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Abstract

This paper is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample of points from a general multivariate Lebesgue dengitwer[0, 1]¢. It is known
that under broad conditions, when the functional applies power expanent(1,d) to the graph edge
lengths, the log of the functional normalized h{—)/¢ is a strongly consistent estimator of theri
entropy of orderx = (d — 7)/d. In this paper we investigate almost sure (a.s.) Apehorm (r.m.s. for
k = 2) convergence rates of this functional. In particular, whed v < d — 1, we show that over the
space of compacted supported multivariate densjtigsch thatf € W' ?(R?) (the space of Sobolev func-
tions) the£,.-norm convergence rate is bounded above&bjy, ~o*(P)/ (@A(®)+1) 1/d)) ‘whereA(p) = 1, if
1<p<dandA(p) =d+1—-d/p ifd < p < oo. We obtain similar rate bounds for minimal graph
approximations implemented by a progressive divide-and-conquer partitioning heuristic. In addition to Eu-
clidean optimization problems, these results have application to non-parametric entropy and information
divergence estimation; adaptive vector quantization; and pattern recognition. As a concrete illustration, the
bounds derived in this paper imply that the maximum r.m.s. error of a minimal-graph estimatenyif R”
a-entropy converges faster than that of any plug-in estimator wheri1/2, (d — 1)/d] and f© lies in the
Besov spacé} | (R?), with p > d.
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1 Introduction

It has long been known that, under the assumption afdependent identically distributed (i.i.d.) vertices[in1]?,

the suitably normalized weight function of certain minimal graphs dveéimensional Euclidean space converges almost
surely (a.s.) to a limit which is a monotone function of thenii” entropy of the multivariate densitfy of the random

vertices. Graph constructions that satisfy this convergence property include: the minimal spanning treé-{i\&angst
neighbors graphitNNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted
variants. See the recent books by Steele [40] and Yukich [42] for introduction to this subje€t(:Ar/?) bound on the

almost sure (a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained

by Redmond and Yukich [33, 34] when the vertices are uniformly distributed [0y&}”.

In the present paper we obtain bounds on a.s. gpdorm (r.m.s. forx = 2) convergence rates of power-weighted

Euclidean weight functionals of orderfor general Lebesgue densitiggor which f € W ([0, 1]¢), the Sobolev space

of smooth functions ovelf), 1]¢, andf2 7 is integrable. Here the dimensidris greater than one angde (1,d) is an

edge exponentwhich is incorporated in the weight functional to taper the Euclidean distance between vertices of the graph
(see next section for definitions). As a special case of Proposition 5, we ofttain a**(?)/(eA(#)+1) 1/d)) hound on the

r.m.s. convergence rate whér< v < d —1, whereA(p) = 1,if 1 < p < dandA(p) =d+1—d/p, if d < p < co. This

bound implies a slower rate of convergence than the analagéus'/?) rate bound proven for uniforrfi by Redmond

and Yukich [33, 34], although for largéthe two rates coincide on the smoothest Sobolov did$s® (R?) of densities.
Furthermore, the rate constants derived here suggest that slower convergence occurs when eitnayijten{Rpy of

the underlying density or the (£,) norm of its (weak) derivativ® f is large.

We also obtairC,,-norm convergence rate bounds for partitioned approximations to minimal graphs implemented by the
following fixed partitioning heuristic: 1) disseftt, 1]¢ into a set ofn? cells of equal volumes/m?; 2) compute minimal
graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation to
the minimal graph spanning all of the points[iy 1]¢. Such heuristics have been widely adopted, e.g. see Karp [20],
Ravietal [31], and Hero and Michel [18], for examples. The computational advantage of this partitioned heuristic comes
from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linetwein

partitioned algorithm only requires constructing minimal graphs on small cells each of which typically contains far fewer



thann points. In Proposition 6 we obtain bounds 6p-norm convergence rate and specify an optimal “progressive-

resolution sequenceh, = m(n), n = 1,2, ..., for achieving these bounds.

A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing
applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [15, 25, 18, 17],
and the entropy estimation application considered in this paper reflects this focus. In particular we showetigt a R”
entropy estimator constructed from a continuous quasi-additive minimal-graph, such as the MSING, can have
fasterL,-norm convergence rates than plug-in estimators, such as those discussed by 8iar[8@hbased on density
function estimation. Such graph-based estimators were called entropic-graph estimators in [16] and we show that their
worst case converge rates are better than those of any plug-in estimatorf&vhenB, , ([0, 1]¢), the Besov space of

smooth functions ovep), 1]¢, with p > d anda € [1/2, (d — 1)/d).

Beyond the signal processing applications mentioned above these results may have important practical implications in
adaptive vector quantizer design, where tleaR ‘entropy is more commonly called the Panter-Dite factor and is related
to the asymptotically optimal quantization cell density [12, 28]. Furthermore, as empirical versions of vector quantization
can be cast as geometric location problems [14], the asymptotics of adaptive VQ may be studied within the present

framework of minimal Euclidean graphs.

The outline of this paper is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework
of continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate bounds for such
functionals with general Lebesgue densftyln Section 4 we extend these results to partitioned approximations and in

Section 5 we apply the results of Sections 3 and 4 to non-parametric entropy estimation.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959, the asymptotic behavior of the weight function

of a minimal graph such as the MST and the TSP over i.i.d. random paiptss {X,,...,X,} asn — oo has

been of great interest. The monographs by Steele [40] and Yukich [42] provide two engaging presentations of ensuing
research in this area. Many of the convergence results have been encapsulated in the general framework of continuous and

guasi-additive Euclidean functionals recently introduced by Redmond and Yukich [33]. This framework allows one to



relatively simply obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required

continuity and subadditivity properties. We follow this framework in this paper.

