
Summary

In this proposal entitledModular Strategies for Internetwork Monitoring we address the long-
standing and difficult problem of detecting and classifying spatially distributed network anomalies from
multiple monitoring sites. Characterizing baseline vs. anomalous behavior of the Internet requires deploy-
ment of collaborative data collection, anomaly detection and pattern recognition on a large scale. Progress
on such a tough problem demands a broadbased and innovative approach which accounts for the practical
constraints on privacy and information sharing, communications, and distributed data processing among
the Internet’s heterogeneous, and perhaps competing, network administrators and ISP’s. We combine the
forces of leading researchers in three complementary disciplines: (i) networking and data collection; (ii)
statistical data analysis and signal processing; (iii) decentralized decision-making and discrete event sys-
tems, to develop new methods for monitoring the network which are both modular and scalable. Our effort
will lead to a better understanding of the fundamental theoretical limitations impeding accurate detection
in a networked monitoring environment. It will also lead to new algorithms for detection of coordinated
intrusions, distributed denial of service attacks, and quality-of-service degradations.

The high-dimension and complexity of nominal packet-level and traffic-level patterns in the Internet
makes establishing a baseline for anomaly detection extremely challenging. Furthermore, in administered
networks, there is a natural aversion to information sharing which could impinge on privacy or erode com-
petitive advantage. Thus any viable approach must compromise the individual good for the societal good to
have any chance of being widely accepted. We will explore practical data sharing protocols which operate
in conjunction with decentralized data analysis algorithms. We will also study the fundamental tradeoff
between ensuring data privacy and anomaly detectability using game theory.

For our research we will adopt a modular global monitoring structure that is decomposed into a three
level hierarchy: local level measurement of data from servers, routers and switches; intermediate level
data analysis and processing of end-to-end traffic measurements, summary statistics and alarms transmitted
from the local level; and upper level decision-making and processing of information transmitted from the
intermediate level. This modular structure allows our approach to be scalable to large networks of monitor-
ing sites. However, this structure also imposes interesting constraints on the data analysis which requires
development of new approaches. Three approaches will be pursued: distributed spatio-temporal data anal-
ysis using wavelets over graphs; event detection and classification using distributed pattern analysis and
learning; and multi-site event correlation using discrete event dynamical systems. The adaptation of these
approaches to the scalable modular processing structure will constitute a major advance in the theory of
distributed statistical information processing. Our approach goes well beyond previously introduced tech-
niques of fault detection, traffic analysis, and alert correlation that have been restricted to much smaller
scale problems.

The intellectual merit and impact of this proposal include: (i) the development of a general theory
of distributed data analysis and anomaly detection for large-scale networks of monitoring devices subject
to privacy constraints; (ii) creation of a repository of real multi-site traces of Internet anomalies which will
be accessible to other networking researchers; (iii) cross fertilization to other applications of distributed
spatio-temporal analysis, e.g., wireless sensor nets; networked biosensors; survey sampling for population
dynamics.

Thebroader impact of this proposal include: (i) involvement of female or under-represented minor-
ity graduate and undergraduate students; (ii) outreach to Middle Schools and High Schools (grades 6-12)
by a combination of presentations at local schools, participation in a summer camp emphasizing comput-
ing security, and involvement in workshops for K-12 teaching and computing staff; (iii) interaction with
networking industry to help transition our research to the operator and user communities; (iv) active partici-
pation of the students involved in this project in national and international professional meetings; (v) active
collaborations and student exchanges with international researchers and institutions in Canada and France.
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1. Introduction and Executive Summary
Modern society increasingly relies on private and public communication networks of data terminals,

sensors, routers, and switches. Consequently this crucial infrastructure must be robust to both key compo-
nent failure and malevolent behavior. The original design principles of data networks did address robustness
issues, but the focus was on localized link and switch failure. Now that theinternetworkof thousands of
autonomous networks interact with and depend on each other, vulnerabilities have been exposed and it has
become evident that there are identifiable, isolated systems in the Internet whose failure could cripple mul-
tiple communication systems. Networks are also exposed to sophisticated attacks that target weaknesses
in communication protocols, switch operation, and host software. There is thus a pressing need to fortify
networks, to develop mechanisms for detecting, localizing, and classifying failure modes, and to take action
to address malfunction. An extensive network monitoring infrastructure that tracks performance and can
detect anomalous network behavior is required to address these needs.

We are a multi-disciplinary team of researchers from the broad areas of network measurement, sta-
tistical signal processing, and dynamical systems. With our combined strengths in data collection, data
analysis, and decentralized decision-making we propose to develop a modular framework for internetwork
monitoring which will result in scalable techniques for anomaly detection and a better understanding of the
fundamental limits on detection performance under the practical constraints of privacy. Our approach has
the following features:
1. A comprehensive plan for multi-site data collection and information sharing which leverages on existing
infrastructure developed by us and collaborators at University of Wisconsin (UW), Boston University (BU),
University of Michigan (UM), Arbor Networks, Merit Network, and Internet2.
2. Development of a new class of data analysis methods which operate within the communication and
processing constraints of a modular decentralized information sharing structure, and which capture the
tradeoff between proprietary concerns (privacy) and accurate global anomaly detection.
3. Introduction of novel network measurement and statistical inference methods that can estimate network
performance in regions where monitors cannot be deployed.
4. A discrete event dynamical system (DES) framework for capturing anomalies using compact finite-state
automata and semi-Markov chain state space models.

The proposal is organized as follows. After describing prior NSF support below, Section 2 discusses
the background for our research. Section 3 describes our overall research approach. Sections 4, 5 and
6 describe our proposed research in more detail, which is divided into sections on Data Collection and
Information Sharing (Sec. 4), Distributed Data Analysis (Sec. 5), and Discrete Event System Models (Sec.
6). Section 7 outlines our plans in education and Section 8 describes the impact of the project.

Prior NSF Support
1. Information theoretic analysis of tomographic systems,NSF BCS-9024370 (1993-1995), A.O. Hero
(PI), University of Michigan: We established new criteria for design of tomographic data collection systems
and developed new high performance algorithms for 2D and 3D reconstruction from projections [59, 62,
58, 44, 43, 57]. This work was a stepping stone to recent work on inference of network behavior from
multi-site network data [140, 138, 139].
2. Failure Diagnosis of Modular and Decentralized Discrete Event Systems,NSF ECS-0080406 (2000
to 2003), S. Lafortune (PI) and D. Teneketzis (Co-PI), University of Michigan: The overall objective of this
project is to develop a comprehensive methodology for failure diagnosis of large-scale complex systems
using DES [82]. Our current research and results to-date include: (i) diagnosis of intermittent failures
in the context of centralized architectures [23]; (ii) dealing with communication delays in the context of
coordinated decentralized architectures [38]; (iii) failure diagnosis of stochastic automata [148]; (iv) sensor
selection for failure diagnosis [37, 169]; and (v) study of the computational complexity of diagnosability
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[170].
3. Commonwealth Scalable Web Servers,NSF EIA-9706685 (1997-2000) M. Crovella (PI) and A.
Bestavros (co-PI), and NSF CAREER CCR-9501822, (1995-1998) M. Crovella (PI). These grants made
advances the following areas: atatistical analysis of network data [29, 30, 105, 31, 106, 107, 45]; tools for
on-line link condition measurement [16]; gauging the infrastructure size needed for network measurements
[6, 83]; spatial characterization of network traffic [28].
4 A Multiscale Framework for Spatial Modeling in Geography, BCS-0079077, 2000-2003, E. Kolaczyk
(PI) and Sucharita Gopal (Co-PI), Boston University: The focus of this work has been on the development
of non-traditional multiscale statistical modeling frameworks for spatial data [76], the exploration of their
nature and properties [86, 74, 75], and their application to specific problem areas in geography [51] and
remote sensing [68, 69, 73]. Contributions to human resources include the mentoring of three graduate
students and two undergraduate students in mathematics/statistics and geography, with the latter supported
by an REU supplement to the original grant.
5. INCITE: A Framework and Methodology for Edge-Based Traffic Processing and Service In-
ference, NSF ANI-0099148, (2001-2004), R. Nowak (PI), E. Knightly (co-PI), R. Baraniuk (co-PI), R.
Riedi (co-PI), Rice University: The goal is to indirectly infer dynamic network characteristics using only
edge-based network traffic processing, without special-purpose network support. A large number of con-
ference and journal articles have resulted from this project to date, which can be found at the website
http://spin.rice.edu/NSF . The project has involved several undergraduate students (via the NSF-
REU program); several of whom have co-authored papers appearing at top IEEE and ACM conferences.
6. Instrumented Streaming Research and Testbed, NSF ANI-0117810 (2001-2004) M. Vernon (PI) and
P. Barford (co-PI) University of Wisconsin-Madison. This project encompasses the design, implementa-
tion, and state-of-the-art instrumentation of new methods for scalable wide-area on-demand reliable digital
(SWORD) streaming. The larger goal of the research is to enable new streaming media applications, such as
immediate access to an arbitrary television show or other stored media content whenever a client anywhere
would like to view it [5, 127, 50, 2, 87]

