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Abstract

We investigate optimal high rate quantization for various detection and reconstruction loss criteria.
A new distortion measure is introduced which accounts for global loss in best attainable binary hypoth-
esis testing performance. The distortion criterion is related to the area under the receiver-operating-
characteristic (ROC) curve. Speci�cally, motivated by Sanov's theorem, we de�ne a performance curve
as the trajectory of the pair of optimal asymptotic Type I and Type II error rates of the most powerful
Neyman-Pearson test of the hypotheses. The distortion measure is then de�ned as the di�erence be-
tween the area-under-the-curve (AUC) of the optimal pre-encoded hypothesis test and the AUC of the
optimal post-encoded hypothesis test. As compared to many previously introduced distortion measures
for decision making, this distortion measure has the advantage of being independent of any detection
thresholds or priors on the hypotheses, which are generally diÆcult to specify in the code design process.
A high resolution Zador-Gersho analysis is applied to characterize the point density and the inertial
pro�le associated with the optimal high rate vector quantizer. The optimal point density speci�es a
quantizer that allocates its �nest resolution to regions where the gradient of the pre-encoded likelihood
ratio has greatest magnitude.
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1 Introduction

In many applications, a source must be transmitted from a sensor to an end-user who will make decisions

on the source from the received data. For example, an imaging radar or a video camera might transmit

information to a user interested in the likelihood of presence of a particular target or object in the sensor's

�eld of view. In such an application, it is often essential to reduce transmitted data rates by encoding the

source prior to transmission at the cost of introducing a small amount of distortion at the decoder. The

most common distortion measure is the mean square reconstruction error (MSRE) which forms the basis for

the vast majority of lossy compression algorithms in use today [1, 2]. However, it has long been recognized

that MSRE is not the most pertinent distortion measure when one is interested in the e�ect of compression

on decision making performance. Indeed many di�erent distortion measures have been previously proposed

for assessing compression algorithms relative to detection, classi�cation and other decision objectives [3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

This paper makes two contributions: 1) we extend Zador's method of asymptotic high rate analysis

to many-cell multi-dimensional quantizers incorporating a Kullback-Liebler (KL) type of detection crite-

rion; and 2) we introduce a new design criterion of this type which is closely related to the area under

the receiver-operating-characteristic (ROC) curve. The new detection criterion is the area under the curve

(AUC) specifying the optimal Type I and Type II error exponents speci�ed by Sanov's theorem on asymp-

totic (large sample size) false alarm and miss probabilities. We compare the AUC criterion to other detection

criteria including the information discrimination exponent of Stein's Lemma and the Cherno� information

exponent of the Cherno� bound. For each of these criteria our high resolution analysis yields expressions

for the optimal point density of the encoder which minimizes the information losses over all similarly con-

strained quantizers of �xed rate. An asymptotic small-cell constraint is used here which guarantees that the

MSRE converges to zero as the encoder rate goes to in�nity under either hypothesis. The optimal point

densities of the small-cell quantizers are related to two important functions, called the Fisher covariation

pro�le and the discriminability. Based on these optimal point densities a �nite rate Lloyd-type compression

algorithm is proposed under a congruent cell hypothesis and numerical comparisons are performed for several

simple examples. A general characterization is that, as contrasted to estimation-optimal (minimum MSRE)
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quantizers, detection-optimal quantizers should allocate �ner resolution to regions where the gradient of the

likelihood ratio has large magnitude.

Some background will be useful to place our contributions in the context of previous work. Quantization

and source coding have been studied for many decades and the rich history is traced in [2]. Early research

on asymptotic high rate quantization was reported by Zador [17] and Gersho [18]. In [19], Na and Neuho�

derived a formula for the asymptotic high rate MSRE of a vector quantizer in terms of two functions that

characterize the quantizer, known as the point density and the inertial pro�le. These functions describe a

quantizer's asymptotic distribution of points and cell sizes, respectively. In this paper we extend the results

of [19] to distortion measures which incorporate information discrimination and other penalties for poor

post-quantization detection performance.

The problem of optimal quantization for hypothesis testing has been analyzed for various quantization

schemes and various distortion criteria. Kassam [3] considered quantization under an eÆcacy distortion

measure for testing composite hypotheses H0 : � = 0 versus H1 : � > 0 under a parameterized density with

scalar parameter �. Poor and Thomas [4] investigated the quantization-induced loss in various Ali-Silvey

distances between densities characterizing two simple hypotheses. Later Poor [5, 6] proposed the generalized

f -divergence as a distortion measure and studied asymptotic high rate quantization e�ects on this measure.

From this work, it is seen that the loss in Kullback-Leibler distance due to quantization is a functional of a

quantity called the discriminability, which plays a central role here. Picinbono and Duvaut [8] considered a

de
ection criterion similar to a signal-to-noise ratio (SNR) under one of two simple hypotheses. It was shown

that maximization of this de
ection criterion is achieved by a transform coder which quantizes the scalar

likelihood ratio. Tsitsiklis [9] explores some properties of such likelihood ratio quantizers and he investigates

optimality with respect to several divergence measures. Motivated by Cherno�'s theorem, which bounds

the exponential error rates of the NP test, Benitz and Bucklew [7] proposed the loss in alpha entropy, also

called Cherno� distance, as a distortion measure for scalar quantizers. Asymptotically optimal companding

functions were then derived under a high resolution analysis. More recently Jain et al [15] proposed bounds

on Cherno� distances as a distortion measure for quantization in the context of composite hypotheses.

Flynn and Gray [10] consider a mixed distortion combining estimation and probability of detection for

correlated observations in distributed sensing environments. Achievable rate-distortion regions are obtained
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for the case of two sensors which extend the lossless source coding analysis of Slepian and Wolf [20] to

lossy source coding. These authors also presented non-asymptotic quantizer design for optimum detection

performance via iterative maximization of the Cherno� distance. The distributed hypothesis testing problem

with quantized observations is directly addressed in [11] by Longo, Lookabaugh, and Gray where an iterative

algorithm for optimal scalar quantization is derived with loss in Bhattacharyya distance adopted as the

distortion measure. Oehler and Gray [12] and Perlmutter et al [13] introduced a method of quantization and

classi�cation with a mixed distortion measure de�ned as a linear combination of MSRE and Bayes risk. An

iterative encoding algorithm was presented which minimizes this measure.

A major di�erence between the approach of this paper to detection and previous approaches is that we

tackle the problem of global optimization of the ROC curve and not just optimization at a point on the

ROC curve. Both the AUC-di�erence and the Cherno� information considered in this paper are symmetric

functionals of the hypothesized source densities under H0 and H1. Furthermore, the optimal encoder arising

from minimizing the AUC-di�erence does not depend on the level of signi�cance or the decision thresholds

of the test. For example, the �-divergence criteria adopted in [7, 15] are indexed by � which speci�es a

threshold, a level of signi�cance, and a particular point on the ROC curve. Likewise the mixed distortion

criterion of [12, 13] depends on the Bayes risk which is parameterized by priors on the hypotheses which

again specify a point on the ROC curve. Our high-resolution analysis follows along the lines of the approach

taken in [19] for the MSRE loss function. For the detection problem it turns out that the optimal high

rate quantizer depends on a matrix generalization of the inertial pro�le, called the covariation pro�le, that

characterizes the cell shapes. This framework permits a lucid analysis of the merits of various quantizers

with detection loss as they may be evaluated by their point densities and covariation pro�les.

An outline of the paper is as follows. We brie
y review elements of quantization for general tasks and

discuss information discrimination criteria, including Cherno� information and AUC, in Section 2. In Section

3 we perform asymptotic high rate analysis on these criteria. In Section 4 we obtain optimal point densities

for various criteria. Finally examples are presented in Section 5.
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2 Vector Quantization

Let a k dimensional real valued source X take values x 2 IRk. A k-dimensional quantizer [1, 19] Q = (S; C)

consists of a codebook C = fx1; : : : ; xNg and a set of cells S = fS1; : : : ; SNg that partition a bounded domain


 which is a subset of IRk. When k = 1 a quantizer is called a scalar quantizer while for k > 1 it is called a

vector quantizer. Each codebook point xi lies in cell Si. The quantizer operator can be written as

Q(x) = xi; for x 2 Si

For a vector quantizer Q let Vi =
R
Si
dx denote the volume of the ith cell. The speci�c point density [19] of

Q is de�ned as

�s(x) =
1

NVi
; for x 2 Si:

This function is a normalized density as it is non-negative and its integral over 
 equals one. When integrated

over a region A 2 
, it gives the approximate fraction of codebook points contained in A. Next, de�ne the

diameter function of the quantizer

d(x) = supfku� vk : u; v 2 Sig; for x 2 Si;

and the (scalar) speci�c inertial pro�le function m(x) [18]

m(x) =

R
Si
ky � xk2dy

V
1+2=k
i

; for x 2 Si: (1)

Note that m(x) is invariant to scaling of Si. This function contains partial information about the shapes of

the cells of the quantizer. More information is provided by the following matrix valued function M(x) which

we call the speci�c covariation pro�le

M(x) =

R
Si
(y � xi)(y � xi)

T dy

V
1+2=k
i

; for x 2 Si:

It can be easily shown that if Si is an ellipsoidal cell of the form fx : (x � xi)
TR(x � xi) � cg, where R is

k � k symmetric positive de�nite and c > 0, then

M(x) = �kjRj
1=kR�1; for x 2 Si;
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where jRj is the determinant of R and � =
R
So
xTxdx is the product of the second moment of inertia and

the volume of a unit sphere So in IRk. As the function M(x) does not depend on the size parameter c it is

also scale invariant. Furthermore, for spherical cells M(x) = �kI which is a scaled k � k identity matrix.

