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Abstract

Informative image representations are important in
achieving state-of-the-art performance in object recogni-
tion tasks. Among feature learning algorithms that are used
to develop image representations, the restricted Boltzmann
machines (RBMs) have good expressive power and build ef-
fective representations. However, the difficulty of training
RBMs has been a barrier to their wide use. To address this
difficulty, we show the connections between mixture mod-
els and RBMs and present an efficient training method for
RBMs that utilize these connections. To the best of our
knowledge, this is the first work showing that RBMs can be
trained with almost no hyperparameter tuning to provide
classification performance similar to or significantly bet-
ter than mixture models (e.g., Gaussian mixture models).
Along with this efficient training, we evaluate the impor-
tance of convolutional training that can capture a larger
spatial context with less redundancy, as compared to non-
convolutional training. Overall, our method achieves state-
of-the-art performance on both Caltech 101 / 256 datasets
using a single type of feature.

1. Introduction

Object recognition poses a significant challenge due to
the high pixel-level variability of objects in images. There-
fore, having higher-level, informative image features is a
necessary component for achieving state-of-the-art perfor-
mance in object classification and detection. In the last
decades, many efforts have been made to develop feature
representations that can provide useful low-level informa-
tion from images (e.g., [1, 2]). However, these feature rep-
resentations are often hand-designed and require significant
amounts of domain knowledge and human labor.

Therefore, there has been much interest in developing
unsupervised and supervised feature learning algorithms for
image representations, that address these difficulties. No-
table successes include clustering [3, 4, 5, 6], sparse cod-
ing [7, 8, 9], and deep learning methods [10, 11, 12, 13].

These methods are nonlinear encoding algorithms that pro-
vide new image representations from inputs. For instance,
unsupervised learning algorithms (e.g., sparse coding [14])
can learn representations for low-level descriptors (e.g.,
SIFT) and provide discriminative features for visual recog-
nition [9]. From another perspective, these methods can be
viewed as generative models with latent variables that learn
salient structures and patterns from inputs. In this view, the
posterior of the latent variables can be used as features for
discriminative tasks.

Although recently developed models provide powerful
feature representations for visual recognition, some of these
models are difficult to train, which has been a barrier to their
wide use in many applications. For example, while the re-
stricted Boltzmann machine [15] has rich expressive power
and capability to build a deep network, it is difficult to train
due to its intractable partition function and the need to tune
many hyperparameters through expensive cross-validation.

In this paper, we investigate black-box training of re-
stricted Boltzmann machines. Our main idea is to exam-
ine theoretical links among the unsupervised learning algo-
rithms and take advantage of simple models to train more
complicated models. We first provide a theoretical anal-
ysis showing the equivalence between Gaussian mixture
models (GMMs) and Gaussian restricted Boltzmann ma-
chines [16] under specific constraints. This link has far-
reaching implications on existing algorithms. For exam-
ple, sparse RBMs [17] can be viewed as an approxima-
tion to a relaxation of clustering algorithms, and thus can
provide richer image representations than clustering meth-
ods. Using these equivalence and implications, we enhance
RBM training by utilizing K-means as a way of initial-
izing RBMs. This allows for faster training and greater
classification performance. We evaluate clustering meth-
ods and sparse RBMs on standard computer vision bench-
marks, showing that sparse RBMs outperform clustering al-
gorithms by allowing distributed and less sparse encoding.

Furthermore, we provide a simple connection between
convolutional RBMs and non-convolutional RBMs. For ex-



ample, the convolutional RBM becomes equivalent to its
non-convolutional counterpart when the convolution filter
size is 1 (i.e., no spatial context). Not surprisingly, the con-
volutional RBM thus can capture larger spatial contexts and
reduce the redundancy of feature representations.

