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Asymptotic theory of greedy approximations to

minimal K-point random graphs
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Abstract

Let Xn = fx1; : : : ; xng, be an i.i.d. sample having multivariate distribution P . We derive a.s. limits for the
power weighted edge weight function of greedy approximations to a class of minimal graphs spanning k of the n
samples. The class includes minimal k-point graphs constructed by the partitioning method of Ravi, Sundaram,
Marathe, Rosenkrantz and Ravi [43] where the edge weight function satis�es the quasi-additive property of Redmond
and Yukich [45]. In particular this includes greedy approximations to the k-point minimal spanning tree (k-MST),
Steiner tree (k-ST), and the traveling salesman problem (k-TSP). An expression for the in
uence function of the
minimal weight function is given which characterizes the asymptotic sensitivity of the graph weight to perturbations
in the underlying distribution. The in
uence function takes a form which indicates that the k-point minimal graph
in d > 1 dimensions has robustness properties in IRd which are analogous to those of rank order statistics in one
dimension. A direct result of our theory is that the log-weight of the k-point minimal graph is a consistent non-
parametric estimate of the R�enyi entropy of the distribution P . Possible applications of this work include: analysis of
random communication network topologies, estimation of the mixing coeÆcient in �-contaminated mixture models,
outlier discrimination and rejection, clustering and pattern recognition, robust non-parametric regression, two
sample matching and image registration.
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Figure List

1. A sample of 75 points from the mixture density f(x) = 0:25f1(x) + 0:75fo(x) where fo is a uniform density

over [0; 1]2 and f1 is a bivariate Gaussian density with mean (1=2; 1=2) and diagonal covariance diag(0:01). A

smallest subset Bm
k is the union of the two cross hatched cells shown for the case of m = 5 and k = 17.

2. Another smallest subset Bm
k containing at least k = 17 points for the mixture sample shown in Fig 1.

3. Water pouring construction of f(xjAo). Region of support of f(xjAo) is Ao = fx : f(x) � �g where Ao; � are

selected such that
R
Ao
f(x)dx = �.

4. Trimmed mean in
uence curves for one dimensional observations and various trimming proportions 1 � �.

The trimmed mean estimator is a rank order statistic which robusti�es the sample mean estimate by rejecting

all samples whose values exceed either of the sample quantiles 1� �=2 and �=2.

5. MST and k-MST in
uence functions for bivariate Gaussian density on the plane. MST in
uence function is

unbounded.

6. Graphical illustration of the three constants � = �s, � = �s, and � = �s for the case d = 1. �s + �s + �s = 1

and �s is proportional to the area of the region S \As = fx 2 S : (1 � s)f(x) � �g and �s is proportional to
the area of the region fx 2 S : (1� s)f(x) < � � (1� s)f(x) + sÆxo(x)g.

7. Graphical illustration of the region fx 2 S : 0 < �s � (1 � s)f(x) � sÆxo(x)g which is the intersection of

the slab of width �o and the spheroidal support of the uniform density Æxo shown in (a) for the case d = 2.

Slab is at a distance � from the center xo of the spheroid. The width �o of the slab is determined by the

intersection of the horizontal plane at level �s and the two parallel tangent hyperplanes to the surfaces (1�s)f
and (1� s)f + sÆxo. In Figure (b) these are shown along with the normal vector (rf; 1) to these hyperplanes
(shown as two parallel lines in (b)).
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I. Introduction

Assume that one is given a set Xn = fx1; : : : ; xng of n points in IRd. Fix k and denote by Xn;k a k-point

subset of Xn, 0 < k � n. The elements of the subset Xn;k are distinct and there are
�n
k

�
possible k-point subsets

of Xn. The minimal k-point Euclidean graph problem is to �nd the subset of points Xn;k and the set of edges

connecting these points such that the resultant graph has minimum total weight L(Xn;k). This problem arises in

competitive bidding for network routing contracts when some nodes may be left out of the connected network, the

prize-collecting traveling salesman and Steiner tree problems for visiting at least k out of n cities, the minimum

latency problem, and other combinatorial optimization problems [62], [12], [6], [44], [28].

For example, the Euclidean minimal k-point spanning tree (k-MST) is the minimum weight tree spanning any

k of the n points. The planar k-MST problem was shown to be NP-complete by Zelikovsky and Lozevanu [62]

and Ravi, Sundaram, Marathe, Rosenkrantz and Ravi [43]. Ravi etal proposed a polynomial time approximation

algorithm for the planar k-MST (d = 2) with approximation ratio O(k1=4) which has been successively improved

to O(log(k)) by Garg and Hochbaum [28], O(log(k)= log log(n)) by Eppstein [23], O(1) by Blum, Chalasani and

Vempala [13], 2
p
2 by Mitchell [40], 3 by Garg [27], and 1 + � by Arora [3], [4].

While it is diÆcult to establish general and useful properties of optimal graphs for a �xed set of points Xn,
interesting properties of many classes of optimal graphs can be obtained by assuming that the n points are random

samples from a distribution P . In particular, the asymptotic behavior of the TSP, MST and Steiner trees (k = n)

as n tends to 1 is now well understood in this stochastic setting. The recent books by Steele [54] and Yukich [60]

provide excellent introductions to this subject. The main result of this paper is the derivation of a.s. limits for

a class of greedy approximations to Euclidean minimal k-point graphs over a random set of n points. This class

of greedy approximations is the set of minimal k-point graphs constructed by the generalized method of Ravi etal

[43] and where the edge weight function satis�es the quasi-additive property of Redmond and Yukich [45].

It directly follows from the asymptotic analysis that the log of the minimum graph weight is a strongly consistent

and robust estimator of the order-� R�enyi entropy [47] of the multivariate distribution P , where � 2 (0; 1) is a

function of the sample space dimension and the edge weight power exponent. Alternatively, although we do not

develop this extension here due to space limitations, by performing an appropriate measure transformation on

the data space one obtains a robust non-parametric estimate of the R�enyi divergence (a.k.a. relative entropy

or Cherno� distance) between P and a prespeci�ed reference measure Po. It is remarkable that the weight

function of the minimal k-point graph provides a direct estimate of entropy which completely bypasses the diÆcult

intermediate step of multivariate density estimation required by previous estimators.

The problem of entropy estimation has long been of interest to the engineering, physics, and statistics commu-

nities, e.g. see the recent paper by Beirlant etal [11] for a thorough overview of the topic of Shannon entropy

estimation. The general entropy estimation problem is relevant to pattern analysis, process complexity assessment,

model identi�cation, tests of distributions, and other applications where invariance to scale, translation and other

invertible transformations is desired in the discriminant [1], [36], [30]. The R�enyi entropy estimation problem

arises in adaptive vector quantizer design, where the entropy is more commonly called the the Panter-Dite factor

and is related to the asymptotically optimal quantization cell density [29], [41]. Estimates of R�enyi entropy have

also been proposed for characterizing complexity of time-frequency distributions [58], [25], [39], [51], [9]. Other

relevant entropy estimation applications are: estimation of Lyapounov exponents in non-linear dynamical models

[22], [24], multi-modality image registration using mutual information matching criteria [57], stopping criteria for

regression and classi�cation trees [14], and testing for normality of a random data sample [56].
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In addition to the aforementioned entropy estimation applications the greedy algorithm, and associated theory,

presented here can be applied to robusti�cation of existing minimal graph approaches to pattern recognition [61],

[55]; clustering [32], [19]; non-parametric regression [7], [8]; testing for randomness of a data sample [33]; and testing

particle distributions in electron photomicrographs [21]. Finally, in addition to the combinatorial optimization

problems mentioned in the �rst paragraph, our results may be useful for asymptotic analysis of k-point minimal

graph techniques proposed for optimizing communications subnetwork topologies and network provisioning [15],

[52], [42], [35]; minimum area routing in VLSI circuits [16]; minimum cost pipeline interconnections for subnetworks

of oil wells [44]; and minimum cost interconnections for cable TV subnetworks [20].

The principal theoretical results presented here are:

1. A polynomial time greedy algorithm for constructing an approximation to the minimal k-point graph and its

edge weight function is presented which is a direct generalization of the algorithm of Ravi, Sundaram, Marathe,

Rosenkrantz and Ravi [43] developed therein for minimal k-point minimum spanning tree approximation on

the plane.

2. A tight a.s. asymptotic bound on the entropy estimation error is given which can be used to determine

the required partition resolution to obtain a prescribed estimator error when a bound on the total variation

(roughness) of the density function is known.

3. Zero asymptotic error is achieved when the density function is piecewise constant over the resolution 1=m

partition cells of the greedy algorithm.

4. We give a condition, called a tightly coverable graph property, which holds when k + o(k) of the vertices of

the k-point graph can be covered by a resolution 1=m partition set (a.s.) as k !1. This condition is satis�ed

for the greedy approximation by construction. If the exact minimal k-point graph satis�es this condition then

the weight of the minimal k-point graph converges to the same asymptotic limit as the greedy approximation,

i.e. the greedy approximation is asymptotically optimal.

5. A robust R�enyi entropy estimator is proposed based on the log of the weight of the minimal k-point graph

with edge weight exponent 
. This estimator is shown to converge a.s. to a conditional R�enyi entropy of

order � = (d � 
)=d 2 (0; 1), where d > 
 is the sample space dimension. Inspired by the convergence rates

established in [46], for 1=d � � < 1 we predict that the rate of convergence of the non-parametric R�enyi

entropy estimator is O(n�1=d).

6. In
uence function studies are presented which quantitatively establish that the greedy minimal k-point graph

construction generates a robust estimator of distribution entropy.

7. The asymptotic results presented hold for a very general class of graphs constructed by minimizing a total

edge weight function which is a quasi-additive functional. This class includes the optimal Euclidean traveling

salesman tour, the minimal spanning tree, the Steiner tree, and the two population minimal matching graph.