In this paper we restrict our treatment to product quantizers of n independent identically distributed

(i.i.d.) samples of a k-dimensional source. This restriction allows us to use average MSRE and error

exponents to determine the estimation- and detection-optimal k-dimensional component quantizers applied

to each sample. The restricted framework applies to either of the following scenarios: 1) n repeated temporal

measurements (snapshots) of a k-dimensional source using a single sensor; or 2) a single snapshot of a

network of n spatially distributed sensors measuring the same k-dimensional source. In either case, using

the framework of this paper one can evaluate the average loss in detection/estimation performance arising

from this restriction to product quantizers. For more details and examples the reader is referred to [21].

2.1 Distortion Measures

Let X = [X(1); : : : ; X(n)] be an i.i.d. sample from some probability density function (p.d.f.) q(x). The class

of N cell product quantizers Q(n) over IRnk is de�ned for a realization x of X by

Q(n)(x) =
h
Q
�
x(1)

�
; : : : ; Q

�
x(n)

�i
:

where Q is an N cell quantizer over IRk.

The quality of a product quantizer is measured by an average loss function, also called an average

distortion, J(Q(n)) which is speci�ed according to the particular task to be performed on the compressed

data Q(n)(X). When the task is optimal reconstruction of the source X from Q(n)(X) it is appropriate to

use the mean squared reconstruction error (MSRE)

J(Q(n)) = MSRE(Q)
def
=

nX
i=1

E[kQ(X(i))�X(i))k2] = nE[kQ(X(1))�X(1))k2]:

As the MSRE is a measure of source estimation error we call the N cell quantizer Q that minimizes MSRE

the estimation-optimal N cell quantizer.
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When the task is to decide between two hypothesized source distributions

H0 : X(i) � q0(x)

H1 : X(i) � q1(x) (2)

it is appropriate to use some combination of probability of false alarm (Type I error) PF (Q
(n)) and probability

of miss (Type II error) PM (Q(n)) of an optimal detector of H0 vs. H1 operating on quantized data Q(n)(X).

Even though composite hypotheses can be easily handled by marginalization in a manner similar to [15], in

this paper we focus on the case of simple hypotheses.

Several di�erent distortion measures for optimal post-quantization detection are given below. For each of

these measures the optimal post-compression detector is a likelihood ratio test (LRT) with a threshold chosen

to satisfy a false alarm constraint, to re
ect a particular pair of priors on H0 or H1, or to attain minimax

detection performance. A few comments comparing estimation-optimal and detection-optimal quantizers are

in order. The distortion function of an estimation-optimal quantizer typically depends on the domain and

de�nition of the codewords, e.g. cell centers or centroids, and is a strictly decreasing function of the rate

of the quantizer, i.e. increasing the number of cells N of the quantizer always decreases MSRE. However,

the probability of error of a detection-optimal quantizer only depends on the cardinality of the codeword set

and may not strictly decrease in N , e.g. the detection-optimal quantizer is a binary partition (N = 2) of the

source space IRk for any �xed LRT threshold.

When one of the error probabilities, e.g. false alarm, must be constrained a natural criterion to consider

is the probability of miss PM of a LRT whose threshold T1 is selected to meet the prespeci�ed false alarm

constraint PF (T1) = �. Assuming a prior p = P (H1), another option is to consider the minimum average

probability of error

Pe(p) = PM (T2) p+ PF (T2) (1� p);

where PM (T2) and PF (T2) are the miss and false alarm probabilities of the LRT operating on the compressed

data with LRT threshold T2 = p=(1� p). When p is unknown, the minimax post-compression probability of

error can be adopted

Pe(p
�) = min

p2[0;1]
fPM (T2) p+ PF (T2) (1� p)g;
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which is achieved by the LRT with minimax threshold T3 = p�=(1 � p�) where p = p� is the minimizing

solution. The performance of any LRT is described by the receiver operating characteristic (ROC), given

here in parametric form,

f(PF (T ); PD(T )) : T 2 IRg; (3)

where PD = 1 � PF is the probability of detection of H1. Thus each of the above detection criteria arises

from evaluating the ROC at a particular point PF (T ), T = T1; T2; T3 respectively, on the coordinate axis.

The disadvantage of any of the aforementioned detection probability criteria is that they are local: they

are only relevant to compression detection performance for a single LRT threshold, i.e. a given PF . The

AUC criterion discussed below is a global T -independent alternative which accounts for the entire range of

attainable miss and false alarm probabilities of the MP-LRT.

When both reconstruction and detection performance of the quantizer are of interest Gray et al. [16, 12,

13] proposed using a mixed criterion equivalent to

J(Q(n)) = (1� �) � JE(Q
(n)) + � � JD(Q

(n)) (4)

where JD and JE are average distortion criteria which are minimized for detection-optimal and estimation-

optimal quantizers, respectively. The weighting factor � 2 [0; 1] is used to trade detection performance

for estimation performance of the quantizer. The average MSRE typically decays as a function 1=n while

detection error probability of the LRT is typically an exponentially decreasing function of n. It is therefore

natural to specify JE as n� MSRE and to specify JD as an error exponent, i.e. �n log of one of the error

probability criteria above.

2.2 Distortion via Error Exponents of the LRT

Let � = PF and � = PM denote the false alarm and miss probabilities of the LRT operating directly on the

data X. Then 1� �(�), � 2 [0; 1] is an equivalent but direct parameterization of the pre-quantization ROC

curve (3), also known as the power of the test. For speci�ed level � of false alarm, the most powerful (MP)

pre-quantization test of level � of the hypotheses (2) is the LRT

1

n

nX
i=1

�(x(i))
H0

>
<
H1

T
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where

�(x) = log q0(x)=q1(x); (5)

is the single sample log likelihood ratio and the threshold T is set such that the probability of false alarm is

equal to �, which may require randomization when the distribution of the LRT statistic is discrete [22].

Likewise, if �̂ and �̂ denote the false alarm amd miss probabilities of the LRT operating on the output

Q(n)(X) of a N cell product quantizer the MP post-quantization test of level � is the LRT

1

n

nX
i=1

�̂(x(i))
H0

>
<
H1

T

where

�̂(x) = log q0;N(x)=q1;N (x);

and qi;N = f
R
Sj
qi(x)dxgNj=1, i = 0; 1, are the probability mass functions (p.m.f.'s) of the output of the N

cell component quantizer Q(X(1)) with cells fSjg.

For large sample size n the performance of the MP-LRT is completely characterized by a set of error

exponents related to the Kullback-Leibler (KL) divergence, also called the discrimination. The KL divergence

between two discrete sources with p.m.f.'s qa(x) and qb(x) is [23, 24]

L(qakqb) =
X
i

qa(xi) log
qa(xi)

qb(xi)
: (6)

while for continuous sources with densities qa(x) and qb(x) the KL divergence is

L(qakqb) =

Z
qa(x) log

qa(x)

qb(x)
dx: (7)

Stein's lemma gives a large n asymptotic expression for the probability of miss �n of the LRT of (2) for

arbitrary false alarm level � > 0 [23]

lim
n!+1

(�n)
1=n = e�L(q0kq1):

Hence, we have the large n approximation

�n � e�nL(q0kq1): (8)
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The intrinsic loss in miss performance due to quantization can be expressed in terms of the loss incurred in

the discrimination appearing in the Stein approximation (8)

�LN
def
= L(q0kq1)� L(q0;Nkq1;N ): (9)

This is monotonically related to the loss ratio �̂n=�n incurred in the miss probabilities due to quantization.

The Stein approximation (8) to the miss probability provides no information about the tradeo� between

miss and false alarm probability. Sanov's theorem provides such information. Let �n and �n denote these

respective probabilities. Then Sanov's theorem gives the following large n approximatons as a function of

the LRT threshold T [23, 25, 26]:

�n � e�nL(q�kq0)

�n � e�nL(q�kq1): (10)

where the \tilted density" has been de�ned as

q�(x) =
q0(x)

1��q1(x)
�R

q0(y)1��q1(y)�dy
(11)

and the tilt parameter � 2 [0; 1] is de�ned implicitly in terms of T by

T =

Z
q�(x) log

q0(x)

q1(x)
dx = L(q�kq1)� L(q�kq0): (12)

Note that the Stein approximation (8) is a special case of the Sanov approximation (10) when � = 0.

