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Abstract

We consider the problem of estimating the endpoints (source and destination) of a transmission

in a network based on partial measurement of the transmission path. Sensors placed at various points

within the network provide the basis for endpoint estimation by indicating that a specific transmission

has been intercepted at their assigned locations. During a training phase, test transmissions are made

between various pairs of endpoints in the network and the sensors they activate are noted. From these

possibly noisy measurements, we develop necessary constraints that any feasible network topology must

satisfy. Randomized rounding of the solution to a semidefinite programming relaxation generated from

the constraints is used to produce samples of network topologies defined over the feasible set. When

a subset of the deployed sensors are activated, corresponding to the occurrence of a transmission with

unknown endpoints, a monte carlo approximation of the posterior distribution of source/destination pairs

given the activated sensors is computed by averaging over the topology samples and used in maximum

a posterior estimation of the endpoints. We illustrate the method using simulations of power-law random

topologies.
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Fig. 1. Diagram of the measurement appartus on a sample network. Probing endpoints are labeled (s1, d1) and
(s2, d2). A box on a link represents a sensor that indicates when a transmission path intercepts that link.

I. I NTRODUCTION

We present a method to estimate the endpoints (source and destination) of a data transmission

in a network whose logical topology is unknown. We assume there are a number of asynchronous

sensors placed on some subset of the links in a network. A sensor is activated, and its activation

recorded, whenever the path of a data transmission is intercepted on the link where the sensor

is situated. If multiple sensors are activated by a single transmission, they are not capable

of providing the order in which they were activated. During a preliminary training phase, the

network is probed by transmitting data packets between various pairs of external nodes{(s, d)i},

and the link sensorsp activated by each transmission are recorded. The measurement apparatus

is illustrated on a sample network in Fig. 1.

The resulting data{(s, d, p)i} is processed by the system shown in Fig. 2 so that when a

sensor configurationpx with unknown endpoints (referred to as thesuspect transmission) is

noted, estimates of its source and destination(sx, dx) may be provided.

Some information about the network topology is necessary in order to estimate the endpoints

of the suspect transmission, however the topology of our network is unknown. We use the data
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Fig. 2. Diagram of the transmission endpoint estimation system, assuming internal link sensors have already been
deployed.

obtained in the probing phase to precisely describe the space of feasible topologies by translating

the data into linear constraints that a topology’s adjacency matrix representation must satisfy.

The constraints are in the formQx = b whereQ is a 0-1 matrix,b is an integer vector, andx is

a vectorized version of the 0-1 adjacency matrix. The definition ofQ and b naturally depends

upon whether the network of interest is directed or undirected; both cases are considered. Given

Q andb the computation of feasible solutions to the linear constraint equation is no small task,

in fact it is known to be an NP-Complete problem [1]. We consider the associated minimum

norm problemmin ‖Qx− b‖2
W wherex ∈ {0, 1}n and ‖·‖W is a quadratic norm with respect

to the positive definite matrixW . It is known that combinatorial optimization problems of this

type may be successfully approximated by ’lifting’ them into a higher dimensional matrix space

whereXij = xixj andX ∈ {0, 1}n×n [2].

With the advent of polynomial time interior point methods for linear programming that can

be extended to semidefinite programming [3], [4], it is convenient to consider a semidefinite

programming (SDP) relaxation of the higher dimensional problem. Indeed, SDP relaxations

have proven to be powerful tools for approximating hard combinatorial problems [5], [6], [7],

[8]. The SDP, however, is solved over a continuous domain so it is necessary to retrieve a 0-1
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solution from the possibly fractional SDP solution. One possibility is a branch and bound scheme

whereby certain variables are fixed and the SDP is repeated until a discrete solution is found

[1], [8]. The branch and bound algorithm can take an exponential amount of time, depending

on how tight the desired bound is. A randomized rounding scheme was developed in [6] for

SDP relaxations of the MAXCUT and MAX2SAT problems. This scheme is shown to produce

solutions of expected value at least 0.878 times the optimal value in [6]. We develop an SDP

relaxation of the 0-1 minimum norm problem and apply the randomized rounding method to

produce a number of network topology adjacency matrices{Ai} that approximately satisfy the

linear constraintsQx = b. We derive an expression for the expected value of the squared error

E
[
‖Qx− b‖2

W

]
of samples produced in this way. This expression depends on the solution of

the SDP relaxation, but an upper bound on the error independent of the SDP solution is also

given.

The network topology samples are used in conjunction with prior distributions on endpoints

P (s, d) and topologiesPo(A) to compute a Monte Carlo approximation of the posterior distri-

bution of endpoints given the suspect transmissionP (s, d|px) via Bayes rule. Bayes formula for

this problem essentially reduces to the expected value of a functional of the topologyA; our

approximation of the endpoint posterior thus becomes a weighted averaged of the values of this

functional at each sample topologyAi where the weights are determined by the prior distribution

Po(A). It is readily apparent that this functional requires the conditionalsP (px|s, d, A) for all

s, d andA (the path likelihood functions). We propose a likelihood model for which longer paths

between a specific source/destination are no more likely than shorter paths between the same pair.

Furthermore, instead of normalizing the conditionals over all feasible pathsp, we normalize over

the k-shortest paths, which can be computed in polynomial time using an algorithm described

in [9]. With the posterior distributionP (s, d|px) in hand, we can immediately give the MAP

estimate of(sx, dx) or an a posteriori confidence region of probable source/destination pairs.

The related area of network tomography has recently been a subject of substantial research.

It refers to the use of traffic measurements over parts of a network to infer characteristics of

the complete network. Some characteristics of interest include the following: source/destination
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traffic rates [10], [11], link-level packet delay distributions [12], [13], link loss [14], and link

topology [15], [16]. For an overview of relevant tomography problems for the Internet see [17].

In many applications, the tomography problem is ill posed since data is insufficient to determine

a unique topology or delay distribution.

Our work is related to the internally sensed network tomography application described in [18],

[19]. These works propose a methodology for estimating the topology of a telephone network

using the measurement apparatus illustrated in Fig. 1. The data transmissions are of course

telephone calls and the asynchronous sensors are located on trunk lines. A simple argument in

[19] demonstrates that the number of topologies consistent with the data measured during the

probing phase{(s, d, p)i} is exponential in the number of link sensors. Indeed the problem is

ill-posed as the data required to provide a reasonable estimate of the topology will never be

available in practice. We sidestep the difficulties of developing a single topology estimate by

averaging over many feasible topologies in computing the endpoint posterior distribution of a

suspect transmission.