Let F' be a finite subset of points ij, 1]%,d > 2. A real-valued function_, defined onF is called aEuclidean

functional of ordery if it is of the form

Ly(F) = min } _|e(F)|" @

wheref is a set of graphs, e.g. spanning trees, over the poirifs inis an edge in the graplg| is the Euclidean length

of e, and~ is called theedge exponermtr power-weighting constantWe assume throughout this paper that v < d.
2.1 Continuous Quasi-additive Euclidean Functionals

A weight functionalL.,(X,,) of a minimal graph ori0, 1]¢ is a continuous quasi-additive functional if it can be closely
approximated by the the sum of the weight functionals of minimal graphs constructed on a dense parfitjaif of
Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),
and thek-nearest neighbor graph-NNG). In the TSP the objective is to find a graph of minimum weight among the set

C of graphs that visit each point i, exactly once. The resultant graph is calledtfiaimal TSP touand its weight is
L$SP(XH) = min.cc ), |e|”. Construction of the TSP graph is NP-hard and arises in many different areas of operations
research [24]. In the MST problem the objective is to find a graph of minimum weight among the graphih

span the sampld’,,. This problem admits exact solutions which run in polynomial time and the weight of the MST is
Ll,fST(Xn) = min.c7 >, |e|”. MST’s arise in areas including: pattern recognition [41]; clustering [43]; nonparametric
regression [2] and testing for randomness [19]. FH¢NG problem consists of finding the sk, ; of k-nearest neighbors

of each pointX; in the setY,, — { X;}. This problem has exact solutions which run in linear-log-linear time and the weight
is LE-NNG (X)) = Y1 mineen, , Y-, le]”. Thek-NNG arises in computational geometry [8], clustering and pattern

recognition [37], spatial statistics [7], and adaptive vector quantization [13].

The following technical conditions on a Euclidean functiohalwere defined in [33, 42].

e Null condition L. (¢) = 0, where¢ is the null set.

e Subadditivity Let Q™ = {Qi}g’;dl be a uniform partition of0, 1]¢ into m? subcubes); with edges parallel to



the coordinate axes having edge lengtirs' and volumesn =7 and Iet{qi}g’f1 be the set of points ifo, 1]¢ that
translate eachy); back to the origin such tha; — ¢; has the formm=1[0,1]?. Then there exists a constaft

with the following property: for every finite subs&tof [0, 1]¢

md

L,(F) <m™" ) Ly (m[F N Qi — gi]) + Com"™” 2

i=1

e Superadditivity For the same conditions as above@®@p m, andg;, there exists a constaét, with the following

property:

md

Ly(F)>m ") L, (m[FNQ; - q]) - Com* " 3)
i=1
e Continuity There exists a consta6} such that for all finite subsef§ andG of [0, 1]¢,
Ly (F UG) = L,(F)| < C3(card G)) =/, (4)
where cardG) is the cardinality of the subsét. Note that continuity implies

| Ly (F) = L, (@)] < 2C3(card F A G))\ /1, (5)

whereF A G = (F UG) — (F N G) denotes the symmetric difference of sétandG.

The functionalL,, is said to be a@ontinuous subadditive functionaf order~ if it satisfies the null condition, sudad-
ditivity and continuity. L., is said to be &ontinuous superadditive functionalf order- if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functionals on [0, 1]? there exists alual superadditive functional?. The dual
functional satisfies two properties: L), (F') + 1 > L3 (F) for every finite subset’; and, 2) for i.i.d. uniform random

vectorsU+, ..., U, over|0,1]%,
|E[L,(Uy,...,U,)] = E[L}(Uy,...,U,)]| < Cynlt=7=D/d (6)
with Cy a finite constant. The condition (6) is called ttlese-in-mean approximatian [42].

A stronger condition which is useful for showing convergence of partitioned approximationgigitit@ise closeness

condition

|L4(F) = L5(F)| < o ([card(F)]@=)/1) (7)



for any finite subsef” of [0, 1]¢.

A continuous subadditive functional, is said to be aontinuous quasi-additive functionil L., is continuous sub-
additive and there exists a continuous superadditive dual functi@ghalVe point out that the dual’ is not uniquely
defined. It has been shown by Redmond and Yukich [34, 33] that the boundary-rooted versiomamely, one where
edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite
property (6) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of the power weighted MST, Steiner tree, TSP, k-NNG and others.

In [42, 33] almost sure limits with a convergence rate upper bour@ @i—l/d) were obtained for continuous quasi-
additive Euclidean functionals, (U4, . ..,U,) under the assumption of uniformly distributed poibfs, ...,U,, and
an additional assumption that, satisfies the “add-one bound”

e Add-one bound
| BE[L,(U1,...,Upny1)] = E[L,(Uy,...,U,)] | < Csn™/4. (8)

The MST length functional of order satisfies the add-one bound. A slightly weaker bound on a.s. convergence rate also

holds whenL, is merely continuous quasi-additive [42, Ch. 5]. The!/d a.s. convergence rate bound is exactffer 2.
3 Convergence Rate Bounds for General Density

In this section we obtain convergence rate bounds for a general non-uniform Lebesguefidfmityonvenience we will

focus on the case thdt, is continuous quasi-additive and satisfies the add-one bound, although some of the following
results can be established under weaker assumptions. Our method of extension follows common practice [39, 40, 42]: we
first establish pointwise convergence rates of the mien, (X 1, ..., X ,,)]/n{?=7)/¢ for piecewise constant densities

and then extend to arbitrary densities. Then we use a concentration inequality to obtain aC-remth convergence

rates ofL. (X1, ..., X,)/nld=7/d,
3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel.

6



Lemma 1 Letg(u) be a continuously differentiable functionwf R which is convex cap and monotone increasing over

u > 0. Then for anyu, > 0

g(uo)

Uo

9(uo) — Al < g(u) < g(uo) + g (uo)|A]

whereA = u — u, andg' (u) = dg(u)/du.
Proof
Sinceg(u) is convex cap the tangent lingu) —fg(uo) + ¢ (uo)(u — u,) upper boundg. Hence

gw) < glue) +g (uo)|u — .

On the other hand, agis monotone and convex cap, the functidm,) def g(uo) + g(“") (u — uo)l{y<y,) IS @ lower

bound ony, wherel, <, is the indicator function of the s¢t: < u, }. Hence,

9(uo)

o

|u =t

glu) > g(u,) —
0

A density f(z) over [0, 1]d is said to be a block density witm? levels if for some set of non-negative constants

{0} satisfyingy=[", gim—* =1,

= Z ¢i1Qi (ili)
i=1

wherelg(z) is the set indicator function af c [0, 1]¢ and {Qi}g’fl is the uniform partition of the unit cub@, 1]¢

defined above.