Similarly to the construction of the discrimination loss �LN de�ned in (9), the Sanov approximation (10)

allows us to quantify the e�ect of quantization on the ROC curve f(PD(T ); PF (T )) :2 T 2 IRg by considering

the di�erence between the pre-quantization error exponent curve

f(L(q�kq0); L(q�kq1)) : � 2 [0; 1]g

to the post-quantization error exponent curve

��
L(q̂�;Nkq0;N ); L(q̂�;Nkq1;N )

�
: � 2 [0; 1]

	
:

Here q̂�;N is the discrete tilted p.m.f. whose mass probabilities for j = 1; : : : ; N are given by

q̂�;N;i =
�q1��0;N;i � �q

�
1;N;iPN

j=1 �q
1��
0;N;j � �q

�
1;N;j

: (13)
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Now let P (H1) and P (H0) = 1�P (H1) be priors on H1 and H0 and consider the large n approximation

to average probability of error of a LRT with threshold T associated with tilt parameter �

Pe = P (H1)e
�nL(q�kq1) + P (H0)e

�nL(q�kq0):

The best achievable exponent in Pe is attained when � equalizes the two error exponents, i.e. L(q�kq0) =

L(q�kq1) [24, Sec. 12.9]. By the equalizer property of the minimax Bayes test [27], this is also the value of

� which attains minimax probability of error performance over P (H1) 2 [0; 1]. For �� denoting this value of

� the common value of these two error exponents is called the Cherno� information.

2.3 Area-Under-Curve Detection Criterion

For a LRT based on n i.i.d. observations X, the area under the ROC curve is de�ned as

AUCROC(X) =

Z 1

0

(1� �(�))d� (14)

and has been widely used as a global measure for comparison of two di�erent experiments. This criterion

has a long history in signal detection theory, see Green and Swets [28]. Provost and Fawcett [29] call this

a "whole-curve metric" to di�erentiate it from metrics which evaluate a single-point on the ROC curve like

those discussed in Section 2.1. The area under the ROC curve has been applied to mathematical psychology

[30, 31], diagnostic medical imaging [32, 33], and more recently to machine learning [34]. The area (14) is

equivalent to the average power of the most powerful test under a uniform prior on the user's false alarm

constraint. AUCROC(X) is also equivalent to the probability of error of a Mann Whitney or Wilcoxon rank

order test for randomly selected instances of H0 vs. H1 [35]. A large AUCROC is better and AUCROC is

maximized by the MP-LRT. The whole-curve metric (14) is completely independent of the threshold and

insensitive to the priors and/or Bayes costs which the end-user might associate with decision errors. The

integral (14) can also be related to the equally likely probability of error Pe(1=2) via the bounds of Barrett

[36] and Shapiro [37].

For purposes of comparing quantizers for detection tasks a natural measure of quantizer distortion could

be the loss in area under the ROC due to quantization

�AUCROC(Q
(n)) = AUCROC(X) �AUCROC(Q

(n)(X)); (15)
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where AUCROC(X) and AUCROC(Q
(n)(X)) are the areas under the ROC's of the LRT based on the unquan-

tized sample X and the LRT based on the (product) quantized sample Q(n)(X) = Q(X(1))� � � � �Q(X(n)),

respectively. However, for purposes of asymptotic high rate analysis of quantizer distortion it will be more

convenient to deal with the error exponent curves associated with the ROC's (see Fig. 1). As discussed in

Section 2.2 these will be closely related to the ROC curves for large n. De�ne the following shorthand for

the Sanov error exponents for pre-quantized and post-quantized data, respectively, using an N cell product

quantizer:

L0(�) = L(q�kq0); L1(�) = L(q�kq1)

L̂0(�) = L(q̂�;Nkq0;N ); L̂1(�) = L(q̂�;Nkq1;N ): (16)

For large n the pre-quantization ROC curve is parameterized by the error exponent curve f(L0(�); L1(�)) :

� 2 [0; 1]g which we also write in more direct form as the function fL1(L0) : L0 > 0g. Similarly we can

write the post-quantization error exponent curve as fL̂1(L̂0) : L̂0 > 0g. Analogously to (14) we de�ne the

area under the error exponent curve, more simply denoted as the area-under-the-curve (AUC) in this paper

AUC =

Z 1

0

L1(L0)dL0 =

Z 1

0

L1(
)
dL0(
)

d

d
: (17)

Line AUCROC, AUC is maximized by implementing the MP-LRT. The AUC has the \threshold independent"

attributes of a whole-curve metric that justify its use as a global distortion measure for quantizer detection

performance.

This motivates the new mixed detection-estimation metric for i.i.d. samples and product quantizers

Q(n) = Q� : : :�Q

J(Q) = �MSRE(Q) + (1� �)�AUC(Q) (18)

where MSRE(Q) is the mean square distortion of the constituent quantizer Q for a single sample, and,

similarly to (15), �AUC(Q) is the single sample loss in AUC

�AUC(Q) = AUC(X(1))�AUC(Q(X(1))); (19)

due to implementing product quantizer Q(n).
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3 Asymptotic High Rate Analysis

Asymptotic high-rate quantization analysis is commonly used to obtain interesting insights into the behavior

of quantizers having many small cells, which we call small-cell quantizers. Bennet's integral [18, 19] is central

to this analysis. The most commonly used technique of asymptotic analysis is the sequence approach. The

idea behind the sequence approach is to consider a sequence of quantizers fQNg. Each quantizer in the

sequence has N cells and an associated speci�c point density, speci�c inertial pro�le, speci�c covariation

pro�le, and diameter function. Assuming the �rst three of these sequences of functions converge to functions

�(x), m(x), M(x), and that the sequence of diameter functions converges to zero, the limiting behavior of

the quantizer sequence can be determined.

3.1 Log-Likelihood Ratio Quantizers

The performance of the MP-LRT is una�ected by processing of the observations as long as the processing

produces a suÆcient statistic. For example, there are densities q0 and q1 for which the suÆcient statistic is

discrete valued and is equivalent to a quantizer. In Gupta [21] this was called a suÆcient quantizer and its

distortion is equal to zero relative to any of the previously de�ned detection metrics. SuÆcient quantizers

rarely exist in practical problems and thus it is reasonable to quantize a suÆcient statistic, such as the

log-likelihood ratio [8, 9]. A log-likelihood ratio quantizer or LLR quantizer Q is a scalar quantizer applied

to the log-likelihood ratio de�ned above (5). As the MP-LRT is a threshold test, the ROC curve of the

MP-LRT implemented after N level LLR quantization has an ROC curve which meets the unquantized

ROC curve at exactly N false alarm points. Thus as the ROC is continuous and increasing as N becomes

large the loss in detection performance goes to zero over the entire range of false alarm. On the other hand,

for vector valued data in IRk the k-dimensional cells induced by the N level LLR quantizer are the level sets

of the log-likelihood ratio which may not be convex or bounded. For example, if k = 2 and the sources are

Gaussian, q0 � N ([�0; �0]; I) and q1 � N ([�1; �1]; I), then the cells of the induced quantizer will be \strips"

of slope �1 as shown in Figure 2 leading to very poor MSRE performance. The mixed objective (4) can

be used to attain a compromise between MSRE and detection distortion of a quantizer and, for � 2 (0; 1)

to enforce a small-cell quantizer as the number N of cells increases. Alternatively, we can use the sequence
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approach to enforce the small-cell constraint.

3.2 Stein Exponent Loss

We �rst consider the e�ect of quantization on the Type II error, for arbitrarily small Type I error, via

the Stein exponent in (8) which is equal to the discrimination L(q0kq1) between p.d.f.'s q0; q1. The loss in

discrimination incurred by quantization with the Nth product-quantizer in the sequence fQig1i=1 is de�ned

as �LN = L(q0kq1)� L(�q0;Nk�q1;N) where, as above, �q0;N and �q1;N are the p.m.f.'s of the quantized source.

In Appendix A.1 we use the sequence approach to show that for a small-cell quantizer with N cells

lim
N!+1

N2=k�LN =
1

2

Z
q0(x)

�(x)2=k
tr(F (x)M(x))dx

=
1

2

Z
q0(x)F(x)

�(x)2=k
dx (20)

where

F(x) = r�(x)TM(x)r�(x) (21)

which we call the Fisher covariation pro�le. We adopt this nomenclature since F(x) = trfI(x)M(x)g where

I = r�(x)r�(x)T and E0[I] =
R
Iq0(x)dx is the Fisher information matrix associated with estimating a

shift parameter in the density q0(x)=q1(x), de�ned with respect to the measure q0. The expression (20) will

be used in Section 4.1 to derive discrimination-optimal quantizers which minimize the loss in the Stein error

exponent.

