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Abstract

This paper is concerned with power-weighted weight functionals associated with a minimal graph span-
ning a random sample ofn points from a general multivariate Lebesgue densityf over [0; 1]d. It is known
that under broad conditions, when the functional applies power exponent
 2 (0; d) to the graph edge
lengths, the log of the functional normalized byn(d�
)=d is a strongly consistent estimator of the R´enyi
entropy of order� = (d � 
)=d. In this paper we investigate almost sure (a.s.) andp-th mean (Lp)
convergence rates of this functional. In particular we show that over the space of multivariate densities
such thatf (d�
)=d is of bounded variation, theLp convergence rate is bounded above byn�1=(d+1) when
d=2 � 
 � d� 1. We obtain similar rate bounds for minimal graph approximations implemented by a pro-
gressive divide-and-conquer partitioning heuristic. In addition to Euclidean optimization problems, these
results have application to non-parametric entropy and information divergence estimation; adaptive vector
quantization; and pattern recognition. As a concrete illustration, the bounds derived in this paper imply that,
over the bounded variation class considered, the maximumLp error of a minimal-graph estimator of R´enyi
entropy converges faster than that of any plug-in estimator.
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1 Introduction

It has long been known that, under the assumption ofn independent identically distributed (i.i.d.) vertices in[0; 1]d,

the suitably normalized weight function of certain minimal graphs overd-dimensional Euclidean space converges almost

surely (a.s.) to a limit which is a monotone function of the R´enyi entropy of the multivariate densityf of the random

vertices. Graph constructions that satisfy this convergence property include: the minimal spanning tree (MST), nearest

neighbor graph (NNG), minimal matching graph (MMG), traveling salesman problem (TSP), and their power-weighted

variants. See the recent books by Steele [35] and Yukich [38] for introduction to this subject. AnO(n�1=d) bound on the

almost sure (a.s.) convergence rate of the normalized weight functional of these and other minimal graphs was obtained

by Redmond and Yukich [28, 29] when the vertices are uniformly distributed over[0; 1]d.

In the present paper we obtain bounds on a.s. andp-th mean (Lp) convergence rates of power-weighted Euclidean

weight functionals of order
 for general Lebesgue densitiesf for which f (d�
)=d is of bounded variation. Here the

dimensiond is greater than one and
 2 (0; d) is an edge exponent which is incorporated in the weight functional to taper

the Euclidean distance between vertices of the graph (see next section for definitions). As a special case of Proposition

4, we obtain aO(n�1=(d+1)) bound on theLp convergence rate when1 � 
 � d=2. As contrasted withO(n�1=d)

rate bound for uniformf , shown by Redmond and Yukich, this slowerLp rate of convergence has a rate constant which

depends on the underlying density, indicating that fastest convergence occurs whenf has low Rényi entropy of order

(d� 
 � 1)=d and the total variationf (d�
)=d is small.

We also obtain r.m.s. convergence rate bounds for partitioned approximations to minimal graphs implemented by the

following fixed partitioning heuristic: 1) dissect[0; 1]d into a set ofmd cells of equal volumes1=md; 2) compute minimal

graphs spanning the points in each non-empty cell; 3) stitch together these small graphs to form an approximation to

the minimal graph spanning all of the points in[0; 1]d. Such heuristics have been widely adopted, e.g. see Karp [17],

Ravi etal [26], and Hero and Michel [14], for examples. The computational advantage of this partitioned heuristic comes

from its divide-and-conquer progressive-resolution strategy to an optimization whose complexity is non-linear inn: the

partitioned algorithm only requires constructing minimal graphs on small cells each of which typically contains far fewer

thann points. In Proposition 5 we obtain bounds on convergence rate and specify an optimal “progressive-resolution

sequence”m = m(n), n = 1; 2; : : :, for achieving these bounds.
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A principal focus of our research on minimal graphs has been on the use of Euclidean functionals for signal processing

applications such as image registration, pattern matching and non-parametric entropy estimation, see e.g. [12, 22, 14, 13],

and the entropy estimation application considered in this paper reflects this focus. In particular we show that a R´enyi

entropy estimator constructed from a continuous quasi-additive minimal-graph, such as the MST or k-NNG, can have

faster convergence rates than plug-in estimators, such as those discussed by Bierlantetal [4], based on function estimation.

