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Abstract
This work treats a problem relevant to automatic road
following, collision avoidance, and maneuver control. A
millimeter-wave radar is placed on the front of the vehicle
and an image of the radar backscatter of the terrain is ac-
quired in polar coordinates. This image contains both road
and off-road scatter components which must be segmented
from each other. Geometric constraints on the road edges
are naturally formulated in the Cartesian cartographic do-
main. However, to use the recorded data directly, we apply
the road constraints in polar coordinates. Moreover, our
estimator is based on a criterion which is largely insensi-
tive to the off-road scatter. Numerical results are given for
real data and illustrate the accuracy and robustness of our
approach. Finally we derive the Fisher information matrix
for evaluation of the achievable accuracy of segmentation
for our model via the Cram̀er Rao bound.

1 Introduction
The recovery of road edges from front-mounted radar and
optical sensors has been of recent interest in intelligent
highway vehicle systems (IVHS) and present several chal-
lenges. In particular edge detection must have high relia-
bility and be robust to many changing conditions such as:
weather, visibility, clutter and noise, road surface variabil-
ity, presence of cross streets, exits, crosswalks, etc. To this
end, we need a fairly simple model, a segmentation crite-
rion which is easy to optimize, and fast convergence.

We propose such an algorithm, which is based on estima-
tion of a pair of tightly coupled parabolic curves defined in
the cartographic domain and which are transformed to the
polar domain of the raw image acquisition. Our method
performs curve estimation directly in the polar domain.
Robustness to off-road clutter is achieved by using a non-
linear least squares criterion which involves only estimated
road pixels for which faithful priors are available. This

simplification allows a simple numerical optimization to
be performed, without resorting to time consuming Monte
Carlo methods. An issue which is currently under study
is the choice of search space for the parameter optimiza-
tion. We illustrate the proposed technique with real images
acquired in Michigan from an L band radar mounted on a
military transport vehicle on a country road.

As the segmented images will serve as a basis for colli-
sion avoidance, lane following and other critical decisions,
asessing the accuracy of the segmentation is of paramount
importance. To this end we derive lower bounds on min-
imum achievable mean square error of any segmentation
method. This requires reformulation of the likelihood of
the observation system in a continuous (non-pixelated) set-
ting which permits the derivation of general expressions for
the Fisher information matrix which generalize the results
of the analysis [4] for edge detection.

2 The Main Assumptions
The segmentation procedure will be developed in this pa-
per under the following assumptions.

(a) A road has a regular profile which can be modeled
using a smooth function. Moreover, the road width is
constant inside the field of view.

(b) Datazdetermine a field of view with azimuth between
�31� and 32� and a range of up to 128 meters.

(c) The road has constant curvature within the field of
view. Given the fact that the field of view is restricted,
this assumption is realistic.

(d) The road is a truly homogeneous region. No assump-
tion is given for the off-road zones.

(e) The angular resolution of the radar data decreases lin-
early with distance.



3 Parabolic road edge model
A birds-eye view of the road, which we call the carto-
graphic domain, is represented on a Cartesian lattice with
axes(x;y). The left and right edges of the road,Xl andXr

respectively, are defined as functions of the vertical axisy.
Following [8, 2], these are modeled using parabolic curves:

Xl (y) = ay2+by+cl ; Xr(y) = ay2+by+cr (1)

wherea; b andcl ; cr are the parameters that we shall seek.
The subscriptl andr will indicate “left” and “right”. Since
the vehicle is inside the road,cr > 0 andcl = cr �d < 0,
whered is the width of the road. The recorded imagez
is acquired on a rectangular area(ϕ;ρ) whose axes, an-
gular positionϕ 2 [�31π=180;32π=180] and rangeρ 2
[1=2;128], are the transform in polar coordinates of the
Cartesian coordinates,x = ρsinϕ andy = ρcosϕ. How-
ever, the model for the road edges is naturally defined in
the (x;y) domain. An issue is to transform dataz into the
(x;y) domain: such an approach has been used in [8] which
has the advantage of simplifying calculations. The draw-
backs are that interpolating data into the cartographic do-
main generates errors which can be amplified during the
edge detection stage and makes it difficult to exploit the
advantages of (e).