The outline of the paper is as follows. In Section II-A we review Euclidean minimal spanning graphs. In Section

II-B we review the theory of quasi-additive functionals which were used by Redmond and Yukich to prove a

general asymptotic theorem on the edge weight function of minimal spanning graphs. A minimal k-point graph is

de�ned in Section III and in Section III-A we give a lemma which speci�es a partition approximation under when

the graph satis�es a tightly coverable assumption. Then in Section IV we treat the asymptotic theory of greedy

approximations with a series of lemmas and convergence results. This is followed in Section VII by a study of

quantitative robustness of the greedy approximation via the in
uence function.
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II. Background

Assume that Xn = fx1; : : : ; xng is a realization of n i.i.d. random vectors where each xk takes values in IRd

and has distribution P with Lebesgue density f . Additional smoothness assumptions on f will be required and

will be given in the sequel. To simplify certain mathematical technicalities we will assume that the distribution is

supported on the unit cube [0; 1]d. Any �nitely supported distribution can be mapped to this domain by invertible

linear transformation. Although we do not prove it, the restriction to �nite support can undoubtedly be relaxed

for densities satisfying the tail decay bounds of [49].

A. Minimal Euclidean Graphs

An n-point (Euclidean) undirected graph G is de�ned by a set of vertices X = fx1; : : : ; xng and a set of edges

E = feijg, where each edge eij = (xi; xj) connects a pair of vertices xi; xj . If for two vertices x and y a graph G

has a sequence of edges (x; xj1); (xj1 ; xj2); : : : ; (xjp ; y) then G is said to contain a path from x to y. A graph is

said to be connected if there exists a path between any pair of its vertices. If there exists a sequence of distinct

edges which provide a path from any vertex back to itself the graph is said to contain a cycle. A graph which

contains no cycles is an acyclic graph called a tree. By the span of a graph we mean the set of vertices which are

connected by edges. The degree of a graph is the maximum number of edges which can be incident on any single

vertex. The complete graph over Xn = fx1; : : : ; xng is a graph for which each pair of vertices are connected by an

edge; such a graph has
�n
2

�
edges, is connected, has cycles, and is of degree n.

Di�erent graphs can be compared based on their weights which are de�ned as follows. If x = [[x]1; : : : ; [x]d]
T

and y = [[y]1; : : : ; [y]d]
T are two vertices connected by an edge e we denote by jej the Euclidean length kx� yk =qPd

k=1([x]k � [y]k)2 of the edge. Let  be an edge weight function which satis�es  (jej) � 0. The total weight

LG(X ) of a graph G with edges feg and vertices X is de�ned as the sum of the edge weights

LG(X ) =
X
e2G

 (jej): (1)

While as in [53] the results of this paper might be extended to general weight functions which satisfy  (jej) �
O (jej
) as jej approaches 0, we will restrict our attention to the case of \power weighted edges" of exponential

order 


 (jej) = jej
 ; 0 < 
 < d: (2)

A.1 Euclidean Traveling Salesman Problem

In the Euclidean traveling salesman (TSP) problem the objective is to �nd a graph of minimum weight among

those that visit each point in Xn = fx1; : : : ; xng exactly once. The resultant graph is called the minimal TSP

tour. This problem is NP-hard and arises in many di�erent areas of operations research [38]. Let T (Xn) denote
the possible sets of edges in the class of graphs of degree 2 which span Xn. The weight of the minimal TSP tour

is speci�ed by

LTSP(Xn) = min
T (Xn)

X
e2T (Xn)

jej
 :
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A.2 Euclidean Minimal Spanning Tree Problem

In the Euclidean minimal spanning tree (MST) problem the objective is to �nd a graph of minimum weight

which spans nodes Xn = fx1; : : : ; xng. This problem admits exact solutions which run in polynomial time and

arises for d = 2 in VLSI circuit layout and network provisioning [35], [42], two sample matching [26],pattern

recognition [55], clustering [61], nonparametric regression [8] and testing for randomness [33]. Let M(Xn) denote
the possible sets of edges in the class of acyclic graphs which span Xn. The weight of the MST is speci�ed by

LMST(Xn) = min
M(Xn)

X
e2M(Xn)

jej
 :

A.3 Euclidean Steiner Tree Problem

In the Euclidean Steiner tree (ST) problem a set of additional nodes Y, called Steiner nodes, can be inserted

into the MST problem to reduce the weight required to span the nodes Xn = fx1; : : : ; xng. The �rst formulation
of this problem seems to be attributed to Gauss in the context of connecting 3 towns with a network of roads

of minimum overall length [3]. Steiner tree problems are NP-hard but have been of interest for minimum area

routing problems, e.g. in VLSI layout [16]. Let S(Xn [Y) denote the possible sets of edges in the class of acyclic

graphs which span Xn [ Y, where the �nite set Y is free. The weight of the minimal ST is speci�ed by

LST(Xn) = min
Y;S(Xn[Y)

X
e2S(Xn[Y)

jej
 :

The asymptotic behavior of each of the weight functions LTSP; LMST and LST can be studied using the more

general concept of quasi-additive Euclidean functionals introduced by Redmond and Yukich [45] and extended to

the case of power weighted edges in [46] and [59].

B. Quasiadditive Euclidean Functionals

Let F be a �nite subset of [0; 1]d, i.e. a set of points. De�ne the following conditions on a real valued set

function L [45], [46]:

Null Condition: L(�) = 0, where � is the null set.

Subadditivity: There exists a constant C1 with the following property: IfQm = fQigmd

i=1 is a uniform partition

of [0; 1]d into md cubes Qi each of edge length m�1 and volume m�d and if fqigi�md is the set of points in

[0; 1]d which translate each Qi back to the origin such that Qi � qi = [0;m�1]d, then

L(F ) � m�1
mdX
i=1

L(m[(F \Qi)� qi]) + C1m
d�


Superadditivity: There exists a constant C2 with the following property:

L(F ) � m�1
mdX
i=1

L(m[(F \Qi)� qi])� C2m
d�


Continuity: There exists a constant C3 such that for all �nite subsets F and G of [0; 1]d

jL(F [G)� L(F )j � C3 (card(G))
(d�
)=d
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L is said to be a continuous subadditive functional if it satis�es the null condition, subadditivity and continuity.

L is said to be a continuous superadditive functional if it satis�es the null condition, superadditivity and continuity.

De�nition 1: A continuous subadditive functional L is said to be a quasi-additive functional when there exists

a continuous superadditive functional L� which satis�es L(F ) + 1 � L�(F ) and the approximation property

jE[L(U1; : : : ; Un)]�E[L�(U1; : : : ; Un)]j � C4n
(d�
�1)=d (3)

where U1; : : : ; Un are i.i.d. uniform random vectors in [0; 1]d.

When such a functional L� exists it is called the dual of L. As shown in Redmond and Yukich [45, Thm. 1.3]

and [46, Thm 2.3] duals can frequently be constructed by identifying a related boundary rooted graph over Xn.
In [46, Thm 2.3] it is shown that L is quasi-additive for the following minimal graph problems: the minimal TSP

tour, the MST, and the two population minimal matching problem. The following theorem is proven2 in [46].

Theorem 1: Let L be a quasi-additive Euclidean functional with power-exponent 
, and let Xn = fx1; : : : ; xng be
an i.i.d. sample drawn from a distribution on [0; 1]d with an absolutely continuous component having (Lebesgue)

density f(x). Then

(4)

lim
n!1

L(Xn)=n(d�
)=d = �L;


Z
f(x)(d�
)=ddx; (a:s:)

In Theorem 1 �L;
 is a constant which only depends on 
 and the de�nition of the functional L, i.e. the graph

optimality criterion (TSP, MST, or Steiner tree). In particular, �L;
 is independent of the distribution of the xi's.

Theorem 1 is a generalization of Steele's work [53] which itself is a generalization of the well known Beardwood,

Halton and Hammersley Theorem [10].

III. Minimal k-point Euclidean Graphs

We denote by Xn;k a k-point subset of Xn, 0 < k � n. The minimal k-point Euclidean graph problem is to �nd

the subset of points Xn;k = X �
n;k and the set of edges connecting these points such that the resultant graph has

minimum total weight L(X �
n;k)

L(X �
n;k) = min

Xn;k
L(Xn;k):

De�ne k = b�nc as the integer part of �n. For the purposes of asymptotic analysis we will �x � 2 (0; 1) and

study the behavior of L(Xn;b�nc) as n!1. More generally de�ne the weight functional L�(F ) as the k-minimal

graph which spans k = b�card(F )c of the points in the �nite set F . Then L(X �
n;k) = L�(Xn). It is not diÆcult

to see that L�(F ) neither satis�es the subadditivity property nor the continuity property. Hence, the elegant

methods of Steele [53], Redmond and Yukich [45], and Rhee [48] cannot be directly applied.

A. A Tight Cover Property

Let Qm be a uniform partition of [0; 1]d into md cubes Qi of edge length 1=m. The quantity 1=m is called the

resolution of the partition. The following de�nition of a tightly coverable graph speci�es a class of k-point graph

2In [46] Redmond and Yukich actually prove even stronger convergence (complete convergence) of the functional Ln = L(Xn) and
give an asymptotic convergence rate.
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algorithms for which the vertices of the minimal graph can be covered by a small number of partition cells Qi.