Based on our efficient training method, we systemati-
cally evaluate the performance of convolutional RBMs on
standard object recognition benchmarks, such as Caltech
101 and Caltech 256. We also provide an analysis of hy-
perparameters, such as sparsity and convolutional filter size,
to demonstrate the effectiveness of sparse, distributed, con-
volutional feature learning. Overall, our approach leads
to enhanced feature representations that outperform other
learning-based encoding methods (e.g., ScSPM [9] and
LLC [18]) and achieve state-of-the-art performance.

The main contributions of this paper are as follows:

e We provide a theoretical analysis showing an equiva-
lence between mixture models and Gaussian restricted
Boltzmann machines with specific constraints. We fur-
ther show that sparse RBMs can be viewed as an ap-
proximation to a relaxation of such mixture models.

e Using these connections, we propose an efficient train-
ing method for sparse RBMs and convolutional RBMs.
To the best of our knowledge, this is the first work
showing that RBMs can be trained with almost no hy-
perparameter tuning to provide classification perfor-
mance similar to or significantly better than GMM:s.

e We evaluate the importance of convolutional training
that can capture larger spatial contexts with fewer re-
dundancies (compared to non-convolutional training).
Specifically, we learn a feature representation based
on SIFT and convolutional restricted Boltzmann ma-
chines. In experiments, we show that such convolu-
tional training provides a much better representation
than its non-convolutional counterparts.

e Overall, our method achieves state-of-the-art perfor-
mance on both Caltech 101 / 256 datasets using a sin-
gle type of feature.

The rest of the paper is organized as follows. In Section
2, we revisit related works on unsupervised feature learning
and convolutional learning. Section 3 describes preliminar-
ies to the model, and subsequently, in Section 4, we show
the connection between Gaussian mixture models and soft-
max constrained Gaussian RBMs, as well as other connec-
tions regarding sparse RBMs and convolutional RBMs. We
then introduce our proposed training method based on these
connections. In Section 5, we evaluate our method on object
recognition benchmark datasets. Finally, Section 6 presents
conclusions of the paper.

2. Related Work

Recently, researchers have tried to improve image fea-
tures for object classification via unsupervised learning. A
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Figure 1. Pipeline for constructing features in object recognition.

common unsupervised feature learning framework for clas-
sification is as follows: (1) densely extract image descrip-
tors (e.g., SIFT [1] or HOG [2]); (2) train the feature map-
ping using the unsupervised learning algorithms; (3) once
the feature mapping is learned, encode the descriptors to
obtain “mid-level features” [7, 9]; (4) pool the single vector
from multi-scaled sub-regions (e.g., spatial pyramid match-
ing [5]) that characterize the entire image. The represen-
tations are then provided as inputs for linear or nonlinear
classifiers (e.g., support vector machines). This pipeline is
shown as a diagram in Figure 1.

Indeed, advanced encoding algorithms for image de-
scriptors can provide significant improvements in object
recognition. For example, ScCSPM [9], applied patch-based
(non-convolutional) sparse coding on densely extracted
SIFT descriptors to attain sparse feature representations.
Similarly, Wang et al. [18] proposed Locality-constrained
Linear Coding (LLC) based on locality. Boureau et al. [7]
also used sparse coding, but they considered macrofeatures,
which encode neighboring low-level descriptors to incor-
porate the spatial information. While these models are not
trained convolutionally, we use convolutional RBM [19] as
an unsupervised learning algorithm on top of the SIFT de-
scriptors. Our feature representation is robust to translation
variations of images and effective in capturing the larger
spatial context, as shown in the experiments.

Convolutional extensions of unsupervised learning algo-
rithms, such as sparse coding and RBMs, have been suc-
cessful in developing powerful image representations. For
example, Zeiler et al. [20] and Kavukcuoglu et al. [13] de-
veloped algorithms for convolutional sparse coding, which
approximately solves the L -regularized optimization prob-
lem to minimize the reconstruction error between the data
and the higher layer features convolved with the filters. Our
approach is different from these methods in that we used
convolutional RBMs instead of convolutional sparse cod-
ing. Further, we verified the advantage of convolutional
training through the experimental comparison between con-
volutional and non-convolutional training.

