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Abstract

This paper is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample ofn points from a general multivariate Lebesgue densityf over [0; 1]d. It is known
that under broad conditions, when the functional applies power exponent 2 (1; d) to the graph edge
lengths, the log of the functional normalized byn(d�)=d is a strongly consistent estimator of the R´enyi
entropy of order� = (d � )=d. In this paper we investigate almost sure (a.s.) andL�-norm (r.m.s. for
� = 2) convergence rates of this functional. In particular, when1 �  � d � 1, we show that over the
space of compacted supported multivariate densitiesf such thatf 2W 1;p(Rd ) (the space of Sobolev func-
tions) theL�-norm convergence rate is bounded above byO

�
n���(p)=(��(p)+1) 1=d)

�
, where�(p) = 1, if

1 � p � d and�(p) = d + 1 � d=p, if d < p < 1. We obtain similar rate bounds for minimal graph
approximations implemented by a progressive divide-and-conquer partitioning heuristic. In addition to Eu-
clidean optimization problems, these results have application to non-parametric entropy and information
divergence estimation; adaptive vector quantization; and pattern recognition. As a concrete illustration, the
bounds derived in this paper imply that the maximum r.m.s. error of a minimal-graph estimator of R´enyi
�-entropy converges faster than that of any plug-in estimator when� 2 [1=2; (d� 1)=d] andf� lies in the
Besov spaceB1

p;1(R
d ), with p > d.

Keywords: continuous quasi-additive functionals, combinatorial optimization, graph theory, progressive-resolution
approximations, data partitioning heuristic, non-parametric entropy estimation.

Alfred Herohero@eecs.umich.edu is with the Departments of Electrical Engineering and Computer Science (EECS),
Biomedical Engineering, and Statistics at the University of Michigan, Ann Arbor, MI 48109-2122. Jose Costa
jcosta@umich.edu is with the Dept. of EECS at the University of Michigan, Ann Arbor, MI 48109-2122. Bing Ma
bingma2001@hotmail.com was with the Dept. of EECS at UM and is now with M-Vision Inc., Belleville MI, USA.
This research was supported in part by AFOSR grant F49620-97-0028. J. Costa was partially supported by Fundac¸ão para
a Ciência e Tecnologia under the project SFRH/BD/2778/2000 and by a EECS Departmental Fellowship at UM.

1



1 Introduction

It has long been known that, under the assumption ofn independent identically distributed (i.i.d.) vertices in[0; 1]d,

the suitably normalized weight function of certain minimal graphs overd-dimensional Euclidean space converges almost

surely (a.s.) to a limit which is a monotone function of the R´enyi entropy of the multivariate densityf of the random

vertices. Graph constructions that satisfy this convergence property include: the minimal spanning tree (MST),k-nearest

neighbors graph (k-NNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted

variants. See the recent books by Steele [40] and Yukich [42] for introduction to this subject. AnO(n�1=d) bound on the

almost sure (a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained

by Redmond and Yukich [33, 34] when the vertices are uniformly distributed over[0; 1]d.

In the present paper we obtain bounds on a.s. andL�-norm (r.m.s. for� = 2) convergence rates of power-weighted

Euclidean weight functionals of order for general Lebesgue densitiesf for whichf 2 W 1;p([0; 1]d), the Sobolev space

of smooth functions over[0; 1]d, andf
1
2�


d is integrable. Here the dimensiond is greater than one and 2 (1; d) is an

edge exponent which is incorporated in the weight functional to taper the Euclidean distance between vertices of the graph

(see next section for definitions). As a special case of Proposition 5, we obtain aO
�
n���(p)=(��(p)+1) 1=d)

�
bound on the

r.m.s. convergence rate when1 �  � d� 1, where�(p) = 1, if 1 � p � d and�(p) = d+1� d=p, if d < p <1. This

bound implies a slower rate of convergence than the analogousO(n�1=d) rate bound proven for uniformf by Redmond

and Yukich [33, 34], although for larged the two rates coincide on the smoothest Sobolov classW 1;1(Rd) of densities.

Furthermore, the rate constants derived here suggest that slower convergence occurs when either the (R´enyi) entropy of

the underlying densityf or the (Lp) norm of its (weak) derivativeDf is large.

We also obtainL�-norm convergence rate bounds for partitioned approximations to minimal graphs implemented by the

following fixed partitioning heuristic: 1) dissect[0; 1]d into a set ofmd cells of equal volumes1=md; 2) compute minimal

graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation to

the minimal graph spanning all of the points in[0; 1]d. Such heuristics have been widely adopted, e.g. see Karp [20],

Ravi etal [31], and Hero and Michel [18], for examples. The computational advantage of this partitioned heuristic comes

from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linear inn: the

partitioned algorithm only requires constructing minimal graphs on small cells each of which typically contains far fewer

2



thann points. In Proposition 6 we obtain bounds onL�-norm convergence rate and specify an optimal “progressive-

resolution sequence”m = m(n), n = 1; 2; : : :, for achieving these bounds.

A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing

applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [15, 25, 18, 17],

and the entropy estimation application considered in this paper reflects this focus. In particular we show that a R´enyi

entropy estimator constructed from a continuous quasi-additive minimal-graph, such as the MST ork-NNG, can have

fasterL2-norm convergence rates than plug-in estimators, such as those discussed by Bierlantetal [3] based on density

function estimation. Such graph-based estimators were called entropic-graph estimators in [16] and we show that their

worst case converge rates are better than those of any plug-in estimator whenf� 2 B1
p;1([0; 1]

d), the Besov space of

smooth functions over[0; 1]d, with p > d and� 2 [1=2; (d� 1)=d].

Beyond the signal processing applications mentioned above these results may have important practical implications in

adaptive vector quantizer design, where the R´enyi entropy is more commonly called the Panter-Dite factor and is related

to the asymptotically optimal quantization cell density [12, 28]. Furthermore, as empirical versions of vector quantization

can be cast as geometric location problems [14], the asymptotics of adaptive VQ may be studied within the present

framework of minimal Euclidean graphs.

The outline of this paper is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework

of continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate bounds for such

functionals with general Lebesgue densityf . In Section 4 we extend these results to partitioned approximations and in

Section 5 we apply the results of Sections 3 and 4 to non-parametric entropy estimation.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959, the asymptotic behavior of the weight function

of a minimal graph such as the MST and the TSP over i.i.d. random pointsXn = fX1; : : : ;Xng asn ! 1 has

been of great interest. The monographs by Steele [40] and Yukich [42] provide two engaging presentations of ensuing

research in this area. Many of the convergence results have been encapsulated in the general framework of continuous and

quasi-additive Euclidean functionals recently introduced by Redmond and Yukich [33]. This framework allows one to
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relatively simply obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required

continuity and subadditivity properties. We follow this framework in this paper.

Let F be a finite subset of points in[0; 1]d; d � 2. A real-valued functionL defined onF is called aEuclidean

functional of order if it is of the form

L(F ) = min
e2E

X
e

je(F )j (1)

whereE is a set of graphs, e.g. spanning trees, over the points inF , e is an edge in the graph,jej is the Euclidean length

of e, and is called theedge exponentor power-weighting constant. We assume throughout this paper that0 <  < d.

2.1 Continuous Quasi-additive Euclidean Functionals

A weight functionalL(Xn) of a minimal graph on[0; 1]d is a continuous quasi-additive functional if it can be closely

approximated by the the sum of the weight functionals of minimal graphs constructed on a dense partition of[0; 1]d.

Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),

and thek-nearest neighbor graph (k-NNG). In the TSP the objective is to find a graph of minimum weight among the set

C of graphs that visit each point inXn exactly once. The resultant graph is called theminimal TSP tourand its weight is

LTSP (Xn) = mine2C
P

e jej . Construction of the TSP graph is NP-hard and arises in many different areas of operations

research [24]. In the MST problem the objective is to find a graph of minimum weight among the graphsT which

span the sampleXn. This problem admits exact solutions which run in polynomial time and the weight of the MST is

LMST
 (Xn) = mine2T

P
e jej . MST’s arise in areas including: pattern recognition [41]; clustering [43]; nonparametric

regression [2] and testing for randomness [19]. Thek-NNG problem consists of finding the setNk;i of k-nearest neighbors

of each pointXi in the setXn�fXig. This problem has exact solutions which run in linear-log-linear time and the weight

is Lk�NNG (Xn) =
Pn

i=1mine2Nk;i

P
e jej . Thek-NNG arises in computational geometry [8], clustering and pattern

recognition [37], spatial statistics [7], and adaptive vector quantization [13].

The following technical conditions on a Euclidean functionalL were defined in [33, 42].

� Null condition: L(�) = 0, where� is the null set.

� Subadditivity: Let Qm = fQigmd

i=1 be a uniform partition of[0; 1]d into md subcubesQi with edges parallel to
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the coordinate axes having edge lengthsm�1 and volumesm�d and letfqigmd

i=1 be the set of points in[0; 1]d that

translate eachQi back to the origin such thatQi � qi has the formm�1[0; 1]d. Then there exists a constantC1

with the following property: for every finite subsetF of [0; 1]d

L(F ) � m�
mdX
i=1

L (m[F \Qi � qi]) + C1m
d� (2)

� Superadditivity: For the same conditions as above onQi, m, andqi, there exists a constantC2 with the following

property:

L(F ) � m�
mdX
i=1

L (m[F \Qi � qi])� C2m
d� (3)

� Continuity: There exists a constantC3 such that for all finite subsetsF andG of [0; 1]d,

jL(F [G)� L(F )j � C3(card(G))(d�)=d; (4)

where card(G) is the cardinality of the subsetG. Note that continuity implies

jL(F )� L(G)j � 2C3(card(F 4G))(d�)=d; (5)

whereF 4G = (F [G)� (F \G) denotes the symmetric difference of setsF andG.

The functionalL is said to be acontinuous subadditive functionalof order if it satisfies the null condition, sudad-

ditivity and continuity.L is said to be acontinuous superadditive functionalof order if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functionalsL on [0; 1]d there exists adual superadditive functionalL� . The dual

functional satisfies two properties: 1)L(F ) + 1 � L�(F ) for every finite subsetF ; and, 2) for i.i.d. uniform random

vectorsU 1; : : : ;Un over[0; 1]d,

��E[L(U 1; : : : ;Un)]�E[L�(U 1; : : : ;Un)]
�� � C4n

(d��1)=d (6)

with C4 a finite constant. The condition (6) is called theclose-in-mean approximationin [42].

A stronger condition which is useful for showing convergence of partitioned approximations is thepointwise closeness

condition

��L(F )� L�(F )
�� � o

�
[card(F )](d�)=d

�
; (7)
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for any finite subsetF of [0; 1]d.

A continuous subadditive functionalL is said to be acontinuous quasi-additive functionalif L is continuous sub-

additive and there exists a continuous superadditive dual functionalL� . We point out that the dualL� is not uniquely

defined. It has been shown by Redmond and Yukich [34, 33] that the boundary-rooted version ofL , namely, one where

edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite

property (6) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of the power weighted MST, Steiner tree, TSP, k-NNG and others.

In [42, 33] almost sure limits with a convergence rate upper bound ofO
�
n�1=d

�
were obtained for continuous quasi-

additive Euclidean functionalsL(U 1; : : : ;Un) under the assumption of uniformly distributed pointsU 1; : : : ;Un and

an additional assumption thatL satisfies the “add-one bound”

� Add-one bound:

j E[L(U 1; : : : ;Un+1)]�E[L(U 1; : : : ;Un)] j � C5n
�=d: (8)

The MST length functional of order satisfies the add-one bound. A slightly weaker bound on a.s. convergence rate also

holds whenL is merely continuous quasi-additive [42, Ch. 5]. Then�1=d a.s. convergence rate bound is exact ford = 2.

3 Convergence Rate Bounds for General Density

In this section we obtain convergence rate bounds for a general non-uniform Lebesgue densityf . For convenience we will

focus on the case thatL is continuous quasi-additive and satisfies the add-one bound, although some of the following

results can be established under weaker assumptions. Our method of extension follows common practice [39, 40, 42]: we

first establish pointwise convergence rates of the meanE[L(X1; : : : ;Xn)]=n
(d�)=d for piecewise constant densities

and then extend to arbitrary densities. Then we use a concentration inequality to obtain a.s. andL�-norm convergence

rates ofL(X1; : : : ;Xn)=n
(d�)=d.

3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel.

6



Lemma 1 Letg(u) be a continuously differentiable function ofu 2 IR which is convex cap and monotone increasing over

u � 0. Then for anyuo > 0

g(uo)� g(uo)

uo
j�j � g(u) � g(uo) + g

0

(uo)j�j

where� = u� uo andg
0

(u) = dg(u)=du.

Proof

Sinceg(u) is convex cap the tangent liney(u)
def
= g(uo) + g

0

(uo)(u� uo) upper boundsg. Hence

g(u) � g(uo) + g
0

(uo)ju� uoj:

On the other hand, asg is monotone and convex cap, the functionz(u)
def
= g(uo) +

g(uo)
uo

(u � uo)1fu�uog is a lower

bound ong, where1fu�uog is the indicator function of the setfu � uog. Hence,

g(u) � g(uo)� g(uo)

uo
ju� uoj:

�

A densityf(x) over [0; 1]d is said to be a block density withmd levels if for some set of non-negative constants

f�igmd

i=1 satisfying
Pmd

i=1 �im
�d = 1,

f(x) =

mdX
i=1

�i1Qi(x)

where1Q(x) is the set indicator function ofQ � [0; 1]d andfQigmd

i=1 is the uniform partition of the unit cube[0; 1]d

defined above.

Proposition 1 Letd � 2 and1 �  � d � 1. AssumeX1; : : : ;Xn are i.i.d. sample points over[0; 1]d whose marginal

is a block densityf withmd levels and supportS � [0; 1]d. Then for any continuous quasi-additive Euclidean functional

L of order which satisfies the add-one bound (8)����E[L(X1; : : : ;Xn)]=n
(d�)=d � �L;d

Z
S
f (d�)=d(x) dx

���� � O
�
(nm�d)�1=d

�
:

where�L ;d is a constant independent off . A more explicit form for the bound on the right hand side is

O
�
(nm�d)�1=d

�
=

8><>:
K1+C4

(nm�d)1=d

R
S f

d��1
d (x)dx (1 + o(1)) ; d > 2

K1+C4+�L;d
(nm�d)1=d

R
S f

d��1
d (x)dx (1 + o(1)) ; d = 2

:
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Proof

Let ni denote the number of samplesfX1; : : : ;Xng falling into the partition cellQi and letfU igi denote an i.i.d.

sequence of uniform points on[0; 1]d. By subadditivity, we have

L(X1; : : : ;Xn) � m�
mdX
i=1

L (m[fX1; : : : ;Xng \Qi � qi]) + C1m
d�

= m�
mdX
i=1

L(U 1; : : : ;Uni) + C1m
d�

since the samples in each partition cellQi are drawn independently from a conditionally uniform distribution givenni.

