A Linear Formulation of the Graph Edit

Distance for Graph Recognition

Derek Justice and Alfred Hero
Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, Ml 48109

Abstract

An efficient graph matching algorithm based on optimizing tiraph edit distance is presented.
The graph edit distance is expressed as a linear functiorpefrautation matrix and a sequence of edit
matrices which represent graph edit operations. This alltve development of a linear program that
is solved using an interior point method. The linear optatian produces a continuous analog to the
permutation matrix that is used as a weight matrix for areimse of the well-known assignment problem.
The assignment problem is solved as usual with the Hungar&thod to produce a permutation matrix.
A standard recognition problem of matching a sample inpaplgrto a database of known prototype
graphs is presented as an application of the new method.d&he associated with various edit operations
are chosen using a minimum variance criterion applied toyise distances between nearest neighbors
in the database of prototypes. The new approach is showmtidersignificant reduction in classification

ambiguity.

Index Terms

Graph algorithms, Similarity measures, Structural PatRgcognition, Graphs and Networks, Linear

Programming, Continuation (homotopy) methods

I. INTRODUCTION

Graphs provide convenient structures for representingabbjwhen relational properties are
of interest. Such representations are frequently usefuhathine vision applications, where
the problem may be to recognize specific objects within angendn this case, the image is
processed to generate a representative graph based oturstrwharacteristics, such a region
adjacency graph or a line adjacency graph [1]. This reptatea graph is then compared to a
database of prototype or model graphs in order to identify aassify the object of interest.
Face identification [2] and symbol recognition [3] are amdhg problems in machine vision
where graphs have been utilized recently. In this content)iable and speedy method for graph
matching in the presence of noise is important.

The problem of graph matching is to find a mapping from the saxfea graph’z; to another
graph G, that makes the two graphs as similar as possible in some .sEnsguently used
similarity metrics include the size of the largest subgrapihmon to both graphs and the norm
of a difference between permuted adjacency matrix reptasens of the two graphs. A more
recently developed metric based on a similarity score betvggaph vertices is discussed in [4].

The graph edit distance is a convenient and logical sinylamietric in the presence of errors
[5], [6], [7]. It is a natural extension of the string edit thace for string processing [8]. The basic
idea is to define graph edit operations such as insertion letiole of a node or vertex along
with costs associated with each operation. The graph estiarite between two graphs is then
just the cost associated with the least costly series of ggtations needed to transform one
graph into another. Because the edit operations corresmotadrors’ between the two graphs,
this approach is often referred to as error correcting grapkching. Furthermore, some other
similarity metrics can be equated to a graph edit distand¢ke aicertain cost function [6].

The graph edit distance is parameterized by a set of edis.cosie flexibility provided by
these costs can be very useful in the context of a standacgymémn problem of matching a
sample input graph to a database of known prototype graghsf[®hosen appropriately, the
costs can capture the essential features that charactiffex@nces among the prototype graphs.

Recently, methods for choosing these costs that are bestdrmuognition point of view have

3

been presented. In [10], the EM algorithm is applied to assli@aussian mixture models for
edit events in order to choose costs that enforce similddtydissimilarity) between specific
pairs of graphs in a training set. In addition to the comjeri the parameterization involved,
this algorithm is exponential in the number of nodes.

The (weighted) graph matching problem was shown in [11] teéiéher NP-complete nor to
have an efficient algorithm, so consequently there are a vadiety of algorithms that attempt
to tackle this problem. Optimal algorithms inevitably rdsto enumeration and searching [12],
[13], [5]. Because there are an exponential number of enumoesa these methods are only
useful for small graphs (i.e. graphs not having much more tea nodes).

Many suboptimal approaches exist that may be effectivabjieg to matching of larger graphs
[14], [15], [16], [17], [18], [19]. The adjacency matrix eigdecomposition approach of [15] gives
fast suboptimal results, however it is only applicable tgaeeincy matrices with no repeated
eigenvalues. Graphs with a low degree of connnectivity oftén have adjacency matrices with
multiple zero eigenvalues. Heuristics are used in the gradliassignment type methods of [16],
[18] to significantly reduce the exponential complexity bétoriginal problem. These methods
can be applied to very large graphs; however they requirerakwning parameters to which
the performance of the algorithm is quite sensitive. Unfioately, no systematic method for
choosing these parameters is provided. The linear progmagnapproach of [14] gives good
results in a reasonable amount of tin@((°L)) in the presence of noise. The authors of [14]
use the linear program to minimize a matrix norm similaritgtnc. Speedy algorithms for exact
graph matching (the case where a vertex mapping exists thages the graph structures to
exactly coincide) are provided in [19], [17].

