obtained in preliminary probing of the
network. With the approximate endpoint posterior distribution in hand, we can provide MAP
estimates of the endpoints,, d,) of the suspect transmissign and compute appropriate error

measures.

A. Probing the Network

Along the lines of the network tomography paradigm, the probing phase consists of swapping
data transmissions between pairs of external nodés and observing which link sensors are
activated in response. L&, C T be the set of source nodes from which data transmissions
originate and7; C T be the set of destination nodes at which data transmissions terminate.
The user supplies a set of source and destination péitsl);} wheres € T; andd € T;. The
probing mechanism passes a data transmission frota d; for each: and notes the sensors
activated by each transmissigg, C E;. Note that since a sensor may not be on every link in

the network (i.e.E; C E), psq Is related top,, (the path in the true network) by the following

Dsd = Psa N B (3)
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The probing phase provides the measuremédiitsd, psq);} that may be used to define the
feasible region of network topologies.

We also allow for errors in the sensor measurements. Suppose that each linkesengpr
has an associated miss probability,(¢) = P(e ¢ psale € psq¢) and false alarm probability
ag(e) = P(e € psale ¢ Psa). In this case, the probing mechanism repeats the data transmission
from s; to d; N times for eachi. These/N measurements are used to construct a maximum
likelihood estimatep,,4, of each pattp,,4, according to the following model. Along the lines of
a generalized likelihood approach, the probing mechanism passes along the maximum likelihood
path estimates for eadls, d);, given by{(s, d, psq):}, for use in defining the feasible region of
network topologies.

Define the path indicator vector® whose elements are given by?(j) = I,_,(e;) for all
j=12...|E| wherel, : A — {0,1} is the usual indicator function. If we assume sensor
errors are independent across paths and measurements, then the joint probability mass function

of the N observed path vectors for a given source/destination yjis

s S sd| s E sd
psd(V1d>V2da' Nz ) Hk, 11_[‘] llam( )(1 (4))7* J)ﬁ (e ) )N

4
af(ej)Vzd(J)(lflﬁd(j))ﬁf(ej)(171@. (1)) (1-7°2(3)) @)

where3,,(e) = 1 — a,(e) and Bs(e) = 1 — ay(e). If we define the likelihood functiord(75%)

as the logarithm of the expression in EqQ. (4), then it may be written explicitly as
L) = S (Nlog y(e;) + 0L vi(eg) log 324 ) + -
S (N log 22l 4+ S0, vpt(e;) log Lzienrte) %J;) 7(e;)

Since only the second term in Eq. (5) dependsich and 7°¢ € {0,1}/%l, the maximum

likelihood path estimate may be written quite compactly as

Peg = {ej €E | Nlog Z logM > o} (6)

p m(ej)og(e;s)

With these in hand, we proceed to describe the feasible region of topologies.



B. Describing the Feasible Region of Adjacencies

In order to estimate the endpoints of a suspect transmission, it is necessary to have some idea
of the logical topology of the network. Instead of considering the logical adjacencies implied by
the actual networky(V, E, f), we are concerned with adjacency relationships corresponding to
only those elements utilized in the probing phase. For example, we cannot hope to pinpoint the
position of a linke in the original network that is not monitored by a sensor @.€. £ — E),
nor can we locate a link whose sensor was not activated by any data transmission in the probing
phase. To capture this notion, we define the seideftifiable edges; as the set of edges

whose sensors are activated by at least one data transmission during probing:
Er={e€ E; | e € ps,q, for somei} (7)

Note that in Eq. (7) and throughout, if sensor errors are an issue, replaeath its maximum
likelihood estimatep,, as described in the previous section. The particular topology we wish to
describe is then given b4 (Va, E4) whereVy = E;UT and E4 C V4 x V4. G4 may be
directed or undirected, depending upon the naturé&’ of

We assume non-identifiable edges are essentially 'collapsed’ in the original netivdrkis
is done by recursively assigning the value ofv; for all (v;,v;) € V such that(v;,v;) = f(e)
for somee € E — E; andv; ¢ f(e) for anye € E;. The idea here is to assure two elements
are logically adjacent id- even if they are physically separated by a link (or subgraph of links)
that is not identifiable. Under this assumption, we now define what the adjacency relationships
in G4 mean with regard to the original netwo¢k

Consider first the case whe# is undirected. Two edges are adjacent if they share a common
endpoint vertex, that is, € E; NV, is adjacent ta, € E;N V4 if f(e1) N f(e2) # ¢. An edge
and an external vertex are adjacent if the external vertex serves as one endpoint of the edge,
that ise € E; NV, is adjacent tov € TNV, if v € f(e). Two external vertices may not be
adjacent since there must be at least one link between them.

Consider now the case whénis directed. Here we must be careful about ordeis adjacent

to y meansr can reachy when traversing the graph in the allowed direction. Edges adjacent
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to edgee; if the incoming endpoint o#; is the outgoing endpoint af,, that ise; € E; NV, is

adjacent toe; € E; NV, if f(e1)2 = f(e2):. Edgee is adjacent to external vertexif v is the
incoming endpoint ok, that ise € E; NV, is adjacent taw € TNV, if v = f(e),. External
vertexv is adjacent to edge if v is the outgoing endpoint of, that isv € T'N V4 is adjacent
toeec E;NVy if v= f(e);. As before, two external vertices may not be adjacent.

