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Abstract

The massive scale and variability of microarray gene data creates new and challenging problems of signal ex-
traction, gene clustering, and data mining, especially for temporal studies. Most data mining methods for �nding
interesting gene expression patterns are based on thresholding single discriminants, e.g. the ratio of between-class to
within-class variation or correlation to a template. Here a di�erent approach is introduced for extracting information
from gene microarrays. The approach is based on multiple objective optimization and we call it Pareto front (PF)
analysis. This method establishes a ranking of genes according to estimated probabilities that each gene is Pareto-
optimal, i.e., that it lies on the Pareto front of the multiple objective scattergram. For illustration the analysis will
be illustrated in the context of ranking the most aberrant non-linear genes in Fred Wright's GeneChip study.

I. Introduction

One of the principal challenges in microarray analysis is to reliably extract genes exhibiting interesting
expression pro�les from the thousands of hybridization indices generated by the microarray. This is the
so-called gene �ltering problem, also called gene screening and gene selection, The most common approach
to gene �ltering are signi�cance tests implemented by thresholding a set of test statistics, e.g. paired T-tests
of mean di�erences, Fisher tests of variance, or Mann-Whitney rank tests. These can be found on most of
the commercial and freeware packages used for statistical gene analysis such as the SAM MS Excel add-on
[1], the A�ymetrix Microarray Suite and A�ymetric Data Mining Tool (DMT) [4], and others [3]. Such
approaches can yield a list of genes that are ranked in order of statistical signi�cance according to observed
p-values. Methods of multiple comparisons are applicable to more than one �ltering criterion [19] but use of
such methods does not appear to be widespread in gene analysis.

This paper describes a di�erent approach to gene selection, denoted Pareto-optimal �ltering, that is based
on the general theory of multiple objective optimization [21] to which the economist Vilfreda Pareto (1848-
1923) made seminal contributions (see the website [2]). To apply this method the experimenter computes
a number of ranking criteria for each gene, generating a point cloud of criteria vectors which is called the
multicriterion scattergram. For example, to select the most monotonic pro�les over time the ranking criteria
might be chosen as the di�erences in gene expression level over successive time points. The objective of
Pareto-optimal �ltering is to isolate genes that achieve a compromise between maximizing (or minimizing)
the competing gene-ranking criteria, i.e. to �nd the "winning" pro�les. Such genes lie on the so-called
Pareto front of the multicriterion scattergram and are the non-dominated genes, see Sec. III for de�nitions.
Stripping o� genes from successive Pareto fronts in the multicriterion scattergram yields a sequence of Pareto
fronts at increasing depths in the data, called the �rst, second, third, . . . , Pareto fronts, respectively. This
sequence of fronts reveals a hierarchy of the highest scoring gene pro�les. Some of the techniques described
here have been applied to mouse retina studies [12], [13] and have been validated for mouse retina microarray
experiments using RT-PCR techniques. The purpose of the present paper is to present the general Pareto
�ltering methodology, introduce a Bayesian formulation of Pareto �ltering, and to illustrate by applying
them to a widely available data set created expressly for testing gene �ltering, classi�cation, and di�erential
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expression estimation techniques [18].

As the gene indices are randomly sampled from multiple subjects there can exist substantial statistical
sampling errors that complicate the Pareto-optimal analysis. These sampling errors can be handled by cross-
validation, as in [12], [13], producing what can be called a resistant Pareto front (RPF) of genes, de�ned as
those genes that land on the Pareto front with high relative frequency under resampling. As the RPF method
does not rely on any distributional assumptions on the data it is very exible, allowing treatment of arbitrary
ranking criteria such as dependent and non-linear functions of the data. However, when the data distribution
can be characterized, even approximately, RPF has obvious drawbacks. Principal among these drawbacks
is the high computational load of cross-validation which can make RPF methods impractical to implement
for large sample size. To address these drawbacks a Bayesian approach is presented for Pareto-optimal gene
�ltering: the posterior Pareto front (PPF) method.As contrasted to the RPF method, the PPF method
ranks each gene according to its posterior probability that it belongs to the Pareto front. This probability
is computed using prior densities on various unknown parameters in the sampling error distribution.