In this paper, we will provide a linear formulation of the ghaedit distance so that error
correcting graph matching may be performed by solving aalimgogram. Edit operations are
introduced in the form of slack variables. A cost structwgdhien added in a linear fashion to
multiply the edit operations and thus give a graph edit dista A linear program is constructed
to solve for the vertex mapping and edit operations thatmize the graph edit distance specified

by a cost structure. Although a continuous optimization asfgrmed, the vertex mapping and

4

edit operations obviously reside in a discrete space. Thegbiian method for weighted bipartite
graph matching [20] is therefore applied to the result of limear program to produce a
permutation mapping.

We also present a standard recognition problem [9] that dstrates the utility of the new
method. Suppose there is a database of prototype graphsith whsample graph is to be
matched as in the motivating machine vision example. Weigeoa method for choosing the
edit costs that is purely nonparametric and has polynonialime (in the size of the graph).
The edit costs are chosen as those that minimize the variginpair wise distances between
nearest neighbor prototypes. The motivation behind th& selection is that a metric which
maximally separates nearest neighbors in the databaséddb@®umore discriminating in graph
classification tasks. This computation involves convertail prototype graphs to a canonical
form, which requires at moéﬁ;—” graph matchings, and tabulating the edits between caronica
prototypes. These are provided as inputs to a single quagnatgram to solve for the optimal
edit costs.

The algorithm for graph matching and cost selection is teste several databases of fifteen
prototype random graphs. Within each database, fifteeerdift sample graphs are generated
by slightly perturbing each of the prototypes. Each sampéplg is matched to every prototype
in the database, and a classification ambiguity index is et The new method is shown to
provide significant reduction in classification ambiguity.

This paper is organized as follows. Section Il presents tiie df the theory. Within Section 11,
notation is described first, and then we present the lingandtation of the graph edit distance.
This is followed by the development of a linear program toimire the graph edit distance, and
finally a description of edit cost selection for a graph raabgn problem. Section Il presents
simulation results of the new method applied to the recagmjproblem, and Section IV provides

some concluding remarks.

II. THEORY

Before formally defining and outlining a solution to the gragtiit optimization problem,
we will first define some general notation associated wittplggaand then develop the linear

formalism of the graph edit distance.

A. Notation

We will consider undirected, unmarked, simple graph¥’, £, f) defined by a set of vertices
V, a set of edged”, and an incidence relatiori. For convenience, the vertices and edges
are labeled by the natural numbers so that= {1,2,...,|V|} and E = {1,2,...,|E|}. The
incidence relation associates a pair of unordered endpeintices with each edge so thét:
E—-VxV.

The adjacency matrix representatidnof a graphG will be used frequently and is defined

below.

1 if de € E such thatf(e) = {7, 7}
Ay = (1)

0 otherwise
Note that since the graphs are undirectéd;: AT. Furthermore, it is clear that sinckis binary,

all connected edges have equal costs.

B. Linear Formulation of the Graph Edit Distance

It is desired to transform any undirected simple graph imtyp @ther undirected simple graph
by performing a series of graph edit operations. Clearly tlewing operations taken together
can accomplish any such transformation: edge deletion ésftje insertion (ei), vertex deletion
(vd), and vertex insertion (vi). Substitution of edge ortegrlabels obviously does not change
the structure of the graph, so these are not considered (avadently, label subsitutions carry
zero cost). Let7(V, E, f) be a graph that is transformed €(V’, E’, f') after performing an
edit operation. The edit operations may then be formallyngefias in Def. 1. The effect of each
operation on the adjacency matrix representation of thee@djraphA’ is given in parentheses.

Note that in vertex edits, a rank ordering of the verticessisuaned without loss of generality

6

such that the vertex to be edited (inserted or deleted) iaydwepresented by the last row and

column of the adjacency matrix.