We explicitly constrain the adjacency matrik of the graphG,4 based on the probing data
{(s,d,psa):}. In addition to the implications of the above discussion, there are zeros along
the diagonal ofA; this leads to at mostE;|*> + |E;|(2|T| — 1) unknown 0-1 variables to be
determined (this quantity is cut in half for undirected graphs thanks to symmetry). In developing
the constraints, we assume that no cycles occur in any of the measured paths. If the paths were
ordered, it would be a straightforward exercise to write down adjacency relationships among
elements in the path under this assumption. Because the measureg paths unordered, we
cannot say precisely which elements are adjacent; we can only say that each element in the path
must be adjacent to some other element(s) in the path.

Consider first the undirected case. Under the no cycle assumption, each measurgg path
implies the following: eache € p,; must be adjacent to exactly two elements from the set
{psa —eU{s,d}}, s € T, must be adjacent to one element frgnmy, andd € T, must be
adjacent to one element from,. These are restated as linear constraints on the adjacency

matrix A in Eq. (8).

> A;; =2forall e; € pyy
{j‘UjEdefeiU{S,d}}
oo A=1 (8)
{j‘UjEpsd}
>, Aiy=1
{j‘UjEPSd}

An undirected graph also has a symmetric adjacency matrixdj,e= A;; for all ¢, j. Thus we
can solve for the upper half of the adjacency matrix only and the lower half is automatically
determined. This reduces the number of variables tp=;|*> + |E;[(2|T| — 1)). If v; in any
of the index sets in Eq. (8) has> i then we simply replace that; with v; wherei is the

corresponding element in the upper half Af
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The constraints on the adjacency matrix of a directed graph follow similarly from the no cycle
assumption: one element frofp,; — e U {s}} must be adjacent to eache p,,, eache € pyy
must be adjacent to one element frgm,; — e U {d}}, s € T, must be adjacent to one element
from p,4, and one element from,, must be adjacent td € T;. These are given in Eq. (9) as
constraints on the directed adjacency mattix

> A;j=1forall e; € psg

{ilviepsa—ejU{s}}

A;; =1forall e; € py

{jlvj€psa—esU{d}} (9)
> Aiy=1

{j‘UjEpsd}
> Ay, =1

{ilvi€psa}

We therefore havép,,| + 2 linear constraints on an undirected adjacency matrig|pJy;| + 2
linear constraints on a directed adjacency matrix implied by €acth p,;) measurement. All
constraints may be collected into a single system, so that the feasible region of network topologies
G 4 is given by{z|Qz = b} wherez is a vectorized version of the adjacency matrix(sf and

@, b are defined by the appropriate constraints.

C. Sampling the Feasible Region of Adjacencies
It is necessary to sample adjacency matrices from the feasible region defined in the previous

section. This amounts to finding several solutions to the problem

find z € {0,1}"
such thatQx = b

(10)

Unfortunately, the problem in Eq. (10) is NP-complete [26]. We consider an equivalent restate-

ment of Eq. (10)
minimize (Qz — b)"W (Qx — b)

such thatr € {0,1}"

(11)

wherelV is a (symmetric) positive definite matrix that may be chosen to emphasize the relative

importance of the different constraints. Obviously any optimal solution of the problem in Eq.
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(11) with zero value solves the feasibility problem in Eq. (10). The problem in Eq. (11) is no

easier than the original statement, however, it has been shown that problems of this type (0-1

guadratic programs) can be approximated quite well using a semidefinite relaxation [7].

We now proceed to derive the SDP relaxation of Eq. (11). Our relaxation is similar to the one

derived in [6] for MAX2SAT. First note that the optimization in Eq. (11) is equivalent to

minimize 2" Dx — 2d" z
(12)
such thatr € {0,1}"

whereD = QTWQ andd = QTWb. This is easily seen by expanding the objective in Eq. (11)

and dropping the constant term. Now note that= x; sincex; € {0,1}; this fact this allows
Eg. (12) to be re-expressed as
minimize >, Dyaae; — 23, dja’

(13)
such thatr € {0,1}"

We now introduce variableg; € {—1,1} for eachz; € {0,1} for : = 1... N along with an

additionaly,, ., € {—1,1} so that the change of variables is given by

(14 Yns19i) (14)

xI; =

N —

The identities in Eq. (15) follow from this change of variables.

