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ABSTRACT

We introduce rigorous definitions for two quantities of interest,
diversity and degrees of freedom, that are used to quantify the
advantages of a multiple antenna multiple-input multiple-output
(MIMO) system when compared to a single-input single-output
(SISO) system. These definitions are in a general setting which
will allow the computation of these quantities for systems other
than multiple antenna MIMO systems. We verify the effective-
ness of the definitions by computing the quantities of interest for
various existing examples.

1. INTRODUCTION

The quality of any communications link is indexed over at least 2
dimensions (rate and probability of error). Furthermore, the fun-
damental limitations of any link can be indexed by the associated
channel capacity, relating to max achievable rate, and the mini-
mum achievable probability of coding error, related to the optimal
Bayes receiver (possibly constrained). A natural characterization
of relative improvement or degradation on link performance due
to deployment of different physical channels (e.g. via adding an-
tennas, widening the frequency band, etc) could be the relative
improvement of these two quantities. However, it is obvious that it
is desirable to parameterize the two performance gains by a single
post-processing signal to noise ratio (SNR) gain factor when this
is possible. Unfortunately, for all but the most trivial SISO chan-
nels the SNR gain alone is not sufficient to specify the capacity
and minimum probability of error gains.

The Degrees of freedom (DOF) and Diversity (DIV) repre-
sent a simple supplementary index of the relative performance gain
which complements the information provided by SNR gain infor-
mation in these cases.

Diversity [8] and Degrees of Freedom [10] have been widely
used as the two measures of performance gains obtained from us-
ing multiple antennas at the transmitter and the receiver in the field
of space-time coding. In [8] Diversity (DIV) has been defined as
the negative exponent of SNR in the probability of error expression
for high SNR and in [10] Degrees of Freedom (DOF) has been de-
fined as the co-efficient oflog � occurring in the expression for
capacity, again for high values of the signal to noise ratio�.

Traditionally, DIV has been thought of as the number of in-
dependent channels available through which replicas of the same
information signal can be transmitted [7, pp. 709-712]. This in
essence gives multiple copies of the same signal thereby reduc-
ing the probability of decoding error. This can be easily confused
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with the number of independent channels available for communi-
cation that Zheng and Tse [10] define to be the DOF of the system.
This can give rise to considerable confusion as DIV and DOF for a
MIMO system operating in a Rayleigh/Rician fading environment
don’t necessarily agree with each other. Even though [8] refers to
DIV as redundancy in the system it doesn’t necessarily shed light
on the nature of the two measures.

We suggest that DIV and DOF should be considered in the
context of a particular communication system in the sense that in-
tuitively DIV can be considered as the redundancy or the maxi-
mum number of independent copies of the transmitted signal in a
particular communication system whereas DOF can be considered
as the number of independent channels available for communica-
tion again in a particular communication system. A communica-
tion system comprises of all the user controllable parameters such
as the input signaling scheme, coding, decoding, the particular
choice of transmit and receive antennas etc. These intuitive defini-
tions even though well accepted in the literature are not sufficient
to understand the distinction between the two measures. Also, the
existing definitions [8, 10] are not general enough to be applicable
to all situations. In this paper, we address both issues.

In [2] the authors refer to using multiple antennas at the re-
ceiver and at the transmitter to increase information capacity as
receive diversity and transmit diversity, respectively. This can also
lead to confusion as people can associate increase in diversity with
an increase in capacity.

2. DIVERSITY AND DEGREES OF FREEDOM

It’s obvious that the concepts of diversity and degrees of freedom
are basically a measure of the performance of a channel in terms
of probability of error and information capacity. Also, it can be
seen that it is very difficult to first evaluate DOF and DIV and
then translate them into channel capacity and probability of error,
respectively. In that respect, it makes sense to define DOF in terms
of information capacity and DIV in terms of probability of error
directly.

Let P = fP1; P2; : : : ; Png be the set of all link parame-
ters that determine the diversity and degrees of freedom in the
communication system. For example,P1 could beM , the num-
ber of transmit antennas;P2 could beN , the number of receive
antennas; andP3 could bet, the number of channel uses. Fix-
ing P needn’t fix the channel used in a communication system.
Let H(P1; P2; : : : ; Pn) denote one of the choices for the chan-
nel when the parameter set is fixed to beP. For example, in the
case ofM transmit antennas andN receive antennas there are a
total ofMN choices forH(1; 1). The channel specified byP in
general could be stochastic, for example,H in the Rayleigh fad-
ing model. � is the measure of reliability in the channel with the
channel becoming more reliable as� ! 1. For example, in the



MIMO system the reliability measure� is the signal to noise ra-
tio. In the binary symmetric channel with crossover probability
p, p ! 0 is equivalent to� ! 1. Let Pe(�; P1; P2; : : : ; Pn; C)
denote the probability of error in a particular communication sys-
temC when the parameters of interest are(P1; P2; : : : ; Pn). C as
stated earlier is specified by all the user controllable parameters
like the input probability distributionp(S), the input alphabetS,
the choice of the available channelH(P1; P2; : : : ; Pn) for a fixed
parameter set(P1; : : : ; Pn), the decoding structure/strategy (co-
herent vs non-coherent and hard vs soft decoding etc.) and the
transmitter structure (coding etc.).