The solution approach we develop is very general, and we suspect it might have application in

all sorts of networks: including telephone networks as described in [18], ad hoc networks, social

networks, or biological networks [20]. As a provocative example, consider a social network

formed for the purposes of covertly distributing some product (such as weapons technology

or a controlled substance). Here, suppliers of the product would play the role of source nodes

and consumers the role of destination nodes. The link sensors would consist of middlemen

willing to indicate a particular request was processed, but nothing more. The network might be

probed by initiating requests to a specific supplier in the vicinity of a likely consumer. Based on

information from the middlemen, it would be possible to localize likely suppliers and consumers

of a particular transaction using these methods.

The approach described here might also find utility in systems conveniently modeled by graphs,

such as finite state automata. The problem of machine identification is a classic problem in the

theory of automata testing [21], [22]. Here, we are given a black box with an automaton inside

whose transition function is unknown. Based on the response of the system to certain input
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sequences, we wish to reconstruct the transition function. The link to the network topology

recovery aspect of our problem is clear, since a graph provides a convenient representation

for the transition function of interest. The external nodes chosen in the probing phase of our

problem is analagous to the input sequences to the black box automaton. Similarly, link sensors

correspond to events in the automaton’s observable event set. An exhaustive algorithm for solving

this problem is given in [21] and shown to have exponential run time. Our methods might be

adapted to provide a polynomial time approximation algorithm.

The outline of this paper is as follows. We review the problem, describe in detail each

component of the endpoint estimation system (Fig. 2), and analyze its complexity in Section

II. In Section III, we provide some simulations of small power-law random graphs. These are

random graphs whose vertex degrees follow a power law distribution. Such graphs are observed

to occur frequently in natural and synthetic systems [20], [23]. We generate them according

to the configuration model described in [20], [24]. In Section IV we provide some reasonable

extensions of this problem utilizing feedback with the graph edit distance as a metric [25] to

suggest an adaptive system and finally offer some concluding remarks.

II. SOURCE-DESTINATION ESTIMATION AND SYSTEM MODEL

Let G(V, E, f) be a simple graph defined by the vertex setV , edge setE, and incidence

relationf : E → V × V . The adjacency matrixA associated withG is given by

Aij =


1 if ∃e ∈ E andvi, vj ∈ V such thatf(e) = (vi, vj)

0 otherwise
(1)

We allow G to be either directed or undirected; however, it should be known a priori which is

the case. It follows easily that ifG is undirected, thenA is symmetric. In our application,E

defines the set of links in the network topology,V defines the routers or switches connected by

these links, andf determines the pair of routers/switches connected by each link.

A path between verticesu ∈ V andv ∈ V is given byp̃uv ⊆ E, wherep̃uv contains the edges

passed in the path fromu to v. Because the sensors are asynchronous, they are not capable of

providing ordering information. Thus we assume the paths are unordered sets. LetEl ⊆ E be
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the set of edges on which sensors are placed. LetT ⊆ V be the set of external vertices, that is

nodes that can send and/or receive data transmissions.

The purpose of our system is to estimate the source and destination of an activated sensor

setpx corresponding to a transmission whose endpoints are unknown (i.e. suspect transmission).

We utilize a Bayesian framework to produce suitable approximations of the endpoint posterior

distribution:

P (s, d|px) =
∑

A

P (px|s, d, A)P (s, d)∑
s,d P (px|s, d, A)P (s, d)

Po(A) (2)

by assuming the availability of appropriate prior distributions on communicationP (s, d) and net-

work topologyPo(A) and introducing a model for the conditional path probabilitiesP (px|s, d, A)

based on shortest path routing. The posterior in Eq. (2) is approximated by summing over

the argument evaluated at a number of topology samples{Ai}. The solution to a semidefinite

programming relaxation is randomly rounded to produce topology samples that approximately

satisfy linear constraints derived from the measurements obtained in preliminary probing of the

network. With the approximate endpoint posterior distribution in hand, we can provide MAP

estimates of the endpoints(sx, dx) of the suspect transmissionpx and compute appropriate error

measures.

A. Probing the Network

Along the lines of the network tomography paradigm, the probing phase consists of swapping

data transmissions between pairs of external nodes inT and observing which link sensors are

activated in response. LetTs ⊆ T be the set of source nodes from which data transmissions

originate andTd ⊆ T be the set of destination nodes at which data transmissions terminate.

The user supplies a set of source and destination pairs{(s, d)i} wheres ∈ Ts andd ∈ Td. The

probing mechanism passes a data transmission fromsi to di for eachi and notes the sensors

activated by each transmissionpsd ⊆ El. Note that since a sensor may not be on every link in

the network (i.e.El ⊂ E), psd is related top̃sd (the path in the true network) by the following

psd = p̃sd ∩ El (3)
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The probing phase provides the measurements{(s, d, psd)i} that may be used to define the

feasible region of network topologies.

We also allow for errors in the sensor measurements. Suppose that each link sensore ∈ El

has an associated miss probabilityαm(e) = P (e /∈ psd|e ∈ p̃sd) and false alarm probability

αf (e) = P (e ∈ psd|e /∈ p̃sd). In this case, the probing mechanism repeats the data transmission

from si to di N times for eachi. TheseN measurements are used to construct a maximum

likelihood estimatêpsidi
of each pathpsidi

according to the following model. Along the lines of

a generalized likelihood approach, the probing mechanism passes along the maximum likelihood

path estimates for each(s, d)i, given by{(s, d, p̂sd)i}, for use in defining the feasible region of

network topologies.

Define the path indicator vectorνsd whose elements are given byνsd(j) = Ipsd
(ej) for all

j = 1, 2, . . . |El| where IA : A → {0, 1} is the usual indicator function. If we assume sensor

errors are independent across paths and measurements, then the joint probability mass function

of the N observed path vectors for a given source/destination pairνsd
i is

psd

(
νsd

1 , νsd
2 , . . . νsd

N |ν̃sd
)

=
∏N

k=1

∏|El|
j=1 αm(ej)

(1−νsd
k (j))ν̃sd(j)βm(ej)

νsd
k (j)ν̃sd(j) . . .