Tixj = }1 (1 4+ yiy) + (1 + Yns1y) + (1 + yngryy) — 2] (15)
—ziwy = 1 (1= yiy;) + (1= Ynrays) + (1 = Ynp1y;) — 4]

If we introduce a negative sign in the objective, then the optimization in Eq. (13) becomes

maximize ; 3=, . [Bi; (1 + yiy;) + Cij(1 — yiy;)] — €' De (16)
such thaty € {—1,1}"!
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wheree is a vector of ones and matricéy C' are given by

0 2d
B—
2d" 0
(17)
D De
C pu—
(De)T 0

In order to obtain a semidefinite program, define the matfix= yy”. It is simple to show
that Y = yy’ for some vectory if and only if Y = 0 (i.e. Y is positive semidefinite) and

rank(Y) = 1. We drop the nonconvex rank-1 constraint to obtain the SDP relaxation

maximizeTr [(B — C)Y]
diag(Y) =e (18)

such that
Y >0

where T'r[-] indicates the trace operation and the constrdiny(Y') = e is added to enforce
y? = 1. The equivalence of the objective functions in Eq. (18) and Eq. (16) can be seen
easily by replacingy;y;, with Y;; and dropping constant terms. The SDP in Eq. (18) may be
solved in polynomial time using a primal-dual path following algorithm [4]. The result of this
optimization Y* will in general be a non-integer symmetric positive semidefinite matrix. In
[6], a randomized rounding methodology is proposed to recover a -1,1 vgdtom the SDP
solutionY*. The strategy is to first perform the Cholesky factorizafith= V7V, then choose
a random hyperplane through the origin with normal vectdrhe value ofy; is then determined
by whether the corresponding coluriinof V lies above or below the hyperplane, iyg.= 1 if
vlr>0andy, = —1if v]r <0,

A direct application of the method in [6] provides a means for generatihg@pproximate
samples from the feasible region of network topologies. Simply genérateectors {r*} |

from the uniform distribution on the s&t, = {z € R""|zT2 = 1}. The i element of thek™"
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vectorized adjacency sampieis then given by

1 if sign(vir*) = sign(vl, ,r¥)

it = (19)
0 if sign(v]r*) # sign(vl,  r")
This result can be seen by applying the rounding method and then using the change of variable
formula given in Eq. (14).
We now proceed to derive the mean squared eE“cMQj: — b||§[,] of the sample adjacency

in Eg. (19). First note that the rounding scheme used implies the following identities.

Bl + yy;] = 2P (sign(vir) = Sign(UJ‘TT))

(20)
E[l — yuy;] = 2P (sign(v]'r) # sz’gn(var))

wherer is a random vector from the uniform distribution 8p = {z € R"" |27z = 1}. We may
evaluate the probabilities in Eqg. (20) quite easily via the observation in [6]. Note that symmetry
of the distribution impliesP (sign(v/r) # sign(vir)) = 2P (vfr > 0,07 r < 0). And if § =
arccos(v] v;) is the angle between the vectarsanduv; then it follows P (v r > 0,v]r < 0) =

[

- since the distribution of- is uniform on S,. A similar argument applies to the case of

matching sign. The results are summarized below.

P (sign(v]r) = sign(vIr)) =1 — Larccos(v] v)) 1)
P (sign(vl'r) # sign(vl'r)) = £ arccos(v] v))

If we define the matrixZ such thatZ;; = arccos(Y;;) whereY™ is the solution of the SDP
relaxation in Eq. (18) and note that the objective function in Eq. (16) is exactly equalitd —
Q% — bH?M then we may take the expectation of the objective in Eq. (16) and apply the identities

in Egs. (20) and (21) to obtain the mean squared error as
. 1
E [1Q& — bllyy] = Qe = blly, — -—Tr [(C = B)Z] (22)

wheree is a vector of ones.

We may obtain a bound on the expected value of the squared error in Eqg. (22) independent
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of the solution to the SDP. As in [6], define the constant

o= min 2z (23)

zelo,r] ™1 — cosz

From this definition ofa, the following identities follow immediately

a(l +cosz)<1— 1z
" (24)

= N

a(l —cosz) < 2z

We take the expected value of the objective function in Eq. (16) and apply the identities in Eq.
(24) with Z;; = arccos(Y};) to give

V"W — E[||Q — b}, ] > a <Z [Bij + Cij] + Tr (B — C)Y*]> —e'De  (25)

i?j

o]

Now suppose the equatiofz = b has at least one feasible solutiof. Let ° be the

corresponding -1,1 vector and’ = 4°(y°)?. We then have

0=[Qz°—b|;, =" De + bTWb — i <Z [Byj + Cyl + Tr [(B — C)Y°]> (26)

’L"j

But sinceY ™ solves the SDP in Eqg. (18), it follows

Tr((B—C)Y*| = Tr [(B—C)Y"] =4¢"De + 40" Wb— > " [By; + Cyj] (27)

ij
We may now combine the inequalities in Eqgs. (25) and (27) and rearrange to obtain a bound on

the expected value of the squared error that is independent of the SDP solution
E[|Qi —b|5] < (1—a) (e'De + b"Wb) (28)

In practice, the bound in Eq. (28) tends to exceed the true expected value in Eq. (22) by a large
amount. However, it is of theoretical interest; sinbe= Q7 W, this bound indicates that the

total weighted constraint violation of topology samples will tend to increase with the average
path length and number of constraints. If the weighted sample error is undesirably large, a naive

fix is to simply subsample (i.e. take, say, every ten adjacency samples and discard the rest).
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We will return to this issue later and suggest some other fixes, since large errors in the SDP
generated adjacency samples is a major obstacle to applying this method to ever larger networks.
With the adjacency matrix samples in hand, we proceed to approximate the endpoint posterior

of a suspect transmission.