Similarly, letR(�; P1; P2; : : : ; Pn; C) denote the rate of com-
munication in the communication systemC. Then

Definition 1

DIVP1;:::;Pn(C) = lim
�!1

log Pe(�; P1; : : : ; Pn; C)
supC log Pe(�; 1; : : : ; 1; C)

(1)

and

DOFP1;:::;Pn(C) = lim
�!1

R(�; P1; : : : ; Pn; C)
supC R(�; 1; : : : ; 1)

: (2)

We will assume that the above limits exist whenever required.
Note thatsupC R(�; P1; P2; : : : ; Pn; C) can simply be replaced by
supH(P1;P2;:::;Pn)

CH(�; P1; P2; : : : ; Pn) where
CH(�; P1; P2; : : : ; Pn) denotes the capacity of the link when the
channel is given byH(P1; P2; : : : ; Pn).

We will assume thatH(P1; P2; : : : ; Pn) is unique whenP1,
P2 : : : Pn take the maximum possible values. Then

Definition 2 DIV andDOF for the channelH(P1; P2; : : : ; Pn),
are defined as

DIVP1;:::;Pn = sup
C

DIVP1;:::;Pn(C) (3)

and

DOFP1;:::;Pn = sup
C

DOFP1;:::;Pn(C): (4)

Note that it can be easily shown that

DOFP1;:::;Pn = lim
�!1

C(�; P1; : : : ; Pn)

supH(1;:::;1) CH(�; 1; : : : ; 1)
: (5)

From now on, we will use (5) as the definition for DOF of a chan-
nel.

3. EXAMPLES

For the first example in this section, we need the following Gal-
lager error exponent [3]. For a system communicating at a rateR
the upper bound on probability of error is given as follows

Pe � exp

�
�nmax

p(S)
max
0�
�1

[E0(
; p(S))� 
R]

�
(6)

wheren is the length of codebook used andE0(
; p(S)) is as
follows

E0(
; p(S)) = � log

Z �Z
p(S)p(XjS) 1

1+
 dS

�

dX

whereS is the input to the channel andX is the observed output.

Example 1 Consider a single-input single-output discrete-time ad-
ditive white Gaussian noise (AWGN) channelxl =

p
�hsl + wl,

l = 1; : : : ; t. h is a deterministic complex number andwl is a
complex circular Gaussian random variable with mean zero and
variance 1. We will calculateDIV and DOF for t-uses of the
channel under the average energy constraint

Pt
l=1E[sls

�
l ] � t.

First, considerC1 consisting of a binary input taking values
over f�1; 1g with equal probability. The code used is a repeti-
tion code. That is eithersl = �1 for l = 1; : : : ; t or sl = 1 for
l = 1; : : : ; t. The decoding at the receiver is Maximum A Poste-
riori (MAP) decoding. Since the probability of error when using
the repetition code of lengtht is given byQ(t�) whereQ(x) =
1
2�

R �1
x

e�y
2=2dy as opposed toQ(�) whent = 1, we obtain

DIVt(C1) = t. SinceR(�; t; C1) = 1=t irrespective of the value
of �, DOFt(C1) = 0.

Next, considerC2 wheresl is an i.i.d. complex circular Gaus-
sian random variable with mean zero and unit variance forl =
1; : : : ; t. This is the capacity achieving signal density. The decod-
ing at the output is MAP decoding. In this case,DOFt(C2) = t
sinceR(�; t;C2) = t log(1 + �). For this value ofR (R = C, the
capacity) the value of
 that maximizes Gallager’s error exponent
is zero and at
 = 0,E0(
; p(S)) = 1. Therefore,DIVt(C2) = 0.

Therefore,DIVt = t andDOFt = t.

We believe thatDIVt being equal toDOFt in this example
can cause confusion between DIV and DOF.

It is quite intuitive to expect that DIV and DOF depend on
each other. From the definitions, it is obvious that they are related
to each other parametrically throughC. Indeed, in the example
given above we see that when a communication system is operat-
ing at maximum diversity (supC DIV(C)), the corresponding DOF
is zero whereas when the system is operating at maximum degrees
of freedom (supC DOF(C)), the corresponding DIV is zero. This
point is illustrated further in Example 3.