Compared to sparse coding, RBMs can compute poste-



rior probabilities in a feedforward way, which is usually
orders of magnitude faster. This computational efficiency
provides a significant advantage over sparse coding since it
scales up to a much larger number of codes. Furthermore,
convolutional RBMs are amenable to GPU computation re-
sulting in another order of magnitude speedup.

3. Preliminaries
3.1. Restricted Boltzmann machines

The restricted Boltzmann machine is a bipartite, undi-
rected graphical model with visible (observed) units and
hidden (latent) units. The RBM can be understood as an
MREF with latent factors that explains the input visible data
using binary latent variables. The RBM consists of visible
data v of dimension L that can take real values or binary
values, as well as stochastic binary variables h of dimen-
sion K. The parameters of the model are the weight matrix
W € REXE that defines a potential between visible input
variables and stochastic binary variables, the biases ¢ € RL
for visible units, and the biases b € RX for hidden units.

When the visible units are real-valued, the model is
called the Gaussian RBM, and its joint probability distri-
bution can be defined as follows:

1
P<Va h) = E exp(—E(V7 h))7 (D
1
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where Z is a normalization constant. The conditional dis-
tribution of this model can be written as follows:

E(v,h)

P(h; =1|v) = sigm(— ZWmUerb (2)

P(vi|h) = (Ui§UZWijhj +ci,0?). ()
J

where sigm(s) = is the sigmoid function, and

N (:;-,-) is a Gaussian distribution. Here, the variables in a
layer (given the other layers) are conditionally independent,
and thus we can perform block Gibbs sampling in parallel.

The RBM can be trained using sampling-based approxi-
mate maximum-likelihood, e.g., contrastive divergence ap-
proximation [21]. After training the RBM, the posterior
(Equation 2) of the hidden units (given input data) can be
used as feature representations for classification tasks.
3.2. Gaussian convolutional RBM

The Gaussian restricted Boltzmann machine is defined
for input data in the form of vectors and does not model spa-
tial context effectively. Thus, to make the RBMs scalable to
more realistic and larger images, Lee et al. [19] proposed
the convolutional restricted Boltzmann machine (CRBM).
The CRBM can be viewed as a convolutional learning algo-
rithm that can detect salient patterns in unlabeled (image)
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Figure 2. Illustrationof a convolutional RBM. Ny and Ny refer
to the size of visible and hidden layer, and ws to the size of con-
volution filter. The convolutional filter for the /-th channel (of size
ws X ws) corresponding to k-th hidden group is denoted as W*'!,

data. A schematic description of Gaussian CRBM is pro-
vided in Figure 2, and the energy function is defined as:

E(v,h) 202 ZZ ij )
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where v € RNV*NvXL denotes the visible nodes with
L channels,!? and h € RVexNuxK denotes the hidden
nodes with K groups. The visible nodes and hidden nodes
are related by the 4-d weight matrix W € RwsxwsxLxK
More precisely, WH! ¢ RWSX®ws represents the connec-
tion between the units in k-th hidden group and /-th visible
channel, and it is shared among the hidden units in the k-th
group across all spatial locations. We define Wk as the 2-
d filter matrix W*+ flipped vertically and horizontally, i.e.,
in Matlab notation, W*! = fliplr(flipud(W*-!)). The
visible units in the [-th channel share the bias ¢;, and the
hidden units in the k-th hidden group share the bias by.
The conditional probability can be written as follows:

P'h) =N <vl; oY Whxh 4 ¢, 021> (5)

k

1~
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(hi |v) = sigm (Z J( *V

l

)i + bk) (6)

The convolutional RBM can be trained like the standard
RBM using contrastive divergence. Since the CRBM is
highly overcomplete, sparsity regularization [17] is used to
encourage the hidden units to have sparse activations.

IFor the simplicity of presentation, we assume that input images are
“square” shaped; however, the algorithm is applicable to images of arbi-
trary aspect ratios.