D. Approximating the Endpoint Posterior of a Suspect Transmission

We use the network topology adjacency samples obtained in the previous section to derive an
approximate endpoint posterior distribution of a suspect transmission (that is a data transmission
whose source and destination are unknown).L,eC E; be the set of identifiable link sensors
activated by the suspect transmission. PgtA) be a prior distribution on the adjacency matrices
of the derived topology~ 4. Recall from Section II-B, thatr 4 is the logical topology describing
the connections among identifiable edges and external vertices in the original nétwladeed,
it is no small task to determine a prior distribution on the derived topol@gygiven a prior
on the original network topology-, since an infinite number of topologi€s might correspond
to the sameG4. Let P(s,d) be a prior distribution that indicates the probability a particular
source node will communicate with a particular destination node. We assume these probabilities
are independent of the network topology thus P(s,d|A) = P(s,d). Under this assumption,
Bayes rule may be used to write the endpoint postefior, d|p,) as

P(ps|s,d, A)P(s, d)

P(s,d|p.) = ; S Plonls. d. A)P(s,d) P,(A) (29)

Define f,, ,a(A) as in Eq. (30).

P(p.ls,d, A)P(s, d)

fpz,sd(A) = std P(px‘s,d, A)P(S,d)

(30)
It is then clear that the endpoint posterior in Eg. (29) may be re-expressed as

P(s,dlps) = E[fp,.sa(A)] (31)
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Thus the strong law of large numbers suggests a Monte Carlo estimate of the endpoint posterior

using the topology adjacency matrix sampfes } 2, given by

P(s,d|ps) = ——— ST prx sa(A3) Po(A;) (32)

The estimate in Eq. (32) is reasonable provided we can compute the value of the function in
Eq. (30) for each topology sampl&. We require a model for the conditional path probabilities
P(pl|s,d, A) for this computation. Clearly, the routing mechanism used in the network should
figure prominently into any such model. We propose a model based on shortest path routing.
Let P,qa be the set of all paths (of finite length) from sourgeto destinationd in the
topology A. Let w : R, — R, be a nonincreasing function on the positive reals. We then

proposeP(p|s,d, A) as

1 p|
P d,A) = 1 33
(p|8’ ) ) ’}/gﬂAw 1n|]»5| Psd\A(p) ( )
PEP g a

wherel, : A — {0,1} is the indicator function andysfglA is a normalization constant. The
formula in Eq. (33) essentially ensures longer paths are no more probable than shorter paths and
that invalid paths have probability zero. Note that the measured pa#ine unordered, so we

sayp € P, 4 If there exists an ordering of given byp, such thatp, € Pq 4.

min [7]
PEPsg A

over allp € P44, Which generally requires too much computational effort. Instead, we normalize

In order to compute the normalization constazfggA in Eq. (33), we must sunw ( Ipl_ )

just over the serg‘A C P4 consisting of theK shortest loopless paths betweemndd in
the network topologyA. This set can be computed (K n?) time for a network withn nodes

using an algorithm described in [9]. The normalization is thus

K |p|
Pﬁ\A PEPsq) A

We now have all of the necessary ingredients to compute the endpoint posterior distribution

estimate given in Eq. (32).
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E. Estimating the Endpoints of a Suspect Transmission

We may give maximum a posteriori (MAP) estimates of the endpdintsd,) of a suspect
transmissiorp, after computing the posterior distribution estimate in Eq. (32). Indeed, the MAP

estimate is simply given by

(54, d,) = argmax P(s,d|p,) (35)
(s,d)

MAP estimates ofs, or d, individually are given by maximizing the appropriate marginal

P(s|p,) or P(d|p.) respectively.

We use as an error measure the ratig(p,) below for the estimated endpoints,, d,).

max P(s,dlp,)
Nalps) = ———=—0 : (36)
max P(s,d|p,) + max P(s,d|p,)
(s,d) (s,d)#(§z,czz)

It is also useful to compute the corresponding ratios associated with the marginalized distributions
As(p.) and Ay(p.), as it may be the case that either the source or destination of a suspect

transmission is more accurately determined individually than are both collectively. These are

given by .

max P(s|p.)
As z) = — 2 37
(p ) max P(5|pz) + H;éaix P(S|pw) ( )

max P(d|p,)
Na(ps) = - : (38)

max P(d|p,) + max P(d|p.)
d d#dy

It is clear that the ratios in Egs. (36), (37), and (38) must lie in the intéé—vaﬂ. Larger values
of these ratios in a sense indicate more 'confidence’ in the associated MAP estimates since

a value of 1 is achieved only when all of the mass of the estimated posterior distribtution is

concentrated at the MAP estimate.

F. Algorithm Complexity

We now analyze the complexity of the source/destination estimation scheme developed here

and show that producing the topology samples is the most computationally demanding step.
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Complexity results are given in terms of the numbef0fl) pairs used in the probing phase—let

n denote this number. We assume the number of Hopequired for a message to reach its
destination starting from the source remains constant with increased problem size. Note this is
a reasonable assumption for real networks due to the well krsonadl world effect [27], [20].