II. Gene Filtering in Microarrays

The ability to perform accurate genetic di�erentiation between two or more biological populations is
a problem of great interest to geneticists and other researchers. For example, in a temporally sampled
population of mice one is frequently interested in identifying genes that have interesting patterns of gene
expression over time, called a gene expression pro�le. Gene microarrays have revolutionized the �eld of
experimental genetics by o�ering to the experimenter the ability to simultaneously measure thousands of
gene sequences simultaneously. A gene microarray consists of a large number N of known DNA probe
sequences that are put in distinct locations on a slide. See one of the following refernences for more details
[16], [9], [7], [11]. After hybridization of an unknown tissue sample to the gene microarrays, the abundance
of each probe present in the sample can be estimated from the measured levels of hybridization (responses).
Two main types of gene microarrays are in wide use: photo-lithographic gene chips and spotted uorescence
gene arrays. An example of the former is the A�ymetrix product line [5]. An example of the later is the
cDNA microarray protocol [10].

The study of di�erential gene expression between T populations requires hybridizing several (M) samples
from each population to reduce response variability. De�ne the measured response at the n-th gene chip
probe location for the m-th sample at time t

ytm(n); n = 1; : : : ; N; m = 1; : : : ;M; t = 1; : : : ; T:

When several gene chip experiments are performed over time they can be combined in order to �nd genes with
interesting expression pro�les. This is a data mining problem for which many methods have been proposed
including: multiple paired t-tests; linear discriminant analysis; self organizing (Kohonen) maps (SOM);
principal components analysis (PCA); K-means clustering; hierarchical clustering (kdb trees, CART, gene
shaving); and support vector machines (SVM) [14], [6], [8]. Validation methods have been widely used
and include: signi�cance analysis of microarrays (SAM); bootstrapping cluster analysis; and leave-one-out
cross-validation [22], [17]. Most of these methods are based on �ltering out pro�les that maximize some
criterion such as: the ratio of between-population-variation to within-population-variation; or the temporal
correlation between a measured pro�le and a pro�le template.

III. Multiple Objective Gene Filtering

As contrasted to maximizing scalar criteria, multiple objective gene �ltering seeks gene pro�les that strike
an optimal compromise between maximizing several criteria [12]. This is closely related to multiple objective
optimization [21] in which the concept of Pareto-optimal solutions play a crucial role. These solutions are
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almost never unique and are variously called the Pareto-optimal set, the Pareto front, the Pareto frontier, and
the Edgeworth-Pareto front [20]. Pareto optimality theory has been applied to a wide range of application
areas including: economics, mathematical psychology, operations research, and evolutionary computing [24],
[21].

Multiple objective optimization captures the intrinsic compromises among conicting objectives. Consider
Fig. 1 and suppose that ranking criteria �1 and �2 are to be maximized. The collection of points in the
�gure are called the multicriterion scattergram. It is obvious that genes A, B and C are \better" than genes
D and E because both criteria are higher for the former than for the latter. Note that no gene among A, B
and C dominates the other in both criteria �1 and �2. Multi-objective �ltering uses this "non-dominated"
property as a way to establish a preference relation among genes A, B, C, D and E. More formally, gene i is
said to be dominated if there exists some other gene g 6= i such that for some p = po

�p(i) < �po(g) and �p(i) � �p(g); p 6= po:

The set of non-dominated genes are de�ned as those genes that are not dominated. All the genes which
are non-dominated constitute a curve which is called the (�rst) Pareto front. A second Pareto front can
obtained by stripping o� points on the �rst front and computing the Pareto front of the remaining points -
which for the example in Fig. 1 would be genes D and E.
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Fig. 1. A hypothetical multicriterion scattergram for genes A,B,C,D,E plotted as vectors in the plane described by a pair of
ranking criteria �1 and �2. A, B, C are non-dominated genes and form the (�rst) Pareto front. A second Pareto front is
formed by genes D,E.