αf (ej)
νsd

k (j)(1−ν̃sd(j))βf (ej)
(1−νsd

k (j))(1−ν̃sd(j))
(4)

whereβm(e) = 1 − αm(e) andβf (e) = 1 − αf (e). If we define the likelihood functionL(ν̃sd)

as the logarithm of the expression in Eq. (4), then it may be written explicitly as

L(ν̃sd) =
∑|El|

j=1

(
N log βf (ej) +

∑N
k=1 νsd

k (ej) log
αf (ej)

βf (ej)

)
+ . . .∑|El|

j=1

(
N log

αm(ej)

βf (ej)
+
∑N

k=1 νsd
k (ej) log

βm(ej)βf (ej)

αm(ej)αf (ej)

)
ν̃sd(ej)

(5)

Since only the second term in Eq. (5) depends onν̃sd and ν̃sd ∈ {0, 1}|El|, the maximum

likelihood path estimate may be written quite compactly as

p̂sd =

{
ej ∈ El | N log

αm(ej)

βf (ej)
+

N∑
k=1

νsd
k (j) log

βm(ej)βf (ej)

αm(ej)αf (ej)
≥ 0

}
(6)

With these in hand, we proceed to describe the feasible region of topologies.
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B. Describing the Feasible Region of Adjacencies

In order to estimate the endpoints of a suspect transmission, it is necessary to have some idea

of the logical topology of the network. Instead of considering the logical adjacencies implied by

the actual networkG(V, E, f), we are concerned with adjacency relationships corresponding to

only those elements utilized in the probing phase. For example, we cannot hope to pinpoint the

position of a linke in the original network that is not monitored by a sensor (i.e.e ∈ E −El),

nor can we locate a link whose sensor was not activated by any data transmission in the probing

phase. To capture this notion, we define the set ofidentifiable edgesEI as the set of edges

whose sensors are activated by at least one data transmission during probing:

EI = {e ∈ El | e ∈ psidi
for somei} (7)

Note that in Eq. (7) and throughout, if sensor errors are an issue, replacepsd with its maximum

likelihood estimatêpsd as described in the previous section. The particular topology we wish to

describe is then given byGA(VA, EA) whereVA = EI ∪ T and EA ⊆ VA × VA. GA may be

directed or undirected, depending upon the nature ofG.

We assume non-identifiable edges are essentially ’collapsed’ in the original networkG. This

is done by recursively assigningvi the value ofvj for all (vi, vj) ∈ V such that(vi, vj) = f(e)

for somee ∈ E − EI and vi /∈ f(e) for any e ∈ EI . The idea here is to assure two elements

are logically adjacent inG even if they are physically separated by a link (or subgraph of links)

that is not identifiable. Under this assumption, we now define what the adjacency relationships

in GA mean with regard to the original networkG.

Consider first the case whenG is undirected. Two edges are adjacent if they share a common

endpoint vertex, that ise1 ∈ EI ∩ VA is adjacent toe2 ∈ EI ∩ VA if f(e1)∩ f(e2) 6= φ. An edge

and an external vertex are adjacent if the external vertex serves as one endpoint of the edge,

that is e ∈ EI ∩ VA is adjacent tov ∈ T ∩ VA if v ∈ f(e). Two external vertices may not be

adjacent since there must be at least one link between them.

Consider now the case whenG is directed. Here we must be careful about order:x is adjacent

to y meansx can reachy when traversing the graph in the allowed direction. Edgee1 is adjacent
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to edgee2 if the incoming endpoint ofe1 is the outgoing endpoint ofe2, that ise1 ∈ EI ∩VA is

adjacent toe2 ∈ EI ∩ VA if f(e1)2 = f(e2)1. Edgee is adjacent to external vertexv if v is the

incoming endpoint ofe, that ise ∈ EI ∩ VA is adjacent tov ∈ T ∩ VA if v = f(e)2. External

vertexv is adjacent to edgee if v is the outgoing endpoint ofe, that isv ∈ T ∩ VA is adjacent

to e ∈ EI ∩ VA if v = f(e)1. As before, two external vertices may not be adjacent.

We explicitly constrain the adjacency matrixA of the graphGA based on the probing data

{(s, d, psd)i}. In addition to the implications of the above discussion, there are zeros along

the diagonal ofA; this leads to at most|EI |2 + |EI |(2|T | − 1) unknown 0-1 variables to be

determined (this quantity is cut in half for undirected graphs thanks to symmetry). In developing

the constraints, we assume that no cycles occur in any of the measured paths. If the paths were

ordered, it would be a straightforward exercise to write down adjacency relationships among

elements in the path under this assumption. Because the measured pathspsd are unordered, we

cannot say precisely which elements are adjacent; we can only say that each element in the path

must be adjacent to some other element(s) in the path.

Consider first the undirected case. Under the no cycle assumption, each measured pathpsd

implies the following: eache ∈ psd must be adjacent to exactly two elements from the set

{psd − e ∪ {s, d}}, s ∈ Ts must be adjacent to one element frompsd, and d ∈ Td must be

adjacent to one element frompsd. These are restated as linear constraints on the adjacency

matrix A in Eq. (8). ∑
{j|vj∈psd−ei∪{s,d}}

Aij = 2 for all ei ∈ psd∑
{j|vj∈psd}

Aisj = 1∑
{j|vj∈psd}

Aidj = 1

(8)

An undirected graph also has a symmetric adjacency matrix, i.e.Aij = Aji for all i, j. Thus we

can solve for the upper half of the adjacency matrix only and the lower half is automatically

determined. This reduces the number of variables to1
2
(|EI |2 + |EI |(2|T | − 1)). If vj in any

of the index sets in Eq. (8) hasj > i then we simply replace thatvj with vi where i is the

corresponding element in the upper half ofA.
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The constraints on the adjacency matrix of a directed graph follow similarly from the no cycle

assumption: one element from{psd − e ∪ {s}} must be adjacent to eache ∈ psd, eache ∈ psd

must be adjacent to one element from{psd − e ∪ {d}}, s ∈ Ts must be adjacent to one element

from psd, and one element frompsd must be adjacent tod ∈ Td. These are given in Eq. (9) as

constraints on the directed adjacency matrixA.

∑
{i|vi∈psd−ej∪{s}}

Aij = 1 for all ej ∈ psd∑
{j|vj∈psd−ei∪{d}}

Aij = 1 for all ei ∈ psd∑
{j|vj∈psd}

Aisj = 1∑
{i|vi∈psd}

Aijd
= 1

(9)

We therefore have|psd|+ 2 linear constraints on an undirected adjacency matrix or2|psd|+ 2

linear constraints on a directed adjacency matrix implied by each(s, d, psd) measurement. All

constraints may be collected into a single system, so that the feasible region of network topologies

GA is given by{x|Qx = b} wherex is a vectorized version of the adjacency matrix ofGA and

Q, b are defined by the appropriate constraints.

C. Sampling the Feasible Region of Adjacencies

It is necessary to sample adjacency matrices from the feasible region defined in the previous

section. This amounts to finding several solutions to the problem

find x ∈ {0, 1}n

such thatQx = b
(10)

Unfortunately, the problem in Eq. (10) is NP-complete [26]. We consider an equivalent restate-

ment of Eq. (10)

minimize (Qx− b)T W (Qx− b)

such thatx ∈ {0, 1}n
(11)

whereW is a (symmetric) positive definite matrix that may be chosen to emphasize the relative

importance of the different constraints. Obviously any optimal solution of the problem in Eq.
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(11) with zero value solves the feasibility problem in Eq. (10). The problem in Eq. (11) is no

easier than the original statement, however, it has been shown that problems of this type (0-1

quadratic programs) can be approximated quite well using a semidefinite relaxation [7].