Definition 1 Graph Edit Operations (Corresponding Adjacency Matrix Edits)

1) edge deletion Edge e with f(e) = {i, 7} for some vertices: and j is deleted by assigning
f'(e) = ¢ (¢ is the empty set) and assigning £’ = E —e. (Aj; =0, A); = 0)

2) edge insertion Edge e with f(e) = ¢ is inserted by assigning f'(e) = {i,j} for some
vertices i and j and assigning £’ = EUe. (A, =1, A}, = 1)

3) vertex deletion \ertex i is deleted by assigning f'(e) = ¢ for all e such that i € f(e)
and assigning V' =V —i. (A’ = Myy where A € VY and M,; denotes the minor
formed by removing row i and column ;5 from matrix A)

4) vertex insertion: Vertex ¢ is inserted by assigning V' =V U 4. (A’ = [; 2])

Now suppose that__ denotes the cost of a specific edit operation that is requirécnsform

a graphX into another graply’. The graph edit distance may then be defined:

d(X, Y) = Z Ced + Z Cez + Z Cvd + Z Cm (2)

e€eEx—FEy e€Ey — vEVY — veVy —
Assume X and Y are both adjacency matrix representations. With the goamind of
developing a linear optimization approach to compdte,Y'), define the ’edit matricesS

andT as
Sij = (Yig — Xig) (Vi; > Xi5)
3
Tij = (Xij — Yy)(Xy; > Vi)
wherea > b is equal to unity if the statement is true and zero if it is dalg vertex deletions or
insertions occur, then the smaller{X, Y} is zero padded so that they have the same dimension.
S andT" are appropriately referred to as 'edit matrices’ becasise= 1 indicates an edge was

inserted between verticésand j in going from X to Y and similarly,7;; = 1 indicates an edge

was deleted between verticéesind j in going from X to Y. The following constraint equation

follows immediately from the definitions in Eq. (3):
X-Y+5-T=0 4)
Furthermore, the graph edit distance in Eq. (2) may be reessed as

d(X,Y) = %Z (cealei)Tij + ceilein) Sip) + D cua) + D> culv) (5)

i, veVx —Vy veVy —Vx
Wheree;; corresponds to the edge connecting verticesid j. We wish to express the vertex
edits in terms of the edit matrices in order to make the prablelly linear. Without loss of
generality, we will allow either vertex deletions or veriesertions to occur in a given sequence
of edit operations, but not both. This is a reasonable assomsince it allows one to proceed
as follows: add vertices to the smaller of the two graphs detdevertices from the larger one
until both graphs have the same number of vertices. Finaliyytee edges to make the graphs
match.

For illustration, consider the case where vertices aretelleSupposeVy is the number of
vertices in graphX and Ny is the number of vertices in graphi. If a vertex deletion has
occurred in going fromX to Y, then Nx > Ny. Letv € Vx — V4 be a deleted vertex and
~(v) be the number of other vertices to which it is connected,vieetex degree. The following

relation between the elements of the edit mafriand the vertex degree holds.

Z ij = Z Tiy = ’Y(U) (6)

The above relationship allows the graph edit distance in(>o be re-expressed as

d(X,Y) = %Z (ced(ei)Tij + ceilei;)Sij) + % > L~Cvd(i) Z (T3 +Ty) (7)

i,] i€EVx —Vy ’y(@)

8

An expression similar to Eqg. (7) may be written in the case etex insertion. In order to

simplify further, define the following cost matricé€s™ and C*, wherex € {d,}.

ry 1
C*" = 35X
0 061(612) T 6636(611\73) Ceﬁ(el(Ns—&-l)) + C'y:c(Ns + 1) te Cex(elNl> + C'yx(Nl)
0 T CeﬂU(eQNs) CEI(GQ(N5+1)) + C"/$(NS + 1) Tt Cex(GZNl) + C’ya:(Nl)
0 Cex(eNs(Nerl)) + C'yx(Ns + 1) te Cex(eNle) + c’yx(Nl)
0 T Ce;r(e(Ns—H)Nl) + CWI(NI)
0
0 cCel€r2) -+ ce(ern)
0 e Cex<€2N)
r 1
" =3
0

(8)
Where N, = min(Nx, Ny), Ni = maz(Nx, Ny), and ¢, (i) = —c0.(i). Also, since the
graphs of interest are undirected, the matrices in Eq. @sammetric. With these defined, the
graph edit distance may be written quite compactly:

e

>, (CHx S+ CM«T) . if Nx > Ny
dXY) =33, (C7+S+C=T), if Nx <Ny)
\Zz’,j (CZ*S—FCd*T)U |f NX:NY

where A x B indicates the element by element multiplication of masideand B having equal

dimension.

