Theory and application of spanning graphs for pattern matching

Alfred O. Hero

Dept. EECS, Dept Biomed. Eng., Dept. Statistics
University of Michigan - Ann Arbor
hero@eecs.umich.edu
http://www.eecs.umich.edu/~hero

Collaborators: Olivier Michel, Bing Ma, John Gorman

Outline

1. Statistical framework: entropy measures, error exponents
2. Registration, indexing and retrieval
3. α-entropy and α-MI estimation
4. Graph theoretic entropy estimation methods
Figure 1: A multidate image registration example
Statistical Framework

- X: an image
- $Z = Z(X)$: an image feature vector
- Θ: a parameter space
- $f(z|\theta)$: feature density (likelihood)
- X_R a reference image
- $\{X^{(i)}\}$ a database of K images

$$Z^R = Z(X^R) \sim f(z|\theta_R)$$

$$Z^i = Z(X^i) \sim f(z|\theta_i), \quad i = 1, \ldots, K$$

\Rightarrow Similarity btwn X^i, X^R lies in similarity btwn models
Divergence Measures

Refs: [Csiszár:67, Basseville:SP89]

Define densities

\[f_i = f(z|\theta_i), \quad f_R = f(z|\theta_R) \]

The Rényi \(\alpha \)-divergence of fractional order \(\alpha \in [0, 1] \) [Rényi:61,70]

\[
D_\alpha(f_i \| f_R) = D(\theta_i \| \theta_R) = \frac{1}{\alpha - 1} \ln \int f_R \left(\frac{f_i}{f_R} \right)^\alpha dx
\]

\[
= \frac{1}{\alpha - 1} \ln \int f_i^\alpha f_R^{1-\alpha} dx
\]
Rényi α-Divergence: Special cases

- α-Divergence vs. Batthacharyya-Hellinger distance

\[D_{\frac{1}{2}}(f_i \parallel f_R) = \ln \left(\int \sqrt{f_i f_R} dx \right)^2 \]

\[D_{BH}^2(f_i \parallel f_R) = \int \left(\sqrt{f_i} - \sqrt{f_R} \right)^2 dx = 2 \left(1 - \int \sqrt{f_i f_R} dx \right) \]

- α-Divergence vs. Kullback-Liebler divergence

\[\lim_{\alpha \to 1} D_{\alpha}(f_i, f_R) = \int f_R \ln \frac{f_R}{f_i} dx. \]
Rényi α-divergence and Error Exponents

Observe i.i.d. sample $\underline{W} = [W_1, \ldots, W_n]$

\[H_0 : \quad W_j \sim f(w|\theta_0) \]
\[H_1 : \quad W_j \sim f(w|\theta_1) \]

Bayes probability of error

\[P_e(n) = \beta(n)P(H_1) + \alpha(n)P(H_0) \]

LDP gives Chernoff bound [Dembo&Zeitouni:98]

\[\liminf_{n \to \infty} \frac{1}{n} \log P_e(n) = - \sup_{\alpha \in [0,1]} \{ (1 - \alpha)D_\alpha(\theta_1||\theta_0) \} . \]
Indexing via α-divergence

Refs: Vasconcelos&Lippman:DCC98, Stoica&etal:ICASSP98, Do&Vetterli:ICIP00

\[H_0 : \quad Z_i^R \sim f(z|\theta_0) \]
\[H_1 : \quad Z_i^R \sim f(z|\theta_1) \]

Clairvoyant indexing rule:

\[X^{(i)} \prec X^{(j)} \iff D_\alpha(f_i||f_R) < D_\alpha(f_j||f_R) \]

Indexing problem: find θ_i attaining $\min_{\theta_i \neq \Theta_R} D_\alpha(\theta_i||\Theta_R)$

1. Image classification: f_i index model classes [Stoica&etal:INRIA98]
2. Target detection: f_R is noise reference and f_i are target references.
 Declare detection if $\min_{\theta_i \neq \Theta_R} D_\alpha(\theta_i||\Theta_R) > \text{threshold}$
Registration via α-Mutual-Information