Proposition 1 Letd > 2and1 < vy < d — 1. AssumeXy,..., X, are i.i.d. sample points ove0, 1]¢ whose marginal
is a block densityf with m? levels and suppo C [0, 1]¢. Then for any continuous quasi-additive Euclidean functional

L., of ordery which satisfies the add-one bound (8)

‘E[LW(Xl, o X))t/ BLWd/ FA=I/(zy dz| <O ((nm—d)—l/d) _
s

wherefy,,, 4 is a constantindependent ¢f A more explicit form for the bound on the right hand side is

K1+Cy fS

(nm=9)174

z)dz (1+0(1)), d>?2
0 ((nm~)7/1) =

Ki14+Ca+Br, 4
St [s f°

z)dz (1+0(1)), d=2



Proof

Let n; denote the number of sampléX 4, ..., X ,} falling into the partition cellQ; and let{U;}; denote an i.i.d.

sequence of uniform points df, 1]¢. By subadditivity, we have

d

m
Ly(X1,..,Xp) < m 7Y Ly(m[{X1,...,Xn}NQi —qi]) + Crm® 7
i=1
md
= m Y L,(Ui,...,Uy)+Cim*™7
i=1

since the samples in each partition @@l are drawn independently from a conditionally uniform distribution giuen

Note thatn; has a BinomiaB(n, ¢;m~¢) distribution.

Taking expectations on both sides of the above inequality,

d

E[L,(X1,...,X,)] < m 'Y E[E[L,(Ui,...,Upy)|ni]| + Cim® . ©)

i=1
The following rate of convergence for quasi-additive edge functiohalsatisfying the add-one bound (8) has been
established fot < v < d[42, Thm. 5.2],

d—~ d—1—~

|E[L(Uy,...,U,)] = Br,an @ | < Kin~ a (10)

whereK; is a function ofC, Cs3 andCs5.

Using the result (10) and subadditivity (9) én, for 1 <y < d we have

d—vy—1

m’ d—y ol
E[L,(X1,...,X,)] < m”ZE{BLdeid + Kin; * ]JrclmfM
i=1

md d—~ md d—~—

d—vy ng\ e d=y—1 ng\a
=m" T E (—) TKinT @ Y E (—) Cym®7.
m BLy,dn 2 { o }+ m 1n 2 { o +COim

(11)

Similarly for the dualL? it follows by superadditivity (3) and the close-in-mean condition (6)

E[L3(X1,..., X )]

o [ ]mss e Sa(2)

i=1




forl <y <d.

We next develop lower and upper bounds on the expected values in (11) and (12). As the fyfictien u” is

monotone and concave over the ramge 0 for 0 < v < 1, from Lemma 1

g

ni\" v
(—) > pi—pl = - (13)
n n
wherep; = ¢;m~%. In order to bound the expectation of the above inequality we use the following bound
n; 2 1 N/
i < E i 1-— i < -
A { n } Jmvrll—p) < 7
Therefore, from (13),
n;\v u—%
E [(g) ] > pi—p; 2/Vn. (14)

By concavity, Jensen’s inequality yields the upper bound
E[(%)] <[2(2)]) - @9

Under the hypothesis < v < d — 1 this upper bound can be substituted into expression (11) to obtain

E[L(X1,...,X,)/nld=/d]
m d—vy C
—d 7d —d 1
< BL,.d E’—1: ¢; ¢ m nm—d (rm—d\1/d Z ¢) m + (nm—d)(d=7)/d

Ci

= 5L7,d/sf(d7ﬂ/d($)d$ + (nm—d)l/d /Sf(dﬂfl)/d(w)dx + (nm—2)d=7d" (16)

Applying the bounds (15) and (14) to (12) we obtain an analogous lower bound for the mean of the dual fuh¢tional

E[L:/(Xla N ,Xn)]/n(diA{)/d

> BLw,d/ /7 (@)de %/Sﬁ%(w)ax

(nm*d)
K +Cy 1 Cs
eyt o " Gy @ an
By definition of the dual,
E[L,(X1,...,X,)]/n T > E[LY(X1,...,X,))/n' T —n "7 (18)

9



which when combined with (17) and (16) yields the result

EB[L,(X1,...,X,)] d—y K1+C4 BL,.d 1,
ol e _BL”d/Sf  (z)dz| < 1/d dm—+—( — d)1/2/5f2 d(x)dx
+m =, (19)
whereK, = max{C;, C>}. This establishes Proposition 1. O

3.2 Mean Convergence Rate for Density Functions in Sobolev Spaces

Before extending Proposition 1 to general densities we will need to introduce some concepts from the theory of Sobolev

spaces.

Let £, (R?) be the space of measurable functions @&ksuch that|f||, = ([ | f(z)|Pdz)'/? < cc. For f areal valued
differentiable function oveR?, letD,; f = 0f/0x; be ther;-th partial derivative off, andD f = [0f /0x1,...,0f/0x4]
be the gradient of. The concept of derivative can be extended to non-differentiable functionsf Eocf,(R?), g is

d

called ther j-th weak derivativef f [44], written asg efDIJ. fif

F(@)Ds, p(@)de = — / o(@)p(x)de
Rd Rd

for all functions infinitely differentiable with compact support. The weak derivagvs sometimes called thgener-
alized derivativeof f or distributional derivativeof f. If f is differentiable, then its weak derivative coincides with the

(usual) derivative.

We now define a function space whose members have weak derivatives lyingdp (k&) spaces [44]. Fop > 1,
define theSobolev space
WHE(R?) = L,(RY) N {f : Dy, f € L,(RY), 1< j < d}.
The spacdV!'? is equipped with a norm

1fllep = 1fllp + (DIl -

The Sobolev spacd ' ?(R?) is a generalization of the space of continuously differentiable functions, in the sense that
WP (R?) contains functions that do not have to be differentiable (in the usual sense), but can be approximated arbitrarily

close in thd|.||; , norm by infinitely differentiable functions with compact support ([44, Thm. 2.3.2]).

10



For 9™ = {Q; } ", a uniform resolutionn partition as defined in Sub-section 2.1, define the resolutioolock
density approximatiop(x) = Z;’;l $ilg, (x) of f, wherep; = m? fQ x)dz. The following lemma establishes how

close (inZ; (R?) sense) these resolution-block densities approximate functionslii'-» (R?).

Lemma2 For 1 < p < oo, let f € WHP(R?) have supportS C [0,1]¢. Then there exists a consta@t > 0,

independent ofz, such that
[ 1o6@) = f@)dw < Cam (DS, + o(1), (20)

whereA(p) =1, if 1<p<d and A(p) =d+1—d/p, if d<p< 0.

A proof of this lemma is given in Appendix A.