2. Background
The need for a hierarchical, distributed approach to data collection and anomaly detection can be seen

by considering the nature of typical anomaly detection problems. Clearly, when traffic exhibits unusual
characteristics, an immediate and fundamental question concerns the size and extent of the region over
which the anomaly occurs. For example, if observed traffic load increases to an unusual level, this may be
due to a number of factors. Traffic throughout the network may have risen due to some external driver of
increased demand such as a breaking news story. Alternatively, traffic in a localized network region may
be increased due to a flash crowd effect (publication of a popular video or report that drives traffic to a
single location). Finally, traffic load may be due to a particular pair of hosts engaging in abnormally high
traffic. These three scenarios are primarily distinguished by the size of the “neighborhood” over which the
anomalously high traffic is observed, and they each demand a different response from network operators.

Anomalous network conditions may arise due to malicious behavior (attacks), or due to effects stem-
ming from network operations. In each case, a hierarchical, distributed approach to problem assessment
is needed. As an example of this need in assessing network attacks, consider the problem of rapidly de-
tecting denial of service (DoS) attacks. This capability is crucial for responsive network management.
Unfortunately, increased traffic on a single link is not a good indicator of the presence or nature of a DoS
attack. Most DoS attacks are distributed, with flooding packets arriving from multiple sources along multi-
ple paths. Accurate identification of a distributed DoS attack using traffic counts requires the simultaneous
assessment of traffic on multiple links of the network.

Turning to the problem of assessing anomalies in network operations, it is clear that most issues that
arise are fundamentally distributed and multi-scale, as illustrated in the next four paragraphs.
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First, consider the need to understand shifts in traffic patterns as a result of network equipment per-
formance degradation or failure. For example, some networks are engineered with sufficient bandwidth for
“protection,” i.e., so that traffic shifts due to equipment failures can be absorbed without manual interven-
tion in the routing system. In other cases, networks are provisioned with the expectation that equipment
failures will be addressed through explicit traffic engineering actions. In each case, it is essential to have a
whole-network view of how traffic patterns shift when equipment fails or traffic is manually re-routed. This
whole-network view must provide quantitative information about which regions of the network experienced
increased load and which experienced decreased load as a result of the network event.

A second such problem is the detection of routing loops. Routing loops are notoriously hard to detect
in networks due to the lack of adequate, efficient tools. As a result anecdotal evidence suggests that some
routing loops persist for very long periods of time. When a routing loop develops, individual packets may
traverse the loop hundreds of times before being dropped from the network. This can increase the load on
the particular set of links by a considerable amount. In fact, routing loops should be detectable due to this
increased traffic, but such detection requires the comparison of traffic counts over a large set of varying
regions of the network.

A third example of an operational problem can be seen to arise in the Border Gateway Protocol (BGP)
system. Recent work [24] has identified the presence of BGP “storms”, periods when BGP traffic can be
3 to 4 orders of magnitude higher than normal, lasting for hours. Precisely assessing the extent of such
storms based on traffic flows alone is beyond the capability of current tools and methods. No existing
tools can summarize traffic measurements over a range of topological neighborhoods. Studies to date have
only managed to explain a small set of examples of traffic storms; progress toward a more systematic,
statistically based study is critically dependent on the development of more powerful tools.

Finally, there are a number of problems that are associated with individual links as well. Many such
problems fall under the general heading of traffic variability. Variability or instability in traffic flows is
a considerable concern for network operators. In many cases, such variability is due to characteristics of
applications sharing the links, but in other cases it may be due to hardware instability. For example, peri-
odicity or increased burstiness in traffic on a given link may reflect route flapping, or periodic interruptions
of service in some router.

When traffic properties change in an important way—e.g., when traffic becomes more variable or
bursty at fine time scales—it may signal the onset of system instability. This is an important event that may
need attention. Unfortunately, tools for identifying such changes in short-term variability are lacking. The
vast majority of tools available for traffic analysis concentrate on time-invariant or long-timescale properties
(e.g., long range dependence). While such properties are important, they do not inform network engineers
about any special aspects of the current conditions on the network. Furthermore, to identify likely sources
of traffic variability or changes, it would be helpful to be able to correlate traffic changes across links. For
example, if some set of links in sequence show similar periodic behavior, then the application responsible
may be associated with the endpoints of the multi-link path.

To make progress on these challenging problems for large scale networks will require advances in both
data collection infrastructure and data analysis.

3. Research Approach
It is clear from the discussion in Section 2 that to deal with anomaly detection in large-scale networks

we need to adopt a hierarchical and distributed approach. The modular information processing and data
collection architecture that we adopt strikes a natural compromise between a fully centralized and a fully
decentralized architecture. While a fully centralized architecture would certainly offer the best anomaly
detection performance, it is infeasible due to the following reasons: (a) the amount of raw data generated
at the monitoring sites (traffic, packet, and host level) is enormous; (b) the links between monitoring and
processing sites are of limited bandwidth for transmitting this data; (c) statistical analysis and modelling of
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Figure 1:Block diagram of modular architecture for data collection, information processing, and decision making.

such a huge amount of data is impractical; and, perhaps most importantly, (d) information privacy becomes
the overriding concern when a single site has access to all raw data. On the other hand, a fully decentralized
architecture offers the best information privacy but is inadequate due to the following reasons: (a) single
sites are incapable of detecting multi-site correlations which are necessary for identifying distributed attacks
on the network; and (b) information sharing between neighboring sites is necessary to establish a baseline
of normal network operation.

For the above reasons we believe that a modular approach (that will be explained below) is the most
promising method for anomaly detection in large-scale networks. This architecture is motivated by (i) the
natural way that data collection is done in the network, and (ii) the need to accommodate data privacy
considerations. The modular architecture we propose is illustrated in Figure 1 and consists of a three level
hierarchy. Each level has the following functionality. The local level consists of individual or small groups
of routers, sniffers, or servers, that acquire raw measurements such as host data (user commands, ftp/http
processes), packet headers (SYN, OD, ACK), and traffic streams (Netflow, end-end delay/loss tomography).
Extracted features are encoded at the local level and sent to a domain server (e.g., an Automous System
(AS) or its agent) at the intermediate level for aggregation and processing. Finally, intermediate decisions
and other aggregated information are communicated to a supervisory level which serves several domains.
Within this architecture each level can make decisions concerning attacks and anomalies in its own domain.

