
1

A Linear Formulation of the Graph Edit

Distance for Graph Recognition

Derek Justice and Alfred Hero

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109

Abstract

An efficient graph matching algorithm based on optimizing the graph edit distance is presented.

The graph edit distance is expressed as a linear function of apermutation matrix and a sequence of edit

matrices which represent graph edit operations. This allows the development of a linear program that

is solved using an interior point method. The linear optimization produces a continuous analog to the

permutation matrix that is used as a weight matrix for an instance of the well-known assignment problem.

The assignment problem is solved as usual with the Hungarianmethod to produce a permutation matrix.

A standard recognition problem of matching a sample input graph to a database of known prototype

graphs is presented as an application of the new method. The costs associated with various edit operations

are chosen using a minimum variance criterion applied to pairwise distances between nearest neighbors

in the database of prototypes. The new approach is shown to provide significant reduction in classification

ambiguity.

Index Terms

Graph algorithms, Similarity measures, Structural Pattern Recognition, Graphs and Networks, Linear

Programming, Continuation (homotopy) methods

2

I. I NTRODUCTION

Graphs provide convenient structures for representing objects when relational properties are

of interest. Such representations are frequently useful inmachine vision applications, where

the problem may be to recognize specific objects within an image. In this case, the image is

processed to generate a representative graph based on structural characteristics, such a region

adjacency graph or a line adjacency graph [1]. This representative graph is then compared to a

database of prototype or model graphs in order to identify and classify the object of interest.

Face identification [2] and symbol recognition [3] are amongthe problems in machine vision

where graphs have been utilized recently. In this context, areliable and speedy method for graph

matching in the presence of noise is important.

The problem of graph matching is to find a mapping from the nodes of a graphG1 to another

graph G2 that makes the two graphs as similar as possible in some sense. Frequently used

similarity metrics include the size of the largest subgraphcommon to both graphs and the norm

of a difference between permuted adjacency matrix representations of the two graphs. A more

recently developed metric based on a similarity score between graph vertices is discussed in [4].

The graph edit distance is a convenient and logical similarity metric in the presence of errors

[5], [6], [7]. It is a natural extension of the string edit distance for string processing [8]. The basic

idea is to define graph edit operations such as insertion or deletion of a node or vertex along

with costs associated with each operation. The graph edit distance between two graphs is then

just the cost associated with the least costly series of editoperations needed to transform one

graph into another. Because the edit operations correspond to ’errors’ between the two graphs,

this approach is often referred to as error correcting graphmatching. Furthermore, some other

similarity metrics can be equated to a graph edit distance with a certain cost function [6].

The graph edit distance is parameterized by a set of edit costs. The flexibility provided by

these costs can be very useful in the context of a standard recognition problem of matching a

sample input graph to a database of known prototype graphs [9]. If chosen appropriately, the

costs can capture the essential features that characterizedifferences among the prototype graphs.

Recently, methods for choosing these costs that are best froma recognition point of view have

3

been presented. In [10], the EM algorithm is applied to assumed Gaussian mixture models for

edit events in order to choose costs that enforce similarity(or dissimilarity) between specific

pairs of graphs in a training set. In addition to the complexity of the parameterization involved,

this algorithm is exponential in the number of nodes.

The (weighted) graph matching problem was shown in [11] to beneither NP-complete nor to

have an efficient algorithm, so consequently there are a widevariety of algorithms that attempt

to tackle this problem. Optimal algorithms inevitably resort to enumeration and searching [12],

[13], [5]. Because there are an exponential number of enumerations, these methods are only

useful for small graphs (i.e. graphs not having much more than ten nodes).

Many suboptimal approaches exist that may be effectively applied to matching of larger graphs

[14], [15], [16], [17], [18], [19]. The adjacency matrix eigendecomposition approach of [15] gives

fast suboptimal results, however it is only applicable to adjacency matrices with no repeated

eigenvalues. Graphs with a low degree of connnectivity willoften have adjacency matrices with

multiple zero eigenvalues. Heuristics are used in the graduated assignment type methods of [16],

[18] to significantly reduce the exponential complexity of the original problem. These methods

can be applied to very large graphs; however they require several tuning parameters to which

the performance of the algorithm is quite sensitive. Unfortunately, no systematic method for

choosing these parameters is provided. The linear programming approach of [14] gives good

results in a reasonable amount of time (O(n6L)) in the presence of noise. The authors of [14]

use the linear program to minimize a matrix norm similarity metric. Speedy algorithms for exact

graph matching (the case where a vertex mapping exists that causes the graph structures to

exactly coincide) are provided in [19], [17].