Similarly to [10, 5], we transform the cartographic edge
model (1) into the polar domain. In polar coordinates, the
road edges are denoted byRc for c2 fl ; rg and satisfy

Rcsinϕ = aR 2
c cos2 ϕ+bRccosϕ+cc

Solving this equation with respect to (w.r.t.)Rc yields:

� if acl ;r � 0 (2)

Rc(ϕ) =
�B(ϕ)+signa

p
B2(ϕ)+4jacl ;rjcos2 ϕ

2acos2 ϕ
where B(ϕ) = bcosϕ�sinϕ

� if acl ;r > 0 (3)

Rc(ϕ) =
�B(ϕ)�pB2(ϕ)�4acl ;r cos2 ϕ

2acos2 ϕ

where
ϕ� arg tan(�2

p
acl ;r +b) if a< 0

ϕ� arg tan(2
p

acl ;r +b) if a> 0

Whenacl ;r > 0, each edgeRc takes two different values for
the sameϕ which correspond to the cases+ and� in (3).

Based on this, our scene is partitioned into left off-roadTl ,
roadTs and right off-roadTr . In the following, the sub-
scriptswill be used to address the road.

4 Segmentation Method
Actual radar imagez is given on a discrete lattice,
f(ϕ j ;ρi);�M=2+1� j�M=2;1� i�Ng (where we sup-

poseM is even). After discretization ofRl andRr along
the ρ-axis, (2) is inverted and the angular position of the
road edges is expressed as a function of the range,Φl (ρi)
andΦr(ρi) for 1� i �N. RoadTs,

Ts(a;b;cr ;d) = f(i; j) : Φl (ρi)� jπ=180�Φr(ρi)g

is a function of the model parameters, so estimating its
edges amounts to determine the optimalba;bb;bcr ; bd.

The likelihood function of the radar image is given by a
log-normal distribution [1, 6, 8]:

P(zja;b;cr ;d) = ∏
c2fs;l ;rg

∏
(i; j)2Tc

exp
h
� (logzi; j�µc)

2

2σ2
c

i
zi; j
p

2πσ2
c

(4)

whereσ2
c is the variance of the regionc. For convenience,

we will use log-datayi; j := logzi; j .

Many authors [6, 9, 5] conceived algorithms based on the
maximization of (4). Let us emphasize thatthe model in
(4) supposes all three regions,Tc, c 2 fs; l ; rg, are ho-
mogeneous.Although the road is homogeneous, nothing
is known about the side regions. So, we wish to built a
method which is insensitive to the off-road scatter compo-
nents. Our approach is based on several arguments which
are exposed below.

(i) Criterion involving only the pixel of the road. Ob-
serve that if we are given the road widthbd, a simple cri-
terion, involving only the pixels of the road, is straightfor-
ward:

J (a;b;cr ; bd;y) =
∑(i; j)2Ts(:)(yi; j �bµs)

2

#fTs(a;b;cr ; bd)g (5)

bµs =
∑(i; j)2Ts(a;b;cr ; bd)

yi; j

#fTs(:)g
where # stands for cardinality andbµs is the empirical mean
over the road. Parametersa;b;cr are estimated as

(ba;bb;bcr) = arg min
a;b;cr

J (a;b;cr ; bd;y) (6)

The proposed method (5-6) is to search over the recorded
image forthe patch of constant width and curvature which
has the minimum variance, i.e. which is the most homo-
geneous.This is a sound objective which leaves the side
regionsTl andTr out of consideration, and thus improves
robustness to off-road variability (d).

(ii) Estimation of the road width from a short-range
section. From (e), the road widthd si reliably repre-
sented only in data corresponding to a few tens of meters



in front of the vehicle. Over such a section, the road edges
can be assumed linear. We propose to estimated from a
section of the road of length̀, denoted byz̀ , by maximiz-
ing (1) where we fixa= 0:

(bb0;bc0r ; bd) = arg min
b;cr ;d

G(b;cr ;d) (7)

where G(b;cr ;d) = � logP(z̀ j a= 0;b;cr ;d) (8)

From (8), we will keep onlybd. The road edges relevant to
this linear model, saỹRc for c2 fl ; rg, read

R̃c(ϕ) =
cl ;r

sinϕ�bcosϕ
: (9)

By inverting (9), the angular position of the road edges is:

Φ̃l ;r(ρ) = 2arctan
�ρ+

q
(1+b2)ρ2�c2

l ;r

bρ�cl ;r
: (10)

Having a simple, explicit expression for the edges of the
road is an important factor to speed up the calculations rel-
evant to this stage.

A finer tuning of bd can be obtained by allowinga 6= 0 in (7)
and performing a local minimization ofG in the vicinity of
the already obtained estimate of the width of the road.

(iii) Numerical simplifications allowing “exhaustive”
minimization. In spite of their quadratic form, both cri-
teriaJ andG are multimodal w.r.t. the parameters we seek.
In a similar context, EM minimization has been proposed
in [7] and Metropolis optimization in [9, 5]. Being based
directly on (4), such methods tipically involve all the pixels
of z.