First consider the size of a problem with (s, d) pairs used in probing. Since the number
of external nodes7'| satisfies|T’| < 2n and the number of identifiable edgés;| satisfies
|E;| < hn we have both of these values avén). Thus, the number of 0-1 variables associated
with the adjacency matrix ofis(E; U T, E,4) is O(n?) (recall the number of such variables is
proportional to|E;|* + |Ef|(2|T| — 1)).

We use the SDP relaxation in Eq. (18) to produce sample topologies that are approximately
consistent with the probing measurements. Typically interior point methods are used to solve
SDP’s to withine of the optimal solution. These are based on Newton’s method; therefore at
each iteration it is necessary to solve a linear system of equations for the Newton directions
(O(m?) for a system of sizen). An algorithm given in [28] is shown to také(|loge|/m)
iterations for a problem of sizex—this performance is typical for all interior point algorithms.
Our problem has dimensio@(n?), thus solving the SDP take8((n?)*5) or O(n") time. A
Cholesky factorization is then performed on the SDP solution, which t&kés?)3) or O(n®)
time. The topology samples are then produced by generatimgndom vectors and taking inner
products. The time required for each inner product is linear in the size of the problem; it follows
that this step take®(n?) time.

In order to compute the approximate posterior distribution in Eq. (32), we must evaluate the
functional f,, ;4 in Eq. (30) at each topology samplg. The only costly step here is comput-
ing the shortest path(s) needed for the path likelihood model in Eq. (33). We are computing
shortest paths i6 4 (E; U T, E4), which hasO(n) nodes; thus it take®(n?) time to compute
P(p,|s,d, A) for each topology sampld; using the algorithm in Eq. ([9]). Computation @f, .4
requiresP(p,|s,d, A) for all n (s,d) pairs. We then havé&(n?) time required for computing
the approximate endpoint posteriors once the samfple$ are provided. Note that this can be

reduced taD(n) time if the functionw in Eq. (33) is taken as a constant since the normalization
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A B C
Fig. 3. Example 20-node power law random graphs with parameter 1.3 (as in Eqg. (39). The method is
illustrated by simulating on topologies of this type. We assume in one case that sensors are placed on 100% of
the links (100% sensor coverage) and in another that sensors are placed on not fewer than 75% of the links (75%
sensor coverage). 12 of the 20 nodes are selected as externalfofiesf these are taken as sourcEBsand 6

are taken as destinatiori§. 18 of the 36 distinc{s, d) pairs are randomly selected for use in the probing phase,
denotedL. The remaining 18 pairs are denotéél During the test phase suspect transmissions are passed between
all 36 possible(s, d) pairs. Shortest path routing is used to determine the transmission path.

factorsvsfflm cancel out in Eg. (30) and therefore do not need to be computed.
Our algorithm would benefit greatly from speedy SDP algorithms as solving the SDP relaxation
takes the most timé&(n"). A parallel implementation of an interior point algorithm for SDP’s

might reduce the time requirements if multiple processors are available [29].

[11. SIMULATIONS

We performed some numerical simulations to demonstrate the utility of the method described
in this paper. We used 20-node power law random graphs for the networks to be monitored.
Each 20-node graph is generated by choosing a degree kafoe each node from the power
law distribution given by

% if k>1
P(k) = (39)

0 otherwise
with parameter selected to be.3 and( is the Riemann zeta function. Th#& vertex is given
k; partial edges, and then pairs of partial edges are selected at random to connect and form
an edge. This method for generating a random graph with specified vertex degree distribution
is referred to as the configuration model [20]. We slightly modified the method to prohibit
multiple connections between a single pair of vertices. Also, we rejected disconnected graphs.

Some example 20-node power law random graphs with parametet.3 are given in Fig. 3.
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After generating a sample network, we randomly selected 6 source ip@esl 6 destination
nodesT;. 18 of the 36 distinct source/destination pairs were then chosen at randori froffy,
for use in the probing phase; this set of pairs is denoted.hy 7 x T,;. The remaining 18
pairs inT; x T, are denoted.® = (T x T,;) — L. We used shortest path routing to determine
which sensors were activated by each of the 18 data transmissiohsduring the probing
simulation. Sensors were assumed to be perfectly accurate. We considered two situations for
sensor placement. First, we assumed sensors were present on every edge in the graph (i.e. 100%
sensor coverage); then we placed sensors on a random subset containing not fewer than 75%
of the edges (i.e. 75 % sensor coverage). The number of identifiable gdgesas noted for
each graph.

We described the feasible region and formulated the semidefinite programming relaxation in
Eq. (18) with the weight matri¥} taken as the identity. The relaxation was solved with a
predictor-corrector path following algorithm given in [4]. A publicly available C implementation
of this algorithm was used [30]. The randomized rounding method was applied to the solution
of the SDP relaxation to produce 100 sample adjacencies. The average squared sample error
L3 lQ@* —b||” and theoretical mean squared er@([|Q: — b|*] of Eq. (22) were noted
for each graph.

Suspect transmissions were then generated using each of tted36airs fromT; x T, as
endpoints by noting the identifiable edges passed in the shortest path routes. Note that shortest
path routing is consistent with the likelihood model given in Eq. (33). These transmissions
were identified as being betweés d) pairs in eitherL or L. Paths that did not intercept any
identifiable sensors were excluded; thus we denotd.py_ L the set of(s, d) pairs used in
probing whose transmission activated at least one identifiable sensor. Similarlyi.© is the set
of (s,d) pairs not used in probing whose transmission activated at least one identifiable sensor.
Note that for 100% sensor coveragé,| = 18 always but|L$| may be less than 18. For 75%
sensor coverage botli,;| and |L$| may be less than 18.