In this paper, we will provide a linear formulation of the graph edit distance so that error

correcting graph matching may be performed by solving a linear program. Edit operations are

introduced in the form of slack variables. A cost structure is then added in a linear fashion to

multiply the edit operations and thus give a graph edit distance. A linear program is constructed

to solve for the vertex mapping and edit operations that minimize the graph edit distance specified

by a cost structure. Although a continuous optimization is performed, the vertex mapping and

4

edit operations obviously reside in a discrete space. The Hungarian method for weighted bipartite

graph matching [20] is therefore applied to the result of thelinear program to produce a

permutation mapping.

We also present a standard recognition problem [9] that demonstrates the utility of the new

method. Suppose there is a database of prototype graphs to which a sample graph is to be

matched as in the motivating machine vision example. We provide a method for choosing the

edit costs that is purely nonparametric and has polynomial runtime (in the size of the graph).

The edit costs are chosen as those that minimize the varianceof pair wise distances between

nearest neighbor prototypes. The motivation behind this cost selection is that a metric which

maximally separates nearest neighbors in the database should be more discriminating in graph

classification tasks. This computation involves converting all prototype graphs to a canonical

form, which requires at mostn
2−n
2

graph matchings, and tabulating the edits between canonical

prototypes. These are provided as inputs to a single quadratic program to solve for the optimal

edit costs.

The algorithm for graph matching and cost selection is tested on several databases of fifteen

prototype random graphs. Within each database, fifteen different sample graphs are generated

by slightly perturbing each of the prototypes. Each sample graph is matched to every prototype

in the database, and a classification ambiguity index is computed. The new method is shown to

provide significant reduction in classification ambiguity.

This paper is organized as follows. Section II presents the bulk of the theory. Within Section II,

notation is described first, and then we present the linear formulation of the graph edit distance.

This is followed by the development of a linear program to minimize the graph edit distance, and

finally a description of edit cost selection for a graph recognition problem. Section III presents

simulation results of the new method applied to the recognition problem, and Section IV provides

some concluding remarks.

5

II. T HEORY

Before formally defining and outlining a solution to the graphedit optimization problem,

we will first define some general notation associated with graphs and then develop the linear

formalism of the graph edit distance.

A. Notation

We will consider undirected, unmarked, simple graphsG(V,E, f) defined by a set of vertices

V , a set of edgesE, and an incidence relationf . For convenience, the vertices and edges

are labeled by the natural numbers so thatV = {1, 2, . . . , |V |} and E = {1, 2, . . . , |E|}. The

incidence relation associates a pair of unordered endpointvertices with each edge so thatf :

E → V × V .

The adjacency matrix representationA of a graphG will be used frequently and is defined

below.

Aij =

1 if ∃e ∈ E such thatf(e) = {i, j}

0 otherwise
(1)

Note that since the graphs are undirected,A = AT . Furthermore, it is clear that sinceA is binary,

all connected edges have equal costs.

B. Linear Formulation of the Graph Edit Distance

It is desired to transform any undirected simple graph into any other undirected simple graph

by performing a series of graph edit operations. Clearly the following operations taken together

can accomplish any such transformation: edge deletion (ed), edge insertion (ei), vertex deletion

(vd), and vertex insertion (vi). Substitution of edge or vertex labels obviously does not change

the structure of the graph, so these are not considered (or equivalently, label subsitutions carry

zero cost). LetG(V,E, f) be a graph that is transformed toG′(V ′, E ′, f ′) after performing an

edit operation. The edit operations may then be formally defined as in Def. 1. The effect of each

operation on the adjacency matrix representation of the edited graphA′ is given in parentheses.

Note that in vertex edits, a rank ordering of the vertices is assumed without loss of generality

6

such that the vertex to be edited (inserted or deleted) is always represented by the last row and

column of the adjacency matrix.