Example 2 Now, let’s consider the following multiple antenna
Rayleigh fading MIMO system

X =

r
�

M
SH +W

whereX, S andH areT�N , T�M andM�N sized matrices,
respectively. LetH be known at the receiver. In this modelT is the
time interval over whichH remains constant. We will investigate
DIV andDOF for t = T channel uses under the average energy
constrainttrfE[SSy]g � tM . We assume thatH is known to the
receiver. Let’s again consider two systemsC1 andC2.

In C1, we use the signaling scheme developed by Tarokh et.
al. [8, pp. 747–749]. The decoding at the output is chosen to
be MAP decoding. Using our definition forDIV and Tarokh’s
development for probability of error [8, (10), p. 749] we conclude
thatDIVM;N;t(C1) = N min(M; t) which agrees with Tarokh’s
conclusion about diversity. However, from [8, (18), p. 755] we see
that the rateR is bounded above by a constant independent of�.
Therefore,DOFM;N;t(C1) = 0.

In C2, we choose the elements of the matrixS to be i.i.d. com-
plex circular Gaussian random variables with mean zero and vari-
ance one. This is the capacity achieving signal. We choosing the
decoding strategy to be MAP. Therefore [4],

R(�;M;N; t; C2) = C(�;M;N; t) = tE log det(IM+
�

M
HHy):

This shows thatDOFM;N;t(C2) = DOFM;N;t = tmin(M;N).



In Example 2, we see that DIV of a MIMO system is linear in the
number of receive antennas. This makes sense intuitively because
receive antennas provide natural redundancy in the system. By
increasing the number of receive antennas we get many replicas of
the transmitted signal and hence greater error protection.

Example 3 Consider the same system as in Example 2. A lower
bound on the error exponent for this system can be calculated as
in [9]. By choosing the input distributionp(S), to be i.i.d. com-
plex circular GaussianpG(S) (capacity achieving distribution),
the error exponent is:

E0(
; pG(S); �) = � logE

"
det

�
IM +

1

1 + 


�

M
HHy

��
t#

where we have chosen to make the dependence ofE0(�) on �
explicit. Given a rateR, the upper bound on the probability of
error is given by

Pe � exp

�
�
�
E0(
; pG(S); �)� 


@E0(
; pG(S); �)

@


��

where
 is chosen so thatR = @E0(
;pG(S);�)
@


.
Fixing 
 we see that as�!1

R(�;M;N; t; 
) =
@E0(
; pG(S); �)

@


and we obtain a fixed value ofDOF. Similarly, for a fixed value
of 
, as�!1,

Pe(�;M;N; t; 
) � exp

 
�

"
E0(
; pG(S); �) � 


@E0(
; pG(S); �)

@


#!

and we obtain a fixed value ofDIV. That implies we can treat

as a particular communication systemC
 . We can then plot

DOFM;N;t(C
) = lim
�!1

@E0(
;pG(S);�)
@


supH(1;1;1) CH(�; 1; 1; 1; C
)
versus

DIVM;N;t(C
) = lim
�!1

�
h
E0(
; pG(S); �)� 
 @E0(
;pG(S);�)

@


i
supC
 log Pe(�; 1; 1; 1; C
)

parameterized by
. One such plot fort = T = 5, N = 1 and
M = 3 is shown in Figure 1.

Example 3 shows that if the system is operating at optimum DOF
then it can’t be operating at optimum DIV and vice-versa.

Example 4 Consider the following channel

x1 =

r
�

2
s1 + n1; x2 =

r
�

2
hs2 + n2

whereh, n1 andn2 are i.i.d. circular Gaussian random variables
with mean zero and unit variance. We calculate the diversity of
this channel under the constraintE[js1j2 + js2j2] � 2. Choose
a communication systemC� such that input the signal is given by
s1 =

p
�s and s2 =

p
1� �s with E[jsj2] = 2. Chooses

to be a binary signal taking values overf�p2;
p
2g with equal

probability. The probability of decoding
p
2 as�p2 is given by

E[Q(
q

�
2
d2(�p2;

p
2))] whered2(�p2;

p
2) = 2� + 2(1 �
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Fig. 1. DOF as a function of DIV

�)jhj2 and the expectationE[�], is over the density function of
jhj. Therefore, the probability of error for high� behaves like
Pe(�; 2; 2; C�) � K

�
e��� whereK is some constant. Therefore

DIVC� = lim
�!1

log Pe(�; 2; 2; C�)
supC log Pe(�; 1; 1; C)

= �:

Maximizing over� we obtainDIV = 1.