We now proceed to derive the SDP relaxation of Eq. (11). Our relaxation is similar to the one

derived in [6] for MAX2SAT. First note that the optimization in Eq. (11) is equivalent to

minimize xT Dx− 2dT x

such thatx ∈ {0, 1}n
(12)

whereD = QT WQ andd = QT Wb. This is easily seen by expanding the objective in Eq. (11)

and dropping the constant term. Now note thatx2
i = xi sincexi ∈ {0, 1}; this fact this allows

Eq. (12) to be re-expressed as

minimize
∑

i,j Dijxixj − 2
∑

j djx
2
j

such thatx ∈ {0, 1}n
(13)

We now introduce variablesyi ∈ {−1, 1} for eachxi ∈ {0, 1} for i = 1 . . . N along with an

additionalyn+1 ∈ {−1, 1} so that the change of variables is given by

xi =
1

2
(1 + yn+1yi) (14)

The identities in Eq. (15) follow from this change of variables.

xixj = 1
4
[(1 + yiyj) + (1 + yn+1yi) + (1 + yn+1yj)− 2]

−xixj = 1
4
[(1− yiyj) + (1− yn+1yi) + (1− yn+1yj)− 4]

(15)

If we introduce a negative sign in the objective, then the optimization in Eq. (13) becomes

maximize 1
4

∑
i,j [Bij(1 + yiyj) + Cij(1− yiyj)]− eT De

such thaty ∈ {−1, 1}n+1
(16)
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wheree is a vector of ones and matricesB, C are given by

B =

 0 2d

2dT 0


C =

 D De

(De)T 0

 (17)

In order to obtain a semidefinite program, define the matrixY = yyT . It is simple to show

that Y = yyT for some vectory if and only if Y � 0 (i.e. Y is positive semidefinite) and

rank(Y ) = 1. We drop the nonconvex rank-1 constraint to obtain the SDP relaxation

maximizeTr [(B − C)Y ]

such that
diag(Y ) = e

Y � 0

(18)

whereTr[·] indicates the trace operation and the constraintdiag(Y ) = e is added to enforce

y2
i = 1. The equivalence of the objective functions in Eq. (18) and Eq. (16) can be seen

easily by replacingyiyj with Yij and dropping constant terms. The SDP in Eq. (18) may be

solved in polynomial time using a primal-dual path following algorithm [4]. The result of this

optimization Y ∗ will in general be a non-integer symmetric positive semidefinite matrix. In

[6], a randomized rounding methodology is proposed to recover a -1,1 vectory from the SDP

solutionY ∗. The strategy is to first perform the Cholesky factorizationY ∗ = Ṽ T Ṽ , then choose

a random hyperplane through the origin with normal vectorr. The value ofyi is then determined

by whether the corresponding columnṽi of Ṽ lies above or below the hyperplane, i.e.yi = 1 if

vT
i r ≥ 0 andyi = −1 if vT

i r < 0.

A direct application of the method in [6] provides a means for generatingM approximate

samples from the feasible region of network topologies. Simply generateM vectors{rk}M
k=1

from the uniform distribution on the setSn = {x ∈ Rn+1|xT x = 1}. The ith element of thekth
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vectorized adjacency samplêx is then given by

x̂k
i =


1 if sign(vT

i rk) = sign(vT
n+1r

k)

0 if sign(vT
i rk) 6= sign(vT

n+1r
k)

(19)

This result can be seen by applying the rounding method and then using the change of variable

formula given in Eq. (14).

We now proceed to derive the mean squared errorE
[
‖Qx̂− b‖2

W

]
of the sample adjacency

in Eq. (19). First note that the rounding scheme used implies the following identities.

E[1 + yiyj] = 2P
(
sign(vT

i r) = sign(vT
j r)
)

E[1− yiyj] = 2P
(
sign(vT

i r) 6= sign(vT
j r)
) (20)

wherer is a random vector from the uniform distribution onSn = {x ∈ Rn+1|xT x = 1}. We may

evaluate the probabilities in Eq. (20) quite easily via the observation in [6]. Note that symmetry

of the distribution impliesP
(
sign(vT

i r) 6= sign(vT
j r)
)

= 2P
(
vT

i r ≥ 0, vT
j r < 0

)
. And if θ =

arccos(vT
i vj) is the angle between the vectorsvi andvj then it followsP

(
vT

i r ≥ 0, vT
j r < 0

)
=

θ
2π

since the distribution ofr is uniform on Sn. A similar argument applies to the case of

matching sign. The results are summarized below.

P
(
sign(vT

i r) = sign(vT
j r)
)

= 1− 1
π

arccos(vT
i vj)

P
(
sign(vT

i r) 6= sign(vT
j r)
)

= 1
π

arccos(vT
i vj)

(21)

If we define the matrixZ such thatZij = arccos(Y ∗
ij) whereY ∗ is the solution of the SDP

relaxation in Eq. (18) and note that the objective function in Eq. (16) is exactly equal tobT Wb−

‖Qx̂− b‖2
W , then we may take the expectation of the objective in Eq. (16) and apply the identities

in Eqs. (20) and (21) to obtain the mean squared error as

E
[
‖Qx̂− b‖2

W

]
= ‖Qe− b‖2

W − 1

2π
Tr [(C −B)Z] (22)

wheree is a vector of ones.

We may obtain a bound on the expected value of the squared error in Eq. (22) independent



15

of the solution to the SDP. As in [6], define the constantα

α = min
z∈[0,π]

2

π

z

1− cos z
(23)

From this definition ofα, the following identities follow immediately

1
2
α(1 + cos z) ≤ 1− 1

π
z

1
2
α(1− cos z) ≤ 1

π
z

(24)

We take the expected value of the objective function in Eq. (16) and apply the identities in Eq.

(24) with Zij = arccos(Y ∗
ij) to give

bT Wb− E
[
‖Qx̂− b‖2

W

]
≥ α

1

4

(∑
i,j

[Bij + Cij] + Tr [(B − C)Y ∗]

)
− eT De (25)

Now suppose the equationQx = b has at least one feasible solutionx0. Let y0 be the

corresponding -1,1 vector andY 0 = y0(y0)T . We then have

0 =
∥∥Qx0 − b

∥∥2

W
= eT De + bT Wb− 1

4

(∑
i,j

[Bij + Cij] + Tr
[
(B − C)Y 0

])
(26)

But sinceY ∗ solves the SDP in Eq. (18), it follows

Tr [(B − C)Y ∗] ≥ Tr
[
(B − C)Y 0

]
= 4eT De + 4bT Wb−

∑
i,j

[Bij + Cij] (27)

We may now combine the inequalities in Eqs. (25) and (27) and rearrange to obtain a bound on

the expected value of the squared error that is independent of the SDP solution

E
[
‖Qx̂− b‖2

W

]
≤ (1− α)

(
eT De + bT Wb

)
(28)

In practice, the bound in Eq. (28) tends to exceed the true expected value in Eq. (22) by a large

amount. However, it is of theoretical interest; sinceD = QT WQ, this bound indicates that the

total weighted constraint violation of topology samples will tend to increase with the average

path length and number of constraints. If the weighted sample error is undesirably large, a naive

fix is to simply subsample (i.e. take, say, every ten adjacency samples and discard the rest).