Note thatni has a BinomialB(n; �im
�d) distribution.

Taking expectations on both sides of the above inequality,

E[L(X1; : : : ;Xn)] � m�
mdX
i=1

E [E [L(U 1; : : : ;Uni)jni]] + C1m
d� : (9)

The following rate of convergence for quasi-additive edge functionalsL satisfying the add-one bound (8) has been

established for1 �  < d [42, Thm. 5.2],

jE[L(U 1; : : : ;Un)]� �L;dn
d�
d j � K1n

d�1�
d ; (10)

whereK1 is a function ofC1; C3 andC5.

Using the result (10) and subadditivity (9) onL , for 1 �  < d we have

E[L(X1; : : : ;Xn)] � m�
mdX
i=1

E

�
�L ;dn

d�
d

i +K1n
d��1

d

i

�
+ C1m

d�

= m��L ;dn
d�
d

mdX
i=1

E

��ni
n

� d�
d

�
+ m�K1n

d��1
d

mdX
i=1

E

��ni
n

�d��1
d

�
+ C1m

d� :

(11)

Similarly for the dualL� it follows by superadditivity (3) and the close-in-mean condition (6)

E[L�(X1; : : : ;Xn)]

� m��L ;dn
d�
d

mdX
i=1

E

��ni
n

�d�
d

�
� m�(K1 + C4)n

d��1
d

mdX
i=1

E

��ni
n

�d��1
d

�
� C2m

d� (12)
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for 1 �  < d.

We next develop lower and upper bounds on the expected values in (11) and (12). As the functiong(u) = u� is

monotone and concave over the rangeu � 0 for 0 < � < 1, from Lemma 1

�ni
n

��
� p�i � p��1i

���ni
n
� pi

��� ; (13)

wherepi = �im
�d. In order to bound the expectation of the above inequality we use the following bound

E
h���ni
n
� pi

���i �sE

����ni
n
� pi

���2� = 1p
n

p
pi(1� pi) �

p
pip
n
:

Therefore, from (13),

E
h�ni

n

��i
� p�i � p

��
1
2

i =
p
n: (14)

By concavity, Jensen’s inequality yields the upper bound

E
h�ni

n

��i
�
h
E
�ni
n

�i�
= p�i (15)

Under the hypothesis1 �  � d� 1 this upper bound can be substituted into expression (11) to obtain

E[L(X1; : : : ;Xn)=n
(d�)=d]

� �L ;d

mdX
i=1

�
d�
d

i m�d +
K1

(nm�d)1=d

mdX
i=1

�
d��1

d
i m�d +

C1

(nm�d)(d�)=d

= �L ;d

Z
S
f (d�)=d(x)dx+

K1

(nm�d)1=d

Z
S
f (d��1)=d(x)dx+

C1

(nm�d)(d�)=d
: (16)

Applying the bounds (15) and (14) to (12) we obtain an analogous lower bound for the mean of the dual functionalL�

E[L�(X1; : : : ;Xn)]=n
(d�)=d

� �L ;d

Z
S
f
d�
d (x)dx� �L;d

(nm�d)1=2

Z
S
f
1
2�


d (x)dx

� K1 + C4

(nm�d)1=d

Z
S
f
d��1

d (x)dx� C2

(nm�d)(d�)=d
(17)

By definition of the dual,

E[L(X1; : : : ;Xn)]=n
d�
d � E[L�(X1; : : : ;Xn)]=n

d�
d � n�

d�
d (18)
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which when combined with (17) and (16) yields the result����E[L(X1; : : : ;Xn)]

n
d�
d

� �L ;d

Z
S
f
d�
d (x)dx

���� � K1 + C4

(nm�d)1=d

Z
S
f
d��1

d (x)dx+
�L;d

(nm�d)1=2

Z
S
f
1
2�


d (x)dx

+
K2

(nm�d)(d�)=d
+ n�

d�
d ; (19)

whereK2 = maxfC1; C2g. This establishes Proposition 1. �

3.2 Mean Convergence Rate for Density Functions in Sobolev Spaces

Before extending Proposition 1 to general densities we will need to introduce some concepts from the theory of Sobolev

spaces.

LetLp(Rd ) be the space of measurable functions overR
d such thatkfkp = (

R jf(x)jpdx)1=p <1. Forf a real valued

differentiable function overRd , letDxjf = @f=@xj be thexj-th partial derivative off , andDf = [@f=@x1; : : : ; @f=@xd]

be the gradient off . The concept of derivative can be extended to non-differentiable functions. Forf 2 L1(Rd ), g is

called thexj -th weak derivativeof f [44], written asg
def
= Dxjf ifZ

Rd

f(x)Dxj'(x)dx = �
Z
Rd

g(x)'(x)dx

for all functions' infinitely differentiable with compact support. The weak derivativeg is sometimes called thegener-

alized derivativeof f or distributional derivativeof f . If f is differentiable, then its weak derivative coincides with the

(usual) derivative.

We now define a function space whose members have weak derivatives lying in theLp(Rd ) spaces [44]. Forp � 1,

define theSobolev space

W 1;p(Rd ) = Lp(Rd ) \ ff : Dxjf 2 Lp(Rd ); 1 � j � dg :

The spaceW 1;p is equipped with a norm

kfk1;p = kfkp + kDfkp :

The Sobolev spaceW 1;p(Rd ) is a generalization of the space of continuously differentiable functions, in the sense that

W 1;p(Rd ) contains functions that do not have to be differentiable (in the usual sense), but can be approximated arbitrarily

close in thek:k1;p norm by infinitely differentiable functions with compact support ([44, Thm. 2.3.2]).
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ForQm = fQigmd

i=1 a uniform resolution-m partition as defined in Sub-section 2.1, define the resolution-m block

density approximation�(x) =
Pmd

i=1 �i1Qi(x) of f , where�i = md
R
Qi

f(x)dx. The following lemma establishes how

close (inL1(Rd ) sense) these resolution-m block densities approximate functions inW 1;p(Rd).

Lemma 2 For 1 � p < 1, let f 2 W 1;p(Rd) have supportS � [0; 1]d. Then there exists a constantC6 > 0,

independent ofm, such that Z
S
j�(x)� f(x)jdx � C6m

��(p)(kDfkp + o(1)); (20)

where�(p) = 1, if 1 � p � d and �(p) = d+ 1� d=p, if d < p <1.

A proof of this lemma is given in Appendix A.