Definition 1 Graph Edit Operations (Corresponding Adjacency Matrix Edits)

1) edge deletion: Edge e with f(e) = {i, j} for some vertices i and j is deleted by assigning

f ′(e) = φ (φ is the empty set) and assigning E ′ = E − e. (A′
ij = 0, A′

ji = 0)

2) edge insertion: Edge e with f(e) = φ is inserted by assigning f ′(e) = {i, j} for some

vertices i and j and assigning E ′ = E ∪ e. (A′
ij = 1, A′

ji = 1)

3) vertex deletion: Vertex i is deleted by assigning f ′(e) = φ for all e such that i ∈ f(e)

and assigning V ′ = V − i. (A′ = MNN where A ∈ ℜN×N and Mij denotes the minor

formed by removing row i and column j from matrix A)

4) vertex insertion: Vertex i is inserted by assigning V ′ = V ∪ i.

A′ =

A 0

0
T 0

Now suppose thatc−− denotes the cost of a specific edit operation that is requiredto transform

a graphX into another graphY . The graph edit distance may then be defined:

d(X,Y) =
∑

e∈EX−EY

ced(e) +
∑

e∈EY −EX

cei(e) +
∑

v∈VX−VY

cvd(v) +
∑

v∈VY −VX

cvi(v) (2)

AssumeX and Y are both adjacency matrix representations. With the goal inmind of

developing a linear optimization approach to computed(X,Y), define the ’edit matrices’S

andT as
Sij = (Yij − Xij)(Yij > Xij)

Tij = (Xij − Yij)(Xij > Yij)

(3)

wherea > b is equal to unity if the statement is true and zero if it is false. If vertex deletions or

insertions occur, then the smaller of{X,Y } is zero padded so that they have the same dimension.

S andT are appropriately referred to as ’edit matrices’ becauseSij = 1 indicates an edge was

inserted between verticesi andj in going fromX to Y and similarly,Tij = 1 indicates an edge

was deleted between verticesi and j in going fromX to Y . The following constraint equation

7

follows immediately from the definitions in Eq. (3):

X − Y + S − T = 0 (4)

Furthermore, the graph edit distance in Eq. (2) may be re-expressed as

d(X,Y) =
1

2

∑

i,j

(ced(eij)Tij + cei(eij)Sij) +
∑

v∈VX−VY

cvd(v) +
∑

v∈VY −VX

cvi(v) (5)

Whereeij corresponds to the edge connecting verticesi and j. We wish to express the vertex

edits in terms of the edit matrices in order to make the problem fully linear. Without loss of

generality, we will allow either vertex deletions or vertexinsertions to occur in a given sequence

of edit operations, but not both. This is a reasonable assumption, since it allows one to proceed

as follows: add vertices to the smaller of the two graphs or delete vertices from the larger one

until both graphs have the same number of vertices. Finally edit the edges to make the graphs

match.

For illustration, consider the case where vertices are deleted. SupposeNX is the number of

vertices in graphX and NY is the number of vertices in graphY . If a vertex deletion has

occurred in going fromX to Y , then NX > NY . Let v ∈ VX − VY be a deleted vertex and

γ(v) be the number of other vertices to which it is connected, i.e.vertex degree. The following

relation between the elements of the edit matrixT and the vertex degree holds.

∑

j

Tvj =
∑

i

Tiv = γ(v) (6)

The above relationship allows the graph edit distance in Eq.(5) to be re-expressed as

d(X,Y) =
1

2

∑

i,j

(ced(eij)Tij + cei(eij)Sij) +
1

2

∑

i∈VX−VY

1

γ(i)
cvd(i)

∑

j

(Tij + Tji) (7)

8

An expression similar to Eq. (7) may be written in the case of vertex insertion. In order to

simplify further, define the following cost matricesCxγ andCx, wherex ∈ {d, i}.

Cxγ = 1
2
×

0 cex(e12) · · · cex(e1Ns
) cex(e1(Ns+1)) + cγx(Ns + 1) · · · cex(e1Nl

) + cγx(Nl)

. .. 0 · · · cex(e2Ns
) cex(e2(Ns+1)) + cγx(Ns + 1) · · · cex(e2Nl

) + cγx(Nl)

.
...

...
...

...
. 0 cex(eNs(Ns+1)) + cγx(Ns + 1) · · · cex(eNsNl

) + cγx(Nl)

. 0 · · · cex(e(Ns+1)Nl
) + cγx(Nl)

.
...

