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Abstract

This paper is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample of points from a general multivariate Lebesgue dengitwer[0, 1]¢. It is known
that under broad conditions, when the functional applies power expanent(0, d) to the graph edge
lengths, the log of the functional normalized h{—)/¢ is a strongly consistent estimator of theri
entropy of ordera = (d — )/d. In this paper we investigate almost sure (a.s.) gt mean ()
convergence rates of this functional. In particular we show that over the space of multivariate densities
such thatf(?=7)/4 is of bounded variation, th&, convergence rate is bounded abovendy/(¢+1) when
d/2 <~ < d— 1. We obtain similar rate bounds for minimal graph approximations implemented by a pro-
gressive divide-and-conquer partitioning heuristic. In addition to Euclidean optimization problems, these
results have application to non-parametric entropy and information divergence estimation; adaptive vector
quantization; and pattern recognition. As a concrete illustration, the bounds derived in this paper imply that,
over the bounded variation class considered, the maxithierror of a minimal-graph estimator oeRYi
entropy converges faster than that of any plug-in estimator.
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1 Introduction

It has long been known that, under the assumption afdependent identically distributed (i.i.d.) vertices[in1]?,

the suitably normalized weight function of certain minimal graphs dveéimensional Euclidean space converges almost
surely (a.s.) to a limit which is a monotone function of thenii” entropy of the multivariate densitfy of the random

vertices. Graph constructions that satisfy this convergence property include: the minimal spanning tree (MST), nearest
neighbor graph (NNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted
variants. See the recent books by Steele [35] and Yukich [38] for introduction to this subje@iAr/?) bound on the

almost sure (a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained

by Redmond and Yukich [28, 29] when the vertices are uniformly distributed [0y&}”.

In the present paper we obtain bounds on a.s. jattdmean {,) convergence rates of power-weighted Euclidean
weight functionals of ordes for general Lebesgue densitigsfor which f(?~7)/4 is of bounded variation. Here the
dimensiond is greater than one ande (0, d) is an edge exponent which is incorporated in the weight functional to taper
the Euclidean distance between vertices of the graph (see next section for definitions). As a special case of Proposition
4, we obtain a0 (n~'/(¢*1)) bound on thel, convergence rate wheh < v < d/2. As contrasted witfO(n~'/%)
rate bound for uniforny, shown by Redmond and Yukich, this slowigy rate of convergence has a rate constant which
depends on the underlying density, indicating that fastest convergence occurg vaasriow REnyi entropy of order

(d — v — 1)/d and the total variatiorf(*~7)/? is small.

We also obtain r.m.s. convergence rate bounds for partitioned approximations to minimal graphs implemented by the
following fixed partitioning heuristic: 1) disseftt, 1]¢ into a set ofn? cells of equal volumes/m?; 2) compute minimal
graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation to
the minimal graph spanning all of the points[in 1]¢. Such heuristics have been widely adopted, e.g. see Karp [17],
Ravietal [26], and Hero and Michel [14], for examples. The computational advantage of this partitioned heuristic comes
from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linetdwein
partitioned algorithm only requires constructing minimal graphs on small cells each of which typically contains far fewer
thann points. In Proposition 5 we obtain bounds on convergence rate and specify an optimal “progressive-resolution

sequencein = m(n),n = 1,2,..., for achieving these bounds.



A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing
applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [12, 22, 14, 13],
and the entropy estimation application considered in this paper reflects this focus. In particular we showetigt a R”
entropy estimator constructed from a continuous quasi-additive minimal-graph, such as the MST or k-NNG, can have
faster convergence rates than plug-in estimators, such as those discussed by fgnbased on function estimation.
Specifically: over the space of densitiesuch thatf* is of bounded variation the worst cakg convergence rate of the
minimal graph estimator of &iyi entropy of ordew is upper bounded b@(n~'/(¢+1)) while any plug-in estimator has
minimax rate lower bounded b9 (n~'/(4+2)). Beyond the signal processing applications mentioned above, which are
treated in [12], these results may have important practical implications in other areas including: adaptive vector quantizer
design, where the &tyi entropy is more commonly called the Panter-Dite factor and is related to the asymptotically

optimal quantization cell density [10, 25], and entropy characterization of time-frequency signal representations [37, 3].

The outline of this paper is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework
of continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate bounds for such
functionals with general Lebesgue densftyln Section 4 we extend these results to partitioned approximations and in

Section 5 we apply the results of Sections 3 to non-parametric entropy estimation.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959, the asymptotic behavior of the weight function of
aminimal graph such as the MST and the TSP over i.i.d. random ptints { X1, ..., X, } asn — oo has been of great

interest. The monographs by Steele [35] and Yukich [38] provide two engaging presentations of ensuing research in this
area. Many of the convergence results have been encapsulated in the general framework of continuous and quasi-additive
Euclidean functionals recently introduced by Redmond and Yukich [28]. This framework allows one to relatively simply
obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required continuity and

subadditivity properties. We follow this framework in this paper.