3.3 Sanov Exponent Loss

We next consider the e�ect of quantization on the asymptotic high rate Type I and Type II errors via the

Sanov exponents (10). The losses incurred by quantization with the Nth product-quantizer in the sequence

fQig1i=1 are de�ned as �L0;N = L(q�kq0)�L(q̂�;Nk�q0;N ) and �L1;N = L(q�kq1)�L(q̂�;Nk�q1;N) where q̂�;N

is the tilted quantized p.m.f. de�ned in (13). In Appendix A.2, we obtain the following

lim
N!+1

N2=k�L0;N =
1

2

Z
q�(x)F(x)

�(x)2=k
�
�2 + �(1� �)(L(q�kq0)� �0(x))

�
dx (22)

lim
N!+1

N2=k�L1;N =
1

2

Z
q�(x)F(x)

�(x)2=k
�
(1� �)2 + �(1� �)(L(q�kq1)� �1(x))

�
dx (23)
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where

�0(x) = log
q�(x)

q0(x)
; and �1(x) = log

q�(x)

q1(x)
: (24)

4 Optimal Small-Cell Quantizers

Here we use the results of the previous section to obtain asymptotic expressions for the optimal point

densities minimizing loss in error exponents. Even for the classical MSRE high rate quantization problem

the determination of optimal cell shapes is a diÆcult open problem [18, 19]. The optimal cells of high rate

MSRE quantizers are conjectured to be congruent, minimum-moment-of-inertia cells [18]. For the small-cell

quantization-for-detection problem the determination of optimal cell shape appears no less diÆcult and is

also an open problem. We will, however, obtain qualitative characterizations of the optimal cell shapes

using attributes of the Fisher covariation pro�le. We de�ne a Sanov-optimal quantizer as a quantizer that

minimizes the loss in the Type II Sanov error exponent L(q�kq1) for some �xed value of �, e.g. � determined

to satisfy a Type I Sanov error exponent (false alarm) constraint.

4.1 Discrimination-Optimal Quantizers

Discrimination-optimal quantizers minimize the loss in the error exponent of Stein's lemma, equal to the

discrimination between the sources q0 and q1 after quantization. The discrimination-optimal quantizer is a

Sanov-optimal quantizer designed at the operating point � = 0. To optimize a quantizer with respect to

asymptotic discrimination loss, as given by (20), it is necessary to jointly optimize two functions, namely

the point density �(x) and the covariation pro�le M(x). First, the discrimination-optimal point density can

be obtained using calculus of variations or Holder's inequality in a manner analogous to [19]:

�d(x) =
[q0(x)F(x)]

k
k+2R

[q0(y)F(y)]
k

k+2 dy
: (25)

The discrimination loss with the optimal point density is then

�LN �
1

2N2=k

�Z
[q0(x)F(x)]

k
k+2 dx

� k+2
k

: (26)

This depends on the covariation pro�le M(x) through F de�ned in (21).
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If the quantizer's cells are congruent, the covariation pro�le M(x) is constant independent of x. If in

addition the cells have minimum moment of inertia, M(x) = �kI and the point density given by equation

(25) becomes

�d(x) =
[q0(x)kr�(x)k2]

k
k+2R

[q0(y)kr�(y)k2]
k

k+2 dy
:

We call the function kr�(x)k2 the discriminability function which equals zero when the hypotheses have

densities with identical zero-th and �rst order derivatives.

4.1.1 Ellipsoidal Cells

Ellipsoidal cells can not cover IRk without overlap and thus can not partition IRk. However, as N ! +1

it is possible that a quantizer's cells can be close to ellipsoidal. Studying ellipsoidal quantizer cells yields

important insights. Accordingly, assume that in the neighborhood of some point xi the cell is Si = fx :

(x� xi)
TR(x� xi) � c. Then M = �kjRj1=kR�1 has an eigendecomposition

M =

kX
i=1

1

�i
viv

T
i ;

where f�1; : : : ; �kg are the positive eigenvalues of M�1 = 1=�kjRj�1=kR corresponding to its orthonormal

eigenvectors fv1; : : : ; vkg. Thus the Fisher covariation pro�le is

F =

kX
i=1

1

�i

�
r�T vi

�2
:

Let �max be a �nite upper bound on the eigenvalues of M�1. This upper bound restricts the minimum

diameter of the cell to be positive, i.e. nondegenerate. The minimum of F over matrices R satisfying

maxi �i � �max is achieved when: M has 1=�max as its minimum eigenvalue; and the corresponding min-

imizing eigenvector of M is vmax = r�=kr�k, which is parallel to r�. In this case the optimal Fisher

covariation pro�le is

F =
1

�max
kr�k2

Thus we conclude that if a cell centered at xi is an eccentric ellipsoid which is nondegenerate, then its minor

axis should be aligned along the direction of the normal vector to the log likelihood ratio surface. For large

N , we see that this implies that any eccentric ellipsoidal cells should be aligned with the level sets of the

log-likelihood ratio.
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4.2 Cherno�-Optimal Quantization

The Cherno�-optimal quantizer is a Sanov-optimal quantizer designed at an operating point � = �� which

minimizes the loss in Cherno� information due to quantization. Unfortunately, the asymptotic loss in

Cherno� information can be very diÆcult to determine since the pre-quantization equalization condition

L(q�kq0) = L(q�kq1) and the post-quantization equalization condition L(q̂�kq0) = L(q̂�kq1) are seldom

satis�ed for identical equalizer solution � = ��. See Fig. 3 for illustration. Therefore, asymptotic Cherno�

loss involves a complicated interaction between the pre-quantization and the post-quantization equalizer �

solutions. An exception which permits simple determination of the asymptotic Cherno� information loss

occurs in the case where these equalizer solutions are identical.

If it so happens that the two equalizing � are the same then the asymptotic expression (22) is valid,

which we rewrite as follows

�L0;N (�) �
�2

2N2=k

Z
q�(x)F(x)

�(x)2=k
dx+

�(1� �)

2N2=k
D�;0

and

�L1;N (�) �
(1� �)2

2N2=k

Z
q�(x)F(x)

�(x)2=k
dx+

�(1� �)

2N2=k
D�;1

where for i = 0; 1 and �i as de�ned in (24)

D�;i
def
=

Z
q�(x)F(x)

�(x)2=k
(L(q�kqi)� �i(x)) dx:

We denote the � dependency explicitly by writing �L0;N(�) and �L1;N (�). The loss in Cherno� information

is equal to �L1;N(�
�) where � = �� is the solution of �L0;N (�) = �L1;N(�). Solving for �� can rarely be

performed in closed form but may be accomplished using numerical root �nding techniques on the di�erence

�L0;N(�) ��L1;N(�) which is equivalent to �nding � such that

�(1� 2�)

Z
q�(x)F(x)

�(x)2=k
dx+ �(1� �)(D�;0 �D�;1) = 0: (27)

When D�;0 = D�;1 then it is obvious that � = �� = 1=2 is the equalization solution, and

�L0;N(�
�) = �L1;N(�

�) =
1

8N2=k

Z
q1=2(x)F(x)

�(x)2=k
dx+

D1=2;0

8N2=k
:

18



A strategy for �nding solutions to the asymptotic Cherno� information is to �rst �nd the pre-quantized

equalizing solution �� which satis�es L(q�kq0)(��) = L(q�kq1)(��) and then check if �� is also a solution to

(27). If so then �� is a solution to �L1;N(�) = �L0;N (�) which, as L(q��kq0) = L(q��kq1), would imply

that L(q̂��kq0) = L(q̂��kq1), as required. We will follow this strategy in the Gaussian example considered

below.

4.3 AUC Optimal Quantization

An alternative to the diÆcult Cherno�-optimal quantizer is the simpler AUC-optimal quantizer which min-

imizes the loss of area under the Sanov error-exponent curve.

Let Li(�) and L̂i(�) be as de�ned in (16). De�ne Â the area under the post-quantized error-exponent

curve L̂1(L̂0). Then

Â =

Z 1

0

L̂1(�)
d

d�
L̂0(�)d�:

De�ne

f0(x; �) = q�(x)
�
�2 + �(1� �)(L0(�) � �0(x; �))

�
f1(x; �) = q�(x)

�
(1� �)2 + �(1� �)(L1(�)� �1(x; �))

�
: (28)

Then

L̂0(�) = L0(�) �
1

2N2=k

Z
F(x)

�(x)2=k
f0(x; �)dx

L̂1(�) = L1(�) �
1

2N2=k

Z
F(x)

�(x)2=k
f1(x; �)dx

and

d

d�
L̂0(�) =

d

d�
L0(�)�

1

2N2=k

Z
F(x)

�(x)2=k
�
@

@�
f0(x; �)dx:

Thus

L̂1(�)
d

d�
L̂0(�) = L1(�)

d

d�
L0(�) �

1

2N2=k

Z
F(x)

�(x)2=k

�
L1(�)

@

@�
f0(x; �) + f1(x; �)

d

d�
L0(�)

�
dx+

o

�
1

N2=k

�
:
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The area Â is thus

Â = A�
1

2N2=k

Z
F(x)�(x)

�(x)2=k
dx+ o

�
1

N2=k

�

where

A =

Z 1

0

L1(�)
d

d�
L0(�)d�

is the area under the pre-quantized error exponent curve L1(L0) and

�(x) =

Z 1

0

�
L1(�)

@

@�
f0(x; �) + f1(x; �)

d

d�
L0(�)

�
d�: (29)

Finally, we obtain

lim
N!+1

N2=k(A� Â) =
1

2

Z
F(x)�(x)

�(x)2=k
dx: (30)

Note the resemblance of (30) to (20). Essentially, the source density q0(x) in (20) has simply been

replaced by �(x) in (30). Although �(x) may not have a closed form expression the integral expression (29)

can easily be evaluated numerically.