Within the context of this architecture our principal aim is to develop implementable modular mon-
itoring strategies which can deal with a mixture of continuous-state data, e.g., measured traffic flows and
end-to-end delays, and discrete-state data, e.g.,tcpdmp fields and other timed event sequences. We will
develop detection algorithms and investigate their performance for the proposed architecture using a com-
bination of model-based and data-driven approaches (described in more detail in Sections 5 and 6). Data-
driven analysis using a hierarchy of spatio-temporal wavelets and kernel-based classifiers will be used to
explore baseline vs. anomalous behavior of network flows and other data. Results of this analysis will be
used to develop and validate a class of novel distributed spatio-temporal discrete event dynamical system
(DES) models for real-time tracking of changes from baseline. The DES models at any level of the hierar-
chy will be driven by discrete event signals that are either transmitted from other levels or are derived from
a combination of discrete- and continuous valued data measured at that level.

4. Distributed Data Collection and Information Sharing
Our near-term objective is to gather and archive Internet anomaly data for the purposes of developing

detection methods and for limited distribution within the research community. Our long term objective for
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distributed anomaly data collection is to create a framework for this activity that can be used throughout
the Internet. There would be many advantages in such a system. For example, consider the problem of
identifying sources of denial-of-service (DoS) attacks. Most of the currently proposed methods for trace-
back require some kind of support from the routing infrastructure. If a DoS attack were launched while
distributed anomaly monitoring were in use, then participating nodes could identify offending flows in their
networks and create a trace tree from target to sources. In this section we describe our proposed approaches
for data collection and information sharing.

4.1. Data Collection and Archival
An important component of this proposal is the collection of anomaly and attack data from sites around

the Internet. This data will form the foundation for the development of the detection strategies described
in later sections. Data collection will be facilitated through the deployment of new measurement and mon-
itoring tools in a variety of existing widely deployed infrastructures. Data generated by these systems will
be gathered and stored in a new Internet attack and anomaly archive. This system will fuse measurements
from the multiple sites to provide a detailed, consistent dataset for detection strategy development. Our ef-
forts will leverage the combined forensic expertise of our collaborators at Merit Network, Internet2, Arbor
Networks and co-PI Barford to identify and annotate interesting events (downed links, storms, attacks, etc)
which will be targetted for inclusion in our anomaly archive.
4.1.1. Goals and Challenges in Data Collection and Archival: Our challenge is in addressing the general
problem of balancing the quantity of data collected with what is required to precisely identify anomalies.
Our hypothesis is that coordinating measurements from multiple sites improves precision of anomaly iden-
tification. However, this must be done in a way that does not have a serious negative impact the network or
network systems.

The traffic monitoring systems will provide data to a centralized traffic repository which we call the
Internet Attack and Anomaly Archive (IA3). The IA3 will maintain the measurement data in a format that
is accessible by both the team and (eventually) the network community at large. It will also provide a
front end for extraction and evaluation that enables a consistent, secure perspective in an environment that
balances privacy with access to data required to identify anomalies.

To develop an understanding of these data collection and archival issues we plan to investigate the
following questions:
1. How does sampling in packet and flow level measurements affect the ability to detect anomalies?
2. Can data collected at multiple sites be merged in a way that reduces the overall volume of data without
affecting anomaly detection ability?
3. What is the extent to which measurement resolution can be improved through coordination between
multiple sites?
4. What is the architecture of a centralized traffic measurement repository that promotes participation
through privacy preservation and enables effective coordinated anomaly detection?
5. What is the architecture of a distributed anomaly repository?
4.1.2. Research in Monitoring for Attacks and Anomalies: Measurement and monitoring are fundamen-
tal activities in wide area network operations. A primary focus in these activities is detecting and diagnosing
significant deviations from an established baseline behavior - so calledanomalies. Standard best practices
for wide area network monitoring include the use of Simple Network Management Protocol (SNMP) [143]
data and to a lesser extent, the use of IP flow data [18]. The nature of this traffic data is that it is typically
quite simplistic; such as counts of packets or loss rates at a router interface. In the case of flow data, through
the use of tools like FlowScan [113], application and more network specific data may be gleaned.

A fundamental step in detecting network traffic anomalies is simply establishing a definition of
“anomaly.” It is not uncommon to hear a network engineer say, ”I know one when I see one”. In fact,
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there is no hard-fast definition of an anomaly without additional network specific context. A first step in
defining anomalies is in the creation of categories of anomaly types. Barford et. al. suggest four categories
for anomalies in [4]: network (eg. failures and outages), attack (eg. standard SYN floods), flash crowd
and measurement (catch-all category). Intrusions can be considered a special case of network anomalies
in the sense that they are typically attempted in such a way as to avoid detection and do not result in vis-
ible changes in network traffic data. Detection of network intrusion activity (with the exception of worm
outbreaks [144] which can also be considered attacks) is not a focus of this proposal.

Even with a definition of anomaly, monitoring is hard for a number of reasons. The first is the inherent
variability in network traffic [84, 109, 26]. This makes any simple thresholding methods for detecting
anomalies virtually useless. This also speaks directly to perhaps the single most significant problem in
anomaly detection: the reduction or elimination of false positives from automated systems. The second
significant challenge in monitoring is determining when, where, what and how to gather data. Many traffic
characteristics can be monitored and from many points in the network. The objective is to balance quantity
of data with the ability to discern anomalies. The third challenge is in overcoming the enormous logistical
difficulties in deploying and maintaining widely distributed infrastructures. Issues include privacy (the
overriding concern for sites considering participation), data normalization (insuring data received from
multiple sites has a common representation), management (dealing with faults and failures at participating
sites).

Our objective is to develop and maintain an anomaly monitoring system that will provide data for
the modeling and detection strategy development efforts. Our approach will be to use and extend exist-
ing widely deployed measurement infrastructures. Infrastructures initially targeted for this project include
Internet2/Abilene [1], PlanetLab [33], Surveyor [70], DSHIELD [151], and DOMINO [168]. These in-
frastructures all provide access to measurement and monitoring systems in either end hosts (PlanetLab,
Surveyor) or within networks (Internet2, DSHIELD, DOMINO). DSHIELD and DOMINO are both mon-
itoring infrastructures specifically focused on attacks and intrusions. A PI (Barford) runs both Surveyor
and DOMINO and has direct access to DSHIELD. UW-Madison is a participant in PlanetLab thus direct
access to that infrastructure is also available. Internet2/Abilene has agreed to provide access to traffic
measurements. The combination of these systems provides significant distributed capability for deploying
measurement and monitoring tools developed in this project.

An important component in our envisioned monitoring infrastructure is the development of an anomaly
data gathering module for the FlowScan tool. FlowScan, developed at UW-Madison, is a tool for gathering,
decomposing and archiving flow measurements from routers. It is currently deployed at over 300 sites
world wide. We plan to develop an enhancement to FlowScan that will enable it to participate in a coordi-
nated anomaly monitoring system. This enhancement will benefit local sites by providing data from other
participants - hopefully making it easier to detect and identify anomalies. It will also provide a framework
for installing detection tools developed in this project. The wide acceptance and use of FlowScan should
facilitate participation by sites outside of those with whom the PIs are directly affiliated - the obvious first
candidates for deployment.