. 0

Cx = 1
2

0 cex(e12) · · · cex(e1N)

. . . 0 · · · cex(e2N)

.
...

...
. 0

(8)

WhereNs = min(NX , NY), Nl = max(NX , NY), and cγx(i) = 1
γ(i)

cvx(i). Also, since the

graphs of interest are undirected, the matrices in Eq. (8) are symmetric. With these defined, the

graph edit distance may be written quite compactly:

d(X,Y) =

∑

i,j

(

Ci ∗ S + Cdγ ∗ T
)

ij
if NX > NY

∑

i,j

(

Ciγ ∗ S + Cd ∗ T
)

ij
if NX < NY

∑

i,j

(

Ci ∗ S + Cd ∗ T
)

ij
if NX = NY

(9)

whereA ∗B indicates the element by element multiplication of matrices A andB having equal

dimension.

9

C. Graph Matching by Linear Optimization

We now state the graph matching problem formally using the linear formulation of the graph

edit distance. IfA1 andA2 are the adjacency matrix representations of two graphs to bematched

(appropriately zero padded if they are originally different sizes), then the graph matching problem

is to find a permutation matrixP and edit matricesS andT such that the graph edit distance

d(A1, PA2P
T) is minimized. Clearly, this is equivalent to findingP , S, andT that minimize

d(A1P, PA2) since right multiplying by a permutation matrix will simplyreorder the sum of

edit operation costs.

The problem will be formulated as a linear optimization problem in standard form [20] to

minimize the graph edit distance of Eq. (9) subject to the natural constraint of Eq. (4) and an

additional constraint that should be added. SinceP is a permutation matrix, its row and column

sums should be equal to unity. SinceA1, A2, andP are all of sizeN after zero padding, the

following constraint is also imposed.

P1N = 1N

1
T
NP = 1

T
N

(10)

In order to restate the linear optimization in standard form, unknown matrices in the problem

will be vectorized, i.e. have their columns ’peeled’ off in order and arranged in a vector. Let

10

Ã = V EC(A) represent the vector corresponding to matrixA as shown below.

Ã = V EC(A) =

A11

A21

...

AN1

A12

A22

...

AN2

...

A1N

A2N

...

ANN

(11)

The kronecker product (denoted by⊗) is useful for simplifying notation whenV EC operations

are involved. Vectorizing the graph edit distance minimization problem as well as the constraint

equations allows the linear program that solves for the optimal vertex mapping (P) and edit

matrices (S, T) to be written as follows.

min
v

cT v

such that Av = b

and 0 ≤ vi ≤ 1

(12)

11

Where

v =

P̃

S̃

T̃

cT =

(

0
T
N2 (C̃i)T (C̃dγ)T

)

if N1 > N2

(

0
T
N2 (C̃iγ)T (C̃d)T

)

if N1 < N2

(

0
T
N2 (C̃i)T (C̃d)T

)

if N1 = N2

A =

IN ⊗ A1 − AT
2 ⊗ IN IN2 −IN2

IN ⊗ 1
T
N 0 0

1
T
N ⊗ IN 0 0

b =

0N2

1N

1N

(13)

The linear program in Eq. (12) is solved using an interior point method [21]. Note that the

optimal vertex mappingP ∗ that minimizes the linear program may not be a 0-1 permutation

matrix. It may give fractional weights for eachV1 → V2 mapping. The permutation matrix

chosen is the one that maximizes the sum of these possibly fractional weights. The resulting

problem is known as the assignment problem in combinatorialoptimization and can be solved

by the Hungarian method inO(n3) operations [20]. For completeness, this optimization for a

permutation matrixP with weight matrixP ∗ computed via the linear program of Eq. (12) is

specified by

P = arg.max
X∈{0,1}N×N

∑

i,j P ∗
ijXij

such that:1T X = 1
T and X1 = 1

(14)

12

TheL1 norm adjacency matrix matching criterion used in [14] turnsout to be a special case of

this more general formulation. This criterion is equivalent to a graph edit distance minimization

with costscei(e) = ced(e) = 1 for all e ∈ E andcvi(v) = cvd(v) = 0 for all v ∈ V .