The above methods are applicable when the criteria �1 through �P are perfectly observable. However, as
these criteria depend on the true mean values �(i) of the i-th gene pro�le, the criteria are only partially
observed through a random sample from the underlying population. A natural way around this is to apply
Pareto front analysis to the sample means but this does not deal with statistical uncertainty due to random
sampling errors. The way we propose to deal with this is to compute the probability that a given gene
lies on the �rst Pareto front given the measurements. Two methods have been developed to compute this
probability: 1) resampling and cross-validation and 2) computation of Bayes posterior probabilities under
non-informative priors on the means and variances of the samples. Due to lack of space these methods are
discussed elsewhere [15], [12].

To account for sampling uncertainty we assume the additive model for the gene pro�le measurement

ymt(i) = �t(i) + �mt(i)

where �mt(i) are zero mean noise samples and m = 1; : : : ;M , t = 1; : : : ; T and i = 1; : : : ; N . Let the vector
criterion �(i) = [�1(i); : : : ; �P (i)]

T be de�ned as a linear function of the mean pro�le vector:

�(i) = A�(i);
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where A = ((aij)) is a P � T contrast matrix. The vector �(i) will be called the pro�le contrasts for gene
i. The pro�le contrast matrix must satisfy some simple properties, such as orthogonality and positivity, to
compute the posterior Pareto probabilities fp(ijY )gi that gene i belongs to the �rst Pareto front. Of course
no such assumptions are necessary for resampling and cross-validation methods, described below, which
consist of computing the relative frequency, also denoted p(ijY ), that gene i belongs to the �rst Pareto front
as data is resampled over subsets of the samples.

IV. Application to Fred Wright's Data

We applied our methods to Fred Wright's dataset described in the paper [18] and available at the web
address provided in the citation. The analysis software was written and implemented in Matlab. Fred
Wright's data set was obtained from a mixing experiment which the authors designed for empirically vali-
dating and comparing various di�erential gene expression methods of analysis. As explained in [18] three
populations of genes were hybridized to A�ymetrix HuGeneFL chips: serum starved human �broblast cells;
serum stimulated human �broblast cells; and a 50-50 mixture of these cells. A total of 18 chips were processed
corresponding to 6 replications within each of the three populations mentioned above. Each HuGeneFL chip
contains the same 7129 gene probes. For each gene probe the sequence of hybridization levels from the
\stimulated(t=1)," \50-50(t=2)," and \starved(t=3)," populations was de�ned, in that order, as a gene
expression pro�le. This provides a suitable test dataset since the true pro�les should be linearly increasing
or decreasing over the three \time points." Any extracted non-monotone gene pro�les must either be due
to statistical estimation errors, uncontrolled uctuations in sample concentrations during hybridization, or
other experimental errors.

The objective is to determine the most aberrant inverted V-shaped gene pro�les. As a preprocessing
step a standard non-linear pro�le �lter was applied using a Fisher test to screen gene pro�les having large
residual linear regression errors inconsistent with a linearity hypothesis. This preprocessing eliminated all
but 98 genes from the 7129 total number of genes studied. In the sequel these will be called the \non-linear"
gene pro�les. A simple modi�cation of the sign-based Pareto analysis method used in [23], [13], [12] can
be applied to �nding the most aberrant non-linear pro�les. In Fig. 2 the multicriterion scattergram is
displayed for Li-Wong indices downloaded from Fred Wright's website. The non-linear genes are displayed
with crosses. The �rst criterion in the �gure is the contrast de�ned by A = [�1; 2;�1], which measures
twice the di�erence between the middle point and the average of the two other points in each pro�le. The
second criterion is the number of \virtual" pro�les whose shapes match a convex cap pro�le. Speci�cally,
for each gene generate all 63 = 216 possible trajectories through the 3 sets of 6 replicated measurements of
hybridization levels. The ranking is de�ned from the proportions of these trajectories which have slope of
positive sign followed by slope of negative sign. This ranking procedure will be called the \non-parametric"
resistant pareto front (RPF) method since the sign-based shape criterion does not depend on the sharpness
or assymetry of the inverted V pro�le shape. Figure 3 shows the �rst �ve Pareto fronts computed on the
full set of 3 � 6 non-linear gene samples indicated as crosses on Figure 2. These fronts were computed by
successively stripping o� genes found to lie on the previous Pareto fronts and rerunning Pareto analysis on
the remaining points. Finally leave-one-out cross validation was performed to determine the resistant genes
that for which a high proportion of the 216 resampled 3� 5 trajectories remained on the �rst Pareto front.
Fig. 4 shows the top 8 resistant pro�les ranked in terms of relative frequency of remaining on the �rst front.