We can now return to the problem of finding convergence rate bounds on quasi-additive Euclidean functionals for non-

uniform densityf .Let f ~Xigni=1 be i.i.d. random vectors having marginal Lebesgue density equal to the block density

approximation�. By the triangle inequality,����E[L(X1; : : : ;Xn)]=n
d�
d � �L;d

Z
S

f
d�
d (x)dx

���� (21)

�
����E[L( ~X1; : : : ; ~Xn)]=n

d�
d � �L ;d

Z
S

�
d�
d (x)dx

����+ �L ;d

����Z
S

�
d�
d (x)dx�

Z
S

f
d�
d (x)dx

����
+
���E[L(X1; : : : ;Xn)]�E[L( ~X1; : : : ; ~Xn)]

��� =n d�
d = I + II + III

TermI can be bounded by Proposition 1. To boundII , consider the following elementary inequality, which holds for

a; b � 0, 0 �  � d, ���a(d�)=d � b(d�)=d
��� � ja� bj(d�)=d;

and therefore, by Lemma 2 and Jensen’s inequality,

II � �L ;d

Z
S
j�(x)� f(x)j d�d dx � �L;d C

0

6m
��(p)(d�)=d

�
kDfk(d�)=dp + o(1)

�
; (22)

whereC
0

6 = C
(d�)=d
6 .

The following Proposition establishes an upper bound on termIII in (21):

Proposition 2 Let d � 2 and 1 �  � d. AssumefXigni=1 are i.i.d. random vectors over[0; 1]d with density

f 2 W 1;p(Rd ), 1 � p < 1, having supportS � [0; 1]d. Letf ~Xigni=1 be i.i.d. random vectors with marginal Lebesgue
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density�, the resolution-m block density approximation off . Then, for any continuous quasi-additive Euclidean func-

tionalL of order���E[L(X1; : : : ;Xn)]�E[L( ~X1; : : : ; ~Xn)]
��� =n d�

d � C 03 C
0
6m

��(p)(d�)=d
�
kDfk(d�)=dp + o(1)

�
; (23)

where�(p) is defined in Lemma 2 andC 03 = 2(2d�)=dC3.

Proof:

As (21) we denote the left hand side of (23) by III. First invoke continuity (5) ofL

n(d�)=dIII � 2C3E

�
card

�
fX1; : : : ;Xng 4 f ~X1; : : : ; ~Xng

�(d�)=d�
:

To bound the right hand side of the above inequality we use an argument which is discussed and proved in ([39], Theorem

3). There it is shown that if� approximatesf in theL1(Rd ) sense:Z
S
j�(x)� f(x)jdx � ";

then, by standard coupling arguments, there exists a joint distributionP for the pair of random vectors(X; ~X) such that

PfX 6= ~Xg � ". It then follows by Lemma 2 and the set inequalityfX1; : : : ;Xng 4 f ~X1; : : : ; ~Xng � [ni=1fXig 4
f ~Xig that

III � 2C3E

�
card

�
[ni=1fXig 4 f ~Xig

�(d�)=d�
=n(d�)=d

� 2C3E

24 2 nX
i=1

1n
Xi 6=

~Xi

o
!(d�)=d

35 =n(d�)=d
� 2C3(2nPfX1 6= ~X1g)(d�)=d=n(d�)=d � 2(2d�)=dC3"

(d�)=d;

where the second inequality follows from the factcard
�
fXig 4 f ~Xig

�
2 f0; 2g. Finally, by Lemma 2 we can make"

as small asC6m
��(p) (kDfkp + o(1)) and still ensure that� be a block density approximation tof of resolutionm. �

We can now substitute bounds (19), (22) and (23) in inequality (21) to obtain����E[L(X1; : : : ;Xn)]=n
(d�)=d � �L;d

Z
S
f(x)(d�)=ddx

���� (24)

� K1 + C4

(nm�d)1=d

�Z
S
f
d�1�

d (x)dx+ o(1)

�
+

�L ;d

(nm�d)1=2

�Z
S
f

1
2�


d (x)dx+ o(1)

�
+

K2

(nm�d)(d�)=d
+

1

n(d�)=d
+ (�L ;d + C 03) C

0
6m

��(p)(d�)=d
�
kDfk(d�)=dp + o(1)

�
12



This bound is finite under the assumptions thatf 2 W 1;p(Rd ) with support inS � [0; 1]d and thatf
1
2�


d is integrable

overS.

The bound (24) is actually a family of bounds for different values ofm = 1; 2; : : :. By selectingm as the function of

n that minimizes this bound, we obtain the tightest bound among them:

Proposition 3 Let d � 2 and1 �  � d � 1. AssumeX1; : : : ;Xn are i.i.d. random vectors over[0; 1]d with density

f 2 W 1;p(Rd ), 1 � p < 1, having supportS � [0; 1]d. Assume also thatf
1
2�


d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalL of order that satisfies the add-one bound (8)����E[L(X1; : : : ;Xn)]=n
(d�)=d � �L ;d

Z
S
f (d�)=d(x)dx

���� � O
�
n�r1(d;;p)

�
;

where

r1(d; ; p) =
��(p)

��(p) + 1

1

d

where� = d�
d and�(p) is defined in Lemma 2.

Proof: Without loss of generality assume thatnm�d > 1. In the ranged � 2 and1 �  � d � 1, the slowest of the

rates in (24) are(nm�d)�1=d andm��(p)(d�)=d. We obtain anm-independent bound by selectingm = m(n) to be the

sequence increasing inn which minimizes the maximum of these rates

m(n) = argmin
m

max
n
(nm�d)�1=d;m��(p)(d�)=d

o
:

The solutionm = m(n) occurs when(nm�d)�1=d = m��(p)(d�)=d, orm = n1=[d(��(p)+1)] (integer part) and, corre-

spondingly,m��(p)(d�)=d = n�
��(p)

��(p)+1
1
d . This establishes Proposition 3. �

3.3 Concentration Bounds

Any Euclidean functionalL of order satisfying the continuity property (4) also satisfies the concentration inequality

[42, Thm. 6.3] established by Rhee [36]:

P (jL(X1; : : : ;Xn)�E[L(X1; : : : ;Xn)]j > t) � C exp

��(t=C3)
2d=(d�)

Cn

�
; (25)

whereC is a constant depending only on the functionalL andd. It is readily verified that ifK > C3C
(d�)=(2d) the

right hand side of (25) is summable overn = 1; 2; : : : when t is replaced byK(n lnn)(d�)=(2d). Thus we have by

13



Borel-Cantelli

jL(X1; : : : ;Xn)�E[L(X1; : : : ;Xn)]j � O
�
(n lnn)(d�)=(2d)

�
(a:s:):

Therefore, combining this with Proposition 3 we obtain the a.s. bound

Proposition 4 Let d � 2 and1 �  � d � 1. AssumeX1; : : : ;Xn are i.i.d. random vectors over[0; 1]d with density

f 2 W 1;p(Rd ), 1 � p < 1, having supportS � [0; 1]d. Assume also thatf
1
2�


d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalL of order that satisfies the add-one bound (8)����L(X1; : : : ;Xn)=n
(d�)=d � �L ;d

Z
S
f (d�)=d(x)dx

���� � O

 
max

(�
lnn

n

�(d�)=(2d)
; n�r1(d;;p)

)!
(a:s:);

wherer1(d; ; p) is defined in Proposition 3.

The concentration inequality can also be used to bound theL� momentsE[jL(X1; : : : ;Xn)�E[L(X1; : : : ;Xn)]j�]1=�,

� = 1; 2; : : :. In particular, as for any r.v.Z: E[jZj] = R1
0

P (jZj > t)dt, we have by (25)

E [jL(X1; : : : ;Xn)�E[L(X1; : : : ;Xn)]j�] =

Z 1

0

P
�
jL(X1; : : : ;Xn)�E[L(X1; : : : ;Xn)]j > t1=�

�
dt

� C3C

Z 1

0

exp

��t2d=[�(d�)]
Cn

�
dt

= A�n
�(d�)=(2d); (26)

whereA� = C3C
�(d�)=(2d)+1

R1
0 e�u

2d=[�(d�)]

du.