Specifically: over the space of densitiesf such thatf� is of bounded variation the worst caseLp convergence rate of the

minimal graph estimator of R´enyi entropy of order� is upper bounded byO(n�1=(d+1)) while any plug-in estimator has

minimax rate lower bounded byO(n�1=(d+2)). Beyond the signal processing applications mentioned above, which are

treated in [12], these results may have important practical implications in other areas including: adaptive vector quantizer

design, where the R´enyi entropy is more commonly called the Panter-Dite factor and is related to the asymptotically

optimal quantization cell density [10, 25], and entropy characterization of time-frequency signal representations [37, 3].

The outline of this paper is as follows. In Section 2 we briefly review Redmond and Yukich’s unifying framework

of continuous quasi-additive power-weighted edge functionals. In Section 3 we give convergence rate bounds for such

functionals with general Lebesgue densityf . In Section 4 we extend these results to partitioned approximations and in

Section 5 we apply the results of Sections 3 to non-parametric entropy estimation.

2 Minimal Euclidean Graphs

Since the seminal work of Beardwood, Halton and Hammersley in 1959, the asymptotic behavior of the weight function of

a minimal graph such as the MST and the TSP over i.i.d. random pointsXn = fX1; : : : ; Xng asn!1 has been of great

interest. The monographs by Steele [35] and Yukich [38] provide two engaging presentations of ensuing research in this

area. Many of the convergence results have been encapsulated in the general framework of continuous and quasi-additive

Euclidean functionals recently introduced by Redmond and Yukich [28]. This framework allows one to relatively simply

obtain asymptotic convergence rates once a graph weight function has been shown to satisfy the required continuity and

subadditivity properties. We follow this framework in this paper.

Let F be a finite subset of points in[0; 1]d; d � 2. A real-valued functionL
 defined onF is called aEuclidean
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functional of order
 if it is of the form

L
(F ) = min
e2E

X
e

je(F )j
 (1)

whereE is a set of graphs, e.g. spanning trees, over the points inF , e is an edge in the graph,jej is the Euclidean length

of e, and
 is called theedge exponentor power-weighting constant. We assume throughout this paper that0 < 
 < d.

2.1 Continuous Quasi-additive Euclidean Functionals

A weight functionalL
(Xn) of a minimal graph on[0; 1]d is a continuous quasi-additive functional if it can be closely

approximated by the the sum of the weights functional of minimal graphs constructed on a dense partition of[0; 1]d.

Examples of quasi-additive graphs are the Euclidean traveling salesman (TSP) problem, the minimal spanning tree (MST),

and thek-nearest neighbor graph (k-NNG). In the TSP the objective is to find a graph of minimum weight among the set

C of graphs that visit each point inXn exactly once. The resultant graph is called theminimal TSP tourand its weight is

LTSP
 (Xn) = mine2C
P

e jej
 . Construction of the TSP graph is NP-hard and arises in many different areas of operations

research [21]. In the MST problem the objective is to find a graph of minimum weight among the graphsT which

span the sampleXn. This problem admits exact solutions which run in polynomial time and the weight of the MST is

LMST

 (Xn) = mine2T

P
e jej
 . MST’s arise in areas including: pattern recognition [36]; clustering [39]; nonparametric

regression [2] and testing for randomness [15]. The k-NNG problem consists of finding the setNk;i of k-nearest neighbors

of each pointXi in the setXn�fXig. This problem has exact solutions which run in linear-log-linear time and the weight

is Lk�NNG
 (Xn) =
Pn

i=1mine2Nk;i

P
e jej
 . The k-NNG arises in computational geometry [8], clustering and pattern

recognition [33], spatial statistics [7], and adaptive vector quantization [11], among other areas.

The following technical conditions on a Euclidean functionalL
 were defined in [28, 38].

� Null condition: L
(�) = 0, where� is the null set.