Using the distributed infrastructure as a platform for data gathering, we plan to investigate methods
for improving measurement precision while reducing the impact of measurement on the network. Consider
as an example the problem of flow-level measurements in routers. It is well known that enabling all flow
monitoring features in routers can result in a significant reduction in switching performance (as much as
40% depending on systems and their configurations). One way to deal with this is through flow sampling
techniques. The problem is that sampling can reduce precision of measurement. No one to date has ad-
dressed the problem of how sampling affects the ability to detect and identify anomalies - this will be one
focus of our measurement efforts.
4.1.3. Research in Anomaly and Attack Archival: Network measurement archives of any kind are few
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and far between. Examples include the Internet Traffic Archive [34] (variety of data sets), the Web Traffic
Repository [53] (web cache and server logs), NLANR’s PAM and AIM archives [47] (packet and delay
measurements), CAIDA’s Skitter repository [141] (traceroute data), and Oregeon’s Routeviews [125] (BGP
data). At present there are no sources or repositories of network traffic anomaly data. More generally,
network data repositories of any kind are difficult to develop and maintain. Paxson discusses some of the
difficulties in [108]. Primary among these are the issues of consistency, perspective and privacy.

Our objective with IA3 is to develop a first-of-its-kind repository for network traffic anomalies. Issues
which must be addressed in development of this system include data normalization, data compression, data
privacy. We plan to address normalization problems through transformation tools developed for each of the
measurement systems that will be participating in the monitoring infrastructure. Operationally, standard
Lempel-Ziv lossless compression (gzip ) will be used at each data collection site. However, one of our
research aims (see research item Q1 in Section 6.2) is to investigate distributed lossy compression (source
coding) schemes that are tailored to the anomaly detection architecture discussed in Section 3.

Privacy in any kind of network measurement data is a complex and subtle issue. Policies for data shar-
ing network data vary widely but typically focus on IP addresses and payload content. We will anonymize
IP addresses through prefix preserving methods similar to those discussed in [167]. Access to any aspect
of content will likely be very restricted. However, access to data collected fromunusedIP addresses (such
as in DOMINO) offer limited access to content. To be successful in our data sharing efforts, a PI (Barford)
will have the responsibility of coordinating with each site in our measurement infrastructure to insure that
local policies are enforced.

The foundation of IA3 will be in the development of a comprehensive database environment. This
system will be developed through coordination with the UW-Madison database group including Professors
David DeWitt and Jeffrey Naughton. A proof of concept database is currently under development for use in
the Surveyor infrastructure. That system is providing invaluable insights on appropriate schema, query and
management policies for dealing with the extreme size of network measurement datasets. An important
component of the IA3 system will be the development of data management and retrieval systems. These
systems will enable rapid loading of data from measurement systems, and a convenient access point to data
for people using the repository.

The IA3 will be housed at in the Wisconsin Advanced Internet Lab. This facility currently houses the
data repositories for Surveyor and DOMINO. It includes at present over 10TB of total storage capacity -
2TB of which can immediately be allocated for IA3. The bulk of the storage capacity is in two EMC Sym-
metrix series 3000 systems which provide extremely high speed and reliability. As the project progresses,
additional storage capacity will need to added. The Symmetrix systems can each be scaled to 50TB giving
the project ample room for growth. To appreciate why this growth may be needed consider that one month’s
worth of flow logs from all backbone routers in Abilene is approximately 2TB. The task of simply down-
loading this amount of data to a central site over the network can be extremely time consuming. Thus, the
final component of the archival project will be in the development of a distributed version of the repository.
In this case, the data will likely reside on local sites and tools will be developed to pass analysis results
between sites for the purpose of real-time detection and identification.

4.2. Information Sharing Games
An ambitious longer term question will also be addressed: is it possible to scale up our modular global

anomaly detection architecture so that it would be attractive to actual Internet operators? To answer this
question we will develop a game theoretic and information theoretic framework for studying information
sharing among competing autonomous systems in an internetwork. A consortium of ASs may be better able
to detect a coordinated attack or anomaly if the ASs share information about their measured internal states,
e.g., downed links, switch failures, or excessive throughput delays. Such shared information is beneficial
if it can provide early warning of an attack, permitting yet unaffected AS’s and users to take appropriate
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protective actions, or if it permits the consortium to cooperativelytracebackthe attacker. On the other hand,
sharing of information may reveal proprietary information or affect competitive advantage of an individual
AS. Thus for any information sharing protocol there exists a tradeoff between insuring information privacy
of the individual and ensuring early detection by the group.

Figure 2: The feasible region of information sharing payoffs is bounded by the Pareto frontier which delineates
the boundary of the feasible payoff region and sets an information sharing benchmark on privacy vs detectability.
Asterisks in the feasible region denote the payoff for a set of randomly selected strategies (i.e., information sharing
protocols) in a simple linear Gaussian information sharing game for a consortium of 3 AS’s undergoing a flooding
attack.

4.2.1. Goals and Challenges in Information Sharing Games: There are many possible ways to design
such an information sharing protocol which maintains a certain degree of privacy. For example, each AS
could anonymously update a universally known “global” anomaly feature known to all with its own “local”
feature. While this simple scheme does not insure total privacy of information, the privacy of local infor-
mation improves with increasing number of participating AS’s. An important question that we will attempt
to answer in this project is how to quantify the tradeoff between privacy and early detection for a given
class of data sharing protocols. Related questions are: what is the minimum amount of local information
that must be revealed in order to improve the global detectability of an attack? Is there an optimal protocol
which attains maximum detectability for a given privacy constraint? What is the vulnerability of such a
protocol to an attack on an information sharing session?
4.2.2. Research in Information Sharing Games: Quantifying these information tradeoffs is complicated
and falls in the domain of cooperative and non-cooperative non-zero sum game theory [49, 96, 48]. When a
global anomaly (e.g., a global attack) is suspected, the consortium of all AS’s has an incentive to share more
local information than any AS might be willing to share under normal conditions. The damage to an AS due
to revealing several bits of local information to the consortium can be quantified by the ability of the other
AS’s (or an attacker) to accurately estimate certain sensitive information states of the AS’s network. This
can be quantified by the minimum state estimation MSE attainable by the other ASs if they try to snoop on
the states of one of the ASs. On the other hand, the value of local information to the consortium of AS’s can
be quantified by the maximum probability that the group of AS’s quickly detect an emerging attack. As the
consortium’s snooping MSE and anomaly detection probability may be difficult to analyze, when necessary
we will adopt an information theoretic approach. Specifically, as in our past work [52, 59, 56, 61], we will
adopt the inverse Fisher information as a surrogate for MSE [120, 10] and the Kullback-Leibler information
as a surrogate for detection probability [79, 39]. The problem of information sharing can thus be formulated
as choosing a set of strategies, i.e., a data sharing protocol, which permits high detection probability but
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insures that any attempt by a coalition of AS’s to estimate another AS’s internal states will result in poor
estimates, i.e., high estimation mean square error (MSE). In this information sharing game the players are
the AS’s, the plays are successive transmissions of information, and the payoff is a vector consisting of the
detection probability and estimation MSE. The payoff vectors for a class of protocols lie in the feasible
region of the payoff plane, which is bounded by the Pareto frontier (see Figure 2) and can be computed
numerically by strategy enumeration, evolutionary algorithms [35] and non-linear programming [158].
Research will include determination of: (i) Pareto frontiers; (ii) associated optimal information sharing
strategies; (iii) and countermeasures (e.g. authentication and watermarking games [90, 137, 94, 22]) for
reducing vulnerability to attacks on the information sharing session. We will investigate these issues using
simple statistical models for nominal (baseline) and anomalous conditions.