2For example, if we use dense SIFT as input, L will be 128.



4. Efficient training of RBMs

Although the RBM has shown promise in computer vi-
sion problems, it is not yet as commonly used as other un-
supervised learning algorithms. We believe this is primarily
due to its difficulty in training. To address this issue, we
provide a novel training algorithm by exploiting the rela-
tionship between clustering methods and RBMs.

4.1. Equivalence between mixture models and
RBMs with a softmax constraint

In this section, we show that a Gaussian RBM with soft-
max hidden units can be converted into a Gaussian mixture
model, and vice versa. This connection between mixture
models and RBMs with a softmax constraint completes the
chain of links between K-means, GMMs, Gaussian-softmax
RBMs, sparse RBMs, and convolutional RBMs. These
links will motivate an efficient training method for sparse
RBMs and convolutional RBMs.

4.1.1 Gaussian mixture models

The Gaussian mixture model is a directed graphical model
where the likelihood of visible units is expressed as a com-
bination of Gaussians. The likelihood of a GMM with K +1
Gaussians can be written as follows:

K
P(v) = N (v; py,, i) (7)

k=0

For the rest of the paper, we denote the GMM with shared
spherical covariance as GMM(p,, 0°I), when ), = 021
forall k € {0,1,..., K}. For the GMM with arbitrary pos-
itive definite covariance matrices, we will use the shorthand
notation GMM (g, 3i,).

4.1.2 Gaussian-softmax RBM

We define the Gaussian-softmax RBM as the Gaussian
RBM with a constraint that at most one hidden unit can be
activated at a time given the input, i.e., ) y h; < 1. The en-
ergy function of the Gaussian-softmax RBM can be written
in a vectorized form as follows:

1
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1
E(v,h) = v —c|? = =vIWh -b"h (8)
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For this model, the conditional probabilities of visible or
hidden units given the other layer can be computed as:

P(v|h) = N(v;oWh + ¢, 0?T) ©)
exp(swlv +b;)
I exp(%wfv +bj)’

P(hy = 1|v) = (10)

where w is the j-th column of the W matrix, often denoted
as a “basis” vector for the j-th hidden unit. In this model,
there are K + 1 possible configurations (i.e., all hidden units
are 0, or only one hidden unit h; is 1 for some j).

4.1.3 Equivalence between Gaussian Mixture and
Gaussian-softmax RBM

As Equation 9 shows, the conditional probability of visible
units given the hidden unit activations for Gaussian-softmax
RBM follows a Gaussian distribution. From this perspec-
tive, the Gaussian-softmax RBM can be viewed as a mixture
of Gaussians whose mean components correspond to possi-
ble hidden unit conﬁgurations.3 In this section, we show an
explicit equivalence between these two models by formulat-
ing the conversion equations between GMM(p,,, o2T) with
K + 1 Gaussian components and Gaussian-softmax RBM
with K hidden units.

Proposition 4.1. The mixture of K + 1 Gaussians with
shared spherical covariance of o°1 is equivalent to the
Gaussian-softmax RBM with K hidden units.

Proof. We prove this by constructing conversions:
(1) From Gaussian-softmax RBM to GMM(, o%1):
We begin by the decomposition using a chain rule:

P(v,h) = P(v|h)P(h),
where
P(h) = %/dvexp(—E(v,h)).