Ref: Viola&Wells:ICCV95

1. Reference X^R and target X^T.
2. Set of rigid transformations $\{T^i\}$
3. Derived feature vectors

\[
Z^R = Z(X^R), \quad Z^i = Z(T^i(X^T))
\]
\(H_0 \) : \(\{Z_j^R, Z_j^i\} \) independent
\(H_1 \) : \(\{Z_j^R, Z_j^i\} \) dependent

Error exponent is \(\alpha \)-MI (Pluim\&etal:SPIE01, Neemuchwala\&etal:ICIP01)

\[
\text{MI}_{\alpha}(Z^R, Z^i) = \frac{1}{\alpha - 1} \ln \int f^\alpha(Z^R, Z^i)(f(Z^R)f(Z^i))^{1-\alpha} dZ^R dZ^i.
\]
Ultrasound Registration Example

Figure 2: Three ultrasound breast scans. From top to bottom are: case 151, case 142 and case 162.
Figure 3: MI Scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.
Figure 4: α-Divergence as function of angle for ultrasound image registration
Figure 5: Resolution of α-Divergence as function of alpha
Feature Trees

Figure 6: Part of feature tree data structure.

Figure 7: Leaves of feature tree data structure.
ICA Features

Figure 8: Estimated ICA basis set for ultrasound breast image database
Simple Example

Figure 9: Bar images with contrast 1.02, 1.07 and 1.78. Background is low variance white Gaussian while bar is uniform intensity.
Figure 10: Upper curves are single pixel based MI trajectories while lower curves are 4×4 tag based MI trajectories for bar images.
US Registration Comparisons

<table>
<thead>
<tr>
<th></th>
<th>151</th>
<th>142</th>
<th>162</th>
<th>151/8</th>
<th>151/16</th>
<th>151/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>pixel</td>
<td>0.6/0.9</td>
<td>0.6/0.3</td>
<td>0.6/0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tag</td>
<td>0.5/3.6</td>
<td>0.5/3.8</td>
<td>0.4/1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>spatial-tag</td>
<td>0.99/14.6</td>
<td>0.99/8.4</td>
<td>0.6/8.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICA</td>
<td></td>
<td></td>
<td></td>
<td>0.7/4.1</td>
<td>0.7/3.9</td>
<td>0.99/7.7</td>
</tr>
</tbody>
</table>

Table 1: Numerator = optimal values of α and Denominator = maximum resolution of mutual α-information for registering various images (Cases 151, 142, 162) using various features (pixel, tag, spatial-tag, ICA). 151/8, 151/16, 151/32 correspond to ICA algorithm with 8, 16 and 32 basis elements run on case 151.
Methods of Divergence Estimation

- $Z = Z(X)$: a statistic (MI, reduced rank feature, etc)
- $\{Z_i\}$: n i.i.d. realizations from $f(Z; \theta)$

Objective: Estimate $\hat{D}_\alpha(f_i \| f_R)$ from Z_i’s

1. Parametric density estimation methods
2. Non-parametric density estimation methods
3. Non-parametric minimal-graph estimation methods
Non-parametric estimation methods

Given i.i.d. sample $X = \{X_1, \ldots, X_n\}$

Density “plug-in” estimator

$$H_\alpha(\hat{f}_n) = \frac{1}{1 - \alpha} \ln \int_{\mathbb{R}^d} \hat{f}^\alpha(x) dx$$

Previous work limited to Shannon entropy $H(f) = -\int f(x) \ln f(x) dx$

- Histogram plug-in [Gyorfi&VanDerMeulen:CSDA87]
- Kernel density plug-in [Ahmad&Lin:IT76]
- Sample-spacing plug-in [Hall:JMS86] ($d = 1$)
 - Performance degrades as density f becomes non smooth
 - Unclear how to robustify \hat{f} against outliers
 - d-dimensional integration might be difficult
 - $f(x)$ function $\{f(x) : x \in \mathbb{R}^d\}$ over-parameterizes entropy functional
Direct α-entropy estimation