D. Edit Cost Selection for Graph Recognition

The expression for the graph edit distance given in Eq. (9) isparameterized by the edit costs

and vertex connectivities contained in the matricesCx and Cxγ of Eq. (8). We propose an

empirical method for selecting these parameters suitable for a recognition problem. Suppose

there is a set of prototype graphs{Gi}
N
i=1, and we classify a sample graphGo by selecting the

prototype that most closely matches it. It is easier to classify a sample with a greater degree of

confidence if the prototypes are separated by sufficiently large and relatively uniform graph edit

distances. If all prototypes are separated by very large graph edit distances (say for unity costs),

then little will be gained by carrying out an intricate computation to determine the edit costs.

However, in the case that the prototypes are very similar andperhaps unevenly distributed (with

respect to the graph edit distance), proper selection of edit costs is helpful.

In order to uniformly distribute the prototypes, we select aset of edit costs that minimizes the

variance of distances between pairs of nearest neighbor prototypes–that is ’nearest’ with respect

to a graph edit distance with unity cost structure. For the notion of uniformity to be meaningful,

it is clear that the graph edit distance must be symmetric, thus forcing cei(e) = ced(e) and

cvi(v) = cvd(v) for all edgese and verticesv. The edit costs are computed by first converting

all prototypes to a sort of ’canonical form’ by matching themto a reference prototype using

unit edit costs. This amounts to computing the optimal permutationPi for each protoypeGi and

permuting each adjacency matrix to match the reference.

After converting the graphs to this canonical representation, we tabulate the edits necessary

to match each graph with itsn nearest neighbors. We consider each nearest neighbor pair only

once. For example ifGi hasGj as one of itsn nearest neighbors andGj hasGi as one of its

n nearest neighbors, then the edits necessary to matchGi to Gj are tabulated only once. Let

{Nj}
K
j=1 be a set of binary vectors that indicates whether a specific edit is necessary to match the

jth pair of nearest neighbor prototypes, whereK is the number of distinct nearest neighbor pairs.

13

If c is a vector containing the corresponding edit costs, then the graph edit distance between the

jth pair is given bydj = NT
j c. Using this notation, the variance of pair wise distances isthen

given by

σ2
d =

1

K

K
∑

i=1

(

NT
i c −

1

K

K
∑

j=1

NT
j c

)2

(15)

Eq. (15) may be expanded to give the objective functionΨ(c) as

Ψ(c) = Kσ2
d = cT

K
∑

i=1

(

Ni −
1

K

K
∑

j=1

Nj

) (

Ni −
1

K

K
∑

j=1

Nj

)T

 c ≡ cT Qc (16)

We also require a minimum allowable distancedmin between any two nearest neighbors, and

that costs be nonnegative. So if we define the matrixMT =
[

N1 N2 · · · NK

]

, then the

optimal costs are given by the quadratic program:

min
c

cT Qc

such that Mc ≥ dmin1

and 0 ≤ ci

(17)

A projection method may be used to solve this quadratic program; we use an active set method

which falls under this broader category [22]. We now turn ourattention to some practical issues

associated with implementing this method for edit cost selection. In order to assure the problem

in Eq. (17) is well posed, we only consider edits that are not dependent–that is edits that do not

always occur in tandem. For example, whenever a vertex is edited so are all edges connected

to it; it follows that these edits are dependent. Dependent edits are assigned the same optimal

cost. Similarly, some edits may not occur at all among the pairs of prototypes. Such edits have

no bearing on the distribution of the prototypes, so they aresimply assigned unit cost.

It is also important to consider the canonical graph representation used to tabulate edits. It

is convenient to use the prototype with the most vertices as the reference graph. This allows

the connectivities of all edited vertices (γ(v)) to be noted directly. We also observe that this

canonical representation is only an approximation, albeita good one for fairly similar graphs.

Ideally, the tabulated edits should be equivalent (to within a permutation) regardless of which

14

prototype is selected as the reference. This will certainlynot be the case for prototype sets that

vary wildly; however, as argued earlier, edit cost selection is not vital in this case.

III. S IMULATION RESULTS

The matching scheme described was simulated in the context of random graph recognition.

Three sets of fifteen prototype random graphs each were generated through a rejection sampling

process to assure relatively similar structure of all protoypes within a set. The protoypes range

in size from 15 to 18 vertices with 41 to 55 edges. The adjacency matrix representations of all

prototypes are shown in Fig. 1. Here, a black square represents a ’1’ in the adjacency matrix

and a white square represents ’0’. See Section II-A for a description of the adjacency matrix

representation.

