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Abstract

Calculation of the di�erential entropy of the limiting density of a sequence of probability density functions is
important in the �eld of entropy estimation. In such cases it would be of interest to know if the limit of the di�erential
entropies corresponding to the sequence of probability density function is equal to the di�erential entropy of the limiting
probability density function. In this paper, we establish suÆcient conditions under which the above is true.
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1 Introduction

The concept of convergence of di�erential entropy can be traced to the problem of entropy estimation [1, 2, 3, 8, 9,
10, 11, 12]. The problem of entropy estimation �nds application in independent component analysis and projection
pursuit. For more applications see [3].

In [2, 10] the authors use either the Gram Charlier expansion or expansions based on moments to approximate
the density and hence the entropy. The drawback in these works is that the approximation to a density function f(x)
is of the form (1 � �)f(x) where � ! 0 as the estimate gets better. Most of the approximations [1, 3, 8, 11, 12] are
not of this form.

In [1, 3, 8, 11, 12] the density is estimated from a �nite number of realizations, X1; : : : ; Xn of the source X and
the estimate is re�ned as n!1. An estimate of the entropy, Hn is obtained from this estimate of the density fn and
is required to converge to H(f) as fn ! f . The convergence of the estimate to the actual value happens provided the
underlying probability density function f(x), and the corresponding entropy H(f), satisfy some stringent conditions
[3]. The conditions posed in [3] are as follows

1. f is continuous.

2. f is k times di�erentiable.

3. H(bXc) <1 where bXc is the integer part of X.

4. inff(x)>0 f(x) > 0.

5.
R
f(x)(log f(x))2dx <1.

6. f is bounded.

Some weaker conditions known for the convergence of di�erential entropies is that fn(x) be bounded from above
and below for all n over the support of fn(x) [4]. This means that j log fn(x)j � A for x in the support of fn(x) Sfn,
for all n. Let Sf denote the support of f(x) and let SfnSfn denote the set of all x such that x 2 Sf and x =2 Sfn.
Then

j lim
n!1

Z
Sfn

fn(x) log fn(x)dx�
Z
Sf

f(x) log f(x)dxj � j lim
n!1

Z
Sfn

f(x) log
f(x)

fn(x)
dxj+

j lim
n!1

Z
SfnSfn

f(x) log f(x)dxj+

j lim
n!1

Z
Sfn

(f(x)� fn(x)) log fn(x)dxj

� j lim
n!1

Z
Sfn

f(x) log
f(x)

fn(x)
dxj+

j lim
n!1

Z
SfnSfn

f(x) log f(x)dxj+

lim
n!1

Z
Sfn

jf(x)� fn(x)jAdx

! 0:

The concept of convergence of entropy can also be found in the area of asymptotic analysis of communication
systems [5, 6, 7, 13]. The convergence results are for speci�c density functions and are not useful for the general
problem where a sequence of random variables are converging to a �nal random variable and we are interested in the
convergence of the corresponding di�erential entropies. In this paper, we tackle the more general problem and we
show convergence under fairly weak conditions on the �nal density function. We start with the following examples:

Example 1 Consider the sequence of probability density functions fn(x) de�ned over the real line as follows

fn(x) =

(
1� 1

n
when x 2 [0; 1]

1
nLn

when x 2 (1; 1 + Ln]
0 elsewhere
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where L is a positive number not equal to 1. Then fn(x) converges to f(x) pointwise everywhere where f(x) is the
uniform distribution over the interval [0; 1]. However, the di�erential entropy from fn(x), called Hn, is given by

Hn = �(1� 1

n
) log(1� 1

n
)� 1

nLn

h
log

1

nLn

i
Ln = �(1� 1

n
) log(1� 1

n
) +

1

n
log n+ logL

and therefore, limn!1Hn = logL 6= 0 = Hf .

Example 2 Consider the sequence of probability density functions fn(x) de�ned over the real line as follows

fn(x) =

(
1� 1

n
when x 2 [0; 1]

Ln

n
when x 2 (1; 1 + 1

Ln
]

0 elsewhere

where L is a positive number not equal to 1. Then fn(x) converges to f(x) pointwise almost everywhere where f(x)
is the uniform distribution over the interval [0; 1]. The di�erential entropy from fn(x), Hn is given by

Hn = �(1� 1

n
) log(1� 1

n
)� Ln

n
log

Ln

n

1

Ln
= �(1� 1

n
) log(1� 1

n
) +

1

n
log n� logL

and therefore, limn!1 = � logL 6= 0 = Hf .

In both the examples given above we see that convergence of probability density functions doesn't lead to the
convergence of the corresponding di�erential entropies. In Example 1, we see that the second moment

R jxj2fn(x)dx
is unbounded whereas in Example 2, we see that the pdf fn(x) itself is unbounded. It is possible to ask the question
if we ensure that the above two quantities are bounded then do we obtain convergence of the di�erential entropies?
The answer is indeed yes and is proved in the following section.

2 Main Results

The main results in this section are Theorems 1, 2 and 3. Lemma 1 is only useful in establishing the proof of Theorem
1 and is not signi�cant otherwise.