16

We will return to this issue later and suggest some other fixes, since large errors in the SDP

generated adjacency samples is a major obstacle to applying this method to ever larger networks.

With the adjacency matrix samples in hand, we proceed to approximate the endpoint posterior

of a suspect transmission.

D. Approximating the Endpoint Posterior of a Suspect Transmission

We use the network topology adjacency samples obtained in the previous section to derive an

approximate endpoint posterior distribution of a suspect transmission (that is a data transmission

whose source and destination are unknown). Letpx ⊆ EI be the set of identifiable link sensors

activated by the suspect transmission. LetPo(A) be a prior distribution on the adjacency matrices

of the derived topologyGA. Recall from Section II-B, thatGA is the logical topology describing

the connections among identifiable edges and external vertices in the original networkG. Indeed,

it is no small task to determine a prior distribution on the derived topologyGA given a prior

on the original network topologyG, since an infinite number of topologiesG might correspond

to the sameGA. Let P (s, d) be a prior distribution that indicates the probability a particular

source node will communicate with a particular destination node. We assume these probabilities

are independent of the network topologyA, thusP (s, d|A) = P (s, d). Under this assumption,

Bayes rule may be used to write the endpoint posteriorP (s, d|px) as

P (s, d|px) =
∑

A

P (px|s, d, A)P (s, d)∑
s,d P (px|s, d, A)P (s, d)

Po(A) (29)

Definefpx,sd(A) as in Eq. (30).

fpx,sd(A) =
P (px|s, d, A)P (s, d)∑
s,d P (px|s, d, A)P (s, d)

(30)

It is then clear that the endpoint posterior in Eq. (29) may be re-expressed as

P (s, d|px) = E [fpx,sd(A)] (31)
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Thus the strong law of large numbers suggests a Monte Carlo estimate of the endpoint posterior

using the topology adjacency matrix samples{Ai}M
i=1 given by

P̂ (s, d|px) =
1∑M

i=1 Po(Ai)

M∑
i=1

fpx,sd(Ai)Po(Ai) (32)

The estimate in Eq. (32) is reasonable provided we can compute the value of the function in

Eq. (30) for each topology sampleAi. We require a model for the conditional path probabilities

P (p|s, d, A) for this computation. Clearly, the routing mechanism used in the network should

figure prominently into any such model. We propose a model based on shortest path routing.

Let Psd|A be the set of all paths (of finite length) from sources to destinationd in the

topology A. Let w : R+ → R+ be a nonincreasing function on the positive reals. We then

proposeP (p|s, d, A) as

P (p|s, d, A) =
1

γK
sd|A

w

 |p|
min |p̃|
p̃∈Psd|A

 IPsd|A(p) (33)

where IA : A → {0, 1} is the indicator function andγK
sd|A is a normalization constant. The

formula in Eq. (33) essentially ensures longer paths are no more probable than shorter paths and

that invalid paths have probability zero. Note that the measured pathsp are unordered, so we

sayp ∈ Psd|A if there exists an ordering ofp given bypo such thatpo ∈ Psd|A.

In order to compute the normalization constantγK
sd|A in Eq. (33), we must sumw

(
|p|

min |p̃|
p̃∈Psd|A

)
over allp ∈ Psd|A, which generally requires too much computational effort. Instead, we normalize

just over the setPK
sd|A ⊆ Psd|A consisting of theK shortest loopless paths betweens andd in

the network topologyA. This set can be computed inO(Kn3) time for a network withn nodes

using an algorithm described in [9]. The normalization is thus

γK
sd|A =

∑
p∈P K

sd|A

w

 |p|
min |p̃|
p̃∈Psd|A

 (34)

We now have all of the necessary ingredients to compute the endpoint posterior distribution

estimate given in Eq. (32).
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E. Estimating the Endpoints of a Suspect Transmission

We may give maximum a posteriori (MAP) estimates of the endpoints(sx, dx) of a suspect

transmissionpx after computing the posterior distribution estimate in Eq. (32). Indeed, the MAP

estimate is simply given by

(ŝx, d̂x) = arg max
(s,d)

P̂ (s, d|px) (35)

MAP estimates ofsx or dx individually are given by maximizing the appropriate marginal

P (s|px) or P (d|px) respectively.

We use as an error measure the ratioΛsd(px) below for the estimated endpoints(sx, dx).

Λsd(px) =

max
(s,d)

P̂ (s, d|px)

max
(s,d)

P̂ (s, d|px) + max
(s,d) 6=(ŝx,d̂x)

P̂ (s, d|px)
(36)

It is also useful to compute the corresponding ratios associated with the marginalized distributions

Λs(px) and Λd(px), as it may be the case that either the source or destination of a suspect

transmission is more accurately determined individually than are both collectively. These are

given by

Λs(px) =
max

s
P̂ (s|px)

max
s

P̂ (s|px) + max
s 6=ŝx

P̂ (s|px)
(37)

Λd(px) =
max

d
P̂ (d|px)

max
d

P̂ (d|px) + max
d6=d̂x

P̂ (d|px)
(38)

It is clear that the ratios in Eqs. (36), (37), and (38) must lie in the interval[1
2
, 1]. Larger values

of these ratios in a sense indicate more ’confidence’ in the associated MAP estimates since

a value of 1 is achieved only when all of the mass of the estimated posterior distribtution is

concentrated at the MAP estimate.

F. Algorithm Complexity

We now analyze the complexity of the source/destination estimation scheme developed here

and show that producing the topology samples is the most computationally demanding step.
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Complexity results are given in terms of the number of(s, d) pairs used in the probing phase–let

n denote this number. We assume the number of hopsh required for a message to reach its

destination starting from the source remains constant with increased problem size. Note this is

a reasonable assumption for real networks due to the well knownsmall worldeffect [27], [20].

First consider the size of a problem withn (s, d) pairs used in probing. Since the number

of external nodes|T | satisfies|T | ≤ 2n and the number of identifiable edges|EI | satisfies

|EI | ≤ hn we have both of these values areO(n). Thus, the number of 0-1 variables associated

with the adjacency matrix ofGA(EI ∪ T, EA) is O(n2) (recall the number of such variables is

proportional to|EI |2 + |EI |(2|T | − 1)).