Since there are only a finite number of hidden unit configu-
rations, we can explicitly enumerate the prior probabilities:

-E 1
Plhy =1) = [ dvexp(—E(v,h; =1))
> Jdvexp(—=E(v, hj = 1))
If we define 77; = [ dv exp(—E(v, h; = 1)), then we have
P(hy =1) = s

calculated as follows:

T = /dvexp(—E(v,hj =1))

1 1
_ /dvexp(—ﬁHv —elP+ vTw; + )

£ ;. In fact, 7; can be analytically

1 1
= (V2ro)" exp(b; + 5 llwjl[* + —c"w;)
Using this definition, we can show the following equality:
P(V) = ZﬂjN(V; oW, + c, 0'21).
J
(2) From GMM(pt,,, o21) to Gaussian-softmax RBM:
We will also show this by construction. Suppose we have

the following Gaussian mixture with K 41 components and
the shared spherical covariance oI:

K
P(v) =Y mN(v;p;,0°T). an
j=0

3In fact, the Gaussian RBM (without any constraints) can be viewed as
a mixture of Gaussians with an exponential number of components. How-
ever, it is nontrivial to use this notion itself to develop a useful algorithm.



We can convert from GMM(u,,, o*I) to Gaussian-softmax
RBM using the following transformations:

c=pp (12)
1 .
g N - e
b; = log - 2||W]|| W e (14)

It is easy to see that the conditional distribution P(v|h; =
1) can be formulated as a Gaussian distribution with mean
p; = ow; + ¢, which is identical to that of a Gaussian-
softmax RBM. Further, we can recover the posterior proba-
bility of hidden units given the visible units as follows:

7, exp(= g llv — 0w, — )
K
D=0 Ty exp(— iz |[v — owjr — ¢[[?)
exp(%wgv +b;)

- K
T+ exp(%w}jv +b;)

P(h; = 1|v) =

Therefore, a Gaussian mixture can be converted to an equiv-
alent Gaussian RBM with a softmax constraint. O

Similarly, the Gaussian mixture with shared diagonal co-
variance is equivalent to the Gaussian-softmax RBM with a
slightly more general energy function, where each visible
unit v; has its own noise parameter o;, as stated below.

Corollary 4.2. The mixture of K + 1 Gaussians with a
shared diagonal covariance matrix (with diagonal entries
02,9 = 1,...,L), is equivalent to the Gaussian-softmax
RBM with the following energy function:

E(V, h) = Zi Ti?(vifci)sziJ‘ %UiWijh]‘ 723- bjhj.

Further, the equivalence between mixture models and
RBMs can be shown for other settings. For example, the
following corollaries can be straightforwardly derived from
Proposition 4.1.

Corollary 4.3. The binary RBM (i.e., when the visible units
are binary) with a softmax constraint on hidden units and
the mixture of Bernoulli models are equivalent.

Corollary 4.4. GMM(0, X,) and factored 3-way RBM [22]
with a softmax constraint on hidden units are equivalent.

4.1.4 Implication

Proposition 4.1 has important ramifications. First, it is well
known that K-means can be viewed as an approximation of
a GMM with spherical covariance by letting o — 0 [23].
Compared to GMMs, the training of K-means is highly ef-
ficient; therefore, it is plausible to train K-means to provide
an initialization of a GMM.* Then, the GMM is trained with

4K-means learns cluster centroids and provides hard-assignment of
training examples to the cluster centroids (i.e., each example is assigned
to one centroid). This hard-assignment can be used to initialize GMM’s
parameters, such as 7y, and o, by running one M-step in the EM algorithm.

EM, and we can convert it to a RBM with softmax units. As
we discuss later, this can provide an efficient initialization
for training sparse RBMs and convolutional RBMs.

4.2. Activation constrained RBM, sparse RBM, and
convolutional RBM

We can extend the Gaussian-softmax RBM to more gen-
eral Gaussian RBMs that allow at most «« > 1 hidden units
to be active for a given input example. We call this model
an activation constrained RBM, and its energy function is
written as follows:

1
E(v,h) = —|lv—cl]’ -

1
“vI'Wh-b"h (15)
202 o

subj. to

Note that the number of possible hidden configurations
grows polynomially with a.”> Therefore, such relaxation
provides more expressive power than Gaussian mixture
models. However, there is a trade-off between the expres-
sive power (or capacity), and the tractability of exact infer-
ence and maximum-likelihood training. For example, an
exact EM algorithm will require polynomial time complex-
ity of O(K®), which may be computationally expensive.