De�nition 2 (Tightly Coverable Graphs) Let Qm, m = 1; 2; : : :, be a sequence of uniform partitions of [0; 1]d

of resolution 1=m and let �(Qm) denote the sigma-algebra generated by the partition cells inQm. Let Xn be n i.i.d.
uniform samples from [0; 1]d and de�ne Gn as the complete graph spanning Xn. For � 2 [0; 1] let G be an algorithm

which constructs a subgraph of Gn with k = b�nc vertices Xn;k � Xn. De�ne Dm
k = \fC2�(Qm):Xn;k2Cg C the

minimum volume partition set which covers Xn;k. The algorithm G is said to generate tightly coverable subgraphs

if for any � > 0 there exists an M such that for all m > M

lim sup
n!1

�����
card(Xn \Dm

b�nc)� b�nc
n

����� � �; (a:s:)

Tightly coverable subgraphs have the property that the vertices Xn;k can be dissected from the rest of the points

in Xn using a scalpel of resolution 1=m. For an arbitrary distribution of vertices Xn, this property would allow us

to index Xn;k over the
�n
k

�
possible combinations of k-point sets of Xn by indexing the sets of vertices D \Xn over

the partition-generated subsets D 2 �(Qm) of [0; 1]d.

B. A Covering Lemma

Consider the class (sigma algebra) �(Qm) of sets of resolution 1=m. Out of this class we de�ne Cm
� to be a set

of probability at least � for which L(C \ Xn) is minimized

Cm
� = argminC2�(Qm):P (C)��L(C \ Xn):

where P (C) = P (xi 2 C). As in the tight cover de�nition, de�ne Dm
k as the minimum volume set in �(Qm)

containing X �
n;k

Dm
k = \C2�(Qm):C�X �

n;k
C:

Note that X �
n;k is contained in set Dm

k but may not be contained in Cm
� .

With these de�nitions we have:

Lemma 1: Let L be a quasi-additive functional with power exponent 
 as in Theorem 1. If card(Xn \Cm
� ) � k���L(X �

n;k)� L(Xn \ Cm
� )
��� =n(d�
)=d � (5)

C3

"�
card(Xn \ Cm

� )� k

n

�(d�
)=d
+ 2

�
card(Xn \Dm

k )� k

n

�(d�
)=d#
:

A proof of the lemma is given in Appendix A. When k = b�nc the �rst additive term on the right side of the

inequality of Lemma 1 can be shown to converge a.s. to a term of order O(m
�d) using Lemma 6 and arguments

similar to those used to prove Lemma 7 in the sequel. Thus if the minimal k-point graph can be shown to be

tightly coverable, for any � > 0 there exists an M such that: lim supn!1 jL(X �
n;k) � L(Xn \ Cm

� )j=n(d�
)=d � �

(a.s.) for all m > M . It would then be possible to show that L(X �
n;k)=n

(d�
)=d would converge to the same a.s.

limit as that of the greedy minimal k-point approximation given in the next section. Conversely, if the greedy

approximation given below is not asymptotically equivalent to the exact minimal k-point graph then the latter

graph does not satisfy the tightly coverable condition. The question whether the tightly coverable condition holds

or not for the minimal k-point graph is an open problem.



TO APPEAR - IEEE TRANS ON IT 9

IV. Limit Theorem for k-point Greedy Approximation

Since the computation of the exact minimal k-point graph X �
n;k has complexity which is exponential in the

number of points n, the asymptotics of polynomial-time approximations are also of interest. Here we obtain

asymptotic results for a greedy algorithm originally introduced by Ravi, Sundaram, Marathe, Rosenkrantz and

Ravi [43] for constructing approximations to the k-MST on the plane. Their algorithm produces graphs which

by construction satisfy the tightly coverable property introduced in the last section. Here we de�ne a generalized

version of their algorithm which constructs graphs in d dimensions, d > 1, using arbitrary quasi-additive edge

weight functions.

The algorithm is implemented in three steps: 1) the user speci�es a uniform partition Qm of [0; 1]d having md

cells Qi of resolution 1=m; 2) the algorithm �nds the smallest subset Bm
k = [iQi of partition elements containing

at least k points; 3) out of this smallest subset the algorithm selects the k points Xn;k which minimize L(Xn;k).
Stage 3 requires �nding a k-point minimal graph on a much reduced set of points, that is typically only slightly

larger than k if m is suitably chosen, which can be performed in polynomial time.

The smallest subset mentioned in Stage 2 of the algorithm is not unique. Figures 1 and 2 show an example with

m = 5, k = 17 for which there are two possible smallest subsets, in this case both contain 18 points.

Similarly to [44], [43] we specify a small subset by the following greedy algorithm: i) �nd a reindexing fQ(i)gmd

i=1

of the cells in [0; 1]d ranked in decreasing order of the number of contained points, card(Xn \ Q(1)) � : : : �
card(Xn \ Q(md)) (if there are equalities arrange these in lexicographical order); ii) select the subset speci�ed in

Stage 2 by the recursion:

Greedy Subset Selection Algorithm

Initialize: B = �, j = 1

Do until cardfXn \Bg � k

B = B [Q(j)

End j = j + 1

At termination of the algorithm j = ~q � md and we have a minimal subset Bm
b�nc

def
= B = [~q

i=1Q(i) containing

at least k points. Below we will use the notation XGm
n;k to denote the k vertices of the graph found by the greedy

algorithm.

It should not be surprising that as n ! 1 the greedy subset selection algorithm should produce the smallest

resolution-1=m set A of probability close to � = k=n. Indeed, this is the basis for the asymptotic theorems stated

below. Therefore we next specify a class of minimal subsets in the sigma-algebra �(Qm) which have coverage

probability of at least �.

De�ne the cell probabilities 'i =
R
Qi
f(x)dx, i = 1; : : : ;md. If for any C 2 �(Qm) satisfying P (C) � � the set

A 2 �(Qm) satis�es

P (C) � P (A) � �;

then A is called a minimal resolution-1=m set of probability at least �. The class of all such sets is denoted Am
�

and, as shown in the following construction, all sets in Am
� have identical coverage probabilities pAm

�
� �.
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The class Am
� can be generated by the following greedy algorithm: i) �nd a reindexing fQ(i)gmd

i=1 of the cells

in Qm ranked in decreasing order of cell probabilities, '(1) � : : : � '(md); ii) select a subset A using the Greedy

Subset Selection Algorithm applied to the modi�ed cell ordering prescribed in i). Assume the greedy algorithm

terminates at iteration j = q. If '(q) > '(q+1) then A is the only set in the class Am
� . Otherwise, let there be K�I

identical values of 'i satisfying '(I�1) > '(I) = : : : = '(q) = : : : = '(K) > '(K+1) where I � q and K > q. Then

Am
� contains S =

� K�I
q�I+1

�
sets fAig constructed by taking the last q� I +1 cells that the greedy algorithm added

to A and exchanging them with any of the q � I + 1 possible combinations of cells in the set fQ(I); : : : ; Q(K)g.
Each of these sets Ai is composed of an identical number q of dissecting cells fQAi

j gqj=1 in Qm having identical

sets of coverage probabilities fP (QAi
j )gqj=1 = f'(j)gqj=1, and satisfying P (Ai) = pAm

�
� �, i = 1; : : : ; S.

Before developing the main result of this section we de�ne some additional notation.

We will be interested in two special subsets generated by Am
� . The interior Am

� de�ned as the intersection of all

S sets in Am
�

Am
� = \Ai2Am

�
Ai (6)

and the associated residual set

@Am
� = [Ai2Am

�
Ai �\Ai2Am

�
Ai (7)

= [Ai;Aj2Am
�
AiA

c
j :

Am
� is the \core" of the set Am

� and @Am
� is the \crust" of the set.

The total variation v(Q) over a rectangle Q � [0; 1]d of a function g on IRd is de�ned as [50]

v(Q) = lim sup
fzig2Q

X
i

jg(zi)� g(zi�1)j; (8)

where the limsup is taken over all countable subsets fz1; z2; : : : ; g of points in Q. The function g is said to have

bounded variation over Q if v(Q) <1. By convention, v(�) = 0 for � the empty set.

To simplify the presentation we assume throughout that the distribution P of each of the i.i.d. points in

Xn = fx1; : : : ; xng is absolutely continuous with respect to Lebesgue measure and has a density f(x). The results

of [53] and [45] assert that the addition of singular components, e.g. delta functions, to the density does not

change the asymptotics of L(Xn). Here it does change the asymptotics since the points of support of singular

components entail zero edge weights and are therefore more attractive to include in the minimum k-point graph.

However, the e�ect of singular components will only be to change the value of a threshold � on f(x) (see remark

below). The main result of this section is the following asymptotic theorem.

Theorem 2: Let Xn be an i.i.d. sample from a distribution having Lebesgue density f(x). Fix � 2 [0; 1],


 2 (0; d). Let f (d�
)=d be of bounded variation over [0; 1]d and denote by v(A) its total variation over a subset

A � [0; 1]d. Let L be a quasi-additive functional with power exponent 
 as in Theorem 1. Then, the total edge

weight L(XGm
n;k ) of a k-point graph constructed by the resolution-1=m greedy algorithm satis�es

lim sup
n!1

�����L(XGm

n;b�nc)=n
(d�
)=d � �L;


Z
Am
�

f (d�
)=d(x)dx

�����
< Æ; (a:s:); (9)
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where Am
� 2 Am

� is any minimal resolution-1=m set of probability at least �,

Æ = 2m�d�L;


mdX
i=1

v(Qi \ @Am
� ) + C3(pAm

�
� �)(d�
)=d

= O(m
�d); (10)

and pAm
�
is the coverage probability of sets in Am

� . Furthermore, the bound (9) holds pointwise when L(XGm

n;b�nc)

is replaced by E[L(XGm

n;b�nc)].

We prove Theorem 2 in Section V. It is of interest here to relate the integral in (9) to the R�enyi entropy of the

density f(x). The key to this relation is the following lemma which relates the integral over a set A in Am
� in (9)

to a constrained minimum over A 2 �(Qm).