We can now return to the problem of finding convergence rate bounds on quasi-additive Euclidean functionals for non-
uniform densityf.Let {Xi}?zl be i.i.d. random vectors having marginal Lebesgue density equal to the block density

approximationp. By the triangle inequality,

B (X X0T = [ 17 ()0 (21)

< ‘E[L,Y(Xl,...,)zn)]/n%’ —BLWd/ 6T (z)dw| + Br, 4 /(deT"(a:)d:c—/sdeT”(w)dw

‘E (X1,.... X)) - E[L(X1,..., X ‘/n T = [ IT+ 111

TermI can be bounded by Proposition 1. To bourdd consider the following elementary inequality, which holds for
a,b>0,0<~v<d,

‘amﬂ)/d —pla=n/d| < |q - p|d-/d,
and therefore, by Lemma 2 and Jensen’s inequality,
1< B0 [ 106@) = f@)]*F da < B, 0 Cun=00=/1 (DA 4 o(1) (22)
whereC, = C{*=/4,
The following Proposition establishes an upper bound on ferfin (21):
Proposition2 Letd > 2 and1l < vy < d. Assume{X;}! , are i.i.d. random vectors ovep), 1]? with density
f e WHP(R?), 1 < p < oo, having supportS C [0,1]%. Let{X,}®, be i.i.d. random vectors with marginal Lebesgue

11



densityg, the resolutions: block density approximation gf. Then, for any continuous quasi-additive Euclidean func-

tional L., of ordery
BlL(X1,..., X )] - E[L(X1,..., X)) /n'T < C} Clm=2®)d= ’V/d(||Df|| (d=7/d 4 o(1 )) (23)

where)(p) is defined in Lemma 2 an@ = 2(2¢=/4C;,

Proof.
As (21) we denote the left hand side of (23) by lIl. First invoke continuity (5).of

n =N/ < 2C4FE

- - (d—v)/d
card({Xl,...,Xn}A{X1,---,Xn}) ! } :

To bound the right hand side of the above inequality we use an argument which is discussed and proved in ([39], Theorem

3). There it is shown that i approximateg in the £, (R?) sense:

/|¢ x)|de < e,

then, by standard coupling arguments, there exists a joint distrib&timm the pair of random vectorsX, X) such that
P{X # X} < e. Itthen follows by Lemma 2 and the set inequalitf1,..., X, } A {X1,..., X,} CU" {X;} A
{X;} that

(d-v)/
IIr

IN

205E [card(u?zl{Xi} A {Xi})
(d—’Y)/d'|

{ - . nld=7/d
203E[<2;1{Xi¢Xi}> J/

205(2nP{X, # Xl})(d*“/)/d/n(d*v)/d < 2@d=m/dg,(d=7)/d

"] Jnld=1d

IN

IN

where the second inequality follows from the faatd ({X,»} A {X,»}) € {0,2}. Finally, by Lemma 2 we can make

as small a€sm P (||Df||, + o(1)) and still ensure that be a block density approximation foof resolutionm. O
We can now substitute bounds (19), (22) and (23) in inequality (21) to obtain

E[Ly(X1,...,X,)]/n 0 — 3, 4 /S fl@) /g (24)

K1+C4< et of1 >>+Wff7d§i/</s %—%(w)dw+o(l)>

1/d
+ (Buy.a+ C3) Cm 2P/ (IID £/ 4 (1))

_+_

(nm—d)(d v)/d n(d ’Y)

12



This bound is finite under the assumptions tfiat W'*(R%) with supportinS c [0,1]¢ and thatfz~7 is integrable

overS.
The bound (24) is actually a family of bounds for different valueswof 1,2, .. .. By selectingn as the function of

n that minimizes this bound, we obtain the tightest bound among them:

Proposition 3 Letd > 2and1 < v < d — 1. AssumeX,..., X, are i.i.d. random vectors ové0, 1]¢ with density
f e Wtp(R%), 1 < p < oo, having supportS C [0,1]%. Assume also thatz 7 is integrable overS. Then, for any

continuous quasi-additive Euclidean functiodigl of order+ that satisfies the add-one bound (8)

BlLy (X1, ., Xm0/~ g, / SO de
S

<0 (n*n(dmp)) ,

where
al(p) 1

ri(d,y,p) = ap) +1d

wherea = =2 and\(p) is defined in Lemma 2.

Proof: Without loss of generality assume that—¢ > 1. In the rangel > 2 and1 < v < d — 1, the slowest of the
rates in (24) argnm ) /¢ andm~*P)(¢-7)/_ \We obtain anm-independent bound by selecting= m(n) to be the

sequence increasinginwhich minimizes the maximum of these rates
m(n) = arg min max{(nm*d)*l/d, m*A(p)(d*”’)/d} .
The solutionm = m(n) occurs wher{nm =) ~1/¢ = m=A@P)(d=1/d orm = pl/ldaAP)+D] (integer part) and, corre-
spondinglyyn—A®)(d=1/d — p~ g i This establishes Proposition 3. O
3.3 Concentration Bounds
Any Euclidean functionaL., of order~ satisfying the continuity property (4) also satisfies the concentration inequality
[42, Thm. 6.3] established by Rhee [36]:
—(t/C3)?4/(d=)
P(|L,(X1,...,X,) — E[L,(X1,...,X,)]| >t) < Cexp (T) , (25)

where( is a constant depending only on the functiohalandd. It is readily verified that ifKk > C5C(4=7)/(24) the

right hand side of (25) is summable over= 1,2, ... whent is replaced byK (nInn)(?=7/29  Thus we have by

13



Borel-Cantelli

IL,(X1,..., X ) — E[L,(X1,...,X,)]| <O ((n 1nn)<dﬂ>/<2d>) (a.s.).

Therefore, combining this with Proposition 3 we obtain the a.s. bound

Proposition 4 Letd > 2and1 < v < d — 1. AssumeX, ..., X, are i.i.d. random vectors ové6, 1]¢ with density
f e Whr(RY), 1 < p < oo, having supportS C [0, 1]¢. Assume also thafz~7 is integrable overS. Then, for any

continuous quasi-additive Euclidean functiorigl of order- that satisfies the add-one bound (8)

(d=v)/(2d)
<0 (max{ <1nn> , n_“(dmp)}> (a.s.),
n

Ly(Xy,..., X )/ =0/ g, d/fd N4 (z)da

wherer, (d,~, p) is defined in Proposition 3.