Let F' be a finite subset of points ij§, 1]%,d > 2. A real-valued function_, defined onF is called aEuclidean



functional of ordery if it is of the form

Ly(F) = min } _|e(F)|" @

wheref is a set of graphs, e.g. spanning trees, over the poirifs inis an edge in the graplg| is the Euclidean length

of e, and~ is called theedge exponertr power-weighting constantWe assume throughout this paper that v < d.
2.1 Continuous Quasi-additive Euclidean Functionals

A weight functionalL.,(X,,) of a minimal graph ori0, 1]¢ is a continuous quasi-additive functional if it can be closely
approximated by the the sum of the weights functional of minimal graphs constructed on a dense parfitjaif of
Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),
and thek-nearest neighbor graph (k-NNG). In the TSP the objective is to find a graph of minimum weight among the set
C of graphs that visit each point i, exactly once. The resultant graph is calledtfiaimal TSP touand its weight is
LfSP(Xn) = min.cc ), |e|”. Construction of the TSP graph is NP-hard and arises in many different areas of operations
research [21]. In the MST problem the objective is to find a graph of minimum weight among the graphih

span the sampld’,,. This problem admits exact solutions which run in polynomial time and the weight of the MST is
Ll,fST(Xn) = min.c7 >, |e|”. MST’s arise in areas including: pattern recognition [36]; clustering [39]; nonparametric
regression [2] and testing for randomness [15]. The k-NNG problem consists of finding fig seft k-nearest neighbors

of each pointX; in the setY,, — { X;}. This problem has exact solutions which run in linear-log-linear time and the weight

is LE-NNG(x,) = 37 minen, , . le|”. The k-NNG arises in computational geometry [8], clustering and pattern

recognition [33], spatial statistics [7], and adaptive vector quantization [11], among other areas.

The following technical conditions on a Euclidean functiohalwere defined in [28, 38].

e Null condition L. (¢) = 0, where¢ is the null set.

e Subadditivity Let Q™ = {Qi}g’;dl be a uniform partition of0, 1]¢ into m? subcubeg); with edges parallel to
the coordinate axes having edge lengtirs' and volumesn =7 and Iet{qi};’f1 be the set of points ifo, 1]¢ that

translate eachy); back to the origin such tha; — ¢; has the formm=1[0,1]?. Then there exists a constaf



with the following property: for every finite subs&tof [0, 1]¢

md

Ly(F) <m 7Y Ly (m[FNQ; — q]) + Cym*” 2)

i=1
e Superadditivity For the same conditions as above@®@p m, andg;, there exists a constaét with the following

property:
md
Ly(F) 2m™ Y Ly (m[FNQ; — q]) — Com*™" (3)
i=1
e Continuity There exists a constafy such that for all finite subsef§ andG of [0, 1]¢,
Lo (F UG) = Ly (F)| < Cy(card @)=/, (4)
where cardG) is the cardinality of the subsét.
The functionalL,, is said to be @ontinuous subadditive functionaf order+ if it satisfies the null condition, sudad-

ditivity and continuity. L., is said to be @ontinuous superadditive functionalf order- if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functionals on [0, 1]¢ there exists aual superadditive functional’. The dual
functional satisfies two properties: L) (F) + 1 > L3 (F) for every finite subsef’; and, 2) for i.i.d. uniform random

vectorsly, ..., U, over|0, 1]¢,
|E[L(Ut,...,Up)] = BIL(Uy, ..., Up)]| < Cynld=7=1/d (5)
with Cy a finite constant. The condition (5) is called the “close-in-mean approximation” in [38].

A stronger condition which is useful for showing convergence of partitioned approximationgigithieise closeness

condition

|2 (F) = L3(F)| < o ([eard(F)]=/7), ()

for any finite subseF’ of [0, 1]¢.

A continuous subadditive functiondl, is said to be aontinuous quasi-additive functionil L., is continuous sub-

additive and there exists a continuous superadditive dual functi@nalWe point out that the dual? is not uniquely
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defined. It has been shown by Redmond and Yukich [29, 28] that the boundary-rooted versiomamely, one where
edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite
property (5) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of power weighted MST, Steiner tree, TSP, K-NNG and others.

In [38, 28] almost sure limits with a convergence rate upper boumd @fwere obtained for continuous quasi-additive
Euclidean functionald., (X1, ..., X,) under the assumption of uniformly distributed poiis, . .., X,, and an addi-

tional assumption that., satisfies the “add-one bound”

e Add-one bound

| BILy(Us, ., Uns1)] = E[Ly(Us,..., Up)] | < Csn™ 7/ @)

The MST length functional of ordey satisfies the add-one bound. A slightly weaker bound on convergence rate also

holds whenL., is merely continuous quasi-additive [38, Ch. 5]. The'/4 convergence rate bound is exact fbe 2.