For each suspect transmission, we computed the approximate posterior distr}B(ﬂjdﬂpz)

with uniform distributions for both of the prior®,(A) and P(s,d). Also, a weight function
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0.1 T T T T T T 0.1

0.091 max(s.d) P(sydlpx) » i 0.09- max(svd) P(s,d|px) — !
0.08 q 0.08
0.07 9 0.07 -

0.06 - ~q
M(s.0)= (5,4) Pis.dlp,) A 0y (5,) P(s.dlp,)

3
Destination Number

Source Number B

Fig. 4. Example endpoint posterior distributid?(s, d|p,;) for a suspect transmissign, with endpoints(s,,d,) €

L;. In plot A, the probabilities are grouped by source, with each of 6 bars in a group corresponding to a different
destination (noted above the individual bar). Plot B displays the same information except probabilities are grouped by
destination with source number noted above each individual bar. The largest and second largest values of the posterior
are indicated—it is these values that are used in computing #fatio of Eq. (36), calculated a&,4(p.) = 0.655.

It is clear in this example that the endpoints of this transmission (source number 5 and destination number 6) will
be correctly estimated by the collective MAP estimate.

of w(x) = 1 was used in computation of the conditional path probabilifs|s, d, A) so that

the normalization constantg’y, cancelled out. From these, we computed the MAP estimates
collectively using the joint distributio® (s, d|p, ) and individually using the appropriate marginal
]3(8|px) or P(d|px). We noted average values of each of theatios in Egs. (36), (37), and
(38) averaged separately over sétsand L; for each graph. An example endpoint posterior
distribution for a suspect path with endpoints fup is shown in Fig. 4. The marginals of this
distribution are shown in Fig. 5.

We repeated the simulation procedure for 30 undirected power law random networks and
recorded the values of interest. Table | shows the number of identifiable edges, fraction of the
total number of edges that are identifiable, cardinality of theL$etand topology sample error
data for undirected graphs with 100% sensor coverage. Table Il gives the same data along with
the cardinality of the sek; for undirected graphs with 75% sensor coverage (note| that= 18
always for graphs with 100% sensor coverage).

It is apparent that the theoretical expected value of the squared error, and accordingly the

average squared sample error, tend to be lower for graphs with 75% sensor coverage. This is
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031 1 03+
maxg P(s|p,) —»] max, P(dlp,)—]

max, . q P(d|px)

P(dip,)

Source Number B Destination Number

Fig. 5. Marginal distributions P(s|p,) in A and P(d|p,) in B) associated with the example endpoint posterior
distribution shown in Fig. 4. The largest and second largest values of the marginal posteriors are indicated—it is
these values that are used in computing teatios of Egs. (37) and (38), calculated As(p,) = 0.663 and

Aq(p=) = 0.666. It is clear in this example that the endpoints of this transmission (source number 5 and destination
number 6) will be correctly estimated by the individual MAP estimates as well.

consistent with our earlier comments (see section II-C) since these graphs would tend to have
shorter path lengths, simply because there are fewer identifiable edges. However, fewer suspect
transmissions actually intercept any of our sensors in the 75% coverage case (indicated by smaller
values of|L;| and|L|).

Plots of proportion of endpoint estimates correct for a given Betof L9) versus the ratios
from Eqgs. (36)-(38) averaged over the corresponding set for the undirected graphs with 100%
sensor coverage are shown in Fig. 6. Corresponding plots for the undirected graphs with 75%
sensor coverage are shown in Fig. 7. Plots are shown for collective estimdtesdf) via the
joint distribution as well as for individual estimates @f andd, from the marginals.

In Figs. 6 and 7, we observe an approximately linear relation between the proportion of correct
estimates and the appropriateatio when the\ ratio exceeds 0.58 and 0.60 respectively. In this
regime, theA ratio might be used as a measure of confidence in the endpoint estimates. Also
note that transmissions in sét tend to have higheA ratios (and are correct more often) than
those in setl. because it is the transmissions in dgt(those with endpoints used in probing)
that actually determine the constraints from which the topology samples are generated. Note

that the data in sef¢ often has incorrect joint estimation of source and destination, however,