- MST estimator of α-entropy [Hero & Michel: IT99]:

$$\hat{H}_\alpha = \frac{1}{1 - \alpha} \ln L_\gamma(X_n)/n^{-\alpha}$$

- Direct entropy estimator: faster convergence for nonsmooth densities
- Parameter α is varied by varying interpoint distance measure
- Optimally pruned k-MST graphs robustify \hat{f} against outliers
- Greedy multi-scale MST approximations reduce combinatorial complexity
Let $\mathcal{M}_n = \mathcal{M}(\mathcal{X}_n)$ denote the possible sets of edges in the class of acyclic graphs spanning \mathcal{X}_n (spanning trees).

The Euclidean Power Weighted MST achieves

$$L_{\text{MST}}(\mathcal{X}_n) = \min_{\mathcal{M}_n} \sum_{e \in \mathcal{M}_n} \|e\|^{\gamma}.$$
Figure 11: A sample data set and the MST
Fix \(k, 1 \leq k \leq n \).

Let \(\mathcal{M}_{n,k} = \mathcal{M}(x_{i_1}, \ldots, x_{i_k}) \) be a minimal graph connecting \(k \) distinct vertices \(x_{i_1}, \ldots, x_{i_k} \).

The \(k \)-MST \(T^*_n, k = T^*(x_{i_1}^*, \ldots, x_{i_k}^*) \) is minimum of all \(k \)-point MST’s

\[
L^*_{n,k} = L^*(X_{n,k}) = \min_{i_1, \ldots, i_k} \min_{\mathcal{M}_{n,k}} \sum_{e \in \mathcal{M}_{n,k}} \| e \| \gamma
\]
Figure 12: k-MST for 2D torus density with and without the addition of uniform “outliers”.
Convergence of MST

Figure 13: 2D Triangular vs. Uniform sample study for MST.
Figure 14: *MST and log MST weights as function of number of samples for 2D uniform vs. triangular study.*
Figure 15: Continuous quasi-additive euclidean functional satisfies “self-similarity” property on any scale.
Asymptotics: the BHH Theorem and entropy estimation

Theorem 1
Beardwood et al.: Camb59, Steele: 95, Redmond & Yukich: SPA96 Let L be a continuous quasi-additive Euclidean functional with power-exponent γ, and let $X_n = \{X_1, \ldots, X_n\}$ be an i.i.d. sample drawn from a distribution on $[0, 1]^d$ with an absolutely continuous component having (Lebesgue) density $f(x)$. Then

\[
\lim_{n \to \infty} L_{\gamma}(X_n)/n^{(d-\gamma)/d} = \beta_{L,\gamma} \int f(x)^{(d-\gamma)/d} dx, \quad (a.s.)
\]

Or, letting $\alpha = (d - \gamma)/d$

\[
\lim_{n \to \infty} L_{\gamma}(X_n)/n^\alpha = \beta_{L,\gamma} \exp((1 - \alpha) H_\alpha(f)), \quad (a.s.)
\]
Extension to Pruned Graphs

Fix $\alpha \in [0, 1]$ and let $k = \lfloor \alpha n \rfloor$. Then as $n \to \infty$ (Hero&Michel:IT99)

$$L(\chi_{n,k}^*)/(\lfloor \alpha n \rfloor) \to \beta_{L,\nu} \min_{A:P(A) \geq \alpha} \int f^\nu(x| x \in A) dx \quad (a.s.)$$

or, alternatively, with

$$H_\nu(f| x \in A) = \frac{1}{1 - \nu} \ln \int f^\nu(x| x \in A) dx$$

$$L(\chi_{n,k}^*)/(\lfloor \alpha n \rfloor) \to \beta_{L,\gamma} \exp \left((1 - \nu) \min_{A:P(A) \geq \alpha} H_\nu(f| x \in A) \right) \quad (a.s.)$$
Asymptotics: Plug-in estimation of $H_\alpha(f)$

Class of Hölder continuous functions over $[0, 1]^d$

$$\Sigma_d(\kappa, c) = \left\{ f(x) : |f(x) - p_x^{[\kappa]}(z)| \leq c \|x - z\|^\kappa \right\}$$