Lemma 2: Under the assumptions of Theorem 2Z
Am
�

f (d�
)=d(x)dx = min
A2�(Qm):P (A)��

Z
A
f (d�
)=d(x)dx

+O(m�d): (11)

Proof of Lemma 2

First recall that by construction of Am
� the coverage probability of any set in Am

� satis�es for some q:
Pq�1

i=1 '(i) <

�,
Pq

i=1 '(i) = pAm
�
� �, and 0 � pAm

�
�� < '(q), where '(1) � : : : � '(md), are the rank ordered cell probabilities.

In view of Lemma 4 it is suÆcient to show that (11) holds for blocked densities of the form f(x) = ~f(x) =Pmd

i=1 �iIQi(x). Observe that for any A
m
� 2 Am

� and for any � satisfying md'(q�1) < � � md'(q): if x 2 Am
� then

~f(x) � �. Equivalently, ~f (d�
)=d(x)� � ~f(x) � 0 where � = ��
=d. With IAm
�
(x) the indicator function of Am

� this

implies that for any A 2 �(Qm)

IAm
�
(x)( ~f (d�
)=d(x)� � ~f(x)) � IA(x)( ~f

(d�
)=d(x)� � ~f(x));

for all x. Therefore, integrating this inequality over x 2 [0; 1]dZ
Am
�

�
~f (d�
)=d(x)� � ~f(x)

�
dx �

Z
A

�
~f (d�
)=d(x)� � ~f(x)

�
dx;

or Z
Am
�

~f (d�
)=d(x)dx�
Z
A

~f (d�
)=d(x)dx (12)

� �

 Z
Am
�

~f(x)dx�
Z
A

~f(x)dx

!
:

Now, as P (Am
� ) = pAm

�
, if P (A) � � then the right side of this inequality is upper bounded by �(pAm

�
� �) �

'(q) = m�d�(q). Hence, minimizing both sides of the inequality (12) over A we obtainZ
Am
�

~f (d�
)=d(x)dx � min
fA2�(Qm):P (A)��g

Z
A

~f (d�
)=d(x)dx

+O(m�d):

Since, obviously, Z
Am
�

~f (d�
)=d(x)dx � min
fA2�(Qm):P (A)��g

Z
A
( ~f (d�
)=d(x)dx
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the lemma is established. 2

We can now show how Theorem 2 can be related to estimation of R�enyi entropy. Using Lemma 2 and the fact

that �(Am) converges to the class of Borel subsets B of [0; 1]d, it is an easy exercise to show that

lim
m!1

Z
Am
�

f (d�
)=d(x)dx = inf
A2B:P (A)��

Z
A
f (d�
)=d(x)dx

= inf
A2B:P (A)=�

Z
A
f (d�
)=d(x)dx: (13)

Now for any Borel set A in [0; 1]d having P (A) > 0 de�ne the conditional density f(xjA) = f(x)=P (A)IA(x)

where IA(x) is the indicator function of A. For a continous density f(xjA) the (di�erential) R�enyi entropy of

order � 2 (0; 1) is de�ned as

R�(f jA) = 1

1� �
log

Z
f�(xjA)dx: (14)

This is also called the conditional R�enyi entropy given A. The Renyi entropy shares a number of properties with

the Shannon entropy such as: it is concave as a function of the density (for 0 < � < 1), it is maximized (over all

densities with bounded support) for a uniform density.

As 1 � � > 0 minimization of R�(f jA) over A is equivalent to minimization of the integral in (14). Let Ao be

the probability-at-least-� Borel subset of [0; 1]d which minimizes R�(f jA)

R�(f jAo) = inf
fA2B:P (A)��g

R�(f jA): (15)

For � = (d� 
)=d de�ne the following function of L(XGm

n;b�nc)

R̂�
def
=

1

1� �

�
logL(XGm

n;b�nc)=(b�nc)� � log �L;

�

(16)

An immediate consequence of Theorem 2 is the following.

Theorem 3: Under the assumptions of Theorem 2 R̂� is a strongly consistent estimator of the minimum condi-

tional R�enyi entropy R�(f jAo) of order � 2 (0; 1) as m;n!1.

Before developing the proof of Theorem 2 in the next section, we make the following remarks.

1. The bound Æ in Theorem 2 is tight since it reduces to zero for the case � = 1, yielding the classical a.s. BHH

limit theorem, Theorem 1, for minimal graphs spanning all n points Xn. Indeed, in this case, for arbitrary

m > 0 the class Am
� of resolution-1=m probability-at-least-� sets contains the support set of f and therefore

satis�es pAm
�
� � = 0, v(@Am

� ) = 0, and v(Qi \ @Am
� ) = 0 as required.

2. Theorems 2 and 3 are easily extended to the case where the density of P contains singular components, e.g.

delta functions. Speci�cally, let P have the mixed density f(x)dx + �s where dx is Lebesgue measure, f(x)

is the absolutely continuous component and �s is the singular component of P relative to Lebesgue measure.

Let the support of the singular measure be As and let �s = �s([0; 1]
d) = P (As) < �. Then, we know from

Lemma 6 that limn! L(Xn \ As) = 0 and hence points falling in the singular part As of [0; 1]d contribute

negligible weight. Thus, by the strong law of large numbers, �sn of the n points can be included in the

graph at negligible cost leaving only (� � �s)n points in [0; 1]d � As whose edge weights are asymptotically

signi�cant. Therefore, in the case of a singular component with �s < �, Theorem 2 holds with the class Am
�
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replaced by the class Am
���s of resolution 1=m subsets with coverage probability at least � � �s. If �s � �

then Am
� is replaced by the empty set and L(XGm

b�nc) converges to zero a.s. as m;n ! 1. Likewise, it can

be shown that when there is a singular component Lemma 2 holds with the minimization over the class

fA 2 �(Qm) : P (A) � �g replaced by a minimization over the smaller class�
A 2 �(Qm) :

Z
A
f(x)dx � maxf�� �s; 0g

�
:

3. As can be seen from Lemma 7, Theorem 2 holds for any method of selection of k = b�nc points from the

minimal subset Bm
k of �(Qm) covering at least k points. It does not depend on the precise way that a few

points are eliminated from the set Bm
k to form XGm

n;k . This implies that for large n all methods of elimination

are equivalent, including simply randomly rejecting points from Bm
k until exactly k points remain.

4. In smooth estimation problems the normalization factor required to ensure convergence of a parameter

estimator to a �nite non-zero constant is typically 1=n. In contrast Theorem 2 says that the stabilization factor

for L(XGm

n;b�nc) is the larger quantity 1=n
(d�
)=d, i.e., L(XGm

n;b�nc) is less explosive as a function of n. On the other

hand, inspired by [46, Thm. 2.5] which gives the tight convergence rate jE[LMST (Xn)] � �LMST ;
n
(d�
)=dj =

O
�
max(1; n(d�
�1)=d)

�
for the MST under the uniform distribution, we conjecture that the rate of convergence

in the limsup of Theorem 2 is at best O(1=n1=d) and this rate can be attained only when 
 � d�1. This leads

us to believe that the entropy estimator (16) will have fastest convergence when the R�enyi order parameter �

is in the range 1=d � � < 1.

5. The bound Æ of Theorem 2 decays to zero as a function of resolution 1=m at overall rate O(m
�d). The

�rst term 2m�d�L;

Pmd

i=1 v(Qi \ @Am
� ) � 2�L;
m

�dv([0; 1]) decays as m�d and is due to non-uniqueness

of the resolution-1=m subsets Am
� 2 Am

� all of which have identical coverage probability but over which f

may have di�erent amounts of variation. When f is, in the terminology of [53], a \blocked distribution,"

f(x) = m�d�Pmd

i=1 'iIQi(x), over the resolution-1=m cells this term is equal to zero. The second additive term

C3(pAm
�
� �)(d�
)=d is due to the overshoot of coverage probability by the subsets Am

� 2 Am
� . This term is

zero when it so happens that the � chosen in the greedy algorithm is exactly attainable by a 1=m resolution

subset. However, this term decays to zero only as m
�d and dominates the resolution convergence rate. Note

that this implies that the rate of convergence in m of the bound Æ in Theorem 2 is fastest for small 
.

6. Since supx2Q(q)
f (d�
)=d(x) � v([0; 1]d) and

Pmd

i=1 v(Qi \ @Am
� ) � v([0; 1]d) we can weaken the a.s. bound in

Theorem 2 by using the result (33), which was shown in the proof of Theorem 2. This results in the following

Æ �
h
2�L;
m

�d + C3m

�d

i
v([0; 1]d): (17)

This a.s. bound holds uniformly over the class of all density functions such that f (d�
)=d has total variation

less than or equal to v([0; 1]d). Thus if an upper bound v on the total variation of an unknown density is

available and a consistent estimate of conditional R�enyi entropy R� = R�(f jAo) is desired such that

jL(XGm

n;b�nc)=(b�nc)� � �L;
 expf�(1� �)R�)j < �

the weakened bound (17) can be used to give a selection rule for the required partition resolution 1=m

1=m � �

(2 + C3)v
:

7. The Borel set Ao of probability-at-least-� de�ned in (15) which minimizes R�enyi entropy of order � is

independent of � and can be constructed by a simple water �lling procedure. To see this de�ne the Lagrangian

�(A; �)
def
=

Z
A
f (d�
)=d(x)dx� �

�Z
A
f(x)dx� �

�
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for � > 0. Consider an arbitrary Borel subset �A � [0; 1]d outside of Ao, Ao \�A = �. By Kuhn-Tucker, Ao

must satisfy �(Ao +�A; �)� �(Ao; �) � 0 for Ao to minimize �(A; �) and hence minimize entropy. Here

�(Ao +�A; �)� �(Ao; �) =

Z
�A

�
1� �f
=d

�
f (d�
)=d;

which is negative when Ao is de�ned by

Ao = fx : f(x) � �g: (18)

where, if possible, � = ��d=
 � 0 is selected to satisfy P (Ao) = �. Hence, in this case, the conditional density

f(xjAo) in (16) is obtained by truncating f(x) wherever it falls below � and renormalizing to obtain a valid

probability density integrating to 1 over [0; 1]d. See Fig. 3 for illustration.