3 Convergence Rate Bounds for General Density

In this section we obtain convergence rate bounds for a general non-uniform Lebesguefidfmityonvenience we will

focus on the case thdlt, is continuous quasi-additive and satisfies the add-one bound. Our method of extension follows
standard practice [34, 35, 38]: we first establish pointwise convergence rates of th&igéi, . . . , X)) /nld="/d

for piecewise constant densities and then extend to arbitrary densities. Then we use Rhee’s concentration inequality to

obtain a.s. and., convergence rates @f, (X, ..., X,)/n(d=7)/4,
3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel.

Lemma 1 Letg(u) be a continuously differentiable functionwf R which is convex cap and monotone increasing over

u > 0. Then for anyu, > 0

g(uo)

9(uo) — Al < g(u) < g(uo) + g (uo)|A]



whereA = u — u, andg' (u) = dg(u)/du.

Proof

Sinceg(u) is convex cap the tangent lingu) d:efg(uo) + ¢ (u,)(u — u,) upper boundg. Hence

gw) < glue) +g (uo)|u — .

def

On the other hand, agsis monotone and convex cap, the functiqm) =" g(u,) + 9("") (u—uo)I(u < u,) is alower

bound ong, wherel (v < u,) is the indicator function of. < u,. Hence,

) _ g(U’O)

o

gu) > g(u,

|u =t

Adensityf(z) over[0, 1] is said to be a block density with? levels if for some set of non-negative consta{mzts}g’;dl

satisfyingzz’f1 pim ¢ =1,

2) =Y dilo (@)

wherelg(z) is the set indicator function af) C [0,1]? and {Qi}gfl is the uniform partition of the unit cub@, 1]¢

defined above.

Proposition 1 Letd > 2 and1 < vy < d — 1. AssumeX, ..., X,, are i.i.d. sample points ové0, 1]* whose marginal
is a block densityf with m? levels and suppo C [0, 1]¢. Then for any continuous quasi-additive Euclidean functional

L., of ordery which satisfies the add-one bound

‘E[L’Y(Xla —, X))l BLW,d/ FA/4g) dz| < O ((nm_d)_l/d) i
s

wherej, 4 is a constantindependent ¢f A more explicit form for the bound on the right hand side is

mffwfsf¥<x>dx (1+o0(1), d>2
0] ((nm_d)_l/d) -

K1+BL,a
(nm—d)1/d fS

r (1+o(1), d=2



Proof

Let n; denote the number of sampl¢X’, ..., X,,} falling into the partition cellQ; and let{U;}; denote an i.i.d.

sequence of uniform points df, 1]¢. By subadditivity, we have
md
L,(X1,...,X,) <m " Z L, (m[{X1, ..., X} N Qi — qi]) + Cym
i=1

=m™" Y Ly(Uy,...,Up) + Cim*™?
i=1

since the samples in each partition @@l are drawn independently from a conditionally uniform distribution giuen

Note thatn; has a BinomiaB(n, ¢;m~¢) distribution.

Taking expectations on both sides of the above inequality,

m
B[L,(Xy,...,Xn)]  <m 7> E[E[L,(Uy,...,Up)|ni]]l + Cym?® 7, ®)
i=1
For uniform sample&’y, ..., U, in [0, 1]¢,n > 0, the following rate of convergence for quasi-additive edge functionals

L., satisfying the add-one bound (7) has been establisheldfoty < d [38, The. 5.2],

d—~ d—1—~

|E[L7(U177Un)] _/BL‘yydnT| S Kln 4, (9)

whereK; is a function ofC,, C3 andCs5.

Using the result (9) and subadditivity (8) dn,, for 1 < v < d we have

d
m u

E[Ly(Xy,...,X)] < m”z:E{ﬂLwdnid7 + Kin; ¢ }-{—C’lmd”
i=1

d—y—1

SRS 0 (OO R PO o (O PR
. - (10)
Similarly for the dualL?, it follows by superadditivity
E[LY(Xy,...,X,)]
> m*“fBLw,dndjTw §E [<%)d77] —mT KT %E [(%)%} = Com™ (1)

i=1



forl <y <d.

We next develop lower and upper bounds on the expected values in (10) and (11). As the fyfictien u” is

monotone and concave over the ramge 0 for 0 < v < 1, from Lemma 1

g

ni\" v
(—) > pi—pl = - (12)
n n
wherep; = ¢;m~%. In order to bound the expectation of the above inequality we use the following bound
n; 2 1 N/
E (| <4 /E i(1—p;) < .
[ n ] - { n } NG pill =pi) < Vn
Therefore, from (12),
n;\v u—%
E [(g) ] > pl—p; ?/Vn (13)

By concavity, Jensen’s inequality yields the upper bound
B[(2)] <8 [(2)]) - a9

Under the hypothesis < v < d — 1 this upper bound can be substituted into expression (10) to obtain

E[L,(Xy,...,X,)/nld=7/4)
C
7(1 —d 1
< br, d2¢’ T (=1 1/d2¢’ m +m
C
_ d— d d— d 1
= 1. /Sﬂ Ve + B [ e )

Applying the bounds (14) and (13) to (11) we obtain an analogous lower bound for the mean of the dual fuh¢tional