5. Distributed Data Analysis
Distributed data analysis is the next crucial step in our framework. The data may undergo some initial

processing or statistical summarization, and therefore we will refer to the resulting data or statistics as
features. Assume that there areN possible features that may be captured at any point in time and space,
and let us arrange these features into anN -dimensional vectorxs;t, wheres refers to the spatial location in
the network where the features were collected andt indicates the time at which the features were collected.
By ‘features’ we have in mind any number of measurable quantities such as loss counts, delays, available
bandwidth, acknowledgment packets, or numbers of open connections. We use ‘space’ in the sense of the
underlying network topology, which may refer to links or nodes or both. Often a full set of features will
not be available at a particular point (due to measurement limitations or privacy concerns), and therefore
we express our observations asys;t = Cs;txs;t, whereCs;t is a known observability matrix which also may
depend ons andt.
5.1. Data Analysis Goals and Challenges:There are two key goals motivating our approach to distributed
data analysis:
1. to gain understanding and insight into characteristics, patterns, correlations, and structures in the joint
space-time-feature domain and
2. to produce outputs such as summaries, states, or alarms for use at higher levels of comprehensive
anomaly/intrusion detection processes.

As examples of the first point, we are interested in detecting and quantifying spatial and temporal
correlations in losses and delays, discovering patterns in numbers of connections or certain types of packets
related to malicious activity, localizing sources of congestion or failure, and characterizing normal and
abnormal traffic flow patterns. Progress on these problems will be useful in their own right, but also will
lead naturally to progress on the second point, in the context of our proposed DES framework (described
in Section 6).

Analysis of datafys;tg of the sort defined above presents fundamental challenges on several fronts
that will be addressed in the proposed work.

Distributed Analysis: The processing and analysis of the array of featuresfxs;tg across many points
in time and space is a daunting task. In fact, as the spatial and temporal sampling densities increase it
becomes impossible to transmit all features to a central point for processing an analysis in a timely fashion.
Therefore, distributed schemes are necessary for on-line, real-time data analysis. Moreover, distributed
algorithms take advantage of computing resources throughout the network to perform computations and
analysis that would not be possible on at a single, central processor.

Missing Information: At many points the observationys;t may only convey a limited set of features or may
be unavailable all together. Thus, in general we will have an incomplete picture of the time-space-feature
domain. Statistical data analysis with missing data is a well known problem, and inferring network states
from limited measurements falls into the category of statistical inverse problems. The so-callednetwork
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tomographyproblem [19] is a good example of such a case, and it has received increasing attention in the
networking, signal processing, and statistics communities [15, 93, 20, 42, 21, 100, 156, 140]. Distributed
methods for solving inverse problems and problems of data interpolation or extrapolation in networking is
a virtually unexplored research area that is a focus of the proposed work.

Errors and Uncertainties: In addition to missing information, network measurement and monitoring is
plagued with a multitude of errors and sources of uncertainty. The distributed nature of data collection and
analysis leads to uncertainty at very basic levels such as time synchronization, location (e.g., devices with
multiple interfaces), and routing and network “neighborhood” structure. As a consequence the very ideas
of absolute time and spatial localization often must be discarded, and the notion of a fixed, static network
structure often must be abandoned. These issues confound our usual approaches to correlational and pattern
analysis [12, 153, 133], and the research proposed in this proposal will aim to define a new approach to
address these unprecedented limitations.
5.2. Proposed Research in Data Analysis:Data analysis can be used to help identify physical mechanisms
or explanations for the data, or data analysis can search for patterns or properties in the data themselves
without regard to causality. Our proposed work includes both approaches. We will develop data analysis
methods that search for understandings and explanations of mechanisms responsible for patterns related to
physical aspects of the network, especially those patterns due to locality in space and time. Understanding
mechanisms responsible for such patterns can greatly facilitate modular strategies for monitoring networks.
Furthermore, we will devise algorithms for identifying patterns in the time-space-feature domain that may
be extremely useful for anomaly and intrusion detection, but for which no physical explanation is apparent
or sought. The results of both types of data analysis will be fused within the DES framework (described in
Section 6).

Data Analysis Using Stochastic Dynamical Models: When spatio-temporal data can be accurately modelled
as a continuous Markov random field over space (monitoring site) and time, continuous-variable stochastic
models provide a very compact description useful for data analysis. Univariate time series models, such as
the fractional autoregressive moving average (FARIMA) model [66, 9, 97], have been previously applied
to analyze network traffic statistics such as the sequence of packet-lengths measured at a link [97]. Other
useful time series models that have been applied to networks include: ARMA [13], and multifractal (MF)
[124, 123, 122, 121, 131, 159, 132]. Such models represent traffic streams as a linear combination of
partially observed states, e.g. a vector of them most recent time samples, which evolve over time. The
models are implemented recursively in time and update a predictor of a future unobserved value of the time
series based on the sequence of previously observed residual prediction errors. The residual prediction
errors can be used for analysis of model fit (model validation), real-time detection of deviations from
baseline (anomaly detection), and real-time multiple model selection (anomaly classification). A principal
focus will be to extend linear and non-linear multivariate time series models to distributed spatio-temporal
stochastic dynamical models for analysis of network traffic. Research issues include: accounting for time
synchronization uncertainty; accounting for heavy-tailed traffic distributions); accommodating irregularly
sampled traffic at sampling rates that may differ at each site, and distributed implementations that allow for
updating the traffic predictor recursively in both space and time.

Distributed, Multiscale Spatio-Temporal Data Analysis:While the task of internetwork monitoring is
fundamentally spatio-temporal in nature, vastly more attention has been focused on studying and modeling
the temporal aspects of network traffic data. Yet, as has been argued throughout this proposal, successful
monitoring and anomoly detection must accurately capture and characterize the spatial aspects as well. And
in this the issue of scale plays a critical role. For example, when traffic exhibits unusual characteristics, an
immediate question arises as to the size and extent of the region and time period over which the anomaly
occurs. Therefore, it is necessary to have scale-sensitive tools for the spatio-temporal analysis of network
data. And these tools must in turn be amenable to distributed implementations. There is a wide range
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of multiscale data analysis methods that have been developed and applied with great success across the
sciences [160, 95, 41, 72, 78, 98, 101, 134]. However, the vast majority are designed for analysis of
traditional signal and image data, and are not adapted for use with network topologies. An exception is
the recent framework of ‘graph wavelets’ developed by two of the PIs [27]. This approach extends the
concept of a wavelet analysis to arbitrary connected graphs, and was found to be successful for gaining
insight into a network’s global traffic response to a link failure and for localizing the extent of the failure
event within the network. We will work to develop this initial progress in a number of directions, within the
context of various continuous-variable stochastic discrete-time models (as described above) for the original
traffic data. Proposed extensions include distributed implementations, tree-based hierarchical analogues,
and hybrid combinations of these with traditional temporal multiscale methods.