To address such difficulties, we approximate the activa-
tion constrained RBM to the sparse RBM [17]. Specifically,
the sparse RBM is a variant of the RBM that is trained by
adding a regularizer that encourages the average activation
to be low (i.e., with target sparsity pg) in the hidden repre-
sentations. By setting py = «/ K, the sparse RBM can be
regarded as an approximation to the activation constrained
RBM with a constraint ) j h; < «. The inference and
training of sparse RBMs is much more efficient as « in-
creases.

We further observe that the convolutional RBM is a gen-
eralization of the sparse RBM. Specifically, the two algo-
rithms are equivalent when (1) the filter size of the CRBM
is 1 (i.e., the convolution does not smooth the image); or
(2) the filter size is the same as the image size (i.e., this
is essentially equivalent to vectorizing the whole image,
which is usually not interesting). For example, note that
non-convolutional feature learning algorithms (e.g., sparse
RBM) on SIFT descriptors would have a weight matrix of
size 128 x K, which is equivalent to that of convolutional
algorithms (1 x 1 x 128 x K, i.e., no interactions between
adjacent hidden units). In general, convolutional RBMs can
model a larger spatial context using ws X ws X L as weights
for each hidden unit.

Predictions

Based on the connections described previously, we can
make the following predictions:

SIf « — oo or there is no such constraint, the model is equivalent to
the Gaussian RBM that has exponential number of hidden configurations.



Algorithm 1 Efficient training algorithm for RBMs

1: Train K + 1 centroids p,; via K-means.

Initialize GMM(t,,, 0%I) parameters from K-means.
Train GMM (g, 0°I) via EM.

Initialize the RBM parameters (see Proposition 4.1).
Train sparse RBMs or convolutional RBMs (e.g., via
contrastive divergence).

e K-means, GMM, and Gaussian-softmax RBM (with
the same K') should have similar expressive power and
show similar classification performance.

e When a > 1, sparse RBMs can give better classifica-
tion performance than K-means or Gaussian mixtures
due to its increased expressive power.

e When convolutional filter size is larger than 1, con-
volutional RBMs can give better classification perfor-
mance than non-convolutional RBMs since they can
learn spatial context more efficiently.

These predictions will be verified with our efficient training
method, which is described in the following section.

4.3. Algorithm and implementation details

The overall procedure for training sparse RBMs or con-
volutional RBMs is shown in Algorithm 1. In addition, we
used the following methods to select hyperparameters.

4.3.1 Setting the o automatically

As we see in the energy function of the Gaussian RBM
(Equation 1), o roughly controls the noise in the visible
units. Typically, o is fixed during training and treated as
a hyperparameter that needs to be cross-validated. As an al-
ternative, we used the following heuristic to automatically
tune the o value. Suppose that we are given a fixed set of
hidden unit values , then we have the following conditional
probability distribution for the Gaussian RBM:

P(v|h) = N(v;cWh + ¢, 61) (16)

If we apply the maximum likelihood estimation of o given
h fixed, then o should be the sample standard deviation of
v — (6Wh + ¢). Here, we use h as the expectation of h
given input v. Thus, we update o so that it becomes close
to the reconstruction error of the training data.® The same
method also applies to convolutional training.

4.3.2 Setting the L, regularization

When training RBMs, a hyperparameter for Lo regulariza-
tion (that penalizes high Ly norm of the RBM’s weight ma-
trix W) typically has to be determined via cross validation.
However, due to the connections between mixture models

6Given training examples {v(1), ..., v(M)} we define the recon-
77 ity [V — (eWh® + )| |2,

struction error as

and RBMs discussed in Section 4.1.3, setting the Ly reg-
ularization is straightforward. Specifically, the clustering-
based initialization justifies using the Ly regularization hy-
perparameter obtained from clustering models, which are
often very small. In our experiments, we used 0.0001 with-
out tuning.