E[L(X1,..., Xy)]/nld=0/d

> pL, d/fd dw—%/sf%}(w)dw

( nm~4)
Cs
nm—d (nm~—d)1/d " (am—)(d=7d (16)
By definition of the dual,
B[L,(X1,...,Xn)]/n T > E[L%(Xy,...,X,)|/n T —n "7 (17)

9



which when combined with (16) and (15) yields the result

E[L,(Xy,...,X,)] d—y BLr. . 1 4
7 i —BLmd/Sfdda: < 1/d dm+(md)1/2/8f2 4(x)dx
+@mem =, (18)
whereK, = max{C;, C>}. This establishes Proposition 1. O
3.2 Mean Convergence Rate for Density Functions of BV
The total variatior// (Q) of a functiong on R? over a set) ¢ R? is defined as [32]
= sup Z lg(zi) — g(zi-1)l, (19)

{ZZ}GQ
where the maximum is taken over all countable subgats:,, . . .} of pointsin@. The functiory is said to be of bounded

variation (BV) overQ if V(Q) < oo. By convention} (¢) = 0 for ¢ the empty set.

Denote the total variation of” over a subsetl of [0, 1]¢ asV,,(A4). For{Q;}" 1 a uniform resolutionn partition of
[0, 1] into cubesy; of volumem ~? define the resolutioms block density approximation(z) = E;’;l @i 1g,(x) of f,

whereg; = m? fQ x)dz. The following elementary result was established in [14].

Lemma 2 For v € [0, 1] let f” be of bounded variation ovéd, 1]?. Then

/ |p” (= (z)|dz < m~iy ™ (20)

whereV» = def El 1 Vu(Q,) is the total variation of over the resolutionr partition.

Applying this Lemma, the triangle inequality and (18)

‘E[LW(Xl,...,Xn)]/ndT —BLWd/ 97 (2)da (21)

< ‘E[L,Y(Xl,..., )]/n T —/8L7,d/(/5 T (z)dx| + Br,.4
l,l
1/d/¢) dl‘-f- 1/2/ 274

10
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K2 —d=x —dyrm
+(nm—d)(d—v)/d+n T A B am Vi) a

BLv,d Ly,
i o7

T+ B, am” Wit a- (22)

— nm 1/d

* (nm—d)w n7a T

This bound is finite under the assumptions that d — 1, f(?~7)/? is of bounded variation ové, 1]¢ and f/2~7/4 is

integrable oves.

The bound (22) on the mean deviation (21) is actually a family of bounds for different values=ofl, 2,.... By

selectingn as the function ofi which minimizes this bound we obtain the tightest bound among them.

Proposition 2 Letd > 2,1 < v < d — 1. Assume thaf is a Lebesgue density and th&it'—)/? is of bounded variation
over [0, 1]¢. Assume also that'/>~7/? is integrable. Then for any continuous quasi-additive functidnabf order~y

satisfying the add-one bound

‘E[LV(Xl, LX) = i /S FAIA(g)de| < Cqy n~ @D (14 0(1))

where
{ B Vi ja+ Ko f5 1970/ @)de + Kalia(3), a>2
Cin =

(K1 + Br,,a) [s f4"V/d(g (@)dz + BL,,dV{] ) jq + K2la-1(y), d=2

wherel;_(y) = 1if y=d—1andIl;_;(y) = 0 otherwise.

Proof

The rates depending on in (22) are(nm %)=/, (nm=%)~1/2, (nm~4)~(4=7/d andm—¢. Without any loss in
generality we can assume that,—¢ > 1. Thus, in the rangd > 1/2 and1 < v < d — 1, the slowest of these rates are
(nm~?)~1/¢ andm—?. We obtain anmn-independent bound on the mean deviation (21) by selestirgm (n) to be the

sequence increasinginwhich minimizes the maximum of these rates

m(n) = argmin,, max {mfd, (nmfd)fl/d} . (23)

The solutionm = m(n) occurs when(nm~—?)~1/¢ = m~¢, orm = n!/144+1)] (integer part) and, correspondingly,

nm~? = n?/(@*) andm ¢ = (nm~94)~1/? = p~1/(d+D) Therefore,

E[L,(X:1,..., Xp)]/n 7T —BLW,d/Sf“T”(w)dw

11



K1/f dl""BL dvd ¥)/d

= 1/(d+1)
Br..d K, _d
T Zm/f Do+ o T
This establishes Proposition 2. O

3.3 Concentration Bounds

Any Euclidean functionaL., of order~ satisfying the continuity property (4) also satisfies the concentration inequality

[38, Thm. 6.3] established by Rhee [31]:
—(t/C'5)2d/(d=7)
P(|L,(X1,...,X,) — E[L,(X1,...,X,)]| >t) < Cexp (%) , (24)
whereC is a constant depending only dn andd. It is readily verified that it > C3C(?~7)/(29) the right hand side of

(24) is summable over = 1,2, ... whent is replaced by (n In n)(?=7)/(24)_ Thus we have by Borel-Cantelli
IL,(X1,...,Xn) = B[L,(X4,...,Xn)]| <O ((n In n)<d—7>/<2d>) (a.5.).