The concentration inequality can also be used to bound freomentsZ[| L (X 1, ..., X ) — E[L, (X1, ..., X)]|"]'/*,

k=1,2,....In particular, as forany r\Z: E[|Z]] = f0°° P(|Z| > t)dt, we have by (25)

E[|L(X1,..., X)) — E[Ly(X1,..., X)]"] /Ooo P (|L7(X1, ., Xn) — E[L(X1,...,X,)]| > t1/~) dt

oo —¢2d/[K(d—7)]
030/ exp <7> dt
0 Cn

— Aﬁnn(d—v)/(%)’ (26)

IN

Whel’eA,.; — C3cm(d—fy)/(2d)+1 fooo e—uzd/['c(dfv)]du.
Combining the above with (24), we obtain
Proposition 5 Letd > 2and1 < v < d — 1. AssumeX, ..., X, are i.i.d. random vectors ové6, 1]¢ with density

f e Whr(RY), 1 < p < o0, having supportS C [0,1]¢. Assume also thafz~7 is integrable overS. Then, for any

continuous quasi-additive Euclidean functiorigl of order- that satisfies the add-one bound (8)

K 1/Ii
E[L,Y(Xl,...,Xn)/n(d”)/d—ﬁLwd/f(dV)/d(a:)dm ] (27)
S

K1+C'4 < 2)da + of1 )> +(miL% (/5 %—%(w)dx+o(1)>

(nm—2)17d
a-)/d (a—)/d
(nm—d)(d n7a T s ’y)/d + (BLya + C3)Ch m AP (DD 4 o(1) )

+ AV =(d=)/(2d)

+
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Proof.

For any non-random constgat E[|[W + p|*]'/* < E[|W|¥]'/* + |u|. Identify

B =B (X X g [ O )
S
W =(L,(X1,...,X,) — B[L,(X1,...,X,)])/nl?0/d
and use (26) and (24) to establish Proposition 5. O

As them-dependence of the bound of Proposition 5 is identical to that of the bias bound (24), minimization of the

bound overn = m(n) proceeds analogously to the proof of Proposition 3 and we obtain the following.

Corollary1 Letd > 2andl < v < d — 1. AssumeX,..., X, are i.i.d. random vectors ovd0, 1]¢ with density
f e Wtp(R%), 1 < p < oo, having supportS C [0,1]%. Assume also thatz 7 is integrable overS. Then, for any

continuous quasi-additive Euclidean functiodigl of order+ that satisfies the add-one bound (8)

d

wherer, (d,~, p) is defined in Proposition 3.

n:| 1/k

Ly(X1,...,X,)/nld=/d _ BLW,d/ FUI () da
s

<0 (nrttm), (28)

3.4 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Proposition 4 and Corollary 1 hold uniformly over the class of Lebesgue defsitids!-? (R?)
with |Df||, < C and integrablg (¢=")/4=1/2 |f o = (d—~)/d € [1/2,(d—1)/d] then, as the suppaft C [0, 1]¢
is bounded, this integrability condition is automatically satisfied. To extend Proposition 4 and Corollary 1 to the
rangea € ((d — 1)/d, 1) would require extension of the fundamental a.s. convergence rate bodhhof'/?)

used in (10), established by Redmond and Yukich [33], to the@ase < 1.

2. Itcan be shown in analogous manner to the proof of the umbrellatheorems of [42, Ch. 7} tisatdot a Lebesgue
density then the convergence rates in Propositions 4 and 5 hold when the region of inte§iatieplaced by the

support of the Lebesgue continuous componert of
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3. The convergence rate bound satisfig&l, v,p) < 1/d, which corresponds to Redmond and Yukich's rate bound
for the uniform density ovel0, 1] [42, Thm. 5.2]. Thus, the bound predicts slower worst case convergence rates
for non-uniform densities. However, as— oo, the class off € W ?(R?) becomes increasingly smooth and

ri(d,vy,p) = af’d(ﬁ)l}rl %t, which for larged is very close to thé /d rate bound.

4. Whenf is piecewise constant over a known partition of resolutioe= m,, faster rate of convergence bounds are
available. For example, in Proposition 1 the bound in (19) is monotone increasing Tinerefore the sequence
m(n) = m, minimizes the bound as — oo and, proceeding in the same way as in the proof of Proposition 5, the
best rate bound is of ordetax {n~(4=7/(2d) p=1/d} As theO(n~1/?) bound on mean rate of convergence is
tight [42, Sec. 5.3] forl = 2 and uniform densityf, it is concluded that forr = (d — v)/d > 2/d the asymptotic

rate of convergence of the left hand side of (28) is exa@tly /%) for piecewise constantandd = 2.

5. Fora = (d —v)) > 2/d, it can be shown that the rate bound of Proposition 1 remains valid evendbes not
satisfy the “add-one bound.” Thus, with> 2/d, Corollary 1 extends to any continuous quasi-additive functional
L, including, in addition to the MST, the TSP, the minimal matching graph and:thearest neighbor graph
functionals. As for the case < 2/d, we can use a weaker rate of mean convergence bound [42, Thm. 5.1], which
applies to all continuous quasi-additive functionals and unifg@rnm place of (10) in the proof of Proposition 1 to

obtain

E[L,(X1,..., X )] 041/ 5L7,d/ FU=/ (@) da
S

<0 (n—w) . (29)

6. A tighter upper bound than Corollary 5 on tBg-norm convergence rate may be derived if a bettedependent

analog to the concentration inequality (25) can be found.
4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [2€falR2&],
Mitchell [26], and Arora [1], as ways to reduce computational complexity. The fixed partition approximation is a simple
example whose convergence rate has been studied by Karp [20, 21], Karp and Steele [22] and Yukich [42] in the context

of a uniform densityy.
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Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-
eterm controlling the number of cells in the uniform partiti@™ = {Q;}", of [0, 1]¢ discussed in Section 2. Whemn
is defined as an increasing functiorvofve obtain a progressive-resolution approximatiofi{g.X,,). This approximation
involves constructing minimal graphs of ordeon each of the cell§;, i = 1,...,m¢%, and the approximationZ (X;,)
is defined as the sum of their weights plus a constant bias corréc¢tion

LX) = Z Ly (Xn N Qi) + b(m), (30)

i=1

whereb(m) is O (md—V). In this section we specify a bound on tiig-norm convergence rate of the progressive-
resolution approximation (30) and specify the optimal resolution sequen¢e) } ,~o which minimizes this bound. Our

derivations are based on the approach of Yukich [42, Sec. 5.4] and rely on the concrete version of the pointwise closeness

bound (7)
Cleard(F)](@=7-D/d-D " 1 <y <d—1
|Ly(F) — L:(F)| < ¢ Clogcard(F), y=d—-1#1 , (31)
C, d-—1<vy<d

for any finite I C [0, 1]%. This condition is satisfied by the MST, TSP and minimal matching function [42, Lemma 3.7].
We first obtain a fixedn bound onC; deviation of L7 (X;,) /n(4="/4 from its a.s. limit.
Proposition 6 Letd > 2 and1 < v < d — 1. Assume that the Lebesgue dengity W' -?(R%), 1 < p < oo has support