Let �P (x) denote the characteristic function over a set P de�ned as �P (x) = 0 if x =2 P and �P (x) = 1 if x 2 P .

Lemma 1 Let g : Cl P ! R be a positive bounded function whose region of support, Sg, is compact. If there exists a
constant L such that

R
g(x)dx � L < 1=e then j

R
g(x) log g(x)dxj � maxfjL logLj + jL log vol(Sg)j; jL logAjg where

A = sup g(x).

Proof: First,
R
g(x) log g(x)dx �

R
g(x) logAdx � L logA. Let

R
g(x)dx = Ig. Consider the probability density

function g(x)=Ig. We know that
R

g(x)

Ig
log g(x)

Igf(x)
dx � 0 for all probability density functions f(x). If

f(x) =
�Sg

vol(Sg)

then Z
g(x) log g(x)dx �

Z
g(x) log(Igf(x)) = Ig log

Ig
vol(Sg)

:

This implies

j
Z

g(x) log g(x)j � maxfjL logAj; jIg log Ig
vol(Sg)

jg

� maxfjL logAj; jIg log Igj+ jIg log vol(Sg)jg
� maxfjL logAj; jL logLj + jL log vol(Sg)jg:

The last inequality follows from the fact that for x < 1=e, jx log xj is an increasing function of x. 2

Theorem 1 Let fXi 2 Cl P g be a sequence of continuous random variables with probability density functions, ffig
and X 2 Cl P be a continuous random variable with probability density function f such that fi ! f pointwise. If 1)
maxffi(x); f(x)g � A < 1 for all i and 2) maxf

R
kxk�fi(x)dx;

R
kxk�f(x)dxg � L < 1 for some � > 1 and all i

then H(Xi)!H(X). kxk =
p
xyx denotes the Euclidean norm of x.
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Proof: The proof is based on showing that given an � > 0 there exists an R such that for all i

j
Z
kxk>R

fi(x) log fi(x)dxj < �:

This R also works for f(x).

Since y log y ! 0 as y ! 0 we have maxf(x)�A jf(x) log f(x)j � maxfA logA; eg def= K. Therefore, fi(x) log fi(x)

is bounded above by an L1 function (g = K�kxk�R) and by the dominated convergence theorem we have

�
Z
kxk�R

fi(x) log fi(x)dx! �
Z
kxk�R

f(x) log f(x)dx:

Now, to show that the integral outside of kxk � R is uniformly bounded for all fi and f . Let g denote either fi
or f . We have

R
kxk�g(x)dx � L. Therefore, by Markov's inequality

R
R<kxk�R+1

g(x)dx = IR � L=R�. Choose R

large enough so that for all l > R: I l < 1=e. Now

j
Z
kxk>R

g(x) log g(x)dxj �
Z
kxk>R

jg(x) log g(x)jdx =
1X
l=R

Z
Bl

jg(x) log g(x)jdx

where Bl = fx : l < kxk � l + 1g.
Consider the term

R
Bl
jg(x) log g(x)jdx = Gl. Also, de�ne A+ = fx : � log g(x) > 0g and A� = fx : � log g(x) <

0g Now,

Gl =

Z
A+\Bl

jg(x) log g(x)jdx+
Z
A
�

\Bl

jg(x) log g(x)jdx

= j
Z
A+\Bl

g(x) log g(x)dxj+ j
Z
A
�

\Bl

g(x) log g(x)dxj:

From Lemma 1, we have
Gl � 2maxfjIl log Ilj+ jIl log vol(fBlg)j; jIl logAjg:

We know vol(fx : Blg) = o(l2P ). Therefore,Z
Bl

jg(x) log g(x)jdx � Q

l�
log l

where Q is some suÆciently large constant. Therefore, we haveZ
kxk>R

jg(x) log g(x)jdx �
1X
l=R

Q

l�
log l = O(logR=R��1):

Finally, as � > 1 we can choose R suÆciently large to have j
R
kxk>R

g(x) log g(x)dxj < �. 2

Theorem 2 Let fXi 2 Cl P g be a sequence of continuous random variables with probability density functions, fi and

X 2 Cl P be a continuous random variable with probability density function f . Let Xi
P�! X. If 1)

R
kxk�fn(x)dx � L

and
R
kxk�f(x)dx � L for some � > 1 and L <1 2) f(x) is bounded then lim supi!1H(Xi) � H(X).

Proof: We will prove this by constructing a density function gi corresponding to fi such that H(Xi) � Hgi and

lim supi!1Hgi � H(X) thus concluding lim supH(Xi) � H(X) where Hgi

def
= �

R
gi(x) log gi(x)dx.