Therefore, combining this with Proposition 2 we obtain the a.s. bound

Proposition 3 Letd > 2 and1 < v < d — 1. Assume that the Lebesgue dengisupported orS C [0, 1]¢ is such that

f4="/4is of bounded variation ové#, 1]¢ and f!/2~7/ is integrable oveiS. Then forL., a continuous quasi-additive

(d=v)/(2d)
<0 (max { <1n_n> , n~H/(d+D) }) (a.s.).
n

The concentration inequality can also be used to bdyntiomentsE[| L., (X1, . .., Xp,) — E[L,(X1,. .., Xu)]|"]'/*,

functional of ordery which satisfies the add-one bound

Ly (Xy,...,X,)/ntd=/d _ BLW,d/ FU=I (g)da
S

k=1,2,....In particular, as forany r\Z: E[|Z]] = f0°° P(|Z| > t)dt, we have by (24)

E[L,(X1,...,Xn) = E[L(X1,..., X)]I"] = / P (114 (X1, X0) = BILy (X, X)) > 17) di
0
o/ g2d/Ie(d—)]
< 030/ exp<7>dt
0 Cn
) (25)

whereK,, = C5Crld-1/(d)+1 (5 e~ gy,
Combining the above with (22), we obtain

12



Proposition4 Letd > 2,1 < v < d — 1, andx > 0. Assume that the Lebesgue dengisupported orsS is such that
f4="/4is of bounded variation ové#, 1]¢ and f!/2~7/ is integrable ovesS. Then forL., a continuous quasi-additive
functional of ordery which satisfies the add-one bound
K 1/N
5| } < (26)
BL,.d _a
e+ G J, o e

+,6’L77dm V(d y/a T Ky 1/kp=(d=7)/(2d)

L (Xy,...,X,)/ntd=/d _ BLW,d/ f(dﬂ)/d(fﬂ)dx
s

1/d
* (nm—d)w n7a T

Proof.

For any non-random constgat E[|W + u|*]'/* < E[|[W|*]'/* + |u|. Identify

p = B[L,(Xy,...,X,)]/nld/d _ mwd/ FUE=N/A () d
S
W =(L,(Xy,...,X,) — E[L,(X1,...,X,)])/nld/1
and use (25) and (22) to establish Proposition 4. O

As them-dependence of the bound of Proposition 4 is identical to that of the bias bound (22), minimization of the

bound overn = m(n) proceeds analogously to the proof of Proposition 2 and we obtain the following.

Corollary 1 Letd > 2,1 <y < d —1,andk > 0. Assume that the Lebesgue dengityupported orS is such that
f4="/4is of bounded variation ovef, 1]¢ and f'/2=7)/? s integrable ovesS. Then forL., a continuous quasi-additive

functional of ordery which satisfies the add-one bound
|

3.4 Discussion

Ly(Xy,...,X,)/ntd="/d _ BLW,d/ FU=I () da
s

It will be convenient to separate the discussion into the following points.

1. The bounds of Proposition 3 and Corollary 1 hold uniformly over the class of Lebesgue densitiesfiYaving'
of bounded variation and integralgfé?—")/4-1/2 over|0, 1]%. If (d —v)/d € [1/2,(d — 1)/d] then, asS € [0,1]¢

is bounded, this integrability condition is automatically satisfied.

13



2. A property of bounded variation classes of functions ovér BenotedBV, is thatf* € BV implies f** € BV
whenag < a;. Thus the integrability assumption in Propositions 3 and 4 can be eliminated by replacing the BV

and integrability hypotheses ghby the stronger assumption thélt’>—"/? is of bounded variation ové, 1]¢.

3. It can be shown in analogous manner to the proof of the umbrella theorems of [38, Ch. 7} tisatdt a Lebesgue
density then the convergence rates in Propositions 3 and 4 hold when the region of integiatieplaced by the

support of the Lebesgue continuous componerjt of

4. Whenf is piecewise constant over a known partition of resolutioe= m,, faster rate of convergence bounds are
available. For example, in the case of thebound of Proposition 4 the cell variatidfﬂjv)/d is zero form > m,
and therefore the bound (26) is monotone increasing iover this range. Therefore the sequencg) = m,
minimizes the bound as — oo and the best rate bound is only of ordesx {n~(4=7)/(2) p=1/d}  As for
uniform densityf the O(n /%) bound on mean rate of convergence is tight [38, Sec. 5.3] fer2, we conclude
that for (d — ) /d > 2/d the asymptotic rate of convergence of the left hand side of (27) is exactly'/¢) for

piecewise constantandd = 2.

5. The moment bound (27) is of order*/(¢+1) for d > (v + 1+ /(v + 1)2 + 47)/2 and of ordem—(4=7)/(2d)

otherwise. As
Y+1I<(v+1+V(y+1)*+47)/2<v+2,
for d > 2 we conclude that the convergence rate is of ordel (?+1) except for a narrow range of contained

inside the intervald — 2, d).