We use the SDP relaxation in Eq. (18) to produce sample topologies that are approximately

consistent with the probing measurements. Typically interior point methods are used to solve

SDP’s to within ε of the optimal solution. These are based on Newton’s method; therefore at

each iteration it is necessary to solve a linear system of equations for the Newton directions

(O(m3) for a system of sizem). An algorithm given in [28] is shown to takeO(| log ε|
√

m)

iterations for a problem of sizem–this performance is typical for all interior point algorithms.

Our problem has dimensionO(n2), thus solving the SDP takesO((n2)3.5) or O(n7) time. A

Cholesky factorization is then performed on the SDP solution, which takesO((n2)3) or O(n6)

time. The topology samples are then produced by generatingM random vectors and taking inner

products. The time required for each inner product is linear in the size of the problem; it follows

that this step takesO(n2) time.

In order to compute the approximate posterior distribution in Eq. (32), we must evaluate the

functionalfpx,sd in Eq. (30) at each topology sampleAi. The only costly step here is comput-

ing the shortest path(s) needed for the path likelihood model in Eq. (33). We are computing

shortest paths inGA(EI ∪ T,EA), which hasO(n) nodes; thus it takesO(n3) time to compute

P (px|s, d, A) for each topology sampleAi using the algorithm in Eq. ([9]). Computation offps,sd

requiresP (px|s, d, A) for all n (s, d) pairs. We then haveO(n4) time required for computing

the approximate endpoint posteriors once the samples{Ai} are provided. Note that this can be

reduced toO(n) time if the functionw in Eq. (33) is taken as a constant since the normalization
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A B C

Fig. 3. Example 20-node power law random graphs with parametera = 1.3 (as in Eq. (39). The method is
illustrated by simulating on topologies of this type. We assume in one case that sensors are placed on 100% of
the links (100% sensor coverage) and in another that sensors are placed on not fewer than 75% of the links (75%
sensor coverage). 12 of the 20 nodes are selected as external nodesT : 6 of these are taken as sourcesTs and 6
are taken as destinationsTd. 18 of the 36 distinct(s, d) pairs are randomly selected for use in the probing phase,
denotedL. The remaining 18 pairs are denotedLc. During the test phase suspect transmissions are passed between
all 36 possible(s, d) pairs. Shortest path routing is used to determine the transmission path.

factorsγK
sd|A cancel out in Eq. (30) and therefore do not need to be computed.

Our algorithm would benefit greatly from speedy SDP algorithms as solving the SDP relaxation

takes the most timeO(n7). A parallel implementation of an interior point algorithm for SDP’s

might reduce the time requirements if multiple processors are available [29].

III. S IMULATIONS

We performed some numerical simulations to demonstrate the utility of the method described

in this paper. We used 20-node power law random graphs for the networks to be monitored.

Each 20-node graph is generated by choosing a degree valueki for each node from the power

law distribution given by

P (k) =


k−a

ζ(a)
if k ≥ 1

0 otherwise
(39)

with parametera selected to be1.3 andζ is the Riemann zeta function. Theith vertex is given

ki partial edges, and then pairs of partial edges are selected at random to connect and form

an edge. This method for generating a random graph with specified vertex degree distribution

is referred to as the configuration model [20]. We slightly modified the method to prohibit

multiple connections between a single pair of vertices. Also, we rejected disconnected graphs.

Some example 20-node power law random graphs with parametera = 1.3 are given in Fig. 3.
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After generating a sample network, we randomly selected 6 source nodesTs and 6 destination

nodesTd. 18 of the 36 distinct source/destination pairs were then chosen at random fromTs×Td

for use in the probing phase; this set of pairs is denoted byL ⊂ Ts × Td. The remaining 18

pairs in Ts × Td are denotedLc = (Ts × Td) − L. We used shortest path routing to determine

which sensors were activated by each of the 18 data transmissions inL during the probing

simulation. Sensors were assumed to be perfectly accurate. We considered two situations for

sensor placement. First, we assumed sensors were present on every edge in the graph (i.e. 100%

sensor coverage); then we placed sensors on a random subset containing not fewer than 75%

of the edges (i.e. 75 % sensor coverage). The number of identifiable edges|EI | was noted for

each graph.

We described the feasible region and formulated the semidefinite programming relaxation in

Eq. (18) with the weight matrixW taken as the identity. The relaxation was solved with a

predictor-corrector path following algorithm given in [4]. A publicly available C implementation

of this algorithm was used [30]. The randomized rounding method was applied to the solution

of the SDP relaxation to produce 100 sample adjacencies. The average squared sample error

1
M

∑
k

∥∥Qx̂k − b
∥∥2

and theoretical mean squared errorE
[
‖Qx̂− b‖2] of Eq. (22) were noted

for each graph.

Suspect transmissions were then generated using each of the 36(s, d) pairs fromTs × Td as

endpoints by noting the identifiable edges passed in the shortest path routes. Note that shortest

path routing is consistent with the likelihood model given in Eq. (33). These transmissions

were identified as being between(s, d) pairs in eitherL or Lc. Paths that did not intercept any

identifiable sensors were excluded; thus we denote byLI ⊆ L the set of(s, d) pairs used in

probing whose transmission activated at least one identifiable sensor. SimilarlyLc
I ⊆ Lc is the set

of (s, d) pairs not used in probing whose transmission activated at least one identifiable sensor.

Note that for 100% sensor coverage,|LI | = 18 always but|Lc
I | may be less than 18. For 75%

sensor coverage both|LI | and |Lc
I | may be less than 18.

For each suspect transmission, we computed the approximate posterior distributionP̂ (s, d|px)

with uniform distributions for both of the priorsPo(A) and P (s, d). Also, a weight function
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A B

Fig. 4. Example endpoint posterior distributionP (s, d|px) for a suspect transmissionpx with endpoints(sx, dx) ∈
LI . In plot A, the probabilities are grouped by source, with each of 6 bars in a group corresponding to a different
destination (noted above the individual bar). Plot B displays the same information except probabilities are grouped by
destination with source number noted above each individual bar. The largest and second largest values of the posterior
are indicated–it is these values that are used in computing theΛ-ratio of Eq. (36), calculated asΛsd(px) = 0.655.
It is clear in this example that the endpoints of this transmission (source number 5 and destination number 6) will
be correctly estimated by the collective MAP estimate.

of w(x) = 1 was used in computation of the conditional path probabilitiesP (p|s, d, A) so that

the normalization constantsγK
sd|A cancelled out. From these, we computed the MAP estimates

collectively using the joint distribution̂P (s, d|px) and individually using the appropriate marginal

P̂ (s|px) or P̂ (d|px). We noted average values of each of theΛ-ratios in Eqs. (36), (37), and

(38) averaged separately over setsLI and Lc
I for each graph. An example endpoint posterior

distribution for a suspect path with endpoints inLI is shown in Fig. 4. The marginals of this

distribution are shown in Fig. 5.