Graph| [Ei| | Bl | |zg] | & 30, [|Qé* —b|* | B [lQé — b|’]
1 18 | 0.35]| 16 7.28 6.97
2 18 [ 0.33| 14 0.1 0.07
3 19 | 0.40| 16 1.8 1.79
4 19 | 0.33| 16 4.2 4.35
5 18 | 0.42| 16 2.2 2.42
6 19 [ 0.32| 15 3.24 3.16
7 20 | 0.42| 15 2.5 2.36
8 19 | 0.40| 16 0.04 0.13
9 17 | 0.37| 15 0.24 0.24
10 18 [ 0.31] 13 2.14 2.00
11 22 | 0.45| 18 11.28 10.84
12 18 | 0.45| 18 3.34 3.43
13 17 | 0.31| 14 2.16 1.65
14 18 | 0.24| 10 0.08 0.05
15 19 [ 0.22| 10 0.06 0.05
16 17 [ 0.35| 14 0.06 0.08
17 20 [ 0.31| 18 0.22 0.29
18 19 | 0.31| 10 0 0.01
19 17 | 0.45| 16 0.34 0.32
20 20 | 0.36| 17 55 5.18
21 19 [ 0.49| 18 16.36 16.93
22 23 | 0.59| 14 12.22 12.86
23 21 | 0.43| 15 8.14 8.60
24 21 | 041 17 0.02 0.14
25 23 | 0.40| 17 8.84 8.86
26 21 | 0.49| 15 11.74 11.47
27 17 | 0.50| 18 0.34 0.39
28 14 | 0.24| 12 0 0.01
29 20 | 0.38| 14 8.3 8.39
30 22 | 0.48| 15 3.64 3.77

TABLE |

24

SIMULATION RESULTS FOR THE UNDIRECTED GRAPHS WITHLO0%SENSOR COVERAGE |E}| IS THE NUMBER

OF IDENTIFIABLE EDGES(THOSE ACTIVATED DURING PROBING, |E| IS THE TOTAL NUMBER OF EDGES IN THE
NETWORK, AND |L;‘ IS THE NUMBER OF(S, d) PAIRS NOT USED IN PROBING WHOSE TRANSMISSION

ACTIVATED AT LEAST ONE IDENTIFIABLE SENSOR-HERE |L[| = 18 AS THERE I1IS100%SENSOR COVERAGE
|Lfv| TENDS TO BE SMALLER WHEN A SMALLER FRACTION OF THE EDGES ARE IDENTIFIABLEAS EXPECTED
NOTE ALSO THAT THE SAMPLE AND ENSEMBLE MEANS FOR THE TOPOLOGY SAMPLES AGREE QUITE WELL.

THE SAMPLE MEAN IS COMPUTED OVERLOO SAMPLES.
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Graph| [Ey| | ‘g2 | 11| | 1L5] | & S [|Qa* —b]° | E[llQ# — 0]
1 15 | 0.29] 17 | 14 6.82 7.21
2 12 | 0.32] 13 | 13 0.46 0.12
3 16 | 0.25| 17 9 0.12 0.08
4 13 | 0.20] 17 | 11 0 0.00
5 18 | 0.37] 18 | 16 0 0.00
6 13 | 0.19] 15 | 10 0.12 0.11
7 16 | 0.44| 16 | 16 3.5 3.55
8 13 | 0.29]| 18 | 18 0.04 0.07
9 16 | 0.39] 17 | 11 3.74 3.40
10 16 | 0.25] 14 | 10 51 5.12
11 14 | 0.30| 17 | 14 0.1 0.12
12 17 | 0.39| 18 | 16 0.16 0.11
13 16 | 0.32] 15 | 10 0.04 0.12
14 19 | 0.51] 18 | 15 16.88 15.89
15 15 | 042] 14 | 14 1.6 1.79
16 14 | 0.37] 16 | 13 0.16 0.15
17 13 | 0.31] 17 | 17 0.3 0.28
18 18 | 0.38] 18 | 16 3.86 3.50
19 16 | 0.43] 15 | 18 4.26 4.25
20 19 | 0.25] 18 | 14 0.12 0.17
21 13 | 0.21] 14 9 0.16 0.12
22 14 | 0.29| 18 | 13 0.5 0.27
23 18 | 0.27| 17 | 15 1.86 1.93
24 14 | 0.21] 16 | 13 0 0.01
25 14 | 0.23] 18 | 10 0.02 0.03
26 19 | 0.44| 18 | 14 5.36 5.42
27 16 | 0.31] 16 | 12 0.64 0.47
28 19 | 0.35] 18 | 14 2.3 2.10
29 12 1 0.24] 16 | 11 0.04 0.06
30 15 | 0.39] 15 | 14 2.06 1.97
TABLE 1l

SIMULATION RESULTS FOR THE UNDIRECTED GRAPHS WITH/ 5% SENSOR COVERAGE|E;| IS THE NUMBER OF

IDENTIFIABLE EDGES (THOSE ACTIVATED DURING PROBING, |E| IS THE TOTAL NUMBER OF EDGES IN THE

NETWORK, |L;| IS THE NUMBER OF(s,d) PAIRS USED IN PROBING WHOSE TRANSMISSION ACTIVATED AT
LEAST ONE IDENTIFIABLE SENSOR AND |L§| IS THE NUMBER OF PAIRS NOT USED IN PROBING WHOSE
TRANSMISSION ACTIVATED AT LEAST ONE IDENTIFIABLE SENSOR |L§| TENDS TO BE SMALLER WHEN A