Combining the above with (24), we obtain

Proposition 5 Let d � 2 and1 �  � d � 1. AssumeX1; : : : ;Xn are i.i.d. random vectors over[0; 1]d with density

f 2 W 1;p(Rd ), 1 � p < 1, having supportS � [0; 1]d. Assume also thatf
1
2�


d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalL of order that satisfies the add-one bound (8)

E

�����L(X1; : : : ;Xn)=n
(d�)=d � �L ;d

Z
S
f (d�)=d(x)dx

������1=� (27)

� K1 + C4

(nm�d)1=d

�Z
S
f
d�1�

d (x)dx+ o(1)

�
+

�L;d

(nm�d)1=2

�Z
S
f

1
2�


d (x)dx+ o(1)

�
+

K2

(nm�d)(d�)=d
+

1

n(d�)=d
+ (�L ;d + C 03)C

0
6 m

��(p)(d�)=d
�
kDfk(d�)=dp + o(1)

�
+ A1=�

� n�(d�)=(2d)

14



Proof:

For any non-random constant�: E[jW + �j�]1=� � E[jW j�]1=� + j�j. Identify

� = E[L(X1; : : : ;Xn)]=n
(d�)=d � �L;d

Z
S
f (d�)=d(x)dx

W = (L(X1; : : : ;Xn)�E[L(X1; : : : ;Xn)])=n
(d�)=d

and use (26) and (24) to establish Proposition 5. �

As them-dependence of the bound of Proposition 5 is identical to that of the bias bound (24), minimization of the

bound overm = m(n) proceeds analogously to the proof of Proposition 3 and we obtain the following.

Corollary 1 Let d � 2 and1 �  � d � 1. AssumeX1; : : : ;Xn are i.i.d. random vectors over[0; 1]d with density

f 2 W 1;p(Rd ), 1 � p < 1, having supportS � [0; 1]d. Assume also thatf
1
2�


d is integrable overS. Then, for any

continuous quasi-additive Euclidean functionalL of order that satisfies the add-one bound (8)

E

�����L(X1; : : : ;Xn)=n
(d�)=d � �L;d

Z
S
f (d�)=d(x)dx

������1=� � O
�
n�r1(d;;p)

�
; (28)

wherer1(d; ; p) is defined in Proposition 3.

3.4 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Proposition 4 and Corollary 1 hold uniformly over the class of Lebesgue densitiesf 2 W 1;p(Rd)

with kDfkp � C and integrablef (d�)=d�1=2. If � = (d�)=d 2 [1=2; (d�1)=d] then, as the supportS � [0; 1]d

is bounded, this integrability condition is automatically satisfied. To extend Proposition 4 and Corollary 1 to the

range� 2 ((d � 1)=d; 1) would require extension of the fundamental a.s. convergence rate bound ofO
�
n�1=d

�
used in (10), established by Redmond and Yukich [33], to the case0 <  < 1.

2. It can be shown in analogous manner to the proof of the umbrella theorems of [42, Ch. 7] that iff is not a Lebesgue

density then the convergence rates in Propositions 4 and 5 hold when the region of integrationS is replaced by the

support of the Lebesgue continuous component off .
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3. The convergence rate bound satisfiesr1(d; ; p) < 1=d, which corresponds to Redmond and Yukich’s rate bound

for the uniform density over[0; 1]d [42, Thm. 5.2]. Thus, the bound predicts slower worst case convergence rates

for non-uniform densities. However, asp ! 1, the class off 2 W 1;p(Rd ) becomes increasingly smooth and

r1(d; ; p)! �(d+1)
�(d+1)+1

1
d , which for larged is very close to the1=d rate bound.

4. Whenf is piecewise constant over a known partition of resolutionm = mo faster rate of convergence bounds are

available. For example, in Proposition 1 the bound in (19) is monotone increasing inm. Therefore the sequence

m(n) = mo minimizes the bound asn!1 and, proceeding in the same way as in the proof of Proposition 5, the

best rate bound is of ordermax
�
n�(d�)=(2d); n�1=d

	
. As theO(n�1=d) bound on mean rate of convergence is

tight [42, Sec. 5.3] ford = 2 and uniform densityf , it is concluded that for� = (d� )=d � 2=d the asymptotic

rate of convergence of the left hand side of (28) is exactlyO(n�1=d) for piecewise constantf andd = 2.

5. For� = (d � )) � 2=d, it can be shown that the rate bound of Proposition 1 remains valid even ifL does not

satisfy the “add-one bound.” Thus, with� � 2=d, Corollary 1 extends to any continuous quasi-additive functional

L including, in addition to the MST, the TSP, the minimal matching graph and thek-nearest neighbor graph

functionals. As for the case� < 2=d, we can use a weaker rate of mean convergence bound [42, Thm. 5.1], which

applies to all continuous quasi-additive functionals and uniformf , in place of (10) in the proof of Proposition 1 to

obtain ����E[L(X1; : : : ;Xn)]=n
(d�)=d � �L ;d

Z
S
f (d�)=d(x)dx

���� � O
�
n�

�
d=�(p)+2

�
: (29)

6. A tighter upper bound than Corollary 5 on theL�-norm convergence rate may be derived if a betterm-dependent

analog to the concentration inequality (25) can be found.

4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [20], Ravietal [32],

Mitchell [26], and Arora [1], as ways to reduce computational complexity. The fixed partition approximation is a simple

example whose convergence rate has been studied by Karp [20, 21], Karp and Steele [22] and Yukich [42] in the context

of a uniform densityf .
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Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-

eterm controlling the number of cells in the uniform partitionQm = fQigmi=1 of [0; 1]d discussed in Section 2. Whenm

is defined as an increasing function ofnwe obtain a progressive-resolution approximation toL(Xn). This approximation

involves constructing minimal graphs of order on each of the cellsQi, i = 1; : : : ;md, and the approximationLm (Xn)
is defined as the sum of their weights plus a constant bias correctionb(m)

Lm (Xn) =
mdX
i=1

L(Xn \Qi) + b(m); (30)

whereb(m) is O
�
md�

�
. In this section we specify a bound on theL�-norm convergence rate of the progressive-

resolution approximation (30) and specify the optimal resolution sequencefm(n)gn>0 which minimizes this bound. Our

derivations are based on the approach of Yukich [42, Sec. 5.4] and rely on the concrete version of the pointwise closeness

bound (7)

��L(F )� L�(F )
�� �

8<: C[card(F )](d��1)=(d�1); 1 �  < d� 1
C log card(F );  = d� 1 6= 1
C; d� 1 <  < d

; (31)

for any finiteF � [0; 1]d. This condition is satisfied by the MST, TSP and minimal matching function [42, Lemma 3.7].

We first obtain a fixed-m bound onL1 deviation ofLm (Xn)=n(d�)=d from its a.s. limit.

Proposition 6 Letd � 2 and1 �  < d� 1. Assume that the Lebesgue densityf 2W 1;p(Rd), 1 � p <1 has support

S � [0; 1]d. Assume also thatf1=2�=d are integrable overS. LetLm (Xn) be defined as in (30) whereL is a continuous

quasi-additive functional of order which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

if b(m) = O(md�)

E

�����Lm (Xn)=n(d�)=d � �L;d

Z
S
f (d�)=d(x)dx

�����
� O

�
max

n
(nm�d)�=[d(d�1)]; m��(p)(d�)=d; n�(d�)=(2d)

o�
; (32)

where�(p) = 1 is defined in Lemma 2.