The minimum variance procedure described in Section II-D was used to select the edit costs

for each prototype set with a minimum allowable nearest neighbor distance constraintdmin = 5.

The six nearest neighbors of each protoype were used in the variance computation. Pair wise

distance histograms between nearest neighbors are shown inFig. 2. Histograms are shown for

a unity cost structure along with the costs computed from theminimum variance criterion. It is

clear that the minimum variance costs (labeled MinVar) result in histograms that more nearly

resemble a uniform distribution, thus indicating the MinVar costs are more suitable for graph

classification as previously argued. Note that in Set C, thereis one pair of nearest neighbors that

falls below the minimum distance constraint ofdmin = 5. This is not a contradiction because the

minimum distance constraint is imposed on the matchings between canonical representations as

described in Section II-D. It turns out that there is in fact acloser matching between this pair

than suggested by the canonical representation.

After computing the optimal edit costs, a series of sample input graphs were generated for

classification. For each graph in the protoype set, a sample graph corresponding to the protoype

was created by applying four random edits to the protoype. This resulted in fifteen sample graphs

to classify for each prototype set. Each sample graph was matched to all fifteen protoypes within

a set using both unity and MinVar costs. A sample graph is recognized as a noisy version of

whichever prototype it is closest to using the graph edit distance as a metric. A ’classifier ratio’

15

A

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

B

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

C

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

5 10 15

5

10

15

Fig. 1. The adjacency matrix representations of the three protoypesets of fifteen random graphs each. The protoypes
range in size from 15 to 18 vertices with 41 to 55 edges. Here, ablack square represents a ’1’ in the adjacency
matrix and a white square represents ’0’. See Section II-A for a description of the adjacency matrix representation.

16

A

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

U
ni

ty
 C

os
ts

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

M
in

V
ar

 C
os

ts

Pairwise Distance

B

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

U
ni

ty
 C

os
ts

0 10 20 30 40 50 60 70 80
0

5

10

15

20

M
in

V
ar

 C
os

ts

Pairwise Distance

C

0 5 10 15 20 25 30 35
0

5

10

15

U
ni

ty
 C

os
ts

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

M
in

V
ar

 C
os

ts

Pairwise Distance

Fig. 2. Pair wise distance histograms between nearest neighbors for each of the three protoype sets. Histograms are
shown for a unity cost structure (above) along with the costscomputed from the minimum variance criterion (below).
The minimum variance costs (labeled MinVar) result in histograms that more nearly resemble a uniform distribution,
thus indicating the MinVar costs are more suitable for graphclassification. Note that in Set C, there is one pair of
nearest neighbors that falls below the minimum distance constraint ofdmin = 5. This is not a contradiction because
the minimum distance constraint is imposed on the matchingsbetween canonical representations as described in
Section II-D. It turns out that there is in fact a closer matching between this pair than suggested by the canonical
representation.

17

Set A Set B Set C
CR via Unity Costs 0.62 (±0.23) 0.70 (±0.15) 0.75 (±0.23)

CR via MinVar Costs 0.55 (±0.22) 0.45 (±0.18) 0.67 (±0.59)
Percent Decrease in Avg. 11% 35% 10%

TABLE I

CLASSIFIER RATIOS COMPUTED VIA EQ. (18) AND AVERAGED OVER THE FIFTEEN SAMPLE GRAPHS FOR EACH

SET. THE STANDARD DEVIATIONS OF AVERAGEDCR’S ARE GIVEN IN PARENTHESES.

(CR) as given in Eq. (18) was computed for each sample graph in order to gauge the level of

ambiguity associated with the classification.

CR =
d∗

do

(18)

Whered∗ is the graph edit distance between the sample graph and the prototype from which it

was generated, anddo is the distance between the sample and the nearest incorrectprototype

(’incorrect’ in that the sample was not generated from this prototype). The lowerCR is the

less ambiguous the classification. Also, aCR > 1 indicates a miss-classification. The average

over all fifteen samples are shown in Table I. Note that average CR values computed with the

minimum variance costs are at least10% lower than those computed with unity costs in all three

sets.