Distributed Pattern Analysis and Learning:The objective of this component of the research is to develop
distributed and hierarchical algorithms for finding patterns of baseline and anomalous behavior in time,
space and feature domains. We will characterize the trade-offs between information sharing, resource man-
agement, and pattern estimation/detection accuracy, and determine fundamental bounds on the achievable
performance of distributed pattern analysis systems. Learning approaches to pattern recognition have led
to breakthroughs in high dimensional classification problems such as hand written character recognition,
genetic sequencing, and image indexing [14, 25, 55]. As examples, tree-based classifiers and kernel-based
methods (Support Vector Machines (SVM) and Relevance Vector Machines (RVM) their Bayesian vari-
ants [149]) are powerful and computationally efficient nonparametric classifiers. These classifiers do not
require specification of a model; using sophisticated complexity-based regularization techniques, trees and
SVMs are able to classify complex patterns in high dimensional spaces by learning from training examples
alone. Furthermore, trees and SVMs can be used to detect novel or unusual behavior, or other devia-
tions from normal, baseline network characteristics [133]. Recently, we have devised a new approach to
constructing tree classifiers that provides concrete bounds on the classification [134] performance (similar
bounds are not available for the more well-known CART algorithm [12]). We have also applied CART-
like methods to universal prediction and reconstruction of non-linear time series [92] which can be easily
adapted to constructing a baseline at the local data collection sites. Developing theory and algorithms for
distributed implementations of tree and SVM/RVM classifiers is an open and challenging problem that will
be addressed in this work. Our recent work in decentralized, hierarchical methods for detecting non-local
phenomena in spatially distributed networks [102] provides a starting point for this aspect of the project.

Distributed Inference with Missing Information and Uncertainty:Estimation and pattern analysis can be
extremely complex and computationally challenging when certain data or observations are missing. Com-
putational methods such as the expectation-maximization (EM) algorithm, Markov Chain Monte Carlo
(MCMC) methods, and importance sampling can provide computationally efficient approaches to analy-
sis problems involving missing data [40, 88, 104, 146]. Such methods have been widely and successfully
applied in a myriad of statistical inverse and missing data problems making them strong candidates for
computational tools to use in estimatingfxs;tg from the observationsfys;tg, extracting patterns and clus-
tering features, and computing maximum likelihood estimates of summary statistics such as means and
covariances. The conventional set-up for computational analysis tools is that all the data and processing are
carried out at a central site. We will pursue the development of new theories and computational methods for
distributed inference. Our recent work in space-alternating and distributed versions of the EM algorithm
[60, 99] provide a starting point for the our investigation into more general strategies for distributed estima-
tion, pattern analysis, and clustering in network data analysis. We will develop theory and algorithms for
non-cyclic, non-sequential strategies that allow inferences to be drawn through the limited sharing and com-
munication of information between network elements. These computational methods will also be aimed at
coping with other fundamental uncertainties, such as lack of time synchronization between data collection
elements and ambiguities in spatial locale and network connectivity.
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6. Discrete Event Systems Models for Detection and Diagnosis
The central tenet of our DES approach is that a DES model can provide a compact description of

complicated sequences of timed discrete events in the network that are associated with baseline behavior of
the network. Such a compact description is possible when the event sequences can be accurately modelled
as a semi-Markov chain or when the sequences follow the grammar of a regular language. Similarly to the
traffic time series models discussed in the previous section, DES models represent events as combinations
of partially observed states which are recursively updated in time. However, DES models differ from traffic
time series models in that they can perform efficient real-time inferencing from event sequences derived
from a mixture of discrete-valued and continuous-valued data. These data sources are filtered through a
data filtration unit (DFU) which produces event signals driving the DES. Deterministic DES modelling
formalisms include finite-state automata, which have been previously applied to anomaly detection [119,
135] and to LAN intrusion detection [11]. (In [11] for instance, event sequences were derived from ascii
tcpdmp fields.) Unlike the centralized logical models used in these works, we propose to construct a
distributed hierarchicalDES model which can respond to avariety of data sourcesincluding, but not
restricted to, ascii fields, traffic statistics, and other spatio-temporal features (data summaries) derived from
data analysis described in the previous section.
6.1. Goals and Challenges in DES Modelling: The key to our DES approach to internetwork monitoring
and anomaly detection is the exploitation of modularity described in Section 3. For concreteness, the
discussion below assumes the following three-level hierarchy: local domain (lowest level), AS (middle
level), and Network Operations Center (NOC) (highest level). At the local domain level a DFU will process
the large quantity of measured data and produce, in real-time, signals that aggregate this information into
event signals for subsequent processing by a local DES. These local DES models will have discrete state
spaces of logical and quantized variables and event-driven dynamics. The other levels of the hierarchy will
also employ DES models. At the AS level, each node of the hierarchy will receive reports from a set of
nodes at the local domain level. In turn, sets of nodes at the AS level will report to nodes at the NOC level.
In addition, the DES models at any level of the hierarchy will receive other signals from the monitoring of
network behavior at that level; see, e.g., [81, 65, 145, 91, 135, 119, 11] and [3, 67, 89] and the references
therein for local domain monitoring examples.

Our thesis is that any scalable method for internetwork monitoring benefits from inferencing based
on less detailed (i.e., “higher level”) dynamical models that properly capture known attacks and other
anomalies. The event signals that are reported by the DFU to the DES models might signify deviations from
normal traffic patterns and suggest possible hypotheses about causes for these deviations, each accompanied
by a confidence index. Hence, we envision the DFU sending event signals of the following form to the DES
models: normal behavior; possible attack of type A at this node - level of confidencep (0 < p � 1 and
p quantized appropriately); cancel earlier report of attack of type A; possible attack of type B at this and
neighboring nodes - level of confidencep; unclassified anomaly at this node; and so forth. The DES
models at the local domain will be constructed in a manner that captures the possible attacks at the node in
the form of sequences ofobservableevents (i.e., the events reported by the DFU, along with those directly
monitored by the DES models), together with sequences ofunobservableevents. Unobservable events
are used to model features of the DES operation (e.g., attacks and other anomalies) that are not directly
observed or measured but are part of the dynamics of the network; cf. [17]. The DES models will include
stochastic information when deemed appropriate. Logical and stochastic automata will be the primary
DES modeling formalism used in this regard. At each node, the relevant sequences of observable and
unobservable events will be captured in the transition structure of an automaton and lead to appropriately-
defined states. Distributed attacks will be modeled by means ofcommon eventsamong the respective
automata for the local domain nodes affected.

The DES model at each node at the AS level will be a projected/aggregated version of the parallel
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composition of the DES models at the local domain level that report to this node. The parallel composition
operation is the usual way of synchronizing automata that have events in common. At each of the AS nodes
the event signals will be generated by a combination of event sequence information communicated from the
DES’s at the local sites and perhaps other data collected by the AS, e.g., graph-wavelet coefficients, end-
end packet loss or delay statistics obtained by active probing and network tomography. In a similar manner,
the NOC level DES model will be a projected/aggregated version of the DES models at the AS level. The
purpose of the projection/aggregation is to create models that retain only the information relevant to the
joint operation of the given set of nodes and abstract away internal behavior not essential at that particular
level of the hierarchy.