Linear contrast criteria on the non-linear gene pro�les were also implemented to determine a ranking of
the most aberrant inverted V-shaped pro�les. For this the following contrast matrix is adopted

A =

�
�1 1 0
1 1 �2

�
;

which takes large values for the inverted-V shaped pro�les. Figure 5 displays the multicriterion scattergram.
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The crosses in the �gure indicate the 98 non-linear genes. Figure 6 shows the �rst �ve Pareto fronts computed
on the full data set without any cross-validation. Figures 7 and 9 show the results RPF and investigated
Bayesian posterior Pareto front (PPF) analysis. These plots illustrate how statistical uncertainty in the
multiple criteria plane (standard error contours) translates to probability that a gene lies on the �rst Pareto
front. Figures 8 and 10 show the eight top scoring trajectories under PPF and cross-validated RPF analysis,
respectively. In each sub-panel the indicated piecewise linear line passes through the means of the 6 replicates
for each of the 3 time samples.

V. Conclusion

This paper introduced a new method of gene �ltering based on analysis of the Pareto fronts of a speci�ed
multiple criterion objective function applied to each gene. These techniques also have applicability to general
data mining problems involving shape analysis and general selection criteria.
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Fig. 2. Multicriterion mean scattergram of the non-parametric slope-sign ranking criterion for �ltering the most aberrant
inverted V-shaped gene pro�les for Li-Wong reduced indices in Fred Wright's HuGeneFL mixture study. Crosses denote
the 98 non-linear genes failing the Fisher linear pro�le test at a p-value of 0.1.
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Fig. 3. The �rst �ve Pareto fronts (no cross-validation) of the non-parametric inverted V-shape criteria for the non-linear
genes indicated by crosses in Fig. 2.
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3. P (ijY ) denotes the relative frequency that each resampled (leave-one-out resamping) pro�le is Pareto-optimal according
to the non-parametric slope-sign criteria. Dashed line is the linear regression line.
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Fig. 5. Multicriterion scattergram corresponding to contrast matrix A = [�1; 1; 0;�1;�1; 2]. Crosses again indicate the 98
genes having non-linear pro�les at a p-value of 0.1.
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Fig. 6. The �rst �ve Pareto fronts for the genes with non-linear pro�les shown in Fig. 5.
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Fig. 7. 17 genes which belong to the �rst Pareto front with non-zero probability, computed by cross-validation analysis applied
to Fig. 6. Constant contours around each point indicate standard errors under equal variance hypothesis and the relative
frequencies of lying on the �rst Pareto front are indicated at the center of relevant contours.
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5. P (ijY ) denotes the relative frequency that each resampled (leave-one-out resamping) pro�le is Pareto-optimal according
to the two linear contrast criteria. Dashed line is the linear regression line.
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Fig. 9. Same as in Fig. 7 for the linear contrast PPF method along with standard error constant contours and posterior
probabilities of belonging to the �rst Pareto front. For clarity, only the �rst 20 top ranking genes are shown.

0.2

0.4
AFFX−ThrX−5−at

p(i|Y)=1

0.2

0.4

0.6
HG3342−HT3519−s−at

p(i|Y)=1

0

0.2

0.4

0.6

AFFX−DapX−5−at

p(i|Y)=1

0.05
0.1

0.15
0.2

HG831−HT831−at

p(i|Y)=1

0

0.1

0.2

0.3
AFFX−ThrX−M−at

p(i|Y)=0.99

0.2

0.4

0.6
X69111−at

p(i|Y)=0.98

0.2

0.4

0.6

0.8
U14394−at

p(i|Y)=0.97

0.1
0.2
0.3
0.4
0.5

AFFX−LysX−3−at

p(i|Y)=0.96

Fig. 10. Same as Fig. 8 except that gene pro�le ranking is according to computed PPF posterior probabilities shown on Fig.
9. P (ijY ) denotes the Bayes posterior probability that each pro�le is Pareto-optimal according to the two linear contrast
criteria.