Proof:

Start with

E

�����Lm (Xn)]=n(d�)=d � �L;d

Z
S
f (d�)=d(x)dx

����� � (33)
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E

�����L(Xn)=n d�
d � �L;d

Z
S
f
d�
d (x)dx

�����+E
���Lm (Xn)� L(Xn)

��� =n d�
d : (34)

Analogously to the proof of [42, Thm. 5.7], using the pointwise closeness bound (31) one obtains a bound on the

difference between the partitioned weight functionLm (F ) and the minimal weight functionL(F ) for any finiteF �
[0; 1]d

b(m)� C1m
d� � Lm (F )� L(F ) � m�C

mdX
i=1

(card(F \Qi))
(d��1)=(d�1)

+ 1 + C2m
d� + b(m): (35)

As usual let�(x) =
Pmd

i=1 �im
�d be a block density approximation tof(x). As fXn \ Qigmd

i=1 are independent and

E[jZju] � (E[jZj])u for 0 � u � 1

E[
��Lm (Xn)� L(Xn)

��]
� m�C

mdX
i=1

E
h
(card(Xn \Qi))

(d��1)=(d�1)
i
+ jb(m)� C1m

d� j+ 1 + C2m
d� + b(m)

� m�n(d��1)=(d�1)C
mdX
i=1

(�im
�d)(d��1)=(d�1) + jb(m)� C1m

d� j+ 1 + C2m
d� + b(m)

= m=(d�1)n(d��1)=(d�1)C

mdX
i=1

�
(d��1)=(d�1)
i m�d + jb(m)� C1m

d� j+ 1 + C2m
d� + b(m)

= m=(d�1)n(d��1)=(d�1)C

Z
S
�(d��1)=(d�1)(x)dx+ jb(m)� C1m

d� j+ 1 + C2m
d� + b(m)

Note that the bias termjb(m)�C1m
d� j can be eliminated by selectingb(m) = C1m

d� . Dividing through byn(d�)=d,

noting that
�jb(m)� C1m

d�j+ C2m
d� + b(m)

�
=n(d�)=d � B(nm�d)�(d�)=d for some constantB

E

�����Lm (Xn)� L(Xn)
n(d�)=d

����� � (nm�d)�=[d(d�1)]C

Z
S
�(d��1)=(d�1)(x)dx+ (nm�d)�(d�)=dB + n�(d�)=d:

Combining this with Proposition 5 we can bound the right hand side of (34) to obtain

E

�����Lm (Xn)]=n(d�)=d � �L ;d

Z
S
f (d�)=d(x)dx

�����
� K1 + C4

(nm�d)1=d

�Z
S
f
d�1�

d (x)dx+ o(1)

�
+

�L;d

(nm�d)1=2

�Z
S
f

1
2�


d (x)dx+ o(1)

�
+

K2

(nm�d)(d�)=d
+

2

n(d�)=d
+ (�L ;d + C 03) C

0
6m

��(p)(d�)=d
�
kDfk(d�)=dp + o(1)

�
+ A1n

�(d�)=(2d)

+
C

(nm�d)=[d(d�1)]

�Z
S
f (d��1)=(d�1)(x)dx+ o(1)

�
+ (nm�d)�(d�)=dB: (36)
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Over the range1 �  < d� 1 the dominant terms are as given in the statement of Proposition 6. �

Finally, by choosingm = m(n) to minimize the maximum on the right hand side of the bound of Proposition 6 we

have an analog to Corollary 1 for fixed partition approximations:

Corollary 2 Let d � 2 and1 �  < d � 1. Assume that the Lebesgue densityf 2 W 1;p(Rd ), 1 � p < 1 has support

S � [0; 1]d. Assume also thatf1=2�=d is integrable overS. LetLm (Xn) be defined as in (30) whereL is a continuous

quasi-additive functional of order which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

if b(m) = O(md�)

E

�����Lm(n)
 (X1; : : : ;Xn)=n

(d�)=d � �L;d

Z
S
f (d�)=d(x)dx

����� � O
�
n�r2(d;;p)

�
; (37)

where

r2(d; ; p) =
��(p)

d�1
 ��(p) + 1

1

d
;

where� = d�
d and�(p) is defined in Lemma 2. This rate is attained by choosing the progressive-resolution sequence

m = m(n) = n1=[d(
d�1
 ��(p)+1)].

4.1 Discussion

We make the following remarks.

1. Under the assumed condition < d � 1 in Corollary 2,r2(d; ; p) � r1(d; ; p), wherer1(d; ; p) is defined in

Corollary 1. Thus, as might be expected, the partitioned approximation has aL�-norm convergence rate (37) that

is always slower than the rate bound (28), and the slowdown increases as(d� 1)= increases.

2. In view of (36), up to a monotonic transformation, the rate constant multiplying the asymptotic raten�r2(d;;p) is

an increasing function of
R
S f

(d��1)=(d�1)(x)dx, which is the R´enyi entropy off of order(d�  � 1)=(d� 1)

(see (38) in the next section). Thus fastest convergence can be expected for densities with small R´enyi entropy.

3. It is more tedious but straightforward to show that theL2 deviationE
h��Lm (Xn)=n(d�)=d � �L ;d

R
S f

(d�)=d(x)dx
��2i1=2

obeys the identical asymptotic rate bounds as in Proposition 6 and Corollary 2 with identical bound minimizing

progressive-resolution sequencem = m(n).
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4. As pointed out in the proof of Proposition 6 the bound minimizing choice of the bias correctionb(m) of the

progressive-resolution approximation (30) isb(m) = C1m
d� , whereC1 is the constant in the subaddivity condi-

tion (2). However, Proposition 6 asserts that, for example, usingb(m) = Cmd� with arbitrary scale constantC,

or even usingb(m) = 0, are asymptotically equivalent to the bound minimizingb(m). This is important since the

constantC1 is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (30) is a special casek = n of the greedy approximation to thek-point minimal

graph approximation introduced by Ravietal [31] whose a.s. convergence was established by Hero and Michel [18]

(Note that the overly strong BV condition assumed in [18] can be considerably weakened by replacing BV space

with Sobolev space and applying Lemma 2 of this paper). Extension of Proposition 6 to greedy approximations to

k-point graphs is an open problem.

5 Application to Entropy Estimation

In this section we apply the previous convergence results to non-parametric entropy estimation. In particular, using

the convergence rate bounds derived above, Proposition 8 below establishes asymptotic performance advantages of the

minimal graph estimator methods as contrasted to non-parametric density plug-in methods of entropy estimation. For

concrete applications of Proposition 8 see Heroetal [15].

For a Lebesgue continuous multivariate densityf the Rényi entropy of order� is defined as [35]:

H�(f) = (1� �)�1 ln

Z
f�(x)dx: (38)

To be consistent with previous sections of this paper, we restrict the support off to a subset of[0; 1]d and we only consider

the range� 2 (0; 1). The Rényi entropy converges to the Shannon entropyH1(f) = � R f(x) ln f(x)dx in the limit as

�! 1. As� becomes smaller the R´enyi entropy tends to equalize the influence of the small amplitude regions, e.g. tails,

and the large amplitude regions off .