C. Graph Matching by Linear Optimization

We now state the graph matching problem formally using thedr formulation of the graph
edit distance. I1fA; and A, are the adjacency matrix representations of two graphs todiehed
(appropriately zero padded if they are originally diffetrsizes), then the graph matching problem
is to find a permutation matri¥’ and edit matricess and 7T’ such that the graph edit distance
d(Ay, PA;PT) is minimized. Clearly, this is equivalent to finding, S, andT that minimize
d(A; P, PAy) since right multiplying by a permutation matrix will simpleorder the sum of
edit operation costs.

The problem will be formulated as a linear optimization peob in standard form [20] to
minimize the graph edit distance of Eq. (9) subject to theumrahtconstraint of Eq. (4) and an
additional constraint that should be added. Sifcis a permutation matrix, its row and column
sums should be equal to unity. Singe, A,, and P are all of sizeN after zero padding, the

following constraint is also imposed.

Ply =1y (10)

10p =17

In order to restate the linear optimization in standard foumknown matrices in the problem

will be vectorized, i.e. have their columns ’peeled’ off inder and arranged in a vector. Let

10

A =VEC(A) represent the vector corresponding to mattixas shown below.

All
A21

ANl
A12
A22
A=VEC(A) = ; (11)

ANN

The kronecker product (denoted l®y) is useful for simplifying notation whelw EC' operations
are involved. Vectorizing the graph edit distance minirtia@a problem as well as the constraint
equations allows the linear program that solves for thenmgtivertex mapping #) and edit

matrices £, T') to be written as follows.

min ¢l
v

such that Av = b (12)

and 0 <v; <1

11

Where

if Ny > N,

if Ny =N,

T
<)

L = (0T, (CMT (CHT) if Ny <Ny
()

(13)

IN@A — AT @Iy In2 —Ine

1% ® In 0 0
02
b= 1yn
1x

The linear program in Eq. (12) is solved using an interiornponethod [21]. Note that the
optimal vertex mapping”* that minimizes the linear program may not be a 0-1 permutatio
matrix. It may give fractional weights for eaci — V5 mapping. The permutation matrix
chosen is the one that maximizes the sum of these possiljidinal weights. The resulting
problem is known as the assignment problem in combinatopéimization and can be solved
by the Hungarian method i®(n3) operations [20]. For completeness, this optimization for a
permutation matrixP with weight matrix P* computed via the linear program of Eq. (12) is

specified by

P = argmaz 3, P;X;
Xe{0,1}NVxN ’ (14)

such that: 17X =17 and X1 =1

12

The L' norm adjacency matrix matching criterion used in [14] tusnosto be a special case of
this more general formulation. This criterion is equivalema graph edit distance minimization

with costsc,;(e) = c.q(e) =1 for all e € E andc,;(v) = c,q(v) =0 for all v € V.

D. Edit Cost Selection for Graph Recognition

The expression for the graph edit distance given in Eq. (paimmeterized by the edit costs
and vertex connectivities contained in the matrices and C*” of Eqg. (8). We propose an
empirical method for selecting these parameters suitaifeafrecognition problem. Suppose
there is a set of prototype graph&;}Y,, and we classify a sample gragh, by selecting the
prototype that most closely matches it. It is easier to dasssample with a greater degree of
confidence if the prototypes are separated by sufficientieland relatively uniform graph edit
distances. If all prototypes are separated by very largphgedlit distances (say for unity costs),
then little will be gained by carrying out an intricate congion to determine the edit costs.
However, in the case that the prototypes are very similarpantaps unevenly distributed (with
respect to the graph edit distance), proper selection afoedts is helpful.