6. By using a weaker rate of mean convergence bound [38, Thm. 5.1], which applies to all continuous quasi-additive
functionals and uniformny, in place of (9) in the proof of Proposition 2, the mean deviation of any continuous

quasi-additive functional., from its a.s. limit can easily be shown to obey the bound

BlL(X1, ..., Xn)] /4074 _ ﬁLw,d/ FUUI () d
S

< O (max {n_l/(d+1), n_(d_w)/@d)}) . (28)

Since the termm~(?~7)/(29) already appears in thig, bound of Proposition 4, Corollary 1 extends to any continu-
ous gquasi-additive functiondl, including the MST, TSP, the minimal matching graph andiheearest neighbor

graph functionals.
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7. Atighter upper bound than Corollary 4 on thg convergence rate may be derived if a tightedependent analog

to the concentration inequality (24) can be found.

4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [1&falR2j,
Mitchell [23], and Arora [1], as ways to reduce computational complexity. The fixed partition approximation is a simple
example whose convergence rate has been studied by Karp [17, 18], Karp and Steele [19] and Yukich [38] in the context

of a uniform densityy.

Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-

eterm controlling the number of cells in the uniform partiti@™ = {Q;}", of [0, 1]¢ discussed in Section 2. Whemn
is defined as an increasing functiorvofve obtain a progressive-resolution approximatiofi{g.X,,). This approximation
involves constructing minimal graphs of ordeon each of the cell§;, i = 1,...,m¢%, and the approximation’ (X;,)
is defined as the sum of their weights plus a constant bias corréc¢tion

LX) = Ly(Xn N Qs) + b(m). (29)

i=1

In this section we specify a bound on the m.s. convergence rate of the progressive-resolution approximation (29) and
specify the optimal resolution sequente(n)},~o which minimizes this bound. Our derivations are based on the

approach of Yukich [38, Sec. 5.4] and rely on the concrete version of the pointwise closeness bound (6)

Cleard(F)]d=7=D/(d=1) " 1<~y <d—-1
|Ly(F) — LX(F)| < ¢ Clogcard(F), y=d—-1#1 , (30)
C, d—1<y<d

for any finite F' C [0, 1]. This condition is satisfied by the MST, TSP and minimal matching function [38, Lemma 3.7].

We first obtain a fixedn bound onL; deviation of theL™ (X,,) /n(¢~7)/4 from its limit.

Proposition 5 Letd > 2 and1 < v < d — 1. Assume that the Lebesgue dengisupported o C [0, 1]¢ satisfies the
properties thatf(¢=7)/? is of bounded variation ove0, 1]¢ and f/>~7/ are integrable ovesS. Let L™ (X)) be defined

as in (29) wherel,, is a continuous quasi-additive functional of ordgwhich satisfies the pointwise closeness bound

15



(30). Then iffb(m) — Cymd=7| < O(m4=7)

E HL;”(Xn)/n(d—v)/d _ /3Lwd/ f(d"y)/d(a:)da: ]
S

<0 (max {(nmfd)fw/[d(dfm’ m=?, nf(d—w/(m)}) ) (31)

Proof:

Start with

d

L (X)) /n @~ gy / FED/4(5)
S
E {

Analogously to the proof of [38, Thm. 5.7], using the pointwise closeness bound (30) one obtains a bound on the

] < (32)

Lv(-)‘f‘n)/”d?T7 - /BLV,d/Sfd_TW(l‘)dl‘

] + B [|L(X,) — Lo (X,)[] /07 (33)

difference between the partitioned weight functibft (F') and the minimal weight functiofi., (F) for any finite ' C
[0, 1]

md

b(m) — Cim?™" < LM(F) — Ly(F) < m™C' Y (card(F 0 Q)47 ~V/(4=1) (34)
i=1

Leto(z) = E;’fl #im 4 be the block density approximation fgz). As {X,, N Qi}g’;dl are independent anfl[| Z|*] <

(E[Z]) for0 <u<1

d

E[|L (%) = Ly(X)|| < m 70 Y E [(card(F Qi) /D] 4 jym) — Cym 7|
=1
< mpldmr=0/E=-D Z(@m—d)(d—v—l)/(d—l) + |b(m) — Cym=7|

i=1

md
— o/ (d=1) (d=y=1)/(d=1) ¥ Z ¢Ed*V*1)/(d*1)m—d + [b(m) — C1m?7|

i=1

— /(=D (d=y=1)/(d=1) (7 / $(@=7=D/=1) () g 4 [b(m) — Cym?=]
S

Note that the bias terfid(m) — C;m? 7| can be eliminated by selectingn) = C;m?". Dividing through byn(¢-7)/4,

noting that|b(m) — Cym? 7 |n—(4="/4 < B(nm~*)~(@=7)/4 for some constanB

] < (nm—t)—/ld@-Dlg / H4=7=D/=D () d 4 (nm~9)=@-1/dg (35)
S

nd—7d
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Combining this with Proposition 4, with relaxed add-one bound condition (see comment 6 in Section 3.4), we can

} <
d:n—{— _d1/2/¢2_3

0T 4 B, am VI g+ K (/20

bound the right hand side of (33) to obtain

E HL;”(Xn)]/n(d_’Y)/d - BLv,d/ FUD () dae

nm—d (nm—4)1/d

T m- )(d N7
C

* tom - ay 7@ ]

/ ¢(d—v—1)/(d—1)(w)dw + (nm—d)—(d—'v)/dB_ (36)
S
Over the rangé < v < d — 1 the dominant terms are as given in the Proposition. This establishes Propositiorb.