SMALLER FRACTION OF THE EDGES ARE IDENTIFIABLE AS EXPECTED NOTE ALSO THAT THE SAMPLE AND

ENSEMBLE MEANS FOR THE TOPOLOGY SAMPLES AGREE QUITE WELL. THE SAMPLE MEAN IS COMPUTED

OVER 100SAMPLES.
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Plots of proportion of endpoint estimates correct for a given Setdr L$) versus the ratios from Egs.
(36)-(38) averaged over the corresponding set for the undirected graphs with 100% sensor coverage. Circles indicate

averages over paths from skt and pentagrams indicate averages over paths fromSse®lot A is for collective

estimation of(s,, d,) from joint distribution P(s, d|p.); the ratio from Eq. (36) is used. Plot B is for individual
estimation ofs, from marginal distributionP(s|p,); the ratio from Eq. (37) is used. Plot C is for individual
estimation ofd,, from marginal distributionP(d|p,.); the ratio from Eq. (38) is used. Some reference lines are

also plotted. The chance line for randomly selecting endpoints is drawn in each plot (1/36 for collective estimation
and 1/6 for individual estimation). Note that abodép, ) = 0.58, an approximately linear behavior is observed.

This behavior is somewhat washed out for the marginalized estimates, however marginalizing tends to increase the

percent of correct estimates.
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Fig. 7. Plots of proportion of endpoint estimates correct for a given 6eb( N) versus the ratios from Egs.
(36)-(38) averaged over the corresponding set for the undirected graphs with 75% sensor coverage. Circles indicate
averages over paths from s8tand pentagrams indicate averages over paths fronWsé&lot A is for collective
estimation of(s,, d,) from joint distribution P(s, d|p.); the ratio from Eq. (36) is used. Plot B is for individual
estimation ofs, from marginal distributionP(s|p,); the ratio from Eq. (37) is used. Plot C is for individual
estimation ofd,. from marginal distributionP(d|p,.); the ratio from Eq. (38) is used. Some reference lines are also
plotted. The chance line for randomly selecting endpoints is drawn in each plot (1/36 for collective estimation and
1/6 for individual estimation). Note that abovép,. ) = 0.60, an approximately linear behavior is observed. As with
100% coverage, this behavior is not as clear for the marginalized estimates, however marginalizing often increases
the percent of correct estimates. It is not surprising that there appears to be some degradation in the quality of the
estimates when only 75% of the links are equipped with sensors.
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marginalized estimates of each of these individually tends to be better. Marginalization certainly
blurs the linear relation in the higher confidence regime. We also observe some degradation in
the quality of the estimates when only 75% of the links are equipped with sensors; this is to
be expected though. Recall that these results are obtained with completely random placement of
sensors and random choices for {3ed) pairs to use in the probing phase. These two factors
will clearly affect the estimates of suspect transmission endpoints, and therefore provide an

interesting direction for future work.

V. SUMMARY AND EXTENSIONS

In this paper, we have developed a methodology for estimating the endpoints of a suspect
transmission in a network using link-level transmission interceptions. It is possible to envision
applications of the method in all sorts of networks, or systems with key features modeled by
networks. We have displayed simulations of its utility on some power law random graphs. We
now discuss some possibilities for future work on this problem.

A key ingredient of the method is the network topology samples provided by rounding the
solution to the semidefinite program. There are some computational scaling issues associated
with this approach. As mentioned previously, the quality of the topology samples (as measured
by the weighted error in Eq. (11)) tends to degrade for larger problems. Also, the computational
effort necessary to solve the SDP relaxatiorOig:”) for n (s, d) probing pairs and therefore
may be prohibitive for large problems.

If it is possible to identify loosely connected clusters in the network based on the probing
measurements,,, then one might remedy the scaling problem by solving several smaller SDP’s
to generate topology samples for each cluster. After mapping each cluster, a final SDP may be
solved to determine how they are connected (hopefully this too would be small compared to
the SDP generated by constraints on the network as a whole). At this point, it is not clear how
one might identify such clusters in general. SuppéseC E;, and7. C T represent the links
and external nodes (respectively) belonging to one particular cluster. Then fowadl T, it is

likely the case thap,, C F., i.e. the path between nodes in a cluster does not leave the cluster.
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Fig. 8. Diagram of the adaptive transmission endpoint estimation system with feedback ofsnéwpairs to
probe.

This observation might be a useful certificate for the existence of such a decomposition of the
network topology.

Another interesting direction for future work would be to develop an adaptive probing scheme.
It is obvious that the quality of endpoint estimates for suspect transmissions will depend on
which endpoints were used in the probing phase. This is quite visible in the simulation results
of the previous section. The idea here is to use the approximate endpoint posterior distributions
P(s,d|p) to suggest additional external node pafssd) that should be probed in order to
improve the estimates. The diagram for such a system is shown in Fig. 8.

One can hypothesize various criteria for determining the new probing pairs. For example, nodes
that tend to have similar posterior probabilities over several suspect paths might be selected for
probing so as to distinguish them more explicitly in the constraints. Also new probing pairs
might be selected so as to generate constraints that reduce variablility in the pairwise graph edit
distance between topology samples, thus addressing uncertainties in the network topology [25].
An information gain optimization could be used to incorporate both of these facets [31]. The
guestion of efficient online implementation naturally arises in this context. Since solving the

SDP generated by the constraints is an expensive operation, one would want to consider ‘'warm
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start’ methods whereby the old SDP solution is used as a starting point to find the optimal
solution with the additional constraints added. These represent some interesting extensions of

the solution presented here.
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