We treat entropy estimates of the form̂H� = (1� �)�1 ln Î�, whereÎ� is a consistent estimator of the integral

I(f�) =

Z
f�(x)dx:
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Given non-parametric function estimatescf� of f� based onn i.i.d. observationsX1; : : : ;Xn fromf , define the function

plug-in estimatorI(cf�). WithL any continuous quasi-additive functional define the estimatorÎ� = L(X1; : : : ;Xn)=(�L;dn
�),

where 2 (0; d) is selected such that� = (d� )=d. Consistent with [16] we will call̂I� anentropic-graph estimator.

Let Ĥ� andÎ� denote estimates computed by either the plug-in or the entropic-graph estimators. A standard purturba-

tion analysis ofln(z) establishes

jĤ� �H�(f)j =
1

1� �

jÎ� � I(f�)j
I(f�)

+ o(jÎ� � I(f�)j):

Thus as a function ofn the asymptoticL�-norm rate of convergence of̂H��H�(f) will be identical to that of̂I��I(f�).

Minimax rates of convergence for non-parametric function estimation have been extensively studied in the harmonic

analysis literature. In these studies the Besov classB�
p;q(R

d ) of smooth functions is widely adopted. Among other

applications, Besov spaces play a central role in wavelets and wavelet shrinkage estimation [10]. The reader is referred to

[23] for a general motivation on the use of Besov spaces. Before we can introduce the Besov class we need to define the

following quantities. Define the finite difference of functionf in the direction of� 2 Rd as:

�1
� f(x)

def
= f(x+ � )� f(x) :

By induction, define thek-th order finite difference in the direction of� as

�k
� f(x)

def
= �1

��
k�1
� f(x) =

kX
l=0

(�1)l+k
�
k

l

�
f(x+ l� ) :

Following [30], let1 � p; q <1, � > 0 andk; % be nonnegative integers satisfying the inequalitiesk > � � % > 0. One

possible definition of the Besov space is the following: the functionf belongs to the classB�
p;q(R

d ) if f 2 Lp(Rd ) and

there exists partial weak derivativesD(s)f = @%f=@xs11 : : : @xsdd of orders = (s1; : : : ; sd) (jsj = s1 + : : : + sd = %)

such that the following seminorm is finite:

kfkb�p;q =
X
jsj=%

(Z
Rd

�k�k
�D

(s)fkp
j� j��%

�q
d�

j� jd
)

:

Finally, with minor abuse of notation, for scalarC > 0 define the Besov ball

B�
p;q(C) =

�
f 2 B�

p;q(R
d) : kfk�;p;q def

= kfkp + kfkb�p;q � C

�
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Proposition 7 Assume that the Lebesgue densityf with supportS � [0; 1]d is such thatf� 2 B�
p;q(C). Then, for any

plug-in estimatorI(cf�)
sup

f�2B�
p;q(C)

�
E
���I(cf�)� I(f�)

���2�1=2 � O
�
n��=(2�+d)

�
: (39)

Proof:

The proof relies on well known results from non-parametric function estimation which we only sketch here. The reader

is referred to [29] for more details.

For any estimator̂gn of g based on i.i.d. samplesX1; : : : ;Xn the minimaxL2 integrated error over the Besov ball

B�
p;q(C) satisfies

sup
g2B�

p;q(C)

�
E

Z
(ĝn(x)� g(x))2dx

�1=2
� O

�
n��=(2�+d)

�
: (40)

We show below that, for̂g = cf�n andg = f�, this implies

sup
g2B�

p;q(C)

"
E

����Z (ĝ(x)� g(x)dx

����2
#1=2

� O
�
n��=(2�+d)

�
: (41)

The inequality (39) follows immediately from this.

Relation (40) implies that for allg 2 B�
p;q(C)

lim sup
n!1

���[ĝ(x)� g(x)]n�=(2�+d)
��� <1; (w:p:1); (42)

except possibly on a subset of[0; 1]d of measure zero, and for someg 2 B�
p;q(C)

lim inf
n!1

���[ĝ(x)� g(x)]n�=(2�+d)
��� > 0; ; (w:p:1) (43)

over some subset of[0; 1]d of positive measure. Therefore, lettingg = f�, using relations (42) and (43), there exist finite

constantsC1 andC2 such that"
E

����Z (ĝ(x)� g(x))dx

����2
#1=2

� C1n
��=(2�+d)(1 + o(1));

for all g 2 B�
p;q(C), and there exists a functiong 2 B�

p;q(C) such that"
E

����Z (ĝ(x)� g(x))dx

����2
#1=2

� C2n
��=(2�+d)(1 + o(1))
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Therefore,

C2n
��=(2�+d)(1 + o(1)) � sup

g2B�
p;q(C)

"
E

����Z (ĝ(x)� g(x))dx

����2
#1=2

� C1n
��=(2�+d)(1 + o(1))

which establishes (41) and the proof of Proposition 7 is completed. �

To compare the rate performance of entropic-graph estimators to plug-in estimators, we will need the following that

relates functions in a Sobolev space to functions in a Besov class.

Lemma 3 Letp > d and let� be a positive integer. ThenB�
p;1(R

d ) �W �;p(Rd ).

Proof: See [4], theorems 18.8 and 18.9. �

Corollary 1 and Proposition 7 together with Lemma 3 provide a quantitative comparison between the worst case rates

of convergence of both types of non-parametric estimators:

Proposition 8 Let d � 2 and� 2 [1=2; (d � 1)=d]. Assume that the Lebesgue densityf having supportS � [0; 1]d is

such thatf� 2 B1
p;1(C), p > d. Then, for any plug-in estimatorI(cf�)

sup
f�2B1

p;1(C)

�
E
���I(cf�)� I(f�)

���2�1=2 � O
�
n�

1
2+d

�
; (44)

while for any entropic-graph estimator̂I� implemented with edge exponent satisfying� = (d� )=d

sup
f�2B1

p;1(C)

�
E
���Î� � I(f�)

���2�1=2 � O
�
n�

�(d+1�d=p)
�(d+1�d=p)+1

1
d

�
: (45)

Proof:

In view of Proposition 7 we only need establish the second inequality (45). Letf be an arbitrary density satisfying

the conditions of the Proposition and letW 1;p(C) = W 1;p(R) \ ff : kfk1;p � Cg denote the Sobolov ball of radius

C > 0. By Lemma 3f� 2 B1
p;1(C) impliesf� 2W 1;p(B), for some positiveB. Since for� 2 (0; 1) the scalar function

G(u) = u1=� satisfiesG(0) = 0 andsupu�0G
0(u) < 1, it follows from [38, Thm. 1] thatf� 2 W 1;p(B) implies

f 2 W 1;p(A) for some positiveA. Thusff : f� 2 B1
p;1(C)g � ff : f 2 W 1;p(A)g. Furthermore, askf�kp < 1

for anyf� 2 B1
p;1(C), f��1=2 is integrable sincekfk��1=2 � kfk(��1=2)p � kfk�p = (kf�kp)1=� < 1. Thus, as

�� 1=2 = 1=2� =d, Corollary 1 yields (45) which establishes Proposition 8. �
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We make several comments in connection with Proposition 8.

1. By equating the exponents in the rates bounds of Proposition 8, we find that for

� � 1

2

d

d+ 1� d=p

the entropic-graph estimators exhibit fasterL2-norm convergence rates. Thus, under the conditions of the Proposi-

tion, entropic-graph estimators of entropy always have faster r.m.s. convergence rate than do the plug-in estimators.