IV. CONCLUSION

This paper develops a linear formulation of the graph edit distance and extends the linear

programming approach to the graph matching problem introduced in [14] to find the vertex

mapping and edit operations that minimize this metric. A standard graph recognition problem is

presented as an application of the graph matching formalism. The edit costs are chosen using a

minimum variance criterion in order to allow better discrimination among the model graphs in

the database. This method is shown in simulation to more uniformly separate prototype graphs

with similar structure and to more reliably classify sampleinput graphs than the comparable

method in [14], which is a special case of the more general formalism presented here. Since

cost selection and matching can both be done in polynomial time, it is a viable alternative to

matching and/or classifying larger graphs based on a graph edit distance optimization when more

18

traditional enumeration and search techniques are not practical. Also, since a logical method for

selecting the parameters associated with the graph edit distance is provided in the context of

the pervasive graph recognition problem, semi-arbitrary selection of tuning parameters is not

an issue. We anticipate the results of this paper are applicable in any setting where a graphical

model is used.

ACKNOWLEDGEMENTS

This work was partially supported by a Dept. of EECS Graduate Fellowship to the first author

and by the National Science Foundation under ITR contract CCR-0325571.

19

REFERENCES

[1] T. Pavlidis,Structural Pattern Recognition. New York: Springer-Verlag, 1977.

[2] L. Jianzhuang and L. Tsui, “Graph-based method for face identification from a single 2d line drawing,”IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1106–1119, 2000.

[3] J. Llados, E. Marti, and J. Villanueva, “Symbol recognition by error-tolerant subgraph matching between region adjacency

graphs,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1137–1143, 2001.

[4] V. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. Dooren, “A measure of similarity between graph vertices:

applications to synonym extraction and web searching,”SIAM Review, vol. 46, no. 4, pp. 647–666, 2004.

[5] W. Tsai and K. Fu, “Error-correcting isomorphisms of attributed relational graphs for pattern recognition,”IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, pp. 757–768, 1979.

[6] H. Bunke, “Error correcting graph matching: on the influence of the underlying cost function,”IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 21, no. 9, pp. 917–922, Sept. 1999.

[7] ——, “Recent developments in graph matching,”Proc. 15th Intl. Conf. on Pattern Recognition, vol. 2, pp. 117–124, Sept.

2000.

[8] R. Wagner and M. Fischer, “The string-to-string correction problem,” Journal of the Association for Computing Machinery,

vol. 21, no. 1, pp. 168–173, 1974.

[9] M. Pavel,Fundamentals of Pattern Recognition. New York: Marcel Dekker, 1989.

[10] M. Neuhaus and H. Bunke, “A probabilistic approach to learning costs for graph edit distance,”Proc. 17th Intl. Conf. on

Pattern Recognition, vol. 3, pp. 389–393, 2004.

[11] M. Garey and D. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco,

CA: W.H. Freeman, 1979.

[12] A. Hlaoui and S. Wang, “A new algorithm for inexact graph matching,” Proc. 16th Intl. Conf. on Pattern Recognition,

vol. 4, pp. 180–183, 2002.

[13] B. Messmer and H. Bunke, “Error-correcting graph isomorphism using decision trees,”Int. Journal of Pattern Recognition

and Art. Intelligence, vol. 12, pp. 721–742, 1998.

[14] H. Almohamad and S. Duffuaa, “A linear programming approachfor the weighted graph matching problem,”IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 522–525, May 1993.

[15] S. Umeyama, “An eigendecomposition approach to weighted graphmatching problems,”IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 10, no. 5, pp. 695–703, Sept. 1988.

[16] S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph matching,”IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 18, no. 4, pp. 377–387, Apr. 1996.

[17] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph isomorphism algorithm for matching large graphs,”IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367–1372, Oct. 2004.

[18] B. van Wyk and M. van Wyk, “A pocs-based graph matching algorithm,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 26, no. 11, pp. 1526–1530, Nov. 2004.

[19] B. McKay, “Practical graph isomorphism,”Congressus Numerantium, vol. 30, pp. 45–87, 1981.

20

[20] C. Papadimitriou and K. Steiglitz,Combinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ:

Prentice Hall, Inc., 1982.

[21] Y. Zhang, “Solving large-scale linear programs by interior-pointmethods under the matlab environment,” Department of

Mathematics and Statistics, University of Maryland, Baltimore, MD, Tech. Rep. TR96-01, July 1995.

[22] P. Gill, W. Murray, and M. Wright,Practical Optimization. London, UK: Academic Press, 1981.