Class of functions of Bounded Variation (BV) over $[0, 1]^d$

$$\text{BV}_d(c) = \left\{ f(x) : \sup_{\{x_i\}} \sum_i |f(x_i) - f(x_{i-1})| \leq c \right\}.$$

Proposition 1 (Hero&Ma:IT01) Assume that $f^\alpha \in \Sigma_d(\kappa, c)$. Then, if \hat{f}^α is a minimax estimator

$$\sup_{f^\alpha \in \Sigma_d(\kappa, c)} E^{1/p} \left[\left| \int \hat{f}^\alpha(x) dx - \int f^\alpha(x) dx \right|^p \right] = O\left(n^{-\kappa/(2\kappa + d)}\right)$$
Asymptotics: Minimal-graph estimation of $H_\alpha(f)$

Proposition 2 (Hero&Ma:IT01) Let $d \geq 2$ and
$\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d]$. Assume that $f^\alpha \in \Sigma_d(\kappa, c)$ where $\kappa \geq 1$ and $c < \infty$. Then for any continuous quasi-additive Euclidean functional L_γ

$$
\sup_{f^\alpha \in \Sigma_d(\kappa, c)} E^{1/p} \left[\left| \frac{L_\gamma(X_1, \ldots, X_n)}{n^{\alpha}} - \beta_{L_\gamma, d} \int f^\alpha(x) dx \right|^p \right] \leq O \left(n^{-1/(d+1)} \right)
$$

Conclude: minimal-graph estimator converges faster for

$\kappa < \frac{d}{d - 1}$
As $\Sigma_d(1,c) \subset \text{BV}_d(c)$, we have

Corollary 1 (Hero&Ma:IT01) Let $d \geq 2$ and
$\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d]$. Assume that f^α is of bounded variation over $[0, 1]^d$. Then

$$
\sup_{f^\alpha \in \text{BV}_d(c)} E^{1/p} \left[\left| \int \hat{f}^\alpha(x) dx - \beta_{L_{\gamma,d}} \int f^\alpha(x) dx \right|^p \right] \geq O\left(n^{-1/(d+2)}\right)
$$

$$
\sup_{f^\alpha \in \text{BV}_d(c)} E^{1/p} \left[\left| \frac{L_{\gamma}(X_1, \ldots, X_n)}{n^{\alpha}} - \beta_{L_{\gamma,d}} \int f^\alpha(x) dx \right|^p \right] \leq O\left(n^{-1/(d+1)}\right)
$$
Observations

- Minimal graph rates valid for MST, k-NN graph, TSP, Steiner Tree, etc
- Analogous rate bound holds for progressive-resolution algorithm

$$L^G_\gamma(X_n) = \sum_{i=1}^{m^d} L_\gamma(X_n \cap Q_i)$$

{Q_i} is uniform partition of $[0, 1]^d$ into cell volumes $1/m^d$

- Optimal sequence of cell volumes is:

$$m^{-d} = n^{-1/(d+1)}$$

- These results also apply to greedy multi-resolution k-MST
Application: Image Registration

Two independent data samples from unknown distributions

- \(X = [X_1, \ldots, X_m] \sim f(x) \)
- \(Y = [Y_1, \ldots, Y_n] \sim g(x) \)

Suppose: \(g(x) = f(Ax + b), A^T A = I \)

Objective: find rigid transformation \(A, b \)

- Two methods:
 1. \(\alpha\)-MI of \(\{(X_i, Y_i)\}_{i=1}^n \)
 2. \(\alpha\)-Entropy of \(\{X_i\}_{i=1}^m + \{Y_i\}_{i=1}^n \)
Figure 16: Reference and target SAR/DEM images
Algorithm for α-MI estimation

\[
\text{MI}_\alpha(X, Y) = \frac{1}{\alpha - 1} \ln \int f_{X,Y}^\alpha(x,y) (f_X(x)f_Y(y))^{1-\alpha} \, dx \, dy.
\]