We repeated the simulation procedure for 30 undirected power law random networks and

recorded the values of interest. Table I shows the number of identifiable edges, fraction of the

total number of edges that are identifiable, cardinality of the setLc
I , and topology sample error

data for undirected graphs with 100% sensor coverage. Table II gives the same data along with

the cardinality of the setLI for undirected graphs with 75% sensor coverage (note that|LI | = 18

always for graphs with 100% sensor coverage).

It is apparent that the theoretical expected value of the squared error, and accordingly the

average squared sample error, tend to be lower for graphs with 75% sensor coverage. This is
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A B

Fig. 5. Marginal distributions (P (s|px) in A and P (d|px) in B) associated with the example endpoint posterior
distribution shown in Fig. 4. The largest and second largest values of the marginal posteriors are indicated–it is
these values that are used in computing theΛ-ratios of Eqs. (37) and (38), calculated asΛs(px) = 0.663 and
Λd(px) = 0.666. It is clear in this example that the endpoints of this transmission (source number 5 and destination
number 6) will be correctly estimated by the individual MAP estimates as well.

consistent with our earlier comments (see section II-C) since these graphs would tend to have

shorter path lengths, simply because there are fewer identifiable edges. However, fewer suspect

transmissions actually intercept any of our sensors in the 75% coverage case (indicated by smaller

values of|LI | and |Lc
I |).

Plots of proportion of endpoint estimates correct for a given set (LI or Lc
I) versus the ratios

from Eqs. (36)-(38) averaged over the corresponding set for the undirected graphs with 100%

sensor coverage are shown in Fig. 6. Corresponding plots for the undirected graphs with 75%

sensor coverage are shown in Fig. 7. Plots are shown for collective estimates of(sx, dx) via the

joint distribution as well as for individual estimates ofsx anddx from the marginals.

In Figs. 6 and 7, we observe an approximately linear relation between the proportion of correct

estimates and the appropriateΛ ratio when theΛ ratio exceeds 0.58 and 0.60 respectively. In this

regime, theΛ ratio might be used as a measure of confidence in the endpoint estimates. Also

note that transmissions in setLI tend to have higherΛ ratios (and are correct more often) than

those in setLc
I because it is the transmissions in setLI (those with endpoints used in probing)

that actually determine the constraints from which the topology samples are generated. Note

that the data in setLc
I often has incorrect joint estimation of source and destination, however,
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Graph |EI | |EI |
|E| |Lc

I | 1
M

∑
k

∥∥Qx̂k − b
∥∥2

E
[
‖Qx̂− b‖2]

1 18 0.35 16 7.28 6.97
2 18 0.33 14 0.1 0.07
3 19 0.40 16 1.8 1.79
4 19 0.33 16 4.2 4.35
5 18 0.42 16 2.2 2.42
6 19 0.32 15 3.24 3.16
7 20 0.42 15 2.5 2.36
8 19 0.40 16 0.04 0.13
9 17 0.37 15 0.24 0.24
10 18 0.31 13 2.14 2.00
11 22 0.45 18 11.28 10.84
12 18 0.45 18 3.34 3.43
13 17 0.31 14 2.16 1.65
14 18 0.24 10 0.08 0.05
15 19 0.22 10 0.06 0.05
16 17 0.35 14 0.06 0.08
17 20 0.31 18 0.22 0.29
18 19 0.31 10 0 0.01
19 17 0.45 16 0.34 0.32
20 20 0.36 17 5.5 5.18
21 19 0.49 18 16.36 16.93
22 23 0.59 14 12.22 12.86
23 21 0.43 15 8.14 8.60
24 21 0.41 17 0.02 0.14
25 23 0.40 17 8.84 8.86
26 21 0.49 15 11.74 11.47
27 17 0.50 18 0.34 0.39
28 14 0.24 12 0 0.01
29 20 0.38 14 8.3 8.39
30 22 0.48 15 3.64 3.77

TABLE I

SIMULATION RESULTS FOR THE UNDIRECTED GRAPHS WITH100%SENSOR COVERAGE. |EI | IS THE NUMBER

OF IDENTIFIABLE EDGES(THOSE ACTIVATED DURING PROBING), |E| IS THE TOTAL NUMBER OF EDGES IN THE

NETWORK, AND |Lc
I | IS THE NUMBER OF(s, d) PAIRS NOT USED IN PROBING WHOSE TRANSMISSION

ACTIVATED AT LEAST ONE IDENTIFIABLE SENSOR–HERE |LI | = 18 AS THERE IS100%SENSOR COVERAGE.
|Lc

I | TENDS TO BE SMALLER WHEN A SMALLER FRACTION OF THE EDGES ARE IDENTIFIABLE, AS EXPECTED.
NOTE ALSO THAT THE SAMPLE AND ENSEMBLE MEANS FOR THE TOPOLOGY SAMPLEŜx AGREE QUITE WELL.

THE SAMPLE MEAN IS COMPUTED OVER100 SAMPLES.



25

Graph |EI | |EI |
|E| |LI | |Lc

I | 1
M

∑
k

∥∥Qx̂k − b
∥∥2

E
[
‖Qx̂− b‖2]

1 15 0.29 17 14 6.82 7.21
2 12 0.32 13 13 0.46 0.12
3 16 0.25 17 9 0.12 0.08
4 13 0.20 17 11 0 0.00
5 18 0.37 18 16 0 0.00
6 13 0.19 15 10 0.12 0.11
7 16 0.44 16 16 3.5 3.55
8 13 0.29 18 18 0.04 0.07
9 16 0.39 17 11 3.74 3.40
10 16 0.25 14 10 5.1 5.12
11 14 0.30 17 14 0.1 0.12
12 17 0.39 18 16 0.16 0.11
13 16 0.32 15 10 0.04 0.12
14 19 0.51 18 15 16.88 15.89
15 15 0.42 14 14 1.6 1.79
16 14 0.37 16 13 0.16 0.15
17 13 0.31 17 17 0.3 0.28
18 18 0.38 18 16 3.86 3.50
19 16 0.43 15 18 4.26 4.25
20 19 0.25 18 14 0.12 0.17
21 13 0.21 14 9 0.16 0.12
22 14 0.29 18 13 0.5 0.27
23 18 0.27 17 15 1.86 1.93
24 14 0.21 16 13 0 0.01
25 14 0.23 18 10 0.02 0.03
26 19 0.44 18 14 5.36 5.42
27 16 0.31 16 12 0.64 0.47
28 19 0.35 18 14 2.3 2.10
29 12 0.24 16 11 0.04 0.06
30 15 0.39 15 14 2.06 1.97