In the following section, we show the efficacy of our
training algorithm and provide experimental evidence for
the above predictions. From the experiments, we find that
a combination of moderately sparse (1 < a < K) repre-
sentations with a moderate amount of spatial convolution
(1 < ws < Ny ) performs the best for object recognition.
Further, we show that our feature representation achieves
state-of-the-art performance.

5. Experiments and discussions

In this section, we report classification results based on
two datasets: Caltech 101 [4] and Caltech 256 [24]. In the
experiments, we used SIFT as low-level descriptors, which
were extracted densely from every 6 pixels with a patch size
of 24. We resized the images to no larger than 300x300
pixels with a preserved aspect ratio for computational ef-
ficiency. After training the codebook, the feature vectors
were pooled from the 4 x4, 2x2, and 1x 1 subregions using
max-pooling and then concatenated to single feature vec-
tors. We used linear support vector machines [25] for train-
ing a linear classifier on randomly selected training images
(with a fixed number of images per class) and then evalu-
ated the classification accuracy on the rest of the images.
We performed 5-fold cross-validation to determine hyper-
parameters on each randomly selected training set and re-
port the test accuracy averaged over 10 trials.

5.1. Caltech 101

The Caltech-101 dataset [4] is composed of 9,144 im-
ages split into 101 object categories including vehicles,
artifacts, etc., and one background category with signifi-
cant variances in shape. The number of images in each
class varies from 31 to 800. For fair comparisons, we per-
formed experiments as in other studies [4, 9, 18]. Specifi-
cally, for each trial, we randomly selected 5, 10, . .., 30 im-
ages from each class, including the background class, and
trained a linear classifier. The remaining images from each
class were tested, and the average accuracy over the classes
(equal weight for each class) was reported.

We summarize the results from our proposed method and
other existing methods in Table 1. Our algorithm clearly
outperformed other state-of-the-art algorithms using a sin-
gle type of feature. Specifically, our mothod breaks the
record on the Caltech 101 dataset by 4.3% for 15 training
images and 2.1% for 30 training images.

5.2. Caltech 256

We also tested our algorithm on a more challenging
dataset, Caltech 256. Caltech 256 dataset [24] is composed



training images \ 5 \ 10 \ 15 \ 20 \ 25 \ 30

Lazebnik et al. [5] - - |564| - - 164.6
Griffin et al. [24] 44.2154.5159.0163.3/65.8|67.6

Yang et al. [9] - - |67.0| - - 1732
Wang et al. [18] 51.2159.8165.4(67.7|70.2|73.4
Boureau et al. [7] - 75.7

K-means (K=4096) |47.6|58.1|63.4|66.6|69.1|70.9
GMM (K=4096) 50.2160.3]65.3]68.6(70.8|72.2

sparse RBM (K=4096) |54.2|64.0|68.6|71.2|73.1|74.9
CRBM (K=2048) |56.5/66.4|70.7|73.5|75.4|77.4
CRBM (K=4096) |56.7|66.7|71.3|74.2|76.2|77.8

Table 1. Average test classification accuracies for Caltech 101.

training images \ 15 \ 30 \ 45 \ 60
Griffin et al. [24] |28.30(34.10| - -
Gemertetal. [27]| - [27.17| - -
Yang et al. [9] |27.73|34.02|37.46 |40.14
Wang et al. [18] |34.36(41.19|45.31 |47.68
CRBM (K=4096) | 35.09 | 42.05 | 45.69 | 47.94

Table 2. Average test classification accuracies for Caltech 256.

of 30,607 images split into 256 object categories with more
variabilities and finer classifications, as well as one “clut-
ter” class of random pictures. Each class contains at least
80 images; the objects in each image are more variant in
size, location, pose, etc., than those of Caltech 101 dataset.
We followed the standard experimental settings from bench-
marks [24, 9], and the overall classification accuracies were
averaged over 10 random trials. The summary of the results
is reported in Table 2. Our algorithm performed slightly
better than the LLC [ 18] algorithm, with considerably large
margins to many other methods on Caltech 256 dataset.
5.3. Analysis of hyperparameters