When for any a > 0 the set fx : f(x) = ag has (Lebesgue) measure zero f(x) has no 
at spots and it is always

possible to select � in (18) to satisfy P (Ao) = �. Otherwise, we need to slightly modify the de�nition (18)

of Ao. Let � be such that the set fx : f(x) < �g has probability ��, the set fx : f(x) = �g has probability
�+ � �� > 0 and assume that � 2 (��; �+). Then de�ning

Ao = fx : f(x) � �g [C; (19)

where C is an arbitrary Borel subset of fx : f(x) = �g having P (C) = � � ��, is an entropy minimizing

subset of probability �.

8. The minimum entropy set Ao in (15) is not unique. For example any arbitrary probability zero set can be

added to Ao without a�ecting the entropy. A more interesting example occurs when f is a uniform density

for which case any set A of area � minimizes entropy. In this case the assertion of Theorem 2 may come as a

surprise since the largest distance between points in A should be smallest for connected sets of small diameter,

e.g., a sphere. However, let A = [1i=1Ai be a countable union of disjoint sets Ai and having vol(A) = �. Note

that only a single edge is needed between Ai and Aj to form a connected graph over any two sets. Thus in

the limit of large n the total edge weight of the graph is dominated by connections between points within

each Ai and not connections between di�erent Ai. This is because the total edge weight depends more on the

average edge weight than the maximum edge weight.

9. In the R�enyi entropy estimator (16) the constant �L;
 is a bias o�set which can in principle be computed

o�ine as it does not depend on f . However, while upper and lower bounds are available, see e.g.[5] for MST

bounds, analytic expressions for �L;
 are not available. Alternatively, for some estimation or classi�cation

problems only relative entropy may be needed, e.g. testing for di�erent entropy rates between two populations

via the ratio of k-point graph weight functionals, for which the bias o�set need not be known.

10. Consider the case that f = (1 � �)f1 + �fo is a mixture of a nominal density f1 of interest and a uniform

contaminating density f0. In order that � be identi�able we assume that minx2[0;1]d f1(x) = 0; this simply

ensures that f1(x) have no uniform component. Then, since f1 increasingly dominates fo as � decreases, for

small � a suitable threshold � (�) exists for which: f(xjAo) � f1(x). Thus (16) can be viewed as a robust

estimator of the R�enyi entropy of the nominal density f1.

V. Proof of Theorem 2

Here we present a set of lemmas that are needed to prove Theorem 2. First we establish by Lemma 3 that any

set Bm
n obtained by the greedy algorithm belongs to class Am

� with probability close to one. Then it is shown

in Lemma 4 that replacing f(x) by its piecewise constant approximation leads to an approximation error to the

integral in (9) that goes like O(m�d). This allows us to establish in Lemma 5 that the length of a MST spanning
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all points in Bm
n provides an estimate of

R
f�(x)dx. This result is then re�ned in Lemma 7 where it is shown

that asymptotically the length of this MST increases at the same rate as the length of the k-MST spanning only

k = b�nc of these points. It is then a simple matter to put Lemmas 5 and 7 together to prove Theorem 2.

Lemma 3: For given � 2 [0; 1] and a set of n i.i.d. points Xn = [x1; : : : ; xn]
T let Bm

n be the minimal cover of

b�nc points with resolution-1=m produced by the greedy subset selection algorithm. Then

P
�
lim inf
n!1

fXn : Bm
n 2 Am

� g
�
= 1:

Proof of Lemma 3

De�ne the md independent random variables Ni = card(Xn \ Qi) of points in cell Qi, i = 1; : : : ;md. By

de�nition, the greedy algorithm gives a minimal cover Bm
b�nc containing at least �n points which satis�es the two

conditions:

n�1
~q�1X
i=1

N(i) < � (20)

n�1
~qX

i=1

N(i) � �: (21)

De�ne (i)' the index function which establishes a correspondence between rank ordered probabilities '(1) �
; : : : ;� '(md) and the cellsQi which support each of these probabilities: i.e. with this notation P (xi 2 Q(i)') = '(i).

For arbitrary � > 0 de�ne the events En(�) and Fn

En(�) =

8<
:Xn : n�1

q�1X
i=1

N(i)' � �� �

9=
; (22)

Fn =

(
Xn : n�1

qX
i=1

N(i)' � �

)
: (23)

Comparing these equations to (20) and (21) it will suÆce to show P (lim infEn \ Fn) = 1. Equivalently, since

P (lim supEc
n [ F c

n) � P (lim supEc
n) + P (lim supF c

n) we show that the latter two quantities are zero.

De�ne i.i.d. Bernouilli sequences Yn = fy1; : : : ; yng and Zn = fz1; : : : ; zng as
yj = IAm

�
(xj)� IQ(q)'

(xj); j = 1; : : : ; n

zj = IAm
�
(xj); j = 1; : : : ; n:

and py
def
= P (yj = 1) = P (xi 2 Am

� )�P (xi 2 Q(q)') =
Pq�1

i=1 '(i) and pz
def
= P (zj = 1) = P (xi 2 Am

� ) =
Pq

i=1 '(i).

Then we have the equivalent form for (22) and (23)

En(�) =

8<
:Yn : n�1

nX
j=1

yj � �� �

9=
; (24)

Fn =

8<
:Zn : n�1

nX
j=1

zj � �

9=
; : (25)

Let Æ be de�ned as the smallest non-zero value of 'i, i = 1; : : : ;md. Then by de�nition of Am
� we have

py < � and pz � �+ Æ: (26)
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From Sanov's theorem [17], [18]

P (Ec
n(�)) � (n+ 1)2 expf�nK(�� �; py)g
P (F c

n) � (n+ 1)2 expf�nK(�; pz)g

where K(p1; p2) = p2 ln p1=p2 + (1 � p2) ln(1 � p2)=(1 � p1) � 0 is the Kullback-Liebler distance between two

Bernoulli probability distributions fp1; 1 � p1g and fp2; 1 � p2g, p1; p2 2 [0; 1]. Furthermore, from (26) and the

fact that K(p1; p2) is increasing in jp1 � p2j, we have for � < (�� py)=2

P (Ec
n(�)) � (n+ 1)2 expf�nK(�� �; �)g
P (F c

n) � (n+ 1)2 expf�nK(�; �+ Æ)g:

It is easily veri�ed that for any � > 0

1X
n=1

(n+ 1)2e�n� �
Z 1

0
(u+ 2)2e�u�du = C�;

where C� = 2(2�2 + �+ 1)=�3. Hence,

1X
n=1

P (Ec
n(�)) � CK(���;�) <1

1X
n=1

P (F c
n) � CK(�;�+Æ) <1;

and by Borel-Cantelli we have P (lim supEc
n(�)) = 0, P (lim supF c

n) = 0 and the lemma follows. 2

While Bm
b�nc does not necessarily converge to any �xed set as n!1, the preceeding lemma establishes that it

converges to the equivalence class of sets de�ned by Am
� .

The next result relates the error of a blocked distribution approximation of
R
f (d�
)=d(x)dx to the total variation

of f .

Lemma 4: For � 2 [0; 1] let f� be of bounded variation over [0; 1]d and denote by v(A) its total variation

over any subset A 2 [0; 1]d. De�ne the resolution 1=m block density approximation ~f(x) =
Pmd

i=1 �iIQi(x) where

�i = md
R
Qi
f(x)dx. Then for any A 2 �(Qm)

0 �
Z
A
[ ~f�(x)� f�(x)]dx � m�d

mdX
i=1

v(Qi \A):

Proof of Lemma 4

First note that as t� is a convex cap function, by Jensen's inequality jCj�1 RC f�(x)dx � �jCj�1 RC f(x)dx�� for
any Borel set C of positive volume jCj. The left side inequality of Lemma 4 now follows from the relationZ

A
[ ~f�(x)� f�(x)]dx (27)

= m�d
mdX

i:Qi\A6=�

��
md

Z
Qi

f(x)dx

��
�md

Z
Qi

f�(x)dx

�
:
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We next deal with the right side of the inequality in Lemma 4. As functions of bounded variation are continuous

except at possibly a countable number of points [50], by the mean value theorem for each Qi there exist points

�i 2 Qi and  i 2 Qi such that
R
Qi
f(x)dx = f(�i)m

�d and
R
Qi
f�(x)dx = f�( i)m

�d. Hence, using (27) and the

de�nition (8) of v ����
Z
A
[ ~f�(x)� f�(x)]dx

����
= m�d

������
X

i:Qi\A6=�

(f�(�i)� f�( i))

������
� m�d

X
i:Qi\A 6=�

jf�(�i)� f�( i)j

� m�d
X

i:Qi\A 6=�

v(Qi) = m�d
mdX
i=1

v(Qi \A):

This establishes the Lemma. 2

Lemma 5: Assume f is of bounded total variation v(Qi) in each partition cell Qi 2 Qm. Let A be any set in

the class Am
� . Then for any quasi-additive functional Ln(B

m
b�nc)

def
= L(Xn \Bm

b�nc)

lim sup
n!1

����Ln(Bm
b�nc)=n

(d�
)=d � �L;


Z
A
f (d�
)=d(x)dx

����
< 2m�d�L;


mdX
i=1

v(Qi \ @Am
� ); (a:s):

Furthermore, this same bound holds when Ln(B
m
b�nc) is replaced by E[Ln(B

m
b�nc)].