2. The assumption� � (d � 1)=d prevents the application of the convergence rate bound (28) in Proposition 7 to

entropic-graph estimates of the Shannon entropy, which would require� ! 1. In particular, we cannot use it to

bound a entropic-graph analog to the plug-in estimation method proposed by Mokkadem [27] in which Shannon

entropy is estimated by a sequenceÎ(f̂�nn ) of plug-in estimators where�n < 1 andlimn!1 �n = 1. As men-

tioned in Remark 1 of Section 3.4, relaxation of this assumption would require extending Redmond and Yukich’s

O(n�1=d) convergence rates [33].

3. The partitioned minimal graph approximation (30) can be adapted to entropy estimation in an obvious way and an

analog to Proposition 8 will hold with the right hand side of (45) replaced by the slowerO(n�r2(d;;p)) rate bound.

4. If it is known a priori that the class of functionsf is significantly smoother than the Besov class assumed in

Proposition 8 then plug-in methods can have much faster convergence. As a rather extreme example, iff is a

piecewise constant block density over ana priori known finite partition, a histogram plug-in estimator will have

the faster r.m.s. convergence rate ofO(1=
p
n) while the entropic-graph estimator will only haveO(n�1=d). This

dichotomy in entropy estimator convergence rates for smooth versus non-smooth density classes is analogous to

well known behavior of minimax rates for non-parametric and semi-parametric estimation of general functionals,

see work by Bickel and Ritov [5], Donoho and Low [9] and Birg´e and Massart [6].

6 Conclusion

In this paper we have given rate of convergence bounds for length functionals of minimal-graphs satisfying continuous

quasi-additivity. An application to entropy estimation was treated which established performance advantages of minimal
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graph estimators of entropy as contrasted with plug-in estimators. These results suggest that further exploration of minimal

graphs for estimation of R´enyi divergence, R´enyi mutual information, and R´enyi Jensen difference is justifed.

Future research should also include the extension of the rate of convergence bounds to smoother Sobolev space, i.e.,

densities with higher-order weak derivatives. This requires the derivation of new inequalities of the type stated by Lemma

2, which are similar to Sobolev- and Poincare- type inequalities. Also of interest is the extension of this work to densities

with unbounded support.
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A Appendix

In this appendix we prove the approximation Lemma 2 that shows how close, inL1(Rd ) sense, a functionf 2W 1;p(Rd)

can be approximated by its resolution-m block density. We follow a standard approach: first prove the inequalities for

continuously differentiable functions and then extend the results toW 1;p(Rd ) by using the fact that smooth functions are

dense inW 1;p(Rd).

Proof of Lemma 2: First assume that1 � p � d and thatf is a continuously differentiable function. By the mean value

theorem, there exist points�i 2 Qi such that

�i = md

Z
Qi

f(x)dx = f(�i) :

Also by the mean value theorem there exist points i 2 Qi such that

jf(x)� f(�i)j = jDf( i) � (x� �i)j; x 2 Qi :

Note that, in what follows,j:jmeans both the absolute value inR and any norm inRd . Using the above results, the Jensen

inequality and the Cauchy-Schwarz inequality�Z
S
j�(x)� f(x)jdx

�p
�

Z
S
j�(x)� f(x)jpdx =

mdX
i=1

Z
Qi

jf(�i)� f(x)jpdx

=

mdX
i=1

Z
Qi

jDf( i) � (x� �i)jpdx �
mdX
i=1

jDf( i)jp
Z
Qi

jx� �ijpdx :

Asx; i 2 Qi, a sub-cube with edge lengthm�1:
R
Qi
jx� �ijpdx = O(m�p�d). Thus, we have

�Z
S
j�(x)� f(x)jdx

�p
� Cm�p

mdX
i=1

jDf( i)jpm�d � Cm�p

�Z
S
jDf(x)jpdx+ o(1)

�
:

Since smooth functions are dense inW 1;p(Rd) ([44, Thm. 2.3.2]), using the standard limiting argument the above

inequality holds forf 2W 1;p(Rd ). This establishes Lemma 2 for1 � p � d.

Now, letd < p <1 and assumef is a continuously differentiable function. This part of the proof closely follows the

derivation of Morrey’s inequality for Sobolev spaces [11].

Start with

f(x)� �i = f(x)� f(�i) =

Z 1

0

d

dt
f(tx+ (1� t)�i)dt =

Z 1

0

Df(tx+ (1� t)�i)dt � (x� �i) :

26



By the Cauchy-Schwarz inequality

jf(x)� �ij �
Z 1

0

jDf(tx+ (1� t)�i)jdt jx� �ij:

LetB(x; r)
def
= fy : jy�xj � rg be the closed ball centered onx with radiusr, and let@B(x; r)

def
= fy : jy�xj = rg

be the boundary ofB(x; r). Fix 0 < r � cm�1, for somec > 0, and integrate the above inequality with respect tox over

@B(�i; r): Z
@B(�i;r)

jf(x)� �ijdS(x) �
Z
@B(�i;r)

r

Z 1

0

jDf(tx+ (1� t)�i)jdt dS(x);

wheredS(x) denotes a differentiable surface element on@B(x; r). Now, make the following change of variables in the

integral on the right hand side:

w
def
= tx+ (1� t)�i; �

def
= rt ;

such that

jw � �ij = tjx� �ij = tr = � :

Then, by Tonelli’s theorem,Z
@B(�i;r)

jf(x)� �ijdS(x) �
Z r

0

Z
@B(�i;�)

rd�1
jDf(w)j
�d�1

dS(x) d�

=

Z
B(�i;r)

rd�1
jDf(w)j

jw � �ijd�1
dw :

Integrating with respect torZ
B(�i;cm�1)

jf(x)� �ijdx �
Z
B(�i;cm�1)

jDf(w)j
jw � �ijd�1

dw

Z cm�1

0

rd�1dr

= Cm�d

Z
B(�i;cm�1)

jDf(w)j
jw � �ijd�1

dw :

Applying Holder’s inequality to the right hand side and using the fact thatd < p <1Z
B(�

i
;cm�1)

jf(x)� �ijdx

� Cm�d

 Z
B(�i;cm�1)

jDf(w)jpdw
!1=p Z

B(�i;cm�1)

1

jw � �ij(d�1)
p

p�1

dw

!p�1
p

= Cm�d
�
m�d+(d�1) p

p�1

� p�1
p

 Z
B(�i;cm�1)

jDf(w)jpdw
!1=p

= Cm�d�1+d=p

 Z
B(�

i
;cm�1)

jDf(w)jpdw
!1=p
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Finally, we bound theL1(Rd ) approximation error by using the above inequality, the elementary inequalitya1=p+b1=p �
2(a+ b)1=p; a; b � 0, and by choosingc =

p
d:

Z
S
jf(x)� �(x)jdx =

mdX
i=1

Z
Qi

jf(x)� �ijdx �
mdX
i=1

Z
B(�i;cm�1)

jf(x)� �ijdx

� Cm�d�1+d=p
mdX
i=1

 Z
B(�

i
;cm�1)

jDf(w)jpdw
!1=p

� Cm�d�1+d=pjjDf jjp :

Note thatC refers to different constants in the previous expressions. As before, extension tof 2 W 1;p(Rd ) follows by

denseness of the smooth functions inW 1;p(Rd). �
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