S C [0,1]%. Assume also that'/>~7/¢ are integrable oves. Let L' (X)) be defined as in (30) wherfg, is a continuous

guasi-additive functional of ordey which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

E [ L™ (X,) /(=7 — BLW,d/ FU () da }
S

<0 (maX {(nm—d)—v/wcl—w m-AP)d=)/d n—(d—v)/(2d)}) ’ (32)
where\(p) = 1is defined in Lemma 2.

if b(m) = O(m?7)

Proof:

Start with

E [‘L;”(Xn)]/n(dw/d—ﬁh,d /S FU (@) da

] < (33)
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d

Analogously to the proof of [42, Thm. 5.7], using the pointwise closeness bound (31) one obtains a bound on the

Lv(-)‘f‘n)/”d?T7 - /BLV,d/Sfd_Tw(m)dm

|+ Ellepe) -l . e

difference between the partitioned weight functibft (F') and the minimal weight functiofi., (F) for any finite ' C

[0,1]¢

md

b(m) — Cym@=" < LPM(F) = Ly(F) <m ™0 Y (card(F N Q) ™/ 414+ Comd=7 +b(m).  (35)

i=1
As usual letgp(x) = E?j #:m~? be a block density approximation ft{z). As {X, N Q; } », are independent and

E[Z]"] < (E[|Z]])* for0 <u <1

E[|L7(X,) — Ly(X) ]
<m CY E [(card(Xn nQ)) v/ “H)] +[b(m) — Com@=7| + 1 + Cym®= + b(m)
=1
< m~Tpld=r=D/d-1) Z(d)im—d)(d—'v—l)/(d—l) + |b(m) — Cym4=7| + 1+ Com®™ + b(m)

i=1
md

= m/(d=1)p(d=—y=1)/(d=1)x Z ¢§d7771)/(d71)m_d + [b(m) — Clmd_7| +1+Com® + b(m)

i=1

= mw/(d_l)n(d_”’_l)/(d_l)C/ A==V (@) dx + |b(m) — Cym®™| + 14 Com™7 + b(m)
s

Note that the bias terfid(m) — C;m? 7| can be eliminated by selectingn) = C;m?~". Dividing through byn(¢-7)/4

noting that(|b(m) — C1m?=7| + Com=7 + b(m)) /n(¢=7)/4 < B(nm~4)~(4=7)/4 for some constanB

E L:/n(Xn) - L'Y(Xn)
nld—)/d

} < (nm—d)—v/[d(d—l)]c/ ==/ =D (g)dx 4+ (nm~?)~(d=1/dp 4 p=d=N/d,
s

Combining this with Proposition 5 we can bound the right hand side of (34) to obtain

d |

L;n(Xn)]/n(d—v)/d_ngd/ f(d—'v)/d(x)da,

K +C BL,.d 1o
: 1jd< x)dx + o1 )>+W</sf2 d(m)dm+0(1)>
= )(d St Wd (ﬂLw,d+C’§)Cgm_x(”)(d_"’)/d(||Df||;d_7)/d+o(1)) + Ayp~@d=n/(2d)
c IR - (d—
e L4 @de 4 o)) + (om0, (36)
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Over the rangé < v < d — 1 the dominant terms are as given in the statement of Proposition 6. O

Finally, by choosingn = m(n) to minimize the maximum on the right hand side of the bound of Proposition 6 we

have an analog to Corollary 1 for fixed partition approximations:

Corollary 2 Letd > 2and1 < vy < d — 1. Assume that the Lebesgue dengity 1W':P(R%), 1 < p < oo has support
S C [0,1]%. Assume also that'/>=7/4 is integrable oves. LetL*(X,) be defined as in (30) where, is a continuous
guasi-additive functional of ordey which satisfies the pointwise closeness bound (31) and the add-one bound (8). Then

if b(m) = O(m?7)

E HL;’“") (X1, Xp) 0= — gy /S FU (@) da ] <0 (n—wv%?)) : (37)
where
a(p) 1
ra2(d,y,p) = m E

b

wherea = d%d” and \(p) is defined in Lemma 2. This rate is attained by choosing the progressive-resolution sequence

m = m(n) = pL/1d(T5E ax(p)+1)]

4.1 Discussion

We make the following remarks.

1. Under the assumed conditign< d — 1 in Corollary 2,72(d,~,p) < r1(d,v,p), wherer,(d, v, p) is defined in
Corollary 1. Thus, as might be expected, the partitioned approximation Hasarm convergence rate (37) that

is always slower than the rate bound (28), and the slowdown increaéés-al) / increases.

2. In view of (36), up to a monotonic transformation, the rate constant multiplying the asymptotic vaté"-») is
an increasing function of ; f(¢=7=1/(@=1(g)dx, which is the Rhyi entropy off of order(d — v — 1)/(d — 1)
(see (38) in the next section). Thus fastest convergence can be expected for densities witkeisynahiRopy.

1/2
3. Itis more tedious but straightforward to show thatfhedeviationE [|L$(Xn)/n(d*”)/d — B fs f(d”)/d(w)dmf]

obeys the identical asymptotic rate bounds as in Proposition 6 and Corollary 2 with identical bound minimizing

progressive-resolution sequenae= m(n).
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4. As pointed out in the proof of Proposition 6 the bound minimizing choice of the bias corréctionof the
progressive-resolution approximation (30p{s) = C;m?~7, whereC, is the constant in the subaddivity condi-
tion (2). However, Proposition 6 asserts that, for example, ugimg = Cm?~" with arbitrary scale constanit,
or even using(m) = 0, are asymptotically equivalent to the bound minimiziitg:). This is important since the
constant’; is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (30) is a special case n of the greedy approximation to thkepoint minimal
graph approximationintroduced by R&tal[31] whose a.s. convergence was established by Hero and Michel [18]
(Note that the overly strong BV condition assumed in [18] can be considerably weakened by replacing BV space
with Sobolev space and applying Lemma 2 of this paper). Extension of Proposition 6 to greedy approximations to

k-point graphs is an open problem.
5 Application to Entropy Estimation

In this section we apply the previous convergence results to non-parametric entropy estimation. In particular, using
the convergence rate bounds derived above, Proposition 8 below establishes asymptotic performance advantages of the
minimal graph estimator methods as contrasted to non-parametric density plug-in methods of entropy estimation. For

concrete applications of Proposition 8 see Hetiad [15].
For a Lebesgue continuous multivariate dengithe Rényi entropy of ordet is defined as [35]:
Hy(f)=1-a)! ln/fa(w)dm. (38)