In order to uniformly distribute the prototypes, we seleskea of edit costs that minimizes the
variance of distances between pairs of nearest neighbtotppes—that is 'nearest’ with respect
to a graph edit distance with unity cost structure. For thionoof uniformity to be meaningful,
it is clear that the graph edit distance must be symmetrigs florcing c.;(e) = ceq(e) and
cvi(v) = ¢,q(v) for all edgese and verticesv. The edit costs are computed by first converting
all prototypes to a sort of 'canonical form’ by matching thémna reference prototype using
unit edit costs. This amounts to computing the optimal péatian P; for each protoypé&r; and
permuting each adjacency matrix to match the reference.

After converting the graphs to this canonical represematwe tabulate the edits necessary
to match each graph with its nearest neighbors. We consider each nearest neighborrggir o
once. For example ity; hasG; as one of itsh nearest neighbors an@; hasG; as one of its
n nearest neighbors, then the edits necessary to n@itdle G, are tabulated only once. Let
{N;}1<, be a set of binary vectors that indicates whether a specifi¢sedecessary to match the

5" pair of nearest neighbor prototypes, whéfas the number of distinct nearest neighbor pairs.

13

If ¢ is a vector containing the corresponding edit costs, thergtaph edit distance between the
j™ pair is given byd; = Nch. Using this notation, the variance of pair wise distancethén

given by ,
K K
1 1
i=1 j=1

Eg. (15) may be expanded to give the objective functigi) as

K

K K T
U(e)=Koj=c") (Ni - %Z Nj> (Ni - %Z Nj> c=c"Qe (16)
j=1 i=1

=1
We also require a minimum allowable distantg,, between any two nearest neighbors, and

that costs be nonnegative. So if we define the matfix = [N, N, --- Ng] then the

optimal costs are given by the quadratic program:

min ¢’ Qc
C

such that Mc > d,,;,1 (17)

and 0 < ¢

A projection method may be used to solve this quadratic pmgmwe use an active set method
which falls under this broader category [22]. We now turn atiention to some practical issues
associated with implementing this method for edit costia. In order to assure the problem
in Eq. (17) is well posed, we only consider edits that are mptethdent—that is edits that do not
always occur in tandem. For example, whenever a vertex tecdio are all edges connected
to it; it follows that these edits are dependent. Dependdiis ere assigned the same optimal
cost. Similarly, some edits may not occur at all among thespafi prototypes. Such edits have
no bearing on the distribution of the prototypes, so theysamgly assigned unit cost.

It is also important to consider the canonical graph reprtaéi®n used to tabulate edits. It
is convenient to use the prototype with the most verticeshasréference graph. This allows
the connectivities of all edited vertices(¢)) to be noted directly. We also observe that this
canonical representation is only an approximation, alagygood one for fairly similar graphs.

Ideally, the tabulated edits should be equivalent (to withipermutation) regardless of which

14

prototype is selected as the reference. This will certamay be the case for prototype sets that

vary wildly; however, as argued earlier, edit cost seleci®not vital in this case.

[Il. SIMULATION RESULTS

The matching scheme described was simulated in the conte@ndom graph recognition.
Three sets of fifteen prototype random graphs each were gfedethrough a rejection sampling
process to assure relatively similar structure of all pyp&s within a set. The protoypes range
in size from 15 to 18 vertices with 41 to 55 edges. The adjacematrix representations of all
prototypes are shown in Fig. 1. Here, a black square repieseil’ in the adjacency matrix
and a white square represents '0’. See Section II-A for argagmn of the adjacency matrix
representation.

The minimum variance procedure described in Section |I-I3 wsed to select the edit costs
for each prototype set with a minimum allowable nearesthi®g distance constraint,,;,, = 5.
The six nearest neighbors of each protoype were used in th@nga computation. Pair wise
distance histograms between nearest neighbors are sholig.i2. Histograms are shown for
a unity cost structure along with the costs computed frommi@mum variance criterion. It is
clear that the minimum variance costs (labeled MinVar) Itesuhistograms that more nearly
resemble a uniform distribution, thus indicating the Min\ésts are more suitable for graph
classification as previously argued. Note that in Set C, tiseome pair of nearest neighbors that
falls below the minimum distance constraint&f;,, = 5. This is not a contradiction because the
minimum distance constraint is imposed on the matchingsd®t canonical representations as
described in Section 1I-D. It turns out that there is in faatlaser matching between this pair
than suggested by the canonical representation.