To provide a better understanding of our proposed al-
gorithm, we give a detailed analysis of the hyperparame-
ters: sparsity and convolutional filter size. We performed
the following experiments on Caltech 101 dataset while fix-
ing the number of bases to 1024. In most cases, we ob-
served significant improvements as the number of hidden
bases increased, which is consistent with what others have
reported [26]. All results reported in this section are valida-
tion accuracies (5-fold cross validation on the training set).
5.3.1 Sparsity (a/K)
The performance of sparse models, such as sparse coding
and sparse RBMs, can vary significantly as a function of
sparsity level. As we discussed in Section 4, the sparse
RBM can be more expressive than K-means or GMMs.
While K-means and GMM have sparsity of 1/ K on average
(i.e., allow only one cluster to be active for a given input),
the sparse RBM can control sparsity by setting the target
sparsity value pg = o/ K.

In this experiment, we compared two settings for sparse
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Figure 3. Average cross-validation accuracy on Caltech 101
dataset with 1024 bases using K-means, GMM, and sparse RBM
with different sparsity values. The “sparse RBM (w/ init)” denotes
the sparse RBM initialized from GMM as described in Section 4;
the “sparse RBM (w/o init)” denotes the sparse RBM initialized
randomly (baseline). Blue and cyan represent settings with 30
training images per class. Red and magenta represent settings with
15 training images per class.

RBM training—one by initializing from GMM as described
in Section 4, and the other by initializing randomly (base-
line). Figure 3 shows the average validation accuracies as
a function of sparsity (a/K). Compared to the K-means
and GMM, the sparse RBM with random initialization per-
formed very poorly in the low « regime (i.e., when its cor-
responding number of activations is roughly 1). However,
by using an efficient training method described in Section 4,
the sparse RBM can perform as well as K-means and GMM
when the target sparsity is close to 1/K, and significantly
outperforms the K-means and GMM when the representa-
tion is less sparse. Overall, the effect of accurate initial-
ization is striking, especially in the high sparsity regime,
and the best validation accuracy (maximum over &) was im-
proved by 2% for both 15 and 30 training images.

5.3.2 Convolution filter size

Convolutional learning is powerful since it captures the spa-
tial correlation between neighboring descriptors (e.g., pix-
els, SIFT) more efficiently than non-convolutional learning.
The size of the filter, however, should be selected carefully.
For instance, it is difficult to capture enough spatial infor-
mation with small size filters; on the other hand, overly
large filter size can result in severe over-smoothing of small
details in the image. Therefore, we investigate how the filter
size affects the performance.

In this experiment, we fixed the number of bases (K =
1024) and sparsity (o = 4) while varying the convolutional
filter size from 1 to 5. As shown in Figure 4, the filter size
of 3 resulted in highest validation accuracies. We also ob-
served improvements (up to 2%) using the clustering-based
initialization method in the convolutional setting.

Overall, our experimental analysis confirms that a mod-
erately sparse (1 < oo < K) representation that is convolu-
tionally trained with sufficient spatial context (1 < ws <
Ny ) outperforms both clustering methods (e.g., K-means
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Figure 4. Average cross-validation accuracy on the Caltech 101
dataset with 1024 bases and different convolution filter sizes (ws).

and GMMs) and non-convolutional counterparts (e.g., non-
convolutional sparse RBMs).

6. Conclusion

In this paper, we proposed a mid-level feature extrac-
tion method using convolutional RBMs. Our key idea is
to investigate an efficient training method for sparse RBMs
and convolutional RBMs through the connections between
mixture models and RBMs. In our experiments, we show
efficacy of our training algorithm, as well as the benefit of
learning sparse, distributed, convolutional feature represen-
tations. Overall, our method achieves state-of-the-art per-
formance in object recognition benchmarks.
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