Automata and Petri nets (another DES modeling formalism) have been used in prior work on anomaly
detection; see, e.g., [81, 65, 145, 91, 135, 119, 11]. Related work of special interest includes asynchronous
methods for alarm analysis in the network of France Telecom [8, 111] and receiver and transmitter fault
detection in wireless LANs [136, 32]. Our approach is different because: (i) a hierarchy of DES models
is used instead of a monolithic model; (ii) the construction of these DES models as well as the detection
of network anomalies by each model are based on different information (i.e., information local to the node
of the hierarchy); (iii) network attacks and other anomalies are modeled as unobservable events whose
occurrence needs to be inferred upon from the sequences of observable events using the dynamical structure
of the DES models; and (iv) the DES models are driven by a richer set of observations derived from logical
data, ascii data, traffic data, and their statistical summaries.
6.2. Research in DES Modeling:

We propose to investigate the design of computationally- and informationally-efficient modular ap-
proaches for monitoring and anomaly detection in internetworks. We will need to answer the following
questions:(Q1) How is the information contained in the temporal variations of local traffic and packet
flows at the local domain processed, i.e., how to specify the DFU?(Q2) How and when can monitoring
and anomaly detection be done locally, i.e., at each subnetwork separately, without taking into account the
subnetwork’s coupling with other subnetworks and the information that can be provided by other subnet-
works?(Q3) When can monitoring and anomaly detection of a subnetwork improve by taking into account
its coupling with other subnetworks and by sharing information with other subnetworks?(Q4) Suppose
the anomaly detection capability at a subnetworkNi can improve by sharing information with other sub-
networks. Which other subnetworks shouldNi communicate with and when? What information should be
shared in real-time betweenNi and other subnetworks? Information sharing must be done in a way that
satisfies certain privacy requirements at individual subnetworks.(Q5) Given that communication is costly
in terms of computation and implementation, what is the minimum information exchange required between
Ni and the rest of the network so as to achieve anomaly detection atNi?

To investigate (Q1) we will initially investigate DFU’s that quantize summary statistics, e.g., locally
derived likelihood functions and likelihood ratios. For a specified statistical model, these statistics com-
pactly summarize all of the information necessary for inference on the available data, e.g., anomaly detec-
tion or classification. For example, this framework can easily be applied to detection using local FARIMA
traffic models [66, 97] for which the likelihood ratio reduces to a weighted sum of past residual prediction
errors. For anomaly classification a more appropriate approach might be to test between multiple candidate
FARIMA models which leads to quantizing the vector of multiple model residual prediction errors. We will
also investigate non-parametric approaches such as quantization of graph-wavelet coefficients collected by
a node at the intermediate level of the hierarchy. In both the parametric and non-parametric framework
a central research issue will be the required resolution of the quantizer in the DFU. Questions that will
be addressed include: Should the quantizer be uniform and how many bits should it have? What is the
benefit of using a vector quantizer with respect to a scalar product quantizer for the case of vector valued
summary statistics? Can methods of distributed source coding [117] or multiple description length source
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coding [152] be implemented efficiently on the proposed modular architecture and what are the advantages
of these schemes for networked anomaly detectors? We will apply a combination of decentralized deci-
sion theory, detection theory, and rate distortion theory [71, 115, 116, 7, 114, 150, 46, 157, 85, 103, 112]
including recent extensions [54, 77] to study these questions.

To investigate (Q2), we will begin with the methodology developed in [129, 130, 128, 36, 23]; this
methodology has been successfully demonstrated in practical applications: large-scale telecommunica-
tion networks [110, 111, 126] and wireless LANs in vehicle platooning [136, 32]. The results to-date in
[129, 130, 128, 36, 23] deal with DES modeled bylogical automata, address the detection and identification
of individual (unobservable) fault events, and are based onmonolithic(as opposed to modular) models of
the system under consideration. Within the context of network monitoring and anomaly detection, three
significant research problems arise: (P1) development of a methodology that considersstochasticautomata
(some preliminary relevant results on diagnosis of stochastic automata are available in [148]); (P2) general-
ization of the notion of “failure-type labels” (introduced in [129] for tracking unobservable fault events) to
sequences of labelsover space and time that capture partial or complete attack patterns from a database of
such patterns; and (P3) development of techniques for exploiting system modularity and avoiding building
monolithic models, a task that quickly becomes intractable as the number of subnetworks under considera-
tion grows.

The methodology in [129, 130, 128, 36, 23] relies on the concept ofdiagnoser automata(cf. [129]).
Regarding (P1) and (P2) posed above, we conjecture that it will be possible to develop special types of
“stochastic diagnoser automata” for the detection of anomalies and answer questions about anomaly detec-
tion capabilities (i.e., which anomalies can be detected and which cannot based on the model used and the
signals available) using the structure of these stochastic diagnosers. Regarding (P3), we propose to start by
building “local” (stochastic) diagnosers at each local domain node based on the DES model at that node,
termedmodular diagnosers, and investigate their anomaly detection capabilities. These may be inadequate
since modular diagnosers do not account for other nodes (subnetworks). If they are indeed inadequate, then
we must consider the coupling of the node under consideration, sayNi, with other nodes. This coupling,
which occurs through the common events in the respective DES model ofNi and of the other nodes, may
actually resolve the perceived anomaly detection incapability atNi. This is the key issue that needs to be
investigated. We propose to compose, by parallel composition, suitably “projected” versions of the DES
models atNi and other coupled nodes on the common events they share. By studying the structure of the
resulting automaton, we should be able to ascertain the perceived anomaly detection incapability atNi. If
the result of this analysis is thatNi is indeed incapable of achieving the required anomaly detection capa-
bilities, then the modular diagnoser atNi must be enhanced through real-time information sharing with the
other subnetworks. This leads us to questions (Q3)-(Q5) formulated above.

The above questions (Q3)-(Q5) all revolve around the notion of real-time communication among
modular diagnosers at different nodes in the hierarchical model that we have adopted. Real-time com-
munication problems in distributed systems are conceptually very difficult. For that reason, to under-
stand them systematically, we will consider separately one-way and two-way communication. One-way
communication problems can be formulated as active acquisition of information / querying problems; we
will tackle these problems using stochastic control techniques [80]. Two-way communication problems
will be formulated as dynamic team problems [64, 147, 164]. We will use the approaches reported in
[162, 64, 163, 155, 172, 154, 171, 118, 166, 161, 147, 63, 165, 142], together with heuristics, to deter-
mine two-way real-time information sharing strategies that enable modular diagnosers to correctly perform
anomaly detection.

7. Education
To enhance the educational impact of this project we will do the following.(i) Students doing re-

search on this project will be encouraged to do internships over the summer with our industrial affiliates
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Arbor Networks, Internet2, Merit Network, and SLAC (see attached letters).(ii) We will organize inter-
disciplinary seminars (jointly with CS, ECE, and Statistics departments) at each of the three institutions.
The seminars will feature expert speakers and bring together students and researchers in networking, sig-
nal processing, and statistics.(iii) Where feasible, graduate students involved with the project will be
co-advised by PIs in different disciplines, and each thesis/dissertation committee will involve at least two
of the project PIs (possibly from different institutions).(iv) Undergraduate education will be a priority
and we will seek supplementary funding for summer undergraduate research projects through the NSF-
REU program.(v) In addition to active participation in national and international professional meetings,
our students will be encouraged to present their work at our annual project review meetings.(vi) We
will also be engaged in K-12 education. The PIs and students supported by this grant will make presen-
tations to Middle Schools and High Schools (grades 6-12) in local school districts about the importance
of internetwork monitoring and anomaly dectection for public safety, and how engineers and scientists
tackle such problems. The PI’s will also work through two organizations, Camp CAEN and our indus-
try affiliate Merit Networks, Inc., to enhance awareness of computing security for high school students,
their teachers, and other high school staff. The College of Engineering at UM organizes Camp CAEN
(http://campcaen.engin.umich.edu/ ), a summer camp with a computing focus for students be-
tween the ages of 13 and 17. PI’s plan to interact with staff at Camp CAEN to develop a program to
introduce students to security and monitoring issues. Camp CAEN also provides an all-day, girls-only
offering, providing a more supportive environment in which to attract more women to the field. As the In-
ternet service provider for K-12 institutions throughout the state of Michigan, Merit Network, Inc., provides
direct access to these institutions. By participating in Merit’s K-12 targeted workshops run by their Learn-
ing Systems Center to Support Technology in Education, we can advertise educational opportunities, e.g.,
Camp CAEN or internships, and potentially influence advanced computing curricula at these institutions.