In contrast, the approach proposed in (i) and (ii) allows cal-
culations over reduced regions, since both criteriaJ andG
concern only a small parcel of the image. The linear as-
sumption in (ii) greatly simplifies the calculations as well.
In addition, our edge model depends on a very restricted
number of parameters. All these facts permit an optimiza-
tion by “exhaustive” search to be envisaged. Global mini-
mization ofJ andG is performed using a constrained “ex-
haustive” search over a discrete grid of sampled values of
the parameters. The numerical efficiency of such a me-
thod critically depends on the number and the distribution
of parameter samples which are used for the “exhaustive”
search. Next, we suggest how to reduce the number of
samples by restricting the search domain.

(iv) Region of interest for the parameters.
� A priori known feasibility domain:this domain contains
all the parameters yielding a pair of road edges which re-
mains in the field of view for at leastL meters:

jav2+bvj � vF for 0� v� L (11)

m
et

er
s

degrees
−30 −20 −10 0 10 20 30

5

10

15

20

25

30

−60 −40 −20 0 20 40 60

5

10

15

20

25

30

m
et

er
s

meters

Figure 1: Coarse estimate of road width from the front par-
cel of the road, using a linear model for the road edges.

whereF = 1
2(tan32π

180+ tan�31π
180 ). Note that�vF andvF

are the boundaries of the field of view.

The order of magnitude forcr comes from the fact thatcr is
the distance between the car and the right edge of the road.
The width of the roadd is larger than the width of a car.

� Coarse segmentation of the road.Next, we use a sim-
ple coarse estimation procedure to obtain a reduced region
of interest (ROI) which contains the road with high proba-
bility. The idea is the following. The image is partitioned
into several sections and in each of them the road edges are
modeled by linear segments, similarly to (9-10). More pre-
cisely, a term of the form (5) is defined over each segment,
starting from the second segment, since the first one has
been estimated by (7) in the context of(ii) . Let us stress
that each road segment is described using only one param-
eterb, sincea = 0 andcr are fixed by the constraint that
road is continuous.

Although the so obtained road estimate exhibits sharp cor-
ners, it provides a faithful approximation of its shape.
Stress that such a locally linear model is not very sensi-
tive to the fineness of the sampling of the parameters. This
coarse estimate is very rapid to compute.

5 Experimental results
In this section road segmentations are shown in the domain
of the data,i.e. in the polar domain(ϕ;ρ). Next to these
segmentations is plotted the corresponding birds-eye view
of the road in the(x;y)-domain, and the radar sensor field
of view is plotted with a dotted line and has a V-shaped
boundary.

Fig. 1 shows a coarse estimate of road width using the
linear model for the road edges, as given in (7-8). For`=
30m, this yields an estimatebd = 10 m.

A refined parabolic estimate of road width is obtained by
finding the least squares fit for arbitrarya 6= 0 in (8). The
result is given in Fig. 2 confirming thatbd = 10 m.

The segmentation presented in Fig. 3 corresponds toba=



m
et

er
s

degrees
−30 −20 −10 0 10 20 30

5

10

15

20

25

30

−60 −40 −20 0 20 40 60

5

10

15

20

25

30

m
et

er
s

meters

Figure 2: Refined estimate of road width from the same
parcel of the road using a parabolic model for the road
edges.
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Figure 3: The final segmentation obtained using the pro-
posed algorithm faithfully retrieves the locations of the
road edges.
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Figure 4: Coarse and rapid segmentation of the road using
a locally linear model for its edges. It provides a faithful
ROI for a further estimation of the location of the road.

0:002,bb = 0:1476 andbcr = 2:25 and has been calculated
using (5-6). The edges of the road are correctly retrieved
and it is seen that the road has a gentle right turn.

The global minimization of criteriaJ andG has been per-
formed using a constrained “exhaustive” search over a dis-
crete grid of sampled values of the parameters. First we
sample only over thea priori known feasibility domain.
Second, we used a coarse estimation with 4 sections. It
can be seen from Fig. 4 that our ROI surrounds the above
estimate: more closely just in front of the car and more
loosely with the increase of the distance from the car. This
ROI yields an additional set of strong but meaningful con-
straints for the parameters of the parabolic model.

6 Continuous-array Log-likelihood
The method proposed in this paper yields a pertinent seg-
mentation of the road edges. However, it is critical to know
whether such results can be obtained in a broad range of
situations. Closely related questions are(i) what is the best
sampling for the radar data,(ii) what should be the extent
of the section of the road̀allowing to get a faithfull esti-
mate of the road width,(iii) is it pertinent to undersample
some areas in the image,(iv) what is the best sampling for
the parameters modeling the road. Rigorous indications
for such questions are provided by the Fisher information
matrix (FIM) of the parameters involved in both, data ac-
quisition and subsequent segmentation. Our next ambition
is then to determine the FIM corresponding to the main
parameters involved in our model.