Finally, by choosingn = m(n) to minimize the maximum on the right hand side of the bound of Proposition 5 we

have an analog to Corollary 1:

Corollary 2 Letd > 2andl < vy < d—1. Assume that the Lebesgue dengisupported orf is such thatf (?—)/4 s of
bounded variation ovep), 1]¢ and f'/2-7/? is integrable oves. LetL7(X,) be defined as in (29) with, a continuous

quasi-additive functional of order which satisfies the pointwise close bound (30). Thgitif) —Cym? 7| < O(m?~7)

E HLI{”(")(Xl,...,Xn)/n(d_"’)/d—BLwd/ f(d—”/d(x)dx] <
S

0 (max {nfﬁ/(uﬁ), n*(d*W)/(zd)}) : (37)

wheref = v/[d(d — 1)]. This rate is attained by choosing the progressive-resolution sequeneen(n) = nab/(1+8),
4.1 Discussion

We make the following remarks.

1. The function3/(1 + ) in Corollary 2 is increasing i = v/[d(d — 1)] overl < v < d — 1 and takes supremum

of 1/(d + 1) aty = d — 1. The raten—(?=7)/(24) dominates in (37) when > ~, = d(d — 1)(=d/(d — 1) +

V/(d/(d —1))% +4/(d — 1)) /2. Thus, as might be expected, the partitioned approximation has a convergence rate

(37) that is always worse than the rate bound (27) but improvesraseases to,.
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2. Inview of (36) the rate constant multiplying the asymptotic raté/[4(d—D1/(v/1d(d=1)]+1) js an increasing func-
tions [, f(4=7=1/(d=1)(z)dz. Thus fastest asymptotic convergence can be expected for densities with emall R

entropy of ordefd — v — 1)/(d — 1).

1/2
3. Itis more tedious but straightforward to show thatfheleviationF [|L;”(Xn)/n(d*7)/d — B [s f(d”)/d(m)dmﬂ
obeys the identical asymptotic rate bounds as in Proposition 5 and Corollary 2 with identical bound minimizing

progressive-resolution sequenae= m(n).

4. As pointed out in the proof of Proposition 5 the bound minimizing choice of the bias corréctionof the
progressive-resolution approximation (29p{s) = C;m?~7, whereC) is the constant in the subaddivity condi-
tion (2). However, Proposition 5 asserts that, for example, uging = Cm?~"7 with arbitrary scale constaxt
or even usingd(m) = 0 are asymptotically equivalent to the bound minimiziigr). This is important since the
constant’; is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (29) is a special case n of the greedy approximation to thkepoint minimal
graph approximation introduced by Rastial [26] whose a.s. convergence was established by Hero and Michel

[14]. Extension of Proposition 5 to greedy approximations4moint graphs is an open problem.

5 Application to Entropy Estimation

In this section we apply the previous convergence results to non-parametric entropy estimation. In particular, using the
the convergence rate bounds derived above, Proposition 6 establishes asymptotic performance advantages of the minimal
graph method of Bryi entropy estimation as contrasted to non-parametric density plug-in methods of entropy estimation.

For concrete applications of Proposition 6 see Heeb[12].

For a Lebesgue continuous multivariate dengithe Rényi entropy of ordew is defined as [30]:

Ho(f) = (1—a)"'In / o (@)de. (38)

Here, as above, we restrict the supportfdb a subset of0, 1] and we only consider the rangec (0,1). The Rényi

entropy converges to the Shannon entréfy f) = — [ f(z) In f(z)dz in the limit asa: — 1. As o becomes smaller the
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Rényi entropy tends to equalize the influence of the small amplitude regions, e.g. tails, and the large amplitude regions of
f.

We consider entropy estimates of the foFfy = (1-a) ln I, wherel,, is a consistent estimator of the integral

1) = [ 1)

Given non-parametric function estimat?@n of f* based on the i.i.d. observationsXy, ..., X,, from f, define the
function plug-in estimato[a(fa). Define the minimal-graph estimatég = L. (X1, ... » Xn)/(Br.,,an®), wherey €
(0,d) is selected such that = (d — ) /d and L., is continuous quasi-additive. A standard purturbation analydis(ej

establishes that for either of these estimafars

2 foz_Ia
- BN = o

Thus as a function af the asymptotid., rate of convergence di, — H,(f) will be identical to that ofl, — I,,(f).