First we will show that for all gi de�ned above there exists a single real numberR > 0 such that�
R
kxk>R

gi(x) log gi(x)dx �
�. Note that this is di�erent from the condition in Theorem 1 where we show j R

kxk>R
gi(x) log gi(x)dxj � �. As in

Theorem 1 choose R large enough so that Il < 1=e. Also de�ne the two sets A+ and A� as in Theorem 1 then

�
Z
kxk>R

g(x) log g(x)dx = �
Z
A+

g(x) log g(x)dx�
Z
A
�

g(x) log g(x)dx

= �
1X
l=R

Z
Bl\A+

g(x) log g(x)dx�
Z
A
�

g(x) log g(x)dx
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where Bl is as de�ned in Theorem 1. The last line follows from the Monotone Convergence Theorem. From the proof
of Lemma 1 we have �

R
Bl\A+

g(x) log g(x)dx � �Il log Il + Il log vol(Bl) Therefore

�
Z
kxk>R

g(x) log g(x)dx �
1X
l=R

[�Il log Il + Il log vol(Bl)]�
Z
A
�

g(x) log g(x)dx

�
1X
l=R

[�Il log Il + Il log vol(Bl)]

and the sum in the last line is bounded above by
P1

l=R
Q

l�
log l = O(logR=R��1). Therefore,

max
g
f�
Z
kxk>R

g(x) log g(x)dx g � O(logR=R��1):

From the proof of Theorem 1, j
R
kxk>R

f(x) log f(x)dxj = O(logR=R��1).

Now let's concentrate on upperbounding � R
kxk�R

fi(x) log fi(x)dx. Let A = sup f(x). For each n partition

the region fkxk � Rg into n regions Pm;m = 1; : : : ; n such that Am�1
n

� f(x) < Am
n

for x 2 Pm, m < n and

An�1
n

� f(x) � A for x 2 Pn. Now for each n, there exists a number Mn such that maxm j
R
Pm

(fi(x)� f(x))dxj <
1
n
minm

R
Pm

f(x)dx for all i �Mn. If Mn �Mn�1 set Mn =Mn�1 + 1. Now, de�ne the function M(i) such that

M(i) =

8>><
>>:

1; 1 � i �M2

2; M2 < i �M3

3; M3 < i �M4

...

For each i, divide the region fkxk � Rg into M(i) parts as de�ned in the previous paragraph: Pn; n = 1; : : : ;M(i),
and de�ne gi(x) over fkxk � Rg as

gi(x) =

M(i)X
n=1

�Pn(x)In;i=Vn

where In;i =
R
Pn

fi(x)dx, Vn = vol(Pn).

Now, it is easy to see that �
R
kxk�R

fi(x) log fi(x) � �
R
kxk�R

gi(x) log gi(x). Also, note that gi(x)! f(x) point-

wise. Since f(x) is bounded there exists a numberN and a constantK such that gi(x) � K for all values of i > N , also
f(x) � K. Therefore, using Theorem 1 we conclude that lim�

R
kxk�R

gi(x) log gi(x)dx! �
R
kxk�R

f(x) log f(x)dx.

Therefore, lim supH(Xi) � lim supHgi � H(X). 2

Theorem 3 Let fXi 2 Cl P g be a sequence of continuous random variables with probability density functions,

fi and X 2 Cl P be a continuous random variable with probability density function f . Let Xi
P�! X. If 0 �

maxff(x); fi(x)g � A <1 then lim infi!1H(Xi) � H(X).

Proof: Proof is similar to the proof of Theorem 2. First, for every � > 0 there exists R > 0 such that

�
Z
jxj<R

g(x) log g(x)dx � H(X)� �

where g(x) is de�ned as
g(x) = f(x) �jxj<R(x) +A �R�jxj<R+�R(x)

where �R is such that
R
jxj�R

f(x)dx = Avol(fx : R � jxj < R+�Rg). Similarly, de�ne gi(x) as

gi(x) = fi(x) �jxj<R(x) +A �R�jxj<R+�iR(x)

where �iR is such that
R
jxj�R

fi(x)dx = Avol(fx : R � jxj < R+�iRg). Then from Theorem 1 we have

lim
i!1

�
Z

gi(x) log gi(x) = �
Z

g(x) log g(x)dx
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Since �
R
jxj�R

fi(x) log fi(x)dx � �
R
jxj�R

gi(x) log gi(x)dx,

lim inf
i!1

�
Z

fi(x) log fi(x)dx � lim inf
i!1

�
Z

gi(x) log gi(x)dx

= �
Z

g(x) log g(x)dx

� H(X)� �

Since, � is arbitrary we are done. 2

3 Discussion and Conclusion

We derived general suÆcient conditions for the convergence of di�erential entropies. The conditions on the density
functions needed in this paper are weaker than the conditions assumed by the authors of [3] in the context of entropy
estimation. The conditions in this paper are as follows:

1. supxmaxfsupn fn(x); f(x)g <1
2. maxfsupn

R
jxj�fn(x)dx;

R
jxj�f(x)dxg <1 for some � > 1

Our results �nd application in the �eld of entropy estimation for the purposes of independent component analysis
and projection pursuit; and calculation of capacity for communication systems in asymptotic regimes. Examples
include the capacity calculation of multi-antenna systems for high SNR [7, 13]. The results in this paper were
directly applied in [7]. In [13], because of the special nature of the density functions considered, the convergence of
the di�erential entropies could be proved directly. However, the same analysis could have been performed with the
results derived in this paper.
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