To be consistent with previous sections of this paper, we restrict the supgfax afsubset oft, 1]¢ and we only consider
the rangex € (0, 1). The Rényi entropy converges to the Shannon entrBipyf) = — [ f(z) In f(x)da in the limit as
a — 1. As a becomes smaller thedRYi entropy tends to equalize the influence of the small amplitude regions, e.g. tails,

and the large amplitude regions pf

We treat entropy estimates of the fofdy, = (1-a) ln I, wherel,, is a consistent estimator of the integral
1% = [ £ (@)ia.
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Given non-parametric function estimay/éf\sof f* based om i.i.d. observationX 4, ..., X, from f, define the function
plug-in estimatorf(fa). With L, any continuous quasi-additive functional define the estimater Ly(X1,...,X)/(BL,,an%),

wherey € (0, d) is selected such that = (d — ~)/d. Consistent with [16] we will call, anentropic-graph estimator

Let H, andI, denote estimates computed by either the plug-in or the entropic-graph estimators. A standard purturba-

tion analysis ofn(z) establishes

Thus as a function of the asymptotic,.-norm rate of convergence éf, — H,,(f) will be identical to that off, — I(f2).

Minimax rates of convergence for non-parametric function estimation have been extensively studied in the harmonic
analysis literature. In these studies the Besov cla§§(]Rd) of smooth functions is widely adopted. Among other
applications, Besov spaces play a central role in wavelets and wavelet shrinkage estimation [10]. The reader is referred to
[23] for a general motivation on the use of Besov spaces. Before we can introduce the Besov class we need to define the

following quantities. Define the finite difference of functigrin the direction ofr € R? as:

d:ef

Arf(x) = fl@+1) - f(z).

By induction, define thé-th order finite difference in the direction efas

.
Ak fa) CFALAE f(2) = S (<) <I;>f(w +ir).

[=0
Following [30], letl < p,q < oo, 0 > 0 andk, ¢ be nonnegative integers satisfying the inequalitieso — ¢ > 0. One
possible definition of the Besov space is the following: the funcfidrelongs to the clasBg ,(R?) if f € £,(R*) and
there exists partial weak derivative$®) f = 9¢f/0xz3* ... 9z’ of orders = (s1,...,54) (|| = 81 + ... + 54 = 0)
such that the following seminorm is finite:
_ IAFD@ £l \ " dr
1 £llog,, = ;@ {/Rd < 7|72 i

Finally, with minor abuse of notation, for scalar> 0 define the Besov ball

P9 —

BY(C) = {f € BTy B < 1 lloa 17 + 1 Flg . < c}
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Proposition 7 Assume that the Lebesgue dengitwith supportS c [0, 1] is such thatf® € By (C). Then, for any

plug-in estimator[(f;)

1 v > 0 (n*0/<2"+d>) . (39)

wp B[R - 1)

feeBg (C
Proof:

The proof relies on well known results from non-parametric function estimation which we only sketch here. The reader

is referred to [29] for more detalils.

For any estimatog,, of g based on i.i.d. sampleX,,..., X, the minimax.(, integrated error over the Besov ball

By ,(C) satisfies

sup
geBg (C)

E [(gule) - g<m>>2dw] o (noe/emen) . (40)

We show below that, fo§ = fan andg = f¢, this implies

97 1/2

sup E ‘/(g(m) —g(z)dz >0 (n*"/(Z"er)) . (41)
geBg ,(C)
The inequality (39) follows immediately from this.
Relation (40) implies that for aly € By ,(C)
lim sup ([¢(x) — g(w)]n”/(2”+d)‘ < oo, (w.p.l), (42)
n— 00

except possibly on a subset[6f 1]¢ of measure zero, and for somec B; (O)

lim inf
n—00

[§(@) = g(@)In”/ 2| >0, (wp.1) (43)

over some subset @, 1] of positive measure. Therefore, lettipg= f, using relations (42) and (43), there exist finite

constantg”; andC> such that

57 1/2
] < Cin~ /G (1 4 o(1)),

E ‘ [ @@ - g(@)ia

forallg € By (C), and there exists a functigne By ,(C) such that

1/2
> Cyn 77D (1 4 0(1))

2

5| [(@) - stw)aa
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Therefore,

Con~7/7+ (1 4 0(1)) < sup
geB7 ,(C)

B ‘ [ - gtapaa

971/2
] < O/t (1 4 o(1))

which establishes (41) and the proof of Proposition 7 is completed. O

To compare the rate performance of entropic-graph estimators to plug-in estimators, we will need the following that

relates functions in a Sobolev space to functions in a Besov class.
Lemma 3 Letp > d and leto be a positive integer. TheB7 , (R?) ¢ W#(R%).

Proof. See [4], theorems 18.8 and 18.9. O

Corollary 1 and Proposition 7 together with Lemma 3 provide a quantitative comparison between the worst case rates

of convergence of both types of non-parametric estimators:

Proposition 8 Letd > 2 anda € [1/2,(d — 1)/d]. Assume that the Lebesgue dengityaving supportS C [0, 1]% is

such thatf* € B, ,(C), p > d. Then, for any plug-in estimatdr(f;)

1/2

> 0 (n*ﬂ) , (44)

2

ap || - 17

feeB} (C
while for any entropic-graph estimatdy, implemented with edge exponergatisfyinga = (d — v)/d

N

Ia_I(fa)

a(d+1—d/p) 1

571/2
] <0 (n*mz), (45)

sup [E
faeB;J(C)

Proof.

In view of Proposition 7 we only need establish the second inequality (45)f betan arbitrary density satisfying
the conditions of the Proposition and Wt'-*(C) = WLYP(R) N {f : || f|l., < C} denote the Sobolov ball of radius
C > 0. By Lemma3f* € B, ,(C) implies f* € W'»(B), for some positivéB. Since fora € (0, 1) the scalar function
G(u) = ul/* satisfiesG(0) = 0 andsup,,>, G'(u) < oo, it follows from [38, Thm. 1] thatf* € W'*(B) implies
f € WhP(A) for some positived. Thus{f : f* € B, ,(C)} C {f : f € W"P(A)}. Furthermore, a§f*||, < oo
for any fo € BL,(C), fo~1/2 is integrable sincdflla_1/> < |flla—1/2p < I fllap = (Ifll,)/* < oc. Thus, as

a—1/2=1/2—-~/d, Corollary 1 yields (45) which establishes Proposition 8. O
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We make several comments in connection with Proposition 8.