DefineBV(C, d) as the class of functions df, 1]¢ of bounded variation having total variaticn

Proposition 6 Assume that the Lebesgue dengityn [0, 1] is such thatf® € BV(C,d) wherea € [1/2,(d — 1)/d],

d > 2. Then, forp = 1,2, ..., and any plug-in estimatofa(f;)

— p
sup  EVP (| (F7) ~ L(D)|'| > O (n /), (39)
feeBV(C,d)
while for the minimal-graph estimatdt,
sup  EVP [ i - Ia(f)‘p] <0 (n71/(d+1)) _ (40)

feeBV(C,d)
Proof:

The result (40) follows directly from Proposition 4, modified according to remarks 2 and 6 in Section 3.4. As for (39)
the proof follows from well known results in non-parametric function estimation which we only sketch here. The reader
is referred to Ibragimov and Has’minskii [16] or Korostolev and Tsybakov [20] for more details. Defineotbertélass

Y4(k, C) of functionsg on [0, 1]¢
Sa(k,€) = {g(a) : lg(@) = Pk () < C o — 21"}
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wherep (z) is the Taylor polynomial (multinomial) of of orderk expanded about the point ||z|| denotes thé., norm
and | x| is defined as the greatest integer strictly less thaX;(1, C) is the set of Lipschitz functions with Lipschitz

constanC andX;(k, C) contains increasingly smooth functionsrascreases.

For any estimatog,, of g based on i.i.d. sample¥y, ..., X, the minimaxL, integrated error over thedider class

Yq(k, C) satisfies

sup )El/p [ / (gn(z) — g(x))pdw] =0 (n—~/<2~+d>) . (41)

9€X4(K,C

We show below that, fo§ = ]En andg = f<, this implies

sup EYP H/ x)dx
geXq(k,C)

The inequality (39) follows from the fact that; (1, C') € BV(C, d).

p} 0 (n,n/(zmrd)) ‘ (42)

Relation (41) implies that there exist positive constaritsC» such that for aly € X4(x, C)

lim sup
n—oo

[§(2) = g@)In*/ | < o0, (wp.1), (43)
except possibly on a subset[6f 1]? of measure zero, and for somes ¥4(k, O)

lim inf
n— 00

(§(2) = g(a)In™/ 0] > 0, (wp) (44)

over some subset @, 1]¢ of positive measure. Therefore, lettipg= f, using relations (43) and (44), there exist finite

constants”; andC> such that

B H/ (§(2) - g(@))de ] < Cun MR (1 4 (1)),

forall g € ¥4(k,C), and there exists a functigne X,(x, C) such that

g || [ @00 - gtanas|

} > Con™"/CrHD (14 o(1))

Therefore,

CQn_N/(wH_d)(l +o(1)) < sup g/ H/ ))dx
9€X4(k,C)

p
] < Cyn 2R+ (1 4 o(1))
which establishes (42) and the proof of Proposition 6 is completed. O
We make several comments in connection with Proposition 6.
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1. By Proposition 4 assumptien€ [1/2, (d — 1)/d] can be relaxed te. € (0, (d — 1)/d] with corresponding weak-
ening of the rate bound (40) of the graph-based entropy estimat@r(toax{n~!/(+1) n=2/2}). Specializing
to rms error p = 2), the slowerO (n—"‘/2) rate occurs when the variance of the minimal graph estimator exceeds

the bias squared.

2. The assumption < (d — 1)/d prevents the application of the convergence rate bound (27) in Proposition 6 to
minimal graph estimates of the Shannon entrgpy~ 1). In particular, we cannot use it to bound a minimal-graph
analog to the plug-in estimation method proposed by Mokkadem [24] in which Shannon entropy is estimated by
a sequencafan (fn) of a-entropy estimators wheke, < 1 andlim,_.., o, = 1. As mentioned in Remark 4 of
Section 3.4, relaxation of this assumption would require extensign<ol of the fundamental convergence rate

O(n~1/4) in (9) established by Redmond and Yukich [28].

3. The partitioned minimal graph approximation (29) can be adapted to entropy estimation in an obvious way and an

analog to Proposition 6 will hold with (27) replaced by the slowén —2/(1+8)) rate bound.

4. Ifitis knowna priori that the class of functiong is significantly smoother than tH&V class assumed in Propo-
sition 6 then density estimation methods can have much faster convergence. As an extreme exgnipla, if
piecewise constant block density overapriori known partition, a histogram plug-in estimator will have faster
L, convergence rat@(1/,/n) while the minimal graph estimator will only hag(n —'/¢) convergence rate. This
dichotomy in entropy estimator convergence rates for smooth versus non-smooth density classes is analogous to
well known behavior of minimax rates for non-parametric and semi-parametric estimation of general functionals,

see work by Bickel and Ritov [5], Donoho and Low [9] and Birghd Massart [6].

6 Conclusion

In this paper we have given rate of convergence bounds for minimal-graphs satisfying continuous quasi-additivity. An
application to entropy estimation was treated which established performance advantages of minimal graph estimators
of entropy as contrasted with plug-in estimators. These results suggest that further exploration of minimal graphs for

estimation of Rnyi divergence, Briyi mutual information, and &yi Jensen difference is justifed.
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