Analogous to the discrimination-optimal point density derived above, we can derive the AUC-optimal

point density

�o(x) =
[F(x)�(x)]

k
k+2R

[F(y)�(y)]
k

k+2 dy
(31)

and the resulting loss in area under the L1(L0) curve, with the AUC-optimal point density is

�AN �
1

2N2=k

�Z
[F(x)�(x)]

k
k+2 dx

� k+2
k

: (32)

The congruent-cell quantizer is constructed analogously to Section 4.1 and is completely characterized

by the optimal point density (31) which, in the case of minimum-moment-of-inertia cells, is given by

�o(x) =
[�(x)kr�(x)k2]

k
k+2R

[�(y)kr�(y)k2]
k

k+2 dy
:

For ellipsoidal cells the conclusions of the previous subsection equally apply to the AUC-optimal quantizer.
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4.4 Optimal Quantizers for Mixed Objective Functions

As the rates of convergence of the average mean squared reconstruction error are identical to the detection

error exponents obtained in previous sections, it is simple to extend the high rate analysis to mixed criteria

such as (18). In particular, equation (30) indicates that the loss in AUC due to quantization by a sequence

of N -point, small-cell quantizers converges to zero at the rate of N�2=k. This is the same rate obtained

by Na and Neuho� [19] for the MSRE under the sequential approach. Speci�cally, for an i.i.d. sample of

k-dimensional vectors fX(i)gni=1 with marginal p.d.f. q(x):

N2=kMSRE =

Z
q(x)

�(x)2=k
dx (33)

Let MSRE0 and MSRE1 denote the conditional MSRE of the quantizer given q = q0 and q = q1,

respectively, for a single sample (n = 1). Letting (1 � p); p be priors on hypotheses H0; H1 the average

MSRE is MSRE = MSRE0(1 � p) + MSRE1p and, using the results of the previous section the mixed

measure (18), with appropriate normalization, satis�es

lim
N!1

fN2=kJ(Q)g =

Z
�q(x) + (1� �)p(x)

�(x)2=k
dx (34)

where q = q0(1� p) + q1p, � is the point density, and p(x) is the density

p(x) =
�(x)F(x)R
�(y)F(y)dy

:

The optimal point density for the mixed objective is simply

�J (x) =
[�q(x) + (1� �)p(x)]

k
k+2R

[�q(y) + (1� �)p(y)]
k

k+2 dy
; (35)

which varies from the AUC-optimal point density for � = 0 to the estimation-optimal point density for � = 1.

5 Illustrative Examples

In this section, we demonstrate the concepts and procedures described in the previous section through some

illustrative examples.
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5.1 Scalar Gaussian Sources

As a �rst example, consider scalar, unit-variance Gaussian sources with di�erent means q0 = N (�0; 1) and

q1 = N (�1; 1). Assume the priors P (H1) and 1� P (H1) on H1 and H0 are equal to 1=2. The point density

minimizing the asymptotic MSRE loss (33) is given by the formula (35) with the substitutions q = (q0+q1)=2

and � = 1. The log-likelihood ratio is �(x) = � 1
2 (�

2
0 � �21) + (�0 � �1)x and the Fisher covariation pro�le is

constant. The discrimination-optimal and AUC-optimal point densities are given by equations (25) and (31),

respectively. From these equations, we see that the discrimination-optimal quantizer should concentrate its

points according to density q0 while the AUC-optimal quantizer concentrates its points according to the

density �(x).

Figure 4 shows the sources q0 and q1 with �0 = �2 and �1 = 2 along with the function �(x) Note

that �(x) takes a maximum at x = 0 where the two source densities cross. In Figure 5, the AUC-optimal,

discrimination-optimal, and estimation-optimal point densities are plotted. As the priors are equal, the

estimation-optimal point density has peaks at the maxima of the source densities. With the constant

discriminability function, the AUC-optimal and discrimination-optimal point densities are maximized at

points where �(x) and q0(x) are maximized, respectively.

In Figures 6, 7, and 8, the performances of scalar quantizers with the various optimal point densities

are compared. The quantizers were obtained using the LBG algorithm, also known as the generalized Lloyd

algorithm [1, 38, 39], applied to the relevant point densities. (See [21] for further explanation.) Figure 6

shows the error exponent curves with and without quantization for the AUC-optimal, discrimination-optimal,

and estimation-optimal quantizers with N = 8 cells. As expected, the AUC-optimal quantizer performs the

best in terms of the area underneath the curve criterion. It is interesting to note that the error-exponent

curve of the discrimination-optimal quantizer is quite poor. This quantizer minimizes the loss in the Type

II error exponent L(�q0k�q1), and is equivalent to a Sanov-optimal quantizer designed for the operating point

� = 0.

Figure 7 shows the ROC curves of the MP LRT with n = 2 i.i.d. observations with and without

quantization by various optimal quantizers with N = 16 cells. Note that the formulas (10) are accurate

only as the number of observations n becomes large and therefore the AUC-optimal quantizer may or

may not actually yield an optimum ROC curve. However, for this example we see that the AUC-optimal
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quantizer does indeed have the best performance. Finally, in Figure 8 the estimation performance of the

three quantizers with N = 16 cells is compared. The reconstruction MSE of each quantizer is plotted versus

the prior probability P0
def
= P (H0). The estimation-optimal quantizer is assumed to have knowledge of the

priors. As expected, the estimation-optimal quantizer yields the minimum reconstruction MSE of the three

considered quantizers. Note the extremely poor performance of the discrimination-optimal quantizer for

P0 < 1. Recall that the discrimination-optimal quantizer concentrates its points mostly underneath density

q0. For P0 = 1, the discrimination-optimal and estimation-optimal quantizers are the same. For P0 < 1,

however, the discrimination-optimal quantizer di�ers signi�cantly from the estimation-optimal quantizer.

See for example Figure 5, which shows the two point densities for the case P0 = 1=2.

For equal-variance Gaussian sources the Cherno�-optimal quantizer can easily be obtained using the

approach outlined in Section 4.2. We must show that the solution �� to the post-quantized equalization

condition L(q̂�kq1) = L(q̂�kq0), or equivalently the asymptotic version (27) of this condition, also satis�es

the pre-quantized equalization condition L(q�kq1) = L(q�kq0). First note that the pre-quantized tilted

density is of Gaussian form: q� � N (��; 1) where �� = (1 � �)�0 + ��1. It is therefore easily veri�ed [21]

that the the value of � which solves the pre-quantized equalization condition is � = 1=2. Furthermore, the

log-likelihood ratios �0(x) and �1(x) given by (24) are linear in x and the Fisher covariation pro�le F is

constant. Thus equation (27) is also solved for � = 1=2.

For �0 = 0 and �1 = 8, Figure 9 shows the optimal point density for Cherno� information �Ch, along with

the AUC-optimal point density �o. Both point densities are maximized at the point x = 4, where the two

source densities cross. The point density of the Cherno�-optimal quantizer is more concentrated about this

point, however. In Figure 10, the pre and post quantized error exponent curves L1(L0) are plotted for both

quantizers with N = 8 cells. Note that the intersection of each of these curves with the diagonal line gives

the corresponding Cherno� information. The Cherno�-optimal curve lies above the AUC-optimal curve in a

region close to the intersection with the unit-slope line, thus yielding greater Cherno� information. On the

other hand, the area under the AUC-optimal curve is greater, as expected. Note that the Cherno�-optimal

quantizer is optimized speci�cally for � = �� = 1=2, and not for any other value of �.

Finally, we remark that this analysis can be extended to obtain Cherno�-information-optimal vector

quantizers for vector Gaussian sources with identity covariance matrices. For these cases, we must restrict
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attention to quantizers with point densities and covariation pro�les that are symmetric about �
�
, the mean

of the tilted density. For example, restricted polar quantizers [40] and some shape-gain quantizers [1] satisfy

this constraint.

5.2 Two-Dimensional Uncorrelated Gaussian Sources

Next, consider two-dimensional Gaussian sources with identity covariance matrices: q0 = N
�
�
0
; I
�
and

q1 = N
�
�
1
; I
�
where �

0
= [�0; �0] and �

1
= [�1; �1]. As in the scalar Gaussian example, the discrim-

inability function is constant for two-dimensional Gaussian sources with identity covariance matrices. The

discrimination-optimal and AUC-optimal point densities are given by equations (25) and (31), respectively.