8. Impact of Project
The long term goal of this research is to develop practical and cost-effective internetwork monitoring

strategies that can provide the early information that allows a network to make rapid operational changes
to maintain performance, avert failure or respond to attack. Our proposed research represents a first step
towards this ambitious goal and the intellectual, technical and societal impact of our project will be sig-
nificant. The short term impact includes:(i) a central Web repository for anomaly, attack, and intrusion
traces will enhance the network measurement research infrastructure;(ii) dissemination of validated soft-
ware modules for performing offline distributed data analysis on large data sets, including those archived
in the repository. Longer term impact includes:(iii) development of a modular framework for studying
anomalies in large scale networks;(iv) development of distributed online monitoring systems which can
perform real-time detection and diagnosis of anomalies;(v) development of a theory of information sharing
which captures both the proprietary concerns and the security concerns of the networking marketplace.

Our project will have the followingbroader impact; (i) every effort will be made to involve several
female or under-represented minority students, both graduate students (supported totally or in part by the
grant) and undergraduate students (supported by a subsequent REU grants together with support from
the participating institutions, as appropriate). The PIs have an excellent track record in this regard and
collectively they graduated a total of 8 female, 2 Hispanic and 1 African-American Ph.D.s in the last eight
years. Moreover, they are currently supervising or co-supervising 7 female Ph.D. students; several of them
are prime candidates for receiving support from this grant if funded;(ii) the PI’s will work to enhance
awareness of computing security for middle school and high school students, their teachers, and other high
school staff (see Sec. 7);(iii) together with their industrial collaborators at Arbor Networks, I2, Merit, and
SLAC, the PIs will interact with network managers to transfer technology developed in the project to the
operator community;(iv) the PIs will continue their active collaborations with international researchers and
institutions, including but not restricted to: McGill University (Canada) and INRIA (France)
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9. Management Plan
The breakdown of personnel by sub-areas in Table 1 illustrates the balance of our team in the four

areas of this project.1 A feature of our team is that each university has a pair of PI’s who cover two of the
three research areas, thereby facilitating cross-disciplinary education of graduate students. In addition, all
graduate student research assistants (GSRA) will have at least two PI’s on their thesis committees (including
outside members from other universities) to further the collaborative aims of this project. Furthermore,
close contact with our industry affiliates (see below) on real-life network monitoring problems will help
maintain practical relevance of the research. The coordination of research, education, and outreach projects
which span 3 universities (UM, UW, BU)2 will be managed according to the structure illustrated in Figure
3 and is explained below.
Electronic Dissemination and Privacy/Proprietary Concerns: A website will be created as an archive for
our research reports and articles, sample data traces, interactive software, course materials, and announce-
ments. It is our intent to make much of our collected data and software available to the public, along with
terms and conditions of use, on this web site (see Section 4 for more details). Co-PI Paul Barford at UW
will maintain this site with help of his students. Paul Barford has extensive experience in Internet data col-
lection and archival (he runs the DOMINO and Surveyor data collection and dissemination projects at UW)
and he will deal with the legal and operational privacy/proprietary issues involved in data dissemination.
Outreach to K-12: The PIs and students supported by this grant will be engaged in several types of
K-12 outreach activities including: presentations at local schools, interact with UM’s Camp CAEN to
develop a computing security summer program for high school kids, and interact with Merit Network’s
“Learning Systems Center to Support Technology in Education” to help K-12 teachers and staff to transition
computing and network security to the classroom (See Section 7 for more details).
International Collaboration : Two collaborators, M. Coates and A. Benveniste, have committed to par-
ticipate in our effort (letters are attached). Mark Coates is Assistant Professor in the Dept. of Electrical
Engineering at McGill and has been a close collaborator with Rob Nowak and Alfred Hero on network
tomography. His expertise in Monte Carlo Markov Chain (MCMC) optimization and particle filtering will
be applied to distributed Bayesian analysis and modeling of multi-site data. Albert Benveniste is Director
of Research at the IRISA laboratory at INRIA-Rennes, France. His extensive experience in adapting DES
models to fault diagnosis in packet networks will be crucial for our more ambitious effort to apply DES to
distributed detection of anomalies in the Internet. Dr Benveniste has been in close technical contact with
Professors Lafortune and Teneketzis for the past five years. Funds have been budgeted for international
travel to permit face-to-face meetings with these two collaborators.
Industry Affiliates : To enhance the educational and research impact of this project we have invited sev-
eral representatives from the network operator community, commercial industry, and the networking user
community to support this project as “industry affiliates.” Representatives from these organizations will
meet with us once a year at our annual workshop (see below). Their role will be to help identify ways to
improve practical impact of the project, provide guidance on future directions of the research, and provide
summer internships for students supported on the grant. We have attached letters of support from the fol-
lowing companies and organizations: Arbor Networks, Internet2 (I2), Merit Network, and Stanford Linear
Accelerator Center (SLAC). If the proposal is funded we will invite other organizations to participate.
Annual Review and Workshop: We will organize an annual year-end review to bring our team together
to present research results and discuss research objectives. The workshop venue will alternate between

1Due to administrative complications connected with the Fullbright Fellowship program, Prof. George Michailides could not
be listed among the co-PI’s on any submitted budget. He will be returning to the University of Michigan in September (Dept. of
Statistics) and will be supported as a co-PI on this grant if funded at requested level.

2Prof. Rob Nowak will be moving from Rice to the University of Wisconsin in May 2003 where he will be in close contact
with Prof. Paul Barford.
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co-PI Data Collection Data Analysis DES Models
P. Barford(UW) X X
M. Crovella(BU) X X
A. Hero(UM) X X
E. Kolaczyk(BU) X X
S. Lafortune(UM) X X
G. Michailidis(UM) X X
R. Nowak(Rice-UW) X X
D. Teneketzis(UM) X X

A. Benveniste(INRIA) X
M. Coates(McGill) X

Table 1: Matrix of associations between senior-personnel and collaborators (at bottom in itallics) and sub-
areas of this project.

Boston, Ann Arbor, and Madison. Collaborators, industry affiliates, and others will be invited to attend.
During this meeting industry affiliates and collaborators will help us evaluate progress of the project based
on the following criteria: the effectiveness of collaborations; innovations in theory, algorithms, and data
collection; education and outreach; and dissemination (journal and conference publications, software tools,
tech-transfer).

Co−Investigators
P. Barford, M. Crovella, A. Hero, E. Kolaczyk 

Stochastic ModelingData AnalysisData Collection
Hero, Kolaczyk

Nowak
Barford, Crovella

 S. Lafortune, G. Michailides, R. Nowak, D. Teneketzis

ITR Project Collaborators and Industry Affiliates

Dissemination

Education

Post−docs
GSRAs, REUs

Project Director

A Hero

K−12 Outreach

P. Barford S. Lafortune

McGill INRIA Merit Internet2 SLAC
Cotrell

Arbor Networks
JahanianCorbatoWilliamsBenvenisteCoates

Teneketzis
Lafortune, Michailides

Figure 3: Management structure for the project. A. Hero will coordinate meetings, workshops, and exchanges
between the co-investigators, collaborators, and industry affiliates. He will interface with P. Barford and S. Lafortune
who will be the principals responsible for dissemination and outreach to K-12, respectively.
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[110] Y. Pencolé, “Decentralized diagnoser approach: Application to telecommunication neworks,” inProc. DX’00:
Eleventh International Workshop on Principles of Diagnosis, A. Darwiche and G. Provan, editors, pp. 185–
192, June 2000.
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