In the example above, we see that eventhough the receiver has two
independent copies of the transmitted signal the maximum avail-
able DIV is 1 and not 2 as dictated by intuition.

Example 5 Let’s reconsider the case of AWGN channel in Ex-
ample 1 operating at an optimal rate in a communication sys-
tem with a binary input (f�1; 1g) and hard decision decoding
at the receiver (C1). In this case, the channel effectively behaves
like a binary symmetric channel with a crossover probabilityp =
Q(
p
�) � c

�
exp(��=2) wherec is some constant. We will cal-

culateDOF for t channel uses forC1. We note that as� ! 1,
p ! 0 and the maximum achievable rate for this system is 1 bit
per channel use. That is,lim�!1R(�; t; C1) = t. Therefore,
DOFt(C1) is zero.

Now considerC2 which is similar toC1 except that the channel
is no longer operating at the optimal rate and the communication
system has repetition coding at the transmitter. We will calculate
DIV for C2 corresponding tot, t odd, channel uses. Note that the
channel is effectively a binary symmetric channel with crossover
probability p � c

�
exp(��=2). The probability of error when us-

ing a repetition code of lengtht, t odd, is

Pe(t; p) =

�
m
t+1
2

�
p
t+1
2 (1� p)

t�1
2

Therefore, asp ! 0 Pe(t; p) � c0p
t+1
2 wherec0 is some other

constant. Therefore,

DIVt(C2) = t+ 1

2

We see that hard decision decoding at the output reducesDIV
to (t + 1)=2 as opposed toDIV of t in Example 1 that has soft
decision decoding at the output.



Example 6 (Unknown fading channel, [10]) Let’s consider the
channel in Example 2. The parameters in this channel aret the
number of channel uses,M the number of transmit antennas and
N the number of receive antennas. We assume thatH is unknown
to both the transmitter and the receiver andT � 2M so that we
can apply the results of [10]. In this example,t = T whereT
is the fading block length. From [10],C(�;M;N; T ) behaves
asM(T � M) log � as � ! 1. AlsoCH(�; 1; 1; T ) behaves
as (T � 1) log � irrespective of the value ofH(1; 1). Therefore,
supH(1;1) C(�; 1; 1; 1) behaves asT�1

T
log � as � ! 1. This

implies thatDOF for this channel withM transmit antennas,N
receive antennas andT channel uses isM(T �M) T

T�1
. Note

that this is different fromDOF = M(T �M) that was obtained
in [10].

Intuitively, we would expect the DIV�DOF for a channel as DOF
in a channel can be used to transmit redundant information (repeti-
tion coding) thus adding to “natural” redundancy (multiple receive
antennas) in the channel. This intuition however, breaks down for
some examples as with the case of multiple antenna channels op-
erating in a coherent Rayleigh fading environment where we have
seen the diversity ismin(M; t)N [8] whereas the degrees of free-
dom ismin(M;N)t [4, 10].

4. DISCUSSION

The concept of degrees of freedom has been well studied in the op-
tical community [1, 5, 6]. The author in [6] calls DOF the number
of independent parameters needed to represent the output of the
channel. It has also been referred to as the number of independent
parameters that can be extracted from the transmitted signal after
it has passed through the channel. It is possible by borrowing from
the optical community to give a definition that is consistent with
the implicit definition prevalent in the multiple-antenna literature.

5. CONCLUSIONS AND FUTURE WORK

We have introduced rigorous definitions for diversity and degrees
of freedom in a more general setting than MIMO communication
system operating in a fading environment. We have illustrated how
these definitions can be used to evaluate DIV and DOF through
different examples.

Intuitively diversity has been considered as the redundancy in
the system and degrees of freedom as the number of independent
channels available for communication. Any rigorized definitions
that agree with the intuition may not be easy to translate to actual
figures of merit, information capacity and probability of error. In
that respect the definitions in Section 2 are the first step in tackling
this problem.

For future work, we address the following issues:

� A rigorous definition for DIV that agrees with intuition can
be formulated along the lines of (3). If possible the defi-
nition can be formulated in such a way so as to be able to
derive the minimum probability of error directly from the
definition.

� A rigorous definition for DOF that agrees with intuition can
be formulated along the lines of (4) and a relationship be-
tween this definition and information capacity can be de-
rived.

� Is it possible that the definitions based on intuition are such
that we obtain DIV to be always greater than DOF? We ex-
pect the answer to be “yes” because by transmitting redun-
dant information over the independent channels of commu-
nication we can obtain as many independent copies of the
transmitted signal as DOF of the channel.
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