1. By equating the exponents in the rates bounds of Proposition 8, we find that for

S 1 d

a>-—°>

~2d+1-d/p

the entropic-graph estimators exhibit fasfgrnorm convergence rates. Thus, under the conditions of the Proposi-

tion, entropic-graph estimators of entropy always have faster r.m.s. convergence rate than do the plug-in estimators.

2. The assumption: < (d — 1)/d prevents the application of the convergence rate bound (28) in Proposition 7 to
entropic-graph estimates of the Shannon entropy, which would requizel. In particular, we cannot use it to
bound a entropic-graph analog to the plug-in estimation method proposed by Mokkadem [27] in which Shannon
entropy is estimated by a sequerfc(gfgn) of plug-in estimators where,, < 1 andlim,_,, a;,, = 1. As men-
tioned in Remark 1 of Section 3.4, relaxation of this assumption would require extending Redmond and Yukich'’s

O(n~'/%) convergence rates [33].

3. The partitioned minimal graph approximation (30) can be adapted to entropy estimation in an obvious way and an

analog to Proposition 8 will hold with the right hand side of (45) replaced by the siower”>(%7:?)) rate bound.

4. If it is known a priori that the class of functiong is significantly smoother than the Besov class assumed in
Proposition 8 then plug-in methods can have much faster convergence. As a rather extreme exgnipla, if
piecewise constant block density overapriori known finite partition, a histogram plug-in estimator will have
the faster r.m.s. convergence ratekfl /\/n) while the entropic-graph estimator will only haggn—"'/4). This
dichotomy in entropy estimator convergence rates for smooth versus non-smooth density classes is analogous to
well known behavior of minimax rates for non-parametric and semi-parametric estimation of general functionals,

see work by Bickel and Ritov [5], Donoho and Low [9] and Birghd Massart [6].
6 Conclusion

In this paper we have given rate of convergence bounds for length functionals of minimal-graphs satisfying continuous

guasi-additivity. An application to entropy estimation was treated which established performance advantages of minimal
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graph estimators of entropy as contrasted with plug-in estimators. These results suggest that further exploration of minimal

graphs for estimation of &lyi divergence, Briyi mutual information, and &yi Jensen difference is justifed.

Future research should also include the extension of the rate of convergence bounds to smoother Sobolev space, i.e.,
densities with higher-order weak derivatives. This requires the derivation of new inequalities of the type stated by Lemma
2, which are similar to Sobolev- and Poincare- type inequalities. Also of interest is the extension of this work to densities

with unbounded support.
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A Appendix

In this appendix we prove the approximation Lemma 2 that shows how cloSg(lRf ) sense, a functiofi € W?(R?)
can be approximated by its resolutienblock density. We follow a standard approach: first prove the inequalities for
continuously differentiable functions and then extend the resultgt¢(R?) by using the fact that smooth functions are

dense in¥ 1P (RY).

Proof of Lemma 2First assume thdt < p < d and thatf is a continuously differentiable function. By the mean value

theorem, there exist poin£s € @; such that

o=t [ sy = 160,

Also by the mean value theorem there exist poififsc @; such that

[f(®) — f(&)] = IDf(¢s) - (2 - &), weqi.

Note that, in what follows].| means both the absolute valueRrand any norm irR?. Using the above results, the Jensen

inequality and the Cauchy-Schwarz inequality

</ |6( |dm>p /S|¢(m) |pdm—2/ 1F(&) — f(z)Pdz
ij/@ IDf () - (z — &;)|Pdz < §:|Df(¢i)|” /Qi @ — &,[Pda .

Asz,v,; € Q;, a sub-cube with edge length': va |z — &,;|Pdx = O(m~P~9). Thus, we have

(/ 6 |da:> < Cm- ”Z|Df N Pm=d < Cm~ p</8|Df(:1:)|”d:v+o(l)> .

Since smooth functions are denselint?(R?) ([44, Thm. 2.3.2]), using the standard limiting argument the above

IN

inequality holds forf € W'?(R?). This establishes Lemma 2 for< p < d.

Now, letd < p < oo and assumé is a continuously differentiable function. This part of the proof closely follows the

derivation of Morrey’s inequality for Sobolev spaces [11].

Start with
1

fl@) =6 = @)= (&) = | Ffa+1=0€t = [ Dftta+ 1 -0t (&)

0
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By the Cauchy-Schwarz inequality
1
£@) =i < [ IDf(t+ (1= 0€Idt [z - €.
0

Let B(x,r) def {y : ly — z| < r} be the closed ball centered @rwith radiusr, and letd B(x, r) d:ef{y Hy—z| =7}
be the boundary aB(z, r). Fix0 < r < em ™!, for somec > 0, and integrate the above inequality with respect wver
6B(£w T):
1
[ M@ —olas@ < [ [Dsa s 1 nglarasia),

aB(&,.r) oB(E&,r) Jo
wheredS(x) denotes a differentiable surface elemenﬁﬁ’(x, r). Now, make the following change of variables in the
integral on the right hand side:

w1 —ne, %N,

such that

lw—&;|=tle-§|=tr=1.

Then, by Tonelli's theorem,

) 148 " o DS
/M@ﬁr)uu #ildS(@) < /0/8% DIl 45y ar

_ 7 o,
= e e

/ |Df A qw / d_ldT
B(E em~1) |w £ |d !

IDf(w)
B £i,cm*1) |w £z|d !

Integrating with respect to

— ild
/B oy @) 61l

IN

= Cm™¢ dw .

Applying Holder’s inequality to the right hand side and using the factdhatp < oo
/ F(@) - dulde
B(&; .em~1)
1/p ) et
< Om—d / D f('w)|”dw> ( / —pd'w)
( B(Eivcmil) B(ﬁivcmil) |’LU - £i|(d_1)pTl
p—1 1/p
= O (@) ( / IDf(W)l”dw>
B(£i,cm*1)

1/p
— Om— 1+ (/ |Df(w)|”dw>
B(Eivcm_l)
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Finally, we bound thet; (R%) approximation error by using the above inequality, the elementary inequality+b'/? <
2(a 4+ b)'/?, a,b > 0, and by choosing = V/d:

/|f x)de = Z/ ¢Z|dx<2/ — ¢i|da

B(&;,cm~ 1)
md

1/p
cm—d—l+d/pz< / ) |Df(w)|”dw> < Om~ =M DA |l
i=1 \’B(§;,em™1)

Note thatC refers to different constants in the previous expressions. As before, extengion 1!-»(R?) follows by

IN

denseness of the smooth functiondfiit-»(R?). O
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