FIM is naturally formulated over continuous-grid images.
Put ξ = (ϕ;ρ) whereφ and ρ are reals. By assumption
(b) and (1), the ideal road scenef is composed of three
constant patches of constant levelµc

f (ξ) = µl 1Il (ξ)+µs1Is(ξ)+µr1Ir(ξ) (12)

where 1Ic(ξ) := 1I(ξ 2 Tc) is the characteristic function of
thecth region (1I(S) = 1 whenSis true and 1I(S) = 0 other-
wise). Here the continuous image model is developped us-
ing log-datay(ξ) = logz(ξ) Gaussian radar measurement



model. This data set is a modification of (12), degraded
by Gaussian perturbations. The measurement is assumed
to consist of three additive components: noisew(ξ) which
is spatially white, zero-mean and Gaussian with station-
ary varianceη; a specific terrain-dependent clutternc(ξ)
which characterizes each terrain type (road and offroad)
Tc. It is supposed Gaussian with mean zero, whereas its
covarianceKc(ξ;ξ0) is non-white. It is convenient to as-
sume thatKc is zero beyond the support of thecth re-
gion, i.e. Kc(ξ;ξ0) = Kc(ξ;ξ0)1Ic(ξ)1Ic(ξ0) for everyc. The
reflection noise on the entire scene can be expressed as
∑c2fs;l ;rg nc(ξ)1Ic(ξ).
Being bandlimited, the observation system introduces spa-
tial smoothing over both the imagef and the noise process
n. We model this phenomenon as

Φh(ξ) =
1

2πh
exp

�
�kξk2

2h

�
whereh is related to the amount of blur. This yields a
“mean image” and a “blurred noise” process

m(ξ) = (Φh � f )(ξ)
n(ξ) = ∑

c2fs;l ;rg

(Φh �nc1Ic)(ξ)

The log-datay(ξ) finally reads

y(ξ) = m(ξ)+n(ξ)+w(ξ)

All noise-processes being zero-mean, we getE[y(ξ)] =
m(ν). The covariance ofy, sayK (ξ;ξ0), reads

K (ξ;ξ0) = δ(ξ�ξ0)+Kn(ξ;ξ0)
where Kn(ξ;ξ0) = Φh � (∑

c
Kc)�Φh

Above,Kn is the covariance of the blurred clutter.

In the following,θ will denote a vector which contains all
the parameters involved in our model. Some of these pa-
rameters are geometrical:a, b, cr andd. The remaining are
related to the statistical model:µc, σc for c2 fl ;s; rg, and
h, in addition to the parameters involved in allK ’s. So we
can write downK (ξ;ξ0;θ) andKn(ξ;ξ0;θ), etc.

The likelihood function ofy is derived using a Karhu-
nen-Loeve decomposition ofK . Let λi(θ) and ψi(:;θ)
be the eigenvalues and the eigenfunctions, respectively, of
Kn(ξ;ξ0;θ). Define

mi(θ) =
Z

m(ξ;θ)ψi(ξ;θ)dξ

yi =

Z
y(ξ)ψi(ξ;θ)dξ

It can be shown thatyi are Gaussian variables with mean
mi(θ) and covariance

E
�
[yi �mi(θ)][gj �mj(θ)]

	
= [1+λi(θ)]1I(i = j)

Following [11], we calculate the likelihood function rele-
vant toyi for i = 1; : : : ;k. Lettingk 7! ∞ finally yields

lnΛ(y;θ) =�
∞

∑
i=1

ln [1+λi(θ)]
2

�
∞

∑
i=1

[yi �mi(θ)]2

2[1+λi(θ)]
+

∞

∑
i=1

y2
i

An equivalent space-domain representation of lnΛ comes
from the observation that the second term in the above ex-
pression can be put into the form:

∞

∑
i=1

[yi �mi(θ)]2

1+λi(θ)
=

Z Z
dξdξ0�

[y(ξ)�m(ξ;θ)][y(ξ0)�m(ξ0;θ)]K �1(ξ;ξ0;θ)

The details of these derivations can be found in [3].