In addition to the vector quantizers considered in the previous 1D example, we investigated a 64 cell optimal

scalar LLR quantizer under the AUC criterion, which we call the AUC-optimal LLR scalar quantizer, and

an AUC-optimal mixed vector quantizer implemented by applying the LBG algorithm to the point density

(35) with q = (q0 + q1)=2 and � = 1=2.

Figure 11 shows contours of the two source densities for �0 = �2 and �1 = 2. In Figures 12, 13, and

14, congruent-cell VQ's optimal for AUC, discrimination, and estimation, with N = 64 cells are shown.

These quantizers were again obtained using the LBG algorithm [21]. Similar to the one-dimensional case,

the AUC-optimal quantizer's cells are concentrated between the source densities, the discrimination-optimal

quantizer concentrates its cells underneath density q0, and the estimation-optimal quantizer's cells are dense

underneath the peaks of both densities.

The hypothesis testing performance of the 64-cell quantizers in Figures 12, 13, and 14 is compared in

Figure 16. Similar to the scalar Gaussian example, the AUC-optimal quantizer performs the best, while the

discrimination-optimal quantizer yields the largest discrimination between quantized sources L(�q0k�q1), but

performs poorly on average.

Figure 15 shows the optimal quantizer cells for the mixed estimation-detection objective function (18).

This quantizer concentrates its points between the source density peaks as does the AUC-optimal quantizer

in Figure 12, as well as underneath the peaks as does the estimation-optimal quantizer in Figure 14.

Figure 17 is a blowup of Figure 16 which shows the dominance in detection performance of: 1) the AUC-

optimal LLR scalar quantizer, 2) the AUC-optimal vector quantizer, 3) the AUC-optimal mixed VQ, 4) the
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estimation-optimal vector quantizer, and 5) the discrimination-optimal vector quantizer, in that respective

order. As expected the AUC-optimal LLR quantizer outperforms the rest in terms of detection performance,

virtually attaining optimal unquantized performance in the blow-up region of Lo shown. The gap shown

between the AUC-optimal LLR quantizer and the AUC-optimal vector quantizer is the small price paid by

the AUC-optimal vector quantizer in order to attain improved MSRE performance (not shown).

6 Conclusion

We have developed asymptotic theory for quantization for various measures of detection performance using

the Sanov error exponents of binary hypothesis testing. This theory applies for a large number of observa-

tions, n, and a large number of quantization cells N . Under a small-cell assumption the asymptotic large

N loss in the error exponent, called the discrimination, resembles Bennet's integral formula for the recon-

struction MSRE. Optimal small-cell quantizer point densities which minimize the loss in various functions of

the Sanov exponents, including the discrimination, the Cherno�-information, and the area under the error

exponent curve were derived. Numerical examples of various optimal quantizers have been presented for

several types of scalar and two-dimensional sources. The Fisher covariation pro�le has signi�cant in
uence

on the placement of codebook points in quantizers optimal for binary hypothesis testing.

Appendix A: Derivation of Asymptotic Discrimination Losses

A.1 Asymptotic Loss in Discrimination Between Two Sources

To derive the asymptotic loss in discrimination (20) between q0 and q1, we follow the \sequence approach"

used in [41, 42, 19]. Consider a sequence of quantizers QN = (SN ; CN ) where the Nth quantizer contains

the N cells SN = fSN;1; : : : ; SN;Ng and the N codebook points CN = fxN;1; : : : ; xN;Ng.

The discrimination before quantization can be written in terms of the cells of the Nth quantizer:

L , L(q0kq1) =
NX
i=1

Z
SN;i

q0(y)�(y)dy:

The discrimination after quantization by the Nth quantizer can be written as

L̂N , L(�q0;Nk�q1;N ) =
NX
i=1

�q0;N;i��N;i:
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Since our goal is to maximize the discrimination after quantization, we will refer to the loss in discrimina-

tion as distortion. It is well known that discrimination can not increase with processing (i.e. quantization).

Thus, the distortion is nonnegative. The distortion resulting from the Nth quantizer is thus

�LN , L� L̂N =

NX
i=1

Z
SN;i

q0(y)�(y)dy � �q0;N;i��N;i: (A.1)

Note that (A.1) is independent of the codebook CN . Therefore, we lose no generality by assuming that the

codebook points are the centroids of their cells. That is, for each N

xN;i =

R
SN;i

ydy

VN;i
; i = 1; : : : ; N (A.2)

where VN;i is the volume of the ith cell in the Nth quantizer. Note that (A.2) implies

Z
SN;i

(y � xN;i)dy = 0; i = 1; : : : ; N:

A.1.1 Sequence De�nitions

We de�ne a few more sequences that will be necessary in analyzing the asymptotic behavior of the quantizer

sequence.

1. The sequence of diameter functions is dN (x).

2. The sequence of speci�c inertial pro�le functions is mN (x).

3. The sequence of speci�c covariation pro�le functions is MN(x). We will write MN;i = MN (x) for

x 2 SN;i.

4. The sequence of speci�c point density functions is �N (x) = �N;i = 1=(NVN;i) for x 2 SN;i.

The essence of the sequence approach are the following conditions: 1) dN (x) converges uniformly to zero;

2) mN (x) converges uniformly to a function m(x), the speci�c inertial pro�le, that is uniformly bounded

by mB ; 3) MN (x) converges uniformly to a full-rank matrix function M(x), the covariation pro�le; and 4)

�N (x) converges uniformly to a function �(x).
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To facilitate the analysis, we de�ne some simplifying notation. The density functions evaluated at code-

book point xN;i will be denoted

q0;N;i = q0(xN;i)

q1;N;i = q1(xN;i):

Similarly, the gradients and Hessians of q0 and q1 evaluated at xN;i will be denoted

r0;N;i = rq0(xN;i)

r1;N;i = rq1(xN;i)

r2
0;N;i = r2q0(xN;i)

r2
1;N;i = r2q1(xN;i)

and the log-likelihood ratio evaluated at xN;i is

�N;i = �(xN;i):

The following matrix functions will be useful in our analysis. The \Fisher" matrix function is de�ned to be

the outer product of the log-likelihood ratio gradient:

F (x) = r�(x)r�(x)T

and the matrix function G(x) is

G(x) =
r2q0(x)

q0(x)
�
r2q1(x)

q1(x)
: (A.3)

In keeping with the convention set forth above, we de�ne

FN;i = F (xN;i)

GN;i = G(xN;i): (A.4)

A.1.2 Taylor Expansions

For all N , we can expand the function q0(x) in a Taylor series about the codebook points of quantizer QN .

Therefore, for all N we can write

q0(x) = q0;N;i +rT
0;N;i(x� xN;i) +

1

2
(x� xN;i)

Tr2
0;N;i(x � xN;i)

+o(kx� xN;ik
2); 8x 2 SN;i: (A.5)
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A similar expansion can be done for q1(x) and �(x) as shown below:

�(x) = �N;i +r�TN;i(x � xN;i) +
1

2
(x� xN;i)

Tr2�N;i(x � xN;i)

+o(kx� xN;ik
2); 8x 2 SN;i: (A.6)

The \o" terms in (A.5) and (A.6) are explained as follows. From the de�nition of the diameter function,

we have kx�QN(x)k � dN (x) for all N and by assumption <we have kx�QN(x)k ! 0 uniformly. Therefore,

given � > 0 there is an integer N0 such that for all N � N0 and for all x 2 SN;i

o(kx� xN;ik2)

kx� xN;ik2
< �:

A.1.3 Single-Cell Distortion

The distortion of the Nth quantizer given by (A.1) is a sum over the N quantizer cells of the quantityR
SN;i

q0(y)�(y)dy � �q0;N;i��N;i. We call this term the single-cell distortion of cell SN;i. The bulk of the

analysis required to determine the distortion involves studying the single-cell distortion, which we do in this

section.

Using (A.5) and (A.6) along with the centroid condition, we haveZ
SN;i

q0(y)�(y)dy = q0;N;i�N;iVN;i +

Z
SN;i

(y � xN;i)
TAN;i(y � xN;i)dy

+

Z
SN;i

o(ky � xN;ik
2)dy (A.7)

where

AN;i =
1

2

�
�N;ir

2
0;N;i + q0;N;ir

2�N;i +r0;N;ir�
T
N;i +r�N;ir

T
0;N;i

�
: (A.8)

The last two terms in (A.8) arise due to the fact that the matrix in a quadratic form may be transposed

without a�ecting the result [43]. After some algebra, (A.8) can be written

AN;i =
1

2

�
�N;ir

2
0;N;i + q0;N;i(FN;i +GN;i)

�
(A.9)

where FN;i and GN;i are given in (A.4).