The following follows directly from Theorem 1

Lemma 6: Assume the conditions of Theorem 1 and let A be an arbitrary Borel subset of [0; 1]d. Then for any

quasi-additive functional Ln(A) = L(Xn \A)

lim
n!1

Ln(A)=n
(d�
)=d = �L;


Z
A
f (d�
)=d(x)dx; (a:s:)

Furthermore, the above (a.s.) limit is the pointwise limit of E[Ln(A)]=n
(d�
)=d as n!1.

Proof of Lemma 5

Let ~f(x) =
Pmd

i=1 �iIQi(x) be the blocked distribution approximation to f(x) of Lemma 4. Now for any sets

A;A0 2 Am
� and � = (d� 
)=d, we have by the de�nitions (6), (7) of Am

� , @Am
� , and the triangle inequality����

Z
A
f� �

Z
A0
f�
���� =

�����
Z
A\@Am

�

f� �
Z
A0\@Am

�

f�
�����

�
�����
Z
A\@Am

�

f� �
Z
A\@Am

�

~f�
�����

+

�����
Z
A0\@Am

�

f� �
Z
A0\@Am

�

~f�
�����

+

�����
Z
A\@Am

�

~f� �
Z
A0\@Am

�

~f�
�����
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By construction of Am
� , the cell probabilities f'igi:Qi2A and f'igi:Qi2A0 are identical so that the last term on the

right side of the inequality is equal to zero. We therefore obtain by application of Lemma 4

����
Z
A
f� �

Z
A0
f�
���� � 2 max

A2Am
�

m�d
mdX
i=1

v(Qi \A \ @Am
� )

� 2m�d
mdX
i=1

v(Qi \ @Am
� ): (28)

Next by Lemma 6 for any of the �nite number of sets A 2 Am
� and any � > 0 there exists an integer n0 = n0(A)

such that for all n > n0

(29)����Ln(A)=n(d�
)=d � �L;


Z
A
f (d�
)=d(x)dx

���� � �; (a:s:)

Let n1 be de�ned as the largest of the fn0(A)gA2Am
�
. By Lemma 3 there exists an integer n2 such that for all

n > n2

min
A2Am

�

Ln(A) � Ln(B
m
b�nc) � max

A2Am
�

Ln(A); (a:s): (30)

Now choosing n3 = max(n2; n1) it follows from (29) and (30) that for all n > n3

�L;
 min
A2Am

�

Z
A
f (d�
)=d(x)dx� �

� Ln(B
m
b�nc)=n

(d�
)=d

� �L;
 max
A2Am

�

Z
A
f (d�
)=d(x)dx+ �; (a:s:):

Applying the bound (28) we have for arbitrary A 2 Am
� and all n > n3����Ln(Bm

b�nc)=n
(d�
)d� �L;


Z
A
f (d�
)=d(x)dx

����
� 2m�d�L;


mdX
i=1

v(Qi \ @Am
� ) + �; (a:s:):

Since � is arbitrary the a.s. limit of Lemma 5 follows.

It remains to show that the same bound also holds for the limit E[Ln(B
m
b�nc)]=n

(d�
)=d. It follows from Lemmas

3 and 6 that for any � > 0 there exists no such that for n > no, P (B
m
b�nc 2 Am

� ) � � and

����E[Ln(A)]=n(d�
)=d � �L;


Z
A
f (d�
)=d(x)dx

���� � �

for any A 2 Am
� . Furthermore, as Ln is continuous it is bounded:

Ln(A) � C3 (card(Xn \A))(d�
)=d � C3n
(d�
)=d

and therefore for n > no

min
A2Am

�

E[Ln(A)]� C3n
(d�
)=d� � E[Ln(B

m
b�nc)]

� max
A2Am

�

E[Ln(A)] + C3n
(d�
)=d�; (a:s):
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Combining the above and again applying (28) yields for n > no����E[Ln(Bm
b�nc)]=n

(d�
)=d � �L;


Z
A
f (d�
)=d(x)dx

����
� (1 + C3)�+ 2m�d�L;


mdX
i=1

v(Qi \ @Am
� ):

Since � is arbitrary we obtain the desired bound. 2

We next extend Lemma 5 to a minimal graph constructed over any k points Xn;k, e.g. XGm
n;k , drawn from Bm

b�nc.

Lemma 7: Let Xn;b�nc be any b�nc points selected fromBm
b�nc. Then, for any quasi-additive functional Ln(B

m
b�nc)

def
= Ln

Bm
b�nc)

lim sup
n!1

���Ln(Bm
b�nc)� L(Xn;b�nc)

��� =n(d�
)=d
< C3(pAm

�
� �)(d�
)=d; (a:s:)

and

lim sup
n!1

���E[Ln(Bm
b�nc)�E[L(Xn;b�nc)]

��� =n(d�
)=d
< C3(pAm

�
� �)(d�
)=d;

where pAm
�
= P (Am

� ) is the coverage probability of sets A
m
� in Am

� .

Proof of Lemma 7

Firstly, note that from continuity of L and the fact that �n� 1 � b�nc � �n���Ln(Bm
b�nc)� L(Xn;b�nc)

��� =n(d�
)=d (31)

� C3

2
4card

�
Bm
b�nc

�
� b�nc

n

3
5
(d�
)=d

� C3

h
n�1card

�
Bm
b�nc

�
� �

i(d�
)=d
+ C3n

�(d�
)=d:

Next we establish an a.s. limit for the �rst additive term on the right side. Lemma 3 guarantees that there exists

an n0 such that Bm
b�nc 2 Am

� with probability arbitrarily close to one. Therefore, for n > no and for any � > 0, by

Sanov's theorem we have

P
�
n�1card(Xn \Bm

b�nc)� � � �
�

= P

 
n�1

nX
i=1

zi � �+ �

!

� (n+ 1)2 exp
��nK(�+ �; pAm

�
)
	

where zj 's are i.i.d. Bernoulli random variables with P (zj = 1) = pAm
�
=
Pq

i=1 '(i), as de�ned in the proof of

Lemma 3. Now �
def
= K(� + �; pAm

�
) > 0 for any � > pAm

�
� � and therefore, since

P
n>no(n + 1)2 exp�n� �

2(2�2 + �+ 1)=�3 <1, by Borel-Cantelli we have

(32)

P
�
lim sup

n
Xn : n�1card(Xn \Bm

b�nc)� � � pAm
�
� �

o�
= 0:
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Since C3n
�(d�
)=d converges pointwise to zero as n ! 1, the a.s. limit in the Lemma follows directly from (32)

and (31).

Finally, as in the proof of 5, it can be shown that since L(Xn\Bm
b�nc)�L(Xn;b�nc) is bounded, EL(Xn\Bm

b�nc)�
EL(Xn;b�nc] satis�es the same asymptotic properties. 2

We now have all the ingredients for the proof of Theorem 2.

Proof of Theorem 2

Combining Lemmas 5 and 7 and applying the triangle inequality we see that there exists an integer no such

that for all n > no �����L(Xn;b�nc)=n(d�
)=d � �L;


Z
Am
�

~f (d�
)=d(x)dx

�����
< 2m�d�L;


mdX
i=1

v(Qi \ @Am
� ) +C3(pAm

�
� �)(d�
)=d; (a:s:)

where Am
� is any set in the class Am

� .

It remains to show that Æ = O(m
�d). For this we recall as in the proof of Lemma 3 that the coverage probability

of any set A 2 Am
� is a sum of the rank ordered cell probabilities P (Q(i)) = '(i), i = 1; : : : ; q, where

Pq�1
i=1 '(i) < �

and
Pq

i=1 '(i) � �, and therefore

0 � P (Am
� )� � =

qX
i=1

'(i) � � � '(q) =

Z
Q(q)

f(x)dx = m�df(�)

where, by the mean value theorem, � is a point in Q(q). This gives the order m

�d bound on the second additive

term in Æ of Theorem 2

0 � C3(pAm
�
� �)(d�
)=d � C3m


�d sup
x2Qi

f (d�
)=d(x): (33)

Since supx2Qi
f (d�
)=d(x) � v([0; 1]d) and

Pmd

i=1 v(Qi \ @Am
� ) � v([0; 1]d) and v([0; 1]d) < 1, Theorem 2 is

established. 2

2

VI. Examples

We �rst assume that f is a uniform density over the d-dimensional unit sphere S(0; 1)d. It is obvious that for

� 2 [0; 1] a Borel subset Ao which minimizes R�enyi entropy is

Ao =

(
x : kxk �

�
�

jS(0; 1)dj
� 1

d

)

and the associated minimum entropy conditional density is

f(xjAo) =

(
1
� ; x 2 Ao

0; o:w:



TO APPEAR - IEEE TRANS ON IT 21

By Theorem 2 L(XGm

n:b�nc)=n
(d�
)=d converges a.s. to a linear function of �

�L;


Z
f (d�
)=d(xjAo)dx = � � �L;
 :

Next assume that f is a multivariate Gaussian density with mean � and covariance �2I on IRd. Note that, unlike

the previous example, the support of f is IRd which is not compact and cannot be mapped into [0; 1]d. However,

in practice the range is �nite and we can approximate by a truncated Gaussian density with compact support.

The minimum entropy set for this case is

Ao =
n
x : kxk � �

q
Q�1�2 (�; d)

o
where Q�1�2 (�; d) is the quantile function of a Chi-squared density with d degrees of freedom. The associated

conditional density is

f(xjAo) =

8<
:

1
�(2��)d=2

e�
kxk2

2�2 ; x 2 Ao

0; o:w:
:

and L(XGm
n )=n(d�
)=d converges a.s. to the non-linear function of �

�L;


Z
f (d�
)=d(xjA0)dx = Q�2(�Q

�1
�2 (�; d)) � (2��)



2d �L;


where � = (d� 
)=d.