Algorithm:

1. Kernel estimates \hat{f}_X, \hat{f}_Y ($O(n^{-1/(d+2)})$)

2. Uniformizing probability transformations:
 \[
 \tilde{X} = F_X(X), \quad \tilde{Y} = F_Y(Y)
 \]

3. Graph entropy estimate of $\text{MI}_\alpha(X, Y)$ ($O(n^{-1/(2d+1)})$)

\[
\frac{L_\gamma((\tilde{X}_1, \tilde{Y}_1), \ldots, (\tilde{X}_n, \tilde{Y}_n))}{n^\alpha} \rightarrow \beta_{L_\gamma,d} \int f_{\tilde{X},\tilde{Y}}^\alpha(x,y) \, dx \, dy
\]

\[
= \beta_{L_\gamma,d} \int f_{X,Y}^\alpha(x,y) (f_X(x)f_Y(y))^{1-\alpha} \, dx \, dy \quad \text{(w.p. 1)}
\]
\[O(n^{-1/(d+1)}) \text{ criterion: } \alpha\text{-Jensen difference} \]

- Jensen’s difference btwn \(f_0, f_1 \):
 \[
 \Delta J_\alpha = H_\alpha(\epsilon f_1 + (1 - \epsilon) f_0) - \epsilon H_\alpha(f_1) - (1 - \epsilon) H_\alpha(f_0) \geq 0
 \]

- \(f_0, f_1 \) are two densities, \(\epsilon \) satisfies \(0 \leq \epsilon \leq 1 \)

- Let \(X, Y \) be i.i.d. features extracted from two images
 \[
 X = \{X_1, \ldots, X_m\}, \quad Y = \{Y_1, \ldots, Y_n\}
 \]

- Each realization in unordered sample \(Z = \{X, Y\} \) has marginal
 \[
 f_Z(z) = \epsilon f_X(z) + (1 - \epsilon) f_Y(z), \quad \epsilon = \frac{m}{n + m}
 \]

- \(\alpha \)-Jensen difference for rigid transformation \(T \)
 \[
 \Delta J_\alpha(T) = H_\alpha(\epsilon f_X + (1 - \epsilon)f_Y) - \epsilon H_\alpha(f_X) - (1 - \epsilon) H_\alpha(f_Y)
 \]

\(\text{constant} \)
Figure 17: Reference and target SAR/DEM images
Figure 18: MST demonstration for misaligned images
Figure 19: MST demonstration for aligned images
Conclusions

1. α-divergence for indexing can be justified via decision theory
2. Non-parametric estimation of Jensen’s difference is low complexity alternative to α-divergence estimation
3. Non-parametric estimation of Jensen’s difference is possible without density estimation
4. Minimal-graph estimation outperforms plug-in estimation for non-smooth densities
Divergence vs. Jensen: Asymptotic Comparison

For $\varepsilon \in [0, 1]$ and g a p.d.f. define

$$f_\varepsilon = \varepsilon f_1 + (1 - \varepsilon) f_0,$$
$$E_g[Z] = \int Z(x) g(x) dx,$$
$$f_\frac{1}{2}^\alpha = \frac{f_1^\alpha}{\int f_1^\alpha dx}$$

Then

$$\Delta J_\alpha = \frac{\alpha \varepsilon (1 - \varepsilon)}{2} \left[E_{\tilde{f}_\frac{1}{2}^\alpha} \left(\left[\frac{f_1 - f_0}{f_\frac{1}{2}^\alpha} \right]^2 \right) + \frac{\alpha}{1 - \alpha} E_{\tilde{f}_\frac{1}{2}^\alpha} \left(\left[\frac{f_1 - f_0}{f_\frac{1}{2}^\alpha} \right]^2 \right) \right] + O(\Delta)$$

$$D_\alpha(f_1 \| f_0) = \frac{\alpha}{4} \int f_\frac{1}{2}^\alpha \left[\frac{f_1 - f_0}{f_\frac{1}{2}^\alpha} \right]^2 dx + O(\Delta)$$