To simplify (A.7), we �rst focus on the last term. For � > 0 there is an integer N0 such that for all

N � N0, the following two conditions hold:

o(ky � xN;ik2)

ky � xN;ik2
�

�

2mB
; 8y 2 SN;i
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and

jmN (y)�m(y)j � mB ;

) mN (y) � m(y) +mB � 2mB ; 8y 2 SN;i:

Therefore, for all N � N0,�����
Z
SN;i

o(ky � xN;ik
2)dy

����� �

Z
SN;i

��o(ky � xN;ik
2)
�� dy

�

Z
SN;i

�

2mB
ky � xN;ik

2dy

=
�

2mB
�mN(x)V

1+2=k
N;i ; 8x 2 SN;i

� � � V 1+2=k
N;i :

Therefore, the sequence ���RSN;i
o(ky � xN;ik2)dy

���
V
1+2=k
N;i

converges to zero and we will thus write

Z
SN;i

o(ky � xN;ik
2)dy = o

�
V
1+2=k
N;i

�
:

Next, we rewrite the second term on the right-hand side of (A.7) as

Z
SN;i

(y � xN;i)
TAN;i(y � xN;i)dy = tr(AN;iMN;i)V

1+2=k
N;i :

Therefore (A.7) becomes

Z
SN;i

q0(y)�(y)dy = q0;N;i�N;iVN;i + tr(AN;iMN;i)V
1+2=k
N;i + o

�
V
1+2=k
N;i

�
: (A.10)

We now turn our attention to the term �q0;N;i��N;i found in (A.1). From (A.5) and (A.6) we have

�q0;N;i��N;i = q0;N;i��N;iVN;i + tr(ÂN;iMN;i)V
1+2=k
N;i + o

�
V
1+2=k
N;i

�
(A.11)

where

ÂN;i =
1

2
��N;ir

2
0;N;i: (A.12)
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Combining (A.10) and (A.11) yields

Z
SN;i

q0(y)�(y)dy � �q0;N;i��N;i = q0;N;i
�
�N;i � ��N;i

�
VN;i +

1

2

�
�N;i � ��N;i

�
tr
�
r2
0;N;iMN;i

�
V
1+2=k
N;i +

1

2
q0;N;i tr ([FN;i +GN;i]MN;i)V

1+2=k
N;i +

o
�
V
1+2=k
N;i

�
: (A.13)

From the de�nitions of �N;i and ��N;i we have

�N;i � ��N;i = log

�
q0;N;i � �q1;N;i
q1;N;i � �q0;N;i

�
:

Using the Taylor expansion

log a = (a� 1)�
1

2
(a� 1)2 + o(ja� 1j2)

we have

�N;i � ��N;i = (l � 1)�
1

2
(l � 1)2 + o(jl � 1j2)

where

l =
q0;N;i � �q1;N;i
q1;N;i � �q0;N;i

:

Next, using (A.5)

l =
q0;N;iq1;N;iVN;i +

1
2q0;N;itr(r

2
1;N;iMN;i)V

1+2=k
N;i + o

�
V
1+2=k
N;i

�
q0;N;iq1;N;iVN;i +

1
2q1;N;itr(r

2
0;N;iMN;i)V

1+2=k
N;i + o

�
V
1+2=k
N;i

�
and

l � 1 =
1

2q1;N;i
tr(r2

1;N;iMN;i)V
2=k
N;i �

1

2q0;N;i
tr(r2

0;N;iMN;i)V
2=k
N;i + o

�
V
2=k
N;i

�
: (A.14)

Therefore, (l � 1)2 = o
�
V
2=k
N;i

�
and using (A.14) and (A.3) we get

�N;i � ��N;i = �
1

2
tr(GN;iMN;i)V

2=k
N;i + o

�
V
2=k
N;i

�
: (A.15)

30



Finally, (A.13) and (A.15) give

Z
SN;i

q0(y)�(y)dy � �q0;N;i��N;i =
1

2
q0;N;itr(FN;iMN;i)V

1+2=k
N;i + o

�
V
1+2=k
N;i

�

=
1

2
q0;N;itr(FN;iMN;i)

VN;i

N2=k�
2=k
N;i

+

o
�
V
1+2=k
N;i

�
: (A.16)

A.1.4 Total Distortion

Having calculated the single-cell distortion (A.16), the total distortion is obtained by summing over all

quantizer cells. Using (A.1) and (A.16), the total distortion of quantizer QN is

�LN =
1

2N2=k

NX
i=1

q0;N;itr(FN;iMN;i)
1

�
2=k
N;i

VN;i + o

�
1

N2=k

�
VN;i:

Multiplying by N2=k and taking the limit, we obtain (20).

A.2 Asymptotic Loss in Sanov Exponents

We begin by writing the loss in discrimination between the tilted source q� and source q0 due to quantization

with an N -point vector quantizer as

�L0;N , L(q�kq0)� L(q̂�;Nk�q0;N)

=

NX
i=1

Z
SN;i

q�(x)�0(x)dx � q̂�;N;i�̂0;N;i (A.17)

where

�0(x) = log
q�(x)

q0(x)
; �̂0;N;i = log

q̂�;N;i
�q0;N;i

:

In keeping with the notational convention we de�ne

q�;N;i = q�(xN;i)

r�;N;i = rq�(xN;i)

r2
�;N;i = r2q�(xN;i)

and

�0;N;i = �0(xN;i):
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Next we de�ne

� =

Z
q0(x)

1��q1(x)
�dx =

NX
i=1

�N;i

�N;i =

Z
SN;i

q0(x)
1��q1(x)

�dx = �

Z
SN;i

q�(x)dx

dN;i = �q1��0;N;i � �q
�
1;N;i � �N;i

dN =

NX
i�1

dN;i: (A.18)

Thus we can write

q̂�;N;i =
�N;i + dN;i
�+ dN

: (A.19)

A.2.1 Expansions of �N;i and dN;i

Expanding q�(x) in a Taylor series about xN;i we get the following representation for �N;i:

�N;i = �q�;N;iVN;i +
�

2

Z
SN;i

(x� xN;i)
Tr2

�;N;i(x� xN;i)dx+ o
�
V
1+2=k
N;i

�
: (A.20)

It can be straightforwardly shown that the Hessian of the tilted density is

r2q�(x) = q�(x)

�
�
r2q1(x)

q1(x)
+ (1� �)

r2q0(x)

q0(x)
� �(1� �)F (x)

�
: (A.21)

Next, using the centroid assumption, we write

�q0;N;i = q0;N;iVN;i +
1

2

Z
SN;i

(x� xN;i)
Tr2

0;N;i(x � xN;i)dx+ o
�
V
1+2=k
N;i

�

�q1;N;i = q1;N;iVN;i +
1

2

Z
SN;i

(x� xN;i)
Tr2

1;N;i(x � xN;i)dx+ o
�
V
1+2=k
N;i

�
(A.22)

and using the Taylor expansion

(x+ y)a = xa + axa�1y +
1

2
a(a� 1)xa�2y2 + o(y2) (A.23)

we obtain

�q1��0;N;i = q1��0;N;iV
1��
N;i +

1

2
(1� �)q��0;N;iV

��
N;i

Z
SN;i

(x� xN;i)
Tr2

0;N;i(x� xN;i)dx +

o
�
V
2=k+1��
N;i

�
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and

�q�1;N;i = q�1;N;iV
�
N;i +

1

2
�q��11;N;iV

��1
N;i

Z
SN;i

(x � xN;i)
Tr2

1;N;i(x� xN;i)dx + o
�
V
2=k+�
N;i

�
:

Multiplying the two formulas above yields

�q1��0;N;i � �q
�
1;N;i = �q�;N;i

 
�

2q1;N;i

Z
SN;i

(x� xN;i)
Tr2

1;N;i(x� xN;i)dx

+
1� �

2q0;N;i

Z
SN;i

(x� xN;i)
Tr2

0;N;i(x� xN;i)dx+ VN;i

!

+o
�
V
1+2=k
N;i

�
: (A.24)

Finally, using (A.20), (A.21), and (A.24) we get

dN;i =
�

2
�(1� �)q�;N;i

Z
SN;i

(x� xN;i)
TFN;i(x� xN;i)dx+ o

�
V
1+2=k
N;i

�
: (A.25)

We shall �nd the following formulas for �N;i and dN;i useful:

�N;i = �q�;N;iVN;i +
�

2
tr
�
r2
�;N;iMN;i

�
V
1+2=k
N;i + o

�
V
1+2=k
N;i

�
(A.26)

dN;i =
�

2
�(1� �)q�;N;itr (FN;iMN;i)V

1+2=k
N;i + o

�
V
1+2=k
N;i

�
: (A.27)

A.2.2 Asymptotic Values of �L0;N and �L1;N

From (A.7) and (A.8) we can write

Z
SN;i

q�(x)�0(x)dx = q�;N;i�0;N;iVN;i +
1

2
�0;N;itr(r

2
�;N;iMN;i)V

1+2=k
N;i +

1

2
q�;N;itr

�
(F 0N;i +G0N;i)MN;i

�
V
1+2=k
N;i + o

�
V
1+2=k
N;i

�

where

F 0N;i = r�0;N;ir�
T
0;N;i

G0N;i =
r2
�;N;i

q�;N;i
�
r2
0;N;i

q0;N;i
: (A.28)