After computing the optimal edit costs, a series of sampfitrgraphs were generated for
classification. For each graph in the protoype set, a samplghgcorresponding to the protoype
was created by applying four random edits to the protoypés #sulted in fifteen sample graphs
to classify for each prototype set. Each sample graph washmatto all fifteen protoypes within
a set using both unity and MinVar costs. A sample graph isgeieed as a noisy version of

whichever prototype it is closest to using the graph editadise as a metric. A 'classifier ratio’

15

5|- 5|- . 5|- . 5|- . 5"
o T R B
: 5 10!-5: ’ 5 10!-.:5.. : 5 10!-5: : EOE-T: N Sﬁ?ol-lfy
5 I- .
B i
SL 2
5|- . 1
o 2
o s
S o
mﬂ il
15 . ". i'.':"
f:fil'& L
15.‘&‘0%‘: | 5 10 15
i £
ol ¥, : .
g ALY Ll
T L
i)
154.:'-,".3 e
5 g
wd i
- sl
Er ok
"]
LR TELY
Clsl.:-_u..-. 15*51';: 15,':-_|:|.-. 1) ;'_I.|.'. o mL el

Fig. 1. The adjacency matrix representations of the three protegpeeof fifteen random graphs each. The protoypes
range in size from 15 to 18 vertices with 41 to 55 edges. Hetdaek square represents a '1’ in the adjacency
matrix and a white square represents '0’. See Section ll+Aafdescription of the adjacency matrix representation.

16

Unity Costs

MinVar Costs

0 10 20 30 40 50 60
A Pairwise Distance

Unity Costs

MinVar Costs

0 10 20 30 40 50 60 70 80
B Pairwise Distance

15

Unity Costs

MinVar Costs

C 0 5 10 15 ZOPaWWIseZFI;IS(anC:‘O 35 40 45 50
Fig. 2. Pair wise distance histograms between nearest neighboesaét of the three protoype sets. Histograms are
shown for a unity cost structure (above) along with the costaputed from the minimum variance criterion (below).
The minimum variance costs (labeled MinVar) result in lgséans that more nearly resemble a uniform distribution,
thus indicating the MinVar costs are more suitable for grelaissification. Note that in Set C, there is one pair of
nearest neighbors that falls below the minimum distancetcaimt ofd,,,;,, = 5. This is not a contradiction because
the minimum distance constraint is imposed on the matchirgg&een canonical representations as described in
Section 1I-D. It turns out that there is in fact a closer matghbetween this pair than suggested by the canonical
representation.

17

Set A Set B Set C
CR via Unity Costs | 0.62 (-0.23)| 0.70 -0.15) | 0.75 @0.23)
CR via MinVar Costs | 0.55 (-0.22) | 0.45 (0.18)| 0.67 (-0.59)

Percent Decrease in Avg. 11% 35% 10%

TABLE |
CLASSIFIERRATIOS COMPUTED VIA EQ. (18) AND AVERAGED OVER THE FIFTEEN SAMPLE GRAPHS FOR EACH
SET. THE STANDARD DEVIATIONS OF AVERAGEDCR’S ARE GIVEN IN PARENTHESES

(CR) as given in Eg. (18) was computed for each sample graph ierdadgauge the level of

ambiguity associated with the classification.

d,
= 18
CR=7 (18)

Whered, is the graph edit distance between the sample graph and ¢hatype from which it
was generated, and, is the distance between the sample and the nearest incpneotype
(incorrect’ in that the sample was not generated from thistqitype). The lowerC'R is the
less ambiguous the classification. AlsoCd& > 1 indicates a miss-classification. The average
over all fifteen samples are shown in Table I. Note that avetag values computed with the
minimum variance costs are at leasts lower than those computed with unity costs in all three

sets.