These two examples suggest that the greedy k-point graph can be e�ectively used to discriminate between

uniform and non-uniform densities based on plots of L(XGm
n )=n(d�
)=d as a function of �.

VII. Influence Functions

In
uence functions have been used to study quantitative robustness of estimators to outliers and other contam-

inating densities for over thirty years [31]. These functions provide a quantitative measure of outlier sensitivity of

an estimator. An unbounded in
uence functions implies that the e�ect of an outlier on the estimator can be very

severe. Robust estimators, such as the trimmed mean estimator which rejects observations which exceed a given

sample quantile, have bounded in
uence functions (see Figure 4).

Here we give the in
uence function for the normalized greedy minimal k-point graph weight L(XGm
n;k )=(b�nc)

d�

d

described in Section IV. The form of this in
uence function motivates the use of the Renyi estimator (16) as a

robust estimator of the entropy of a nominal density f1 in the mixture model f = (1� �)+ f1�. It also establishes
a kind of outlier robustness which is similar to that of rank order statistics for one dimensional observations.

Finally, it gives an asymptotic approximation to the variance of L(XGm

n;b�nc)=(b�nc)(d�
)=d which can be used to

construct con�dence intervals on �nite sample accuracy.

Let Pn be the empirical distribution function of the n samples Xn = fx1; : : : ; xng

Pn(A)
def
=

1

n

Z
A
Ixi(x)dx

for arbitrary Borel set A. For any statistic Tn = T (Pn) converging a.s. to T = T (P ) the in
uence function (called

an in
uence curve for one dimensional samples xi) is de�ned as [34]

IF(xo) = lim
s!0

T ( (1� s)P + sÆxo)� T (P )

s
: (34)
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where Æxo is a concentrated distribution centered at xo 2 IRd and s 2 [0; 1]. For small s, (1 � s)P + sÆxo is

interpreted as a perturbed distribution resulting from exchanging sn of the n samples xi from distribution P with

sn samples from the concentrated distribution Æxo . Thus IF(xo) can be used to probe the asymptotic sensitivity

of the estimator Tn to localized perturbations of P .

If the distribution of the estimator Tn satis�es certain asymptotic conditions, not explored here, then the

in
uence function can also be used to approximate asymptotic estimator variance [34] via the formula

nvar(Tn) !
Z
IF2(x)f(x)dx

Now identifying Tn = LGm

n;b�nc=(b�nc)(d�
)=d we have by Theorem 3 that Tn converges a.s. to the integral (13)

which we thus identify as T (P ).

In Appendix B (Lemma 8) we derive the in
uence function IF(xo) for di�erentiable densities f having no 
at

spots (cf Remark 2 of Section IV). The in
uence function specializes to the following form when one ignores

behavior at the boundary of Ao

(35)

IF(xo)=�L;
 =

8>><
>>:
� �

�� g�
�
g�1 (�)

�
+ �1��

g
0
�(g

�1
1 (�))

g
0
1(g

�1
1 (�))

; xo 62 Ao

� �
�� g�

�
g�1 (�)

�
+ ��1

��
g
0
�(g

�1
1 (�))

g
0
1(g

�1
1 (�))

+ f��1(xo)
�
�� ; xo 2 Ao

where Ao = fx : f(x) � �g is the entropy minimizing set of probability � and g1, g� are monotone functions

de�ned in Appendix B.

The function IF(xo) may take on positive or negative values for xo inside of Ao while it takes on positive values

outside of Ao (observe that f
��1 = f�j��1j increases without bound if the tails of f decreases to zero). This can be

explained as follows. By the theory developed in the Section IV we know that asymptotically the minimal k-point

graph spans all points within Ao and none of the points outside of Ao. Therefore exchanging a small number

of vertices of the k-point graph within Ao with a small number of points outside of Ao necessarily increases the

overall weight of the graph. On the other hand, the value of IF on the interior of Ao corresponds to the e�ect

on the weight due to perturbing the locations of a small number of vertices. Thus, depending on the direction of

these perturbations the weight of the graph can either increase or decrease.

We illustrate these phenomena in Figure 5 where IF is plotted as a function of xo 2 IR2 for the case of the

bivariate Gaussian distribution considered in the previous subsection. Two cases are shown, the �gure on the

left is the in
uence function for � = 1, i.e., for the minimal graph spanning all points (labeled MST), and the

�gure on the right is for � = 0:8, i.e. for the minimal k-point graph (labeled k-MST) spanning only 80% of the

n points. Note that, as expected, the in
uence function is bounded for the k-point graph but unbounded for the

graph spanning all n points. This suggests that the greedy k-point minimal graph is a natural multi-dimensional

extension of rank order statistical methods such as the trimmed mean. This complements the comments of

Friedman and Rafsky [26] in which they proposed the MST as a natural generalization of the one-dimensional

rank order Smirnov test statistic for testing equality of two multivariate distributions.
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VIII. Conclusion

We have given strong asymptotic convergence results for greedy approximations to minimal k-point graphs.

These convergence results indicate that the weight function of minimal k-point graphs provide natural extensions

of one dimensional rank order statistics to multiple dimensions. Our results also provide an interesting alternative

to kernel or histogram methods of entropy estimation. An open problem is whether or not the exact k-point

minimal graph satis�es the tight cover property stated in De�nition 2 of Section III. Another open problem is

the determination of the asymptotic distribution of the greedy k-point minimal graph weight and its rate of

convergence. While percolation theory methods [2] and martingale convergence methods [37] can be used to

establish CLT's for the MST their application to k-point minimal graphs, in particular the k-MST, appears more

diÆcult. Resolution of this issue will be especially important for statistically signi�cant utilisation of k-point

minimal graphs for estimation, detection and discrimination applications.
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Appendix A

Proof of Lemma 1

Let XCm
�

n;k be any k-points in Xn \Cm
� . Due to continuity of L we have���L(Xn \Cm

� )� L(XCm
�

n;k )
��� � C3 (card(Xn \ Cm

� )� k)(d�
)=d :

Hence, since X �
n;k are the vertices of the minimal k-point graph

(36)

L(Xn \ Cm
� ) � L(XCm

�
n;k )� C3 (card(Xn \ Cm

� )� k)(d�
)=d

� L(X �
n;k)� C3 (card(Xn \ Cm

� )� k)(d�
)=d :

Furthermore, again by continuity,���L(Xn \Dm
k )� L(X �

n;k)
��� � C3 (card(Xn \Dm

k )� k)(d�
)=d ; (37)

so that

L(Xn \Dm
k ) � L(X �

n;k) + C3 (card(Xn \Dm
k )� k)(d�
)=d : (38)

Hence, combining (36) and (38)

L(Xn \Dm
k )� L(Xn \ Cm

� ) (39)

� C3

h
(card(Xn \Dm

k )� k)(d�
)=d + (card(Xn \ Cm
� )� k)(d�
)=d

i
On the other hand, by de�nition of Cm

� the left side of inequality (39) is greater than zero so that

jL(Xn \Dm
k )� L(Xn \ Cm

� )j
� C3

h
(card(Xn \Dm

k )� k)(d�
)=d + (card(Xn \ Cm
� )� k)(d�
)=d

i
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which when combined with (37) gives���L(X �
n;k)� L(Xn \ Cm

� )
���

� jL(Xn \Dm
k )� L(Xn \ Cm

� )j+
���L(X �

n;k)� L(Xn \Dm
k )
���

� C3

h
(card(Xn \ Cm

� )� k)(d�
)=d + 2 (card(Xn \Dm
k )� k)(d�
)=d

i
:

Dividing both sides by n(d�
)=d establishes the lemma. 2

Appendix B

For � 2 (0; 1] de�ne the function

g�(�) =

Z
fx:f(x)��g

f�(x)dx: (40)

Note that when Ao is the minimum entropy subset of probability � de�ned in (18) then g�(�) =
R
Ao
f�(x)dx and

g1(�) = P (Ao) = �. Under the assumption that the set fx : f(x) = cg has measure zero, g�(�) is di�erentiable
(a.e.) and monotone decreasing in � � 0. It therefore has an inverse function g�1� (a) which is di�erentiable (a.e.)

and monotone decreasing in a � 0.

Let Bd(xo; r) denote the open d-dimensional ball with center xo radius r. For given � > 0 the smoothness of a

function f can be quanti�ed through its �-coeÆcient of variation de�ned as rr(�) = suprfr : supxo v(B(xo; r)) < �g
where v(Q) is the total variation of f over the set Q. A less stringent measure of smoothness is the �-modulus of

continuity rf (�) which will be suÆcient for the lemma below. rf (�) is de�ned as the maximum value (supremum)

of r such that supx;x02B(xo;r) jf(x)�f(x0)j < � uniformly for all xo in the support set of f . Note that rf (�) � rf (�).

Lemma 8: Let f be a Lebesgue density over IRd and assume that for any a > 0 the set fx : f(x) = ag has measure
zero. As in Theorem let �; � satisfy the relation � = g1(�) and let � = (d � 
)=d 2 (0; 1). For �xed � > 0 let Æxo
denote the uniform distribution over the spheroid S = Bd(xo;�) having center xo and radius �, where � is smaller

than the �-modulus of continuity of f and f��1. The in
uence function (34) of Tn = L(XGm

n;b�nc)=(b�nc)(d�
)=d has
the form

IC(xo)=�L;
 = � �

��
g�
�
g�1 (�)

�
+
(�� �0 + f(xo)�0)

��

g
0

�

�
g�11 (�)

�
g
0

1

�
g�11 (�)

� (41)

+f��1(xo)
�0�

��
+ f�(xo)

�0
��

+ �0O(�)

where, as de�ned in (46), �0 = �sjs=0 is the proportion of the d-dimensional spheroid Bd(xo;�) lying inside the

entropy minimizing set Ao, and �0 = �
0

0volfSg where �s is as de�ned in (48). When f is continuously di�erentiable

and rf(xo) 6= 0, �0 has the explict form

�0 =

8><
>:

Vd�1

Vd

�
1�

�
�(xo;@Ao)

�

�2�d=2
1

krf(xo)k
; �(xo; @Ao) � �

0; o:w:
; (42)

where Vd is the volume of the d-dimensional unit spheroid, �(xo; @Ao) is the Euclidean distance between xo and

the boundary @Ao of Ao, and krf(x)k is the norm of the gradient of f .