Note that F 0N;i can be written in terms of FN;i:

F 0N;i = �2FN;i:
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From (A.19), (A.26), and (A.27) we can write

q̂�;N;i = tN

�
q�;N;iVN;i +

1

2
tr(r2

�;N;iMN;i)V
1+2=k
N;i +

1

2
�(1� �)q�;N;itr(FN;iMN;i)V

1+2=k
N;i

�

+o
�
V
1+2=k
N;i

�
(A.29)

where

tN =
�

�+ dN
:

Thus (A.17) becomes

�L0;N =

NX
i=1

q�;N;iVN;i

�
�0;N;i � tN �̂0;N;i

�
+

1

2
tr(r2

�;N;iMN;i)V
1+2=k
N;i

�
�0;N;i � tN �̂0;N;i

�
+

1

2
q�;N;itr

�
(�2FN;i +G0N;i)MN;i

�
V
1+2=k
N;i �

�(1� �)

2
tNq�;N;i�̂0;N;itr(FN;iMN;i)V

1+2=k
N;i + o

�
V
1+2=k
N;i

�
: (A.30)

Next we use the Taylor expansion

log(x+ y) = log x+
y

x
�

y2

2x2
+ o(y2)

to write

�̂0;N;i = �0;N;i + 2r0;N;i �
1

2
r20;N;i �

3

2
+ o

 �
q̂�;N;i
�q0;N;i

�
q�;N;i
q0;N;i

�2!
(A.31)

where

r0;N;i =
q0;N;iq̂�;N;i
�q0;N;iq�;N;i

:

To see that the last term in (A.31) is small, note that

q̂�;N;i
�q0;N;i

�
q�;N;i
q0;N;i

=

�
�q1;N;i
�q0;N;i

��
1

�+ dN
�

�
q1;N;i
q0;N;i

��
1

�
:

Using the Taylor expansions (A.22), after some algebra this becomes

q̂�;N;i
�q0;N;i

�
q�;N;i
q0;N;i

=

�
q1;N;i
q0;N;i

+ o
�
V
2=k
N;i

��� 1

�+ dN
�

�
q1;N;i
q0;N;i

��
1

�

=

"�
q1;N;i
q0;N;i

��
+ o

�
V
2=k
N;i

�# 1

�+ dN
�

�
q1;N;i
q0;N;i

��
1

�

= �

�
q1;N;i
q0;N;i

��
dN

�(�+ dN )
+ o

�
V
2=k
N;i

�
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where the second equality follows from (A.23). From (A.27) it is easily seen that

o

 �
q̂�;N;i
�q0;N;i

�
q�;N;i
q0;N;i

�2!
= o

�
V
2=k
N;i

�
:

Now, using (A.22) and (A.29), r0;N;i becomes

r0;N;i =

tNq0;N;i

�
q�;N;i +

1
2 tr(r

2
�;N;iMN;i)V

2=k
N;i + 1

2�(1� �)q�;N;itr(FN;iMN;i)V
2=k
N;i

�
+ o

�
V
2=k
N;i

�
q�;N;iq0;N;i +

1
2q�;N;itr(r

2
0;N;iMN;i)V

2=k
N;i + o

�
V
2=k
N;i

�

= tN

 
1 +

tr(r2
�;N;iMN;i)

2q�;N;i
V
2=k
N;i �

tr(r2
0;N;iMN;i)

2q0;N;i
V
2=k
N;i +

1

2
�(1� �)tr(FN;iMN;i)V

2=k
N;i

!

+ o
�
V
2=k
N;i

�
= tN

�
1 +

1

2
tr(G0N;iMN;i)V

2=k
N;i +

1

2
�(1� �)tr(FN;iMN;i)V

2=k
N;i

�
+ o

�
V
2=k
N;i

�
(A.32)

and

r20;N;i = t2N

�
1 + tr(G0N;iMN;i)V

2=k
N;i + �(1� �)tr(FN;iMN;i)V

2=k
N;i

�
+ o

�
V
2=k
N;i

�
:

Thus (A.31) becomes

�̂0;N;i = �0;N;i + 2tN �
1

2
t2N �

3

2
+�

tr(G0N;iMN;i)V
2=k
N;i + �(1� �)tr(FN;iMN;i)V

2=k
N;i

��
tN �

1

2
t2N

�
+ o

�
V
2=k
N;i

�
:

Therefore

�0;N;i � tN �̂0;N;i = �0;N;i(1� tN ) +
3

2
tN � 2t2N +

1

2
t3N ��

tr(G0N;iMN;i)V
2=k
N;i + �(1� �)tr(FN;iMN;i)V

2=k
N;i

��
t2N �

1

2
t3N

�

+o
�
V
2=k
N;i

�
: (A.33)

Next, using (A.27), we note that

lim
N!+1

N2=k dN
�

=
1

2
�(1� �)

Z
q�(x)F(x)

�(x)2=k
dx
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and thus

tN = 1�
dN

�+ dN
= 1�

dN
�

+ o

�
1

N2=k

�

t2N = 1�
2dN
�

+ o

�
1

N2=k

�

t3N = 1�
3dN
�

+ o

�
1

N2=k

�
:

Using this in (A.33) gives

�0;N;i � tN �̂0;N;i = �0;N;i
dN
�

+
dN
�
�

1

2

�
tr(G0N;iMN;i)V

2=k
N;i + �(1� �)tr(FN;iMN;i)V

2=k
N;i

�
+

o
�
V
2=k
N;i

�
+ o

�
1

N2=k

�
: (A.34)

Next, (A.30) and (A.34) give

�L0;N =

NX
i=1

q�;N;i�0;N;iVN;i
dN
�
�
1

2
�(1� �)q�;N;i�0;N;itr(FN;iMN;i)V

1+2=k
N;i +

q�;N;iVN;i
dN
�
�
1

2
�(1� �)q�;N;itr(FN;iMN;i)V

1+2=k
N;i +

1

2
�2q�;N;itr(FN;iMN;i)V
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N;i +

o
�
V
1+2=k
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�
+ o

�
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�
: (A.35)

Finally, by multiplying (A.35) by N2=k and passing to the limit, we obtain (22). By symmetry arguments,

(23) can easily be obtained.
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Figure 1: ROC curves and associated error exponent curves for Gaussian hypotheses.
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Figure 2: Log-likelihood ratio quantizer for two-dimensional Gaussian sources with identity covariance ma-
trices.
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Figure 3: Sanov approximations to Type I and Type II errors indexed by � before and after quantization
for a one dimensional Gaussian example. The point of intersection of Type I and Type II error probabilities
de�ne the Cherno� information and the minimax operating point over �.
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Figure 4: Source densities and �(x) for one-dimensional Gaussian example.

44



−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

x

Optimal Point Densities

AUC−optimal           
Discrimination−optimal
Estimation−optimal    

Figure 5: AUC-optimal, discrimination-optimal, and estimation-optimal point densities for one-dimensional
Gaussian example.
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Figure 6: L1(L0) curves without quantization and with quantization by AUC-optimal, discrimination-
optimal, and estimation-optimal quantizers with N = 8 cells for one-dimensional Gaussian example. AUC-
optimal quantizer has best performance, on average, while detection-optimal quantizer yields largest value
of L(�q0k�q1).
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Figure 7: ROC curves with n = 2 observations and data quantized by AUC-optimal, discrimination-optimal,
and estimation-optimal quantizers with N = 16 cells for one-dimensional Gaussian example.
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Figure 8: Reconstruction MSE with AUC-optimal, discrimination-optimal, and estimation-optimal quantiz-
ers with N = 16 cells for one-dimensional Gaussian example.
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Figure 9: Optimal point densities for ROC area and Cherno� information for one-dimensional Gaussian
sources with �0 = 0 and �1 = 8.
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Figure 10: L1(L0) curves without quantization and with quantization by AUC-optimal and Cherno�-
information-optimal quantizers for one-dimensional Gaussian sources with N = 8, �0 = 0, and �1 = 8.
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Figure 11: Source densities for two-dimensional uncorrelated Gaussian example.
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Figure 12: AUC-optimal 64-cell vector quantizer for two-dimensional uncorrelated Gaussian example.
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Figure 13: Discrimination-optimal 64-cell vector quantizer for two-dimensional uncorrelated Gaussian exam-
ple.
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Figure 14: Estimation-optimal 64-cell vector quantizer for two-dimensional uncorrelated Gaussian example.
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Figure 15: Optimal 64-cell vector quantizer with mixed objective function with � = 1=2 for two-dimensional
uncorrelated Gaussian example.
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Figure 16: L1(L0) curves without quantization and with quantization by AUC-optimal, discrimination-
optimal, and estimation-optimal quantizers with N = 64 cells for two-dimensional uncorrelated Gaussian
example. AUC-optimal quantizer has best performance, on average, while detection-optimal quantizer yields
largest value of L(�q0k�q1).
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Figure 17: L1(L0) curves with several 64-cell quantizers for two-dimensional uncorrelated Gaussian example.
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