IV. CONCLUSION

This paper develops a linear formulation of the graph editagice and extends the linear
programming approach to the graph matching problem intedun [14] to find the vertex
mapping and edit operations that minimize this metric. Aad&ad graph recognition problem is
presented as an application of the graph matching formall$ra edit costs are chosen using a
minimum variance criterion in order to allow better disaniation among the model graphs in
the database. This method is shown in simulation to moreotmlfy separate prototype graphs
with similar structure and to more reliably classify sampiput graphs than the comparable
method in [14], which is a special case of the more generahdtism presented here. Since
cost selection and matching can both be done in polynonmia,tit is a viable alternative to

matching and/or classifying larger graphs based on a grdipldistance optimization when more

18

traditional enumeration and search techniques are notigahAlso, since a logical method for
selecting the parameters associated with the graph ed#éndes is provided in the context of
the pervasive graph recognition problem, semi-arbitraledion of tuning parameters is not
an issue. We anticipate the results of this paper are ajydida any setting where a graphical

model is used.

ACKNOWLEDGEMENTS

This work was partially supported by a Dept. of EECS Graduateowship to the first author
and by the National Science Foundation under ITR contract CEE®/71.

(1]
(2]

(3]

(4]

(5]

6]

(7]

(8]

El
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

19
REFERENCES

T. Pavlidis, Sructural Pattern Recognition. New York: Springer-Verlag, 1977.

L. Jianzhuang and L. Tsui, “Graph-based method for face ideati€in from a single 2d line drawinglEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1106-1119, 2000.

J. Llados, E. Marti, and J. Villanueva, “Symbol recognition by ettalerant subgraph matching between region adjacency
graphs,”|EEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1137-1143, 2001.

V. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. DopfA measure of similarity between graph vertices:
applications to synonym extraction and web searchiBtiM Review, vol. 46, no. 4, pp. 647-666, 2004.

W. Tsai and K. Fu, “Error-correcting isomorphisms of attributezlational graphs for pattern recognitionlEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, pp. 757-768, 1979.

H. Bunke, “Error correcting graph matching: on the influence @& tinderlying cost function,1IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 21, no. 9, pp. 917-922, Sept. 1999.

——, “Recent developments in graph matchinBroc. 15th Intl. Conf. on Pattern Recognition, vol. 2, pp. 117-124, Sept.
2000.

R. Wagner and M. Fischer, “The string-to-string correction proflelournal of the Association for Computing Machinery,
vol. 21, no. 1, pp. 168-173, 1974.

M. Pavel, Fundamentals of Pattern Recognition. New York: Marcel Dekker, 1989.

M. Neuhaus and H. Bunke, “A probabilistic approach to learningtcor graph edit distanceProc. 17th Intl. Conf. on
Pattern Recognition, vol. 3, pp. 389-393, 2004.

M. Garey and D. JohnsorGomputers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco,
CA: W.H. Freeman, 1979.

A. Hlaoui and S. Wang, “A new algorithm for inexact graph matgfiirProc. 16th Intl. Conf. on Pattern Recognition,
vol. 4, pp. 180-183, 2002.

B. Messmer and H. Bunke, “Error-correcting graph isoma@aphusing decision treeslhit. Journal of Pattern Recognition
and Art. Intelligence, vol. 12, pp. 721-742, 1998.

H. Almohamad and S. Duffuaa, “A linear programming approdah the weighted graph matching problemEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 522-525, May 1993.

S. Umeyama, “An eigendecomposition approach to weighted gnegiching problems,1EEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 10, no. 5, pp. 695-703, Sept. 1988.

S. Gold and A. Rangarajan, “A graduated assignment algorithmgréph matching,'EEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 18, no. 4, pp. 377-387, Apr. 1996.

L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sulplgridomorphism algorithm for matching large graph&EE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-1372, Oct. 2004.

B. van Wyk and M. van Wyk, “A pocs-based graph matching atgor,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 11, pp. 1526-1530, Nov. 2004.

B. McKay, “Practical graph isomorphismCongressus Numerantium, vol. 30, pp. 45-87, 1981.

20

[20] C. Papadimitriou and K. SteiglitzZlCombinatorial Optimization: Algorithms and Complexity. Englewood Cliffs, NJ:
Prentice Hall, Inc., 1982.

[21] Y. Zhang, “Solving large-scale linear programs by interior-paimgthods under the matlab environment,” Department of
Mathematics and Statistics, University of Maryland, Baltimore, MD, Teatp.RIR96-01, July 1995.

[22] P. Gill, W. Murray, and M. WrightPractical Optimization. London, UK: Academic Press, 1981.