Proof of Lemma 8
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First we de�ne an entropy minimizing set As of probability � analogously to the de�nition (18) of Ao

As = fx : fs � �sg (43)

where �s satis�es Z
As

fsdx = � (44)

Using fs = (1� s)f + sÆxo relation (44) implies

� = (1� s)

Z
As

f(x)dx+ s

Z
As

Æxo(x)dx (45)

Let S = Bd(xo;�) denote the support set of Æx0 and let �s; �s; �s be the proportional volumes in S de�ned by:

�s =
volfx 2 S : �s � (1� s)f(x)g

volfSg (46)

�s =
volfx 2 S : 0 < �s � (1� s)f(x) � sÆxo(x)g

volfSg (47)

�s =
volf(1 � s)f(x) + sÆxo(x) < �sg

volfSg = 1� �s � �s:

Observe that �s, �s and �s are functions of xo, lims!0 �s = volfAo\Sg=volfSg, lims!0 �s = 0, and �s+�s+�s = 1

(see �gure VIII, for a graphical representation in the case d = 1). Due to the assumption that for any c > 0 the set

fx : f(x) = cg has measure zero it can be shown that (for volfSg > 0) the derivatives �
0

s = d�=ds and �
0

s = d�s=ds

are �nite for s 2 [0; Æ), Æ > 0. Furthermore the two integrals in (44) have the representationsZ
As

Æxo(x)dx = (�s + �s) (48)

and Z
As

f(x)dx =

Z
(1�s)f��s

f(x)dx+ �svolfSg(f(xo) +O(�)) (49)

Equation (49) uses the fact that the radius of the support S of Æxo is less than the �-modulus of continuity of f

which implies that over x 2 S: f(x) = f(xo) + O(�). Therefore, using (48) and (49) in the relation (44), along

with the de�nition (40) of g�

� = (1� s)g1

�
�s

1� s

�
+ (1� s)�svolfSgf(xo) + (�s + �s)s+ �svolfSgO(�) (50)

Eq. (50) speci�es, to order O(�), the threshold �s which guarantees (44)

�s = (1� s)g�11

�
�� (�s + �s)s

1� s
� �svolfSgf(xo)

�
+ �svolfSgO(�) (51)

where to obtain (51) we have used continuity of the inverse function g�11 .

Next we express
R
As
f�s (x)dx to order o(s)Z

As

f�s (x)dx = (1� s�)

Z
As

f�(x)dx+ s�

Z
As

f��1(x)Æxo(x)dx+ o(s); (52)
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using the assumption on the �-modulus of continuity of f��1, and combining equations (51) and (52), we obtain

Z
As

f�s (x)dx = (1� s�)

Z
(1�s)f��s

f�dx+ (1� s�)�svolfSgf�(xo) + s�(�s + �s)f
��1(xo) + o(s) (53)

= (1� s�)g�

�
g�11 (

�� (�s + �s)s

1� s
� �svolfSgf(xo))

�
+ (1� s�)�svolfSgf�(xo) + (54)

s�f��1(xo)(�s + �s) + o(s) + �svolfSgO(�)

To compute IC(xo) it remains to evaluate the limit

(55)

IC(xo)=�L;
 = lim
s#0

1

s

�Z
f�s (xjAs)dx�

Z
f�(xjAo)dx

�

=
1

��
� lim
s#0

1

s

�Z
As

f�s (x)dx�
Z
Ao

f�(x)dx

�

Applying the chain rule to the identity g1(g
�1
1 (q(s))) = q(s), for any di�erentiable function q(s) we have the

relation

d

ds
g�11 (q(s)) = q

0
(s)=g

0

1(g
�1
1 (q(s))): (56)

Identifying q(s) = (� � (�s + �s)s)=(1 � s) + volfSg�sf(xo) and observing that �s = s�
0

0 + o(s), s(�
0

s + �
0

s) =

s(�
0

0 + �
0

0) + o(s), it is seen that q
0
(0) = � � �0 + �

0

0volfSg. Therefore, after some algebra it can be veri�ed that

the limit (55) takes the form

IC(xo)=�L;
 = � �

��
g�
�
g�1 (�)

�
+
(�� �0 + f(xo)�

0

0volfSg)
��

g
0

�

�
g�11 (�)

�
g
0

1

�
g�11 (�)

� (57)

+f��1(xo)
�0�

��
+ f�(xo)

�
0

0volfSg
��

+ �
0

0volfSgO(�)

It remains to establish that �
0

0volfSg is given by �0 speci�ed by expression (42). First, recall that �s is the

relative volume of the region fx 2 S : 0 < �s � (1 � s)f(x) � sÆxo(x)g (recall Figure VIII). This volume is zero
when S \ As is empty, i.e. Æx is entirely outside or entirely inside the region As. Therefore, in what follows we

assume that S\As is non-empty. Second, as � is less than the �-modulus of continuity and f is di�erentiable, in S

the functions (1�s)f(x) and fs(x) = (1�s)f(x)+sÆxo(x) can be approximated to order � by two parallel tangent

hyperplanes since for any point x
0

o 2 S: supx2S jf(x) � f(x
0

o) � rf(x0o)(x � x
0

o)j < 2�. Let these hyperplanes

be speci�ed by the normal vector rf(x0o) for a point x
0

o 2 S for which rf(x0o) 6= 0. Existence of such a point

x
0

o is guaranteed by the hypothesis that for any constant c > 0 the set fx : f(x) = cg has measure zero. The

region fx 2 S : 0 < �s � (1 � s)f(x) � sÆxo(x)g is therefore the intersection of a hyperslab of width �o and the

d-dimensional sphere S = Bp(xo;�). �o is speci�ed by the intersection of the region sandwiched between the

two tangent hyperplanes and the horizontal plane at level �s (see Figures VIII.a and VIII.b). By similarity of the

two right triangles, having common edge along the ray (rf(x0o); 1), shown in Figure VIII.b, it is evident that the

inner products < (0; s=volfSg); (rf(x0o); 1) > and < (�orf(x0o)=krf(x
0

o)k; 0); (rf(x
0

o); 1) > are equal. Hence we

have the relation:

�o =
s

volfSgkrf(x0o)k
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As we will be taking the limit as s ! 0, we may assume that s is suÆciently small to ensure that �o �
�. In this case the volume of the intersection of the hyperslab and S = Bd(xo;�) is to order o(s) equal to

volfBd�1(x1;
p
�2 � �2s)g � �o where �s = �s(xo;rAs) = �(xo; x1) is the perpendicular distance between xo and

the nearest face of the hyperslab (the point x1 on the hyperslab is immaterial to the volume calculation), see Figure

VIII. Therefore, de�ning Vd as the volume of the d-dimensional unit sphere and noting that volfSg = Vd�
d:

�svolfSg = Vd�1
�
�2 � �2s

�d=2
�o (58)

= s
Vd�1
Vd

 
1�

�
�s
�

�2!d=2 1

krf(x0o)k
: (59)

It can be shown that the derivative d�s=ds is uniformly bounded in the neighborhood of s = 0. Therefore, we

readily obtain that the limiting value of the derivative lims!0 d�s=dsvolfSg = �
0

0volfSg is equal to the expression
(42). 2
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Fig. 1. A sample of 75 points from the mixture density f(x) = 0:25f1(x) + 0:75fo(x) where fo is a uniform density over

[0; 1]2 and f1 is a bivariate Gaussian density with mean (1=2; 1=2) and diagonal covariance diag(0:01). A smallest subset

Bm
k

is the union of the two cross hatched cells shown for the case of m = 5 and k = 17.
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Fig. 2. Another smallest subset Bm

k
containing at least k = 17 points for the mixture sample shown in Fig 1.



TO APPEAR - IEEE TRANS ON IT 33

Fig. 3. Water �lling construction of f(xjAo). Region of support of f(xjAo) is Ao = fx : f(x) � �g where Ao; � are selected

such that
R
Ao

f(x)dx = �.
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Fig. 4. Trimmed mean in
uence curves for one dimensional observations and various trimming proportions 1 � �. The

trimmed mean estimator is a rank order statistic which robusti�es the sample mean estimate by rejecting all samples

whose values exceed either of the sample quantiles 1� �=2 and �=2.
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Fig. 6. Graphical illustration of the three constants � = �s, � = �s, and � = �s for the case d = 1. �s + �s + �s = 1 and �s
is proportional to the area of the region S \ As = fx 2 S : (1 � s)f(x) � �g and �s is proportional to the area of the
region fx 2 S : (1� s)f(x) < � � (1� s)f(x) + sÆxo(x)g.
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Fig. 7. Graphical illustration of the region fx 2 S : 0 < �s � (1� s)f(x) � sÆxo(x)g which is the intersection of the slab of

width �o and the spheroidal support of the uniform density Æxo shown in (a) for the case d = 2. Slab is at a distance �
from the center xo of the spheroid. The width �o of the slab is determined by the intersection of the horizontal plane
at level �s and the two parallel tangent hyperplanes to the surfaces (1� s)f and (1� s)f + sÆxo . In Figure (b) these are
shown along with the normal vector (rf; 1) to these hyperplanes (shown as two parallel lines in (b)).