TABLE II

SIMULATION RESULTS FOR THE UNDIRECTED GRAPHS WITH75% SENSOR COVERAGE. |EI | IS THE NUMBER OF

IDENTIFIABLE EDGES (THOSE ACTIVATED DURING PROBING), |E| IS THE TOTAL NUMBER OF EDGES IN THE

NETWORK, |LI | IS THE NUMBER OF(s, d) PAIRS USED IN PROBING WHOSE TRANSMISSION ACTIVATED AT

LEAST ONE IDENTIFIABLE SENSOR, AND |Lc
I | IS THE NUMBER OF PAIRS NOT USED IN PROBING WHOSE

TRANSMISSION ACTIVATED AT LEAST ONE IDENTIFIABLE SENSOR. |Lc
I | TENDS TO BE SMALLER WHEN A

SMALLER FRACTION OF THE EDGES ARE IDENTIFIABLE, AS EXPECTED. NOTE ALSO THAT THE SAMPLE AND

ENSEMBLE MEANS FOR THE TOPOLOGY SAMPLEŜx AGREE QUITE WELL. THE SAMPLE MEAN IS COMPUTED

OVER 100 SAMPLES.
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B

C

Fig. 6. Plots of proportion of endpoint estimates correct for a given set (LI or Lc
I ) versus the ratios from Eqs.

(36)-(38) averaged over the corresponding set for the undirected graphs with 100% sensor coverage. Circles indicate
averages over paths from setLI and pentagrams indicate averages over paths from setLc

I . Plot A is for collective
estimation of(sx, dx) from joint distributionP (s, d|px); the ratio from Eq. (36) is used. Plot B is for individual
estimation ofsx from marginal distributionP (s|px); the ratio from Eq. (37) is used. Plot C is for individual
estimation ofdx from marginal distributionP (d|px); the ratio from Eq. (38) is used. Some reference lines are
also plotted. The chance line for randomly selecting endpoints is drawn in each plot (1/36 for collective estimation
and 1/6 for individual estimation). Note that aboveΛ(px) = 0.58, an approximately linear behavior is observed.
This behavior is somewhat washed out for the marginalized estimates, however marginalizing tends to increase the
percent of correct estimates.
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C

Fig. 7. Plots of proportion of endpoint estimates correct for a given set (O or N ) versus the ratios from Eqs.
(36)-(38) averaged over the corresponding set for the undirected graphs with 75% sensor coverage. Circles indicate
averages over paths from setO and pentagrams indicate averages over paths from setN . Plot A is for collective
estimation of(sx, dx) from joint distributionP (s, d|px); the ratio from Eq. (36) is used. Plot B is for individual
estimation ofsx from marginal distributionP (s|px); the ratio from Eq. (37) is used. Plot C is for individual
estimation ofdx from marginal distributionP (d|px); the ratio from Eq. (38) is used. Some reference lines are also
plotted. The chance line for randomly selecting endpoints is drawn in each plot (1/36 for collective estimation and
1/6 for individual estimation). Note that aboveΛ(px) = 0.60, an approximately linear behavior is observed. As with
100% coverage, this behavior is not as clear for the marginalized estimates, however marginalizing often increases
the percent of correct estimates. It is not surprising that there appears to be some degradation in the quality of the
estimates when only 75% of the links are equipped with sensors.
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marginalized estimates of each of these individually tends to be better. Marginalization certainly

blurs the linear relation in the higher confidence regime. We also observe some degradation in

the quality of the estimates when only 75% of the links are equipped with sensors; this is to

be expected though. Recall that these results are obtained with completely random placement of

sensors and random choices for the(s, d) pairs to use in the probing phase. These two factors

will clearly affect the estimates of suspect transmission endpoints, and therefore provide an

interesting direction for future work.

IV. SUMMARY AND EXTENSIONS

In this paper, we have developed a methodology for estimating the endpoints of a suspect

transmission in a network using link-level transmission interceptions. It is possible to envision

applications of the method in all sorts of networks, or systems with key features modeled by

networks. We have displayed simulations of its utility on some power law random graphs. We

now discuss some possibilities for future work on this problem.

A key ingredient of the method is the network topology samples provided by rounding the

solution to the semidefinite program. There are some computational scaling issues associated

with this approach. As mentioned previously, the quality of the topology samples (as measured

by the weighted error in Eq. (11)) tends to degrade for larger problems. Also, the computational

effort necessary to solve the SDP relaxation isO(n7) for n (s, d) probing pairs and therefore

may be prohibitive for large problems.

If it is possible to identify loosely connected clusters in the network based on the probing

measurementspsd, then one might remedy the scaling problem by solving several smaller SDP’s

to generate topology samples for each cluster. After mapping each cluster, a final SDP may be

solved to determine how they are connected (hopefully this too would be small compared to

the SDP generated by constraints on the network as a whole). At this point, it is not clear how

one might identify such clusters in general. SupposeEc ⊂ El and Tc ⊂ T represent the links

and external nodes (respectively) belonging to one particular cluster. Then for allu, v ∈ Tc it is

likely the case thatpuv ⊆ Ec, i.e. the path between nodes in a cluster does not leave the cluster.
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Fig. 8. Diagram of the adaptive transmission endpoint estimation system with feedback of new(s, d) pairs to
probe.

This observation might be a useful certificate for the existence of such a decomposition of the

network topology.

Another interesting direction for future work would be to develop an adaptive probing scheme.

It is obvious that the quality of endpoint estimates for suspect transmissions will depend on

which endpoints were used in the probing phase. This is quite visible in the simulation results

of the previous section. The idea here is to use the approximate endpoint posterior distributions

P̂ (s, d|p) to suggest additional external node pairs(s, d) that should be probed in order to

improve the estimates. The diagram for such a system is shown in Fig. 8.

One can hypothesize various criteria for determining the new probing pairs. For example, nodes

that tend to have similar posterior probabilities over several suspect paths might be selected for

probing so as to distinguish them more explicitly in the constraints. Also new probing pairs

might be selected so as to generate constraints that reduce variablility in the pairwise graph edit

distance between topology samples, thus addressing uncertainties in the network topology [25].

An information gain optimization could be used to incorporate both of these facets [31]. The

question of efficient online implementation naturally arises in this context. Since solving the

SDP generated by the constraints is an expensive operation, one would want to consider ’warm
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start’ methods whereby the old SDP solution is used as a starting point to find the optimal

solution with the additional constraints added. These represent some interesting extensions of

the solution presented here.
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