7 Fisher Information Matrix
Let θk andθl be two parameters among the entries ofθ.
The FIM has entriesFkl which are given by partial deriva-
tives of the log likelihood function [11]

Fkl = E

�
∂ lnΛ(y;θ)

∂θk

∂ lnΛ(y;θ)
∂θl

�

Fkl can equivalently be expressedvia the second derivative
of lnΛ w.r.t. (θk;θl ). It offers some analytical facilities but
supposeslnΛ twice differentiable, so we prefer to not to
use it. After some developments, detailed in [3], we get

Fkl =
1
2

∞

∑
i=1

1

[1+λi(θ)]2
∂λi(θ)

∂θl

∂λi(θ)
∂θk

+
∞

∑
i=1

1
1+λi(θ)

∂mi(θ)
∂θk

∂mi(θ)
∂θl

An equivalent space domain form ofFkl is derived by re-
marking that series relevant to[1+λi(θ)]�1 are related the
inverse of the clutter covarianceK :

Fkl =
1
2

Z
du

Z
dξ0

Z
dξK �1(ξ;u;θ)

∂K (ξ;ξ0;θ)
∂θk

�
Z

dvK �1(ξ0;v;θ)
∂K (v;u;θ)

∂θl

+

Z
dξ

Z
dξ0 K �1(ξ;ξ0;θ)

∂m(ξ;θ)
∂θk

∂m(ξ0;θ)
∂θl

All entries Fk;l , for which θk is a geometrical parameter
whereasθl is a statistical parameter, are null. This fact
confers a block-diagonal structure onF .

Geometrical information
These are the terms ofF for which bothθk andθl are ele-
ments offa;b;cl ;dg. Such parameters are involved inFkl



only through the shape of the 1Ic’s. In order to make this
relation explicit, we expressKn as

Kn(ξ;ξ0;θ) =∑
c

Z
Tc

Z
Tc

dudvΦh(ξ�u)Φh(ξ0�v)Kc(u;v;θ)

Then we find

∂K (ξ;ξ0;θ)
∂θk

= 2∑
c

Z
du

Z
dvΦh(ξ�u)Φh(ξ0�v)

Kc(u;v;θ)1Ic(u)
∂1Ic(v)

∂θk

where we use the symmetry ofKc. In the above expres-

sion, ∂1Ic(v)
∂θk

consists of Dirac distributions placed along the
boundary ofTc. This provides a closed-form way to dif-
ferentiate the boundaries of the integration areas which is
equivalent to the Leibnitz rule, see [3]. This part of the
FIM provides a bound on accuracy of the segmentation.

Statistical information
Next we focus on the terms ofF relevant to the statistical
parameters. In order to simplify the analysis, assume that

Kc(ξ;ξ0;θ) = αc exp

�
�kξ�ξ0k2

2βc

�
Then the model of the covariance of the data is:

K (ξ;ξ0;θ) = δ(ξ�ξ0)+∑
c

Z
Tc

Z
Tc

dudv
αcG(ξ;ξ0;u;v;h;βc)

4π2h2

G(ξ;ξ0;u;v;h;βc) :=exp

�
�kξ�uk2+kξ0�vk2

2h
� ku�vk2

2βc

�
The parameters of interest areh as well asµc;αc andβc for
c2 fl ;s; rg. The derivatives ofK , involved in the expres-
sion ofFk;l are straightforward.

� Derivatives w.r.t. the parameters involved inK :

∂K (ξ;ξ0;P)
∂αc

=

Z
Tc

Z
Tc

dudv
G(ξ;ξ0;u;v;h;βc)

4π2h2

∂K (ξ;ξ0;P)
∂βc

=
Z

Tc

Z
Tc

dudv
αcku�vk2G(ξ;ξ0;u;v;h;βc)

8π2h2β2
c

� Derivative w.r.t.h:

∂K (ξ;ξ0;P)
∂h

= ∑
c

Z
Tc

Z
Tc

dudv
αcG(ξ;ξ0;u;v;h;βc)

8π2h4�kξ�uk2+kξ0�vk2�4h
�

� Derivatives of the mean imagem:

∂m(ξ;θ)
∂h

= ∑
c

µc

4πh3

Z
Tc

dξ0
�kzk2�2h

�
exp

�
�kzk

2

2h

�
∂m(ξ;θ)

∂µc
=

Z
Tc

dξ0Φh(ξ�ξ0)

The last step will be to evaluate numerically the FIM for
typical road configurations. These will be presented in sub-
sequent papers.

8 Concluding Remarks
We have presented a novel technique for estimating road
edges from polar scan images acquired from vehicle-
mounted radar sensors. The technique proposed is accu-
rate, robust and simple to implement. Some issues which
remain to be studied are the following. Iterative methods
may be useful for reducing the computation time. Next, we
provide theoretical expressions for the Fisher information
of the parameters, involved in our segmentation. These
will permit an objective measure of the performance of the
segmentation, to be obtained.
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