� Subadditivity: Let Qm = fQigmd

i=1 be a uniform partition of[0; 1]d into md subcubesQi with edges parallel to

the coordinate axes having edge lengthsm�1 and volumesm�d and letfqigmd

i=1 be the set of points in[0; 1]d that

translate eachQi back to the origin such thatQi � qi has the formm�1[0; 1]d. Then there exists a constantC1
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with the following property: for every finite subsetF of [0; 1]d

L
(F ) � m�

mdX
i=1

L
 (m[F \Qi � qi]) + C1m
d�
 (2)

� Superadditivity: For the same conditions as above onQi, m, andqi, there exists a constantC2 with the following

property:

L
(F ) � m�

mdX
i=1

L
 (m[F \Qi � qi])� C2m
d�
 (3)

� Continuity: There exists a constantC3 such that for all finite subsetsF andG of [0; 1]d,

jL
(F [G)� L
(F )j � C3(card(G))(d�
)=d; (4)

where card(G) is the cardinality of the subsetG.

The functionalL
 is said to be acontinuous subadditive functionalof order
 if it satisfies the null condition, sudad-

ditivity and continuity.L
 is said to be acontinuous superadditive functionalof order
 if it satisfies the null condition,

superadditivity and continuity.

For many continuous subadditive functionalsL
 on [0; 1]d there exists adual superadditive functionalL�
 . The dual

functional satisfies two properties: 1)L
(F ) + 1 � L�
(F ) for every finite subsetF ; and, 2) for i.i.d. uniform random

vectorsU1; : : : ; Un over[0; 1]d,

��E[L
(U1; : : : ; Un)]�E[L�
(U1; : : : ; Un)]
�� � C4n

(d�
�1)=d (5)

with C4 a finite constant. The condition (5) is called the “close-in-mean approximation” in [38].

A stronger condition which is useful for showing convergence of partitioned approximations is thepointwise closeness

condition

��L
(F )� L�
(F )
�� � o

�
[card(F )](d�
)=d

�
; (6)

for any finite subsetF of [0; 1]d.

A continuous subadditive functionalL
 is said to be acontinuous quasi-additive functionalif L
 is continuous sub-

additive and there exists a continuous superadditive dual functionalL�
 . We point out that the dualL�
 is not uniquely
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defined. It has been shown by Redmond and Yukich [29, 28] that the boundary-rooted version ofL
 , namely, one where

edges may be connected to the boundary of the unit cube over which they accrue zero weight, usually has the requisite

property (5) of the dual. These authors have displayed duals and shown continuous quasi-additivity and related properties

for weight functionals of power weighted MST, Steiner tree, TSP, k-NNG and others.

In [38, 28] almost sure limits with a convergence rate upper bound ofn1=d were obtained for continuous quasi-additive

Euclidean functionalsL
(X1; : : : ; Xn) under the assumption of uniformly distributed pointsX1; : : : ; Xn and an addi-

tional assumption thatL
 satisfies the “add-one bound”

� Add-one bound:

j E[L
(U1; : : : ; Un+1)]�E[L
(U1; : : : ; Un)] j � C5n
�
=d: (7)

The MST length functional of order
 satisfies the add-one bound. A slightly weaker bound on convergence rate also

holds whenL
 is merely continuous quasi-additive [38, Ch. 5]. Then�1=d convergence rate bound is exact ford = 2.

3 Convergence Rate Bounds for General Density

In this section we obtain convergence rate bounds for a general non-uniform Lebesgue densityf . For convenience we will

focus on the case thatL
 is continuous quasi-additive and satisfies the add-one bound. Our method of extension follows

standard practice [34, 35, 38]: we first establish pointwise convergence rates of the meanE[L
(X1; : : : ; Xn)]=n
(d�
)=d

for piecewise constant densities and then extend to arbitrary densities. Then we use Rhee’s concentration inequality to

obtain a.s. andLp convergence rates ofL
(X1; : : : ; Xn)=n
(d�
)=d.

3.1 Mean Convergence Rate for Block Densities

We will need the following elementary result for the sequel.

Lemma 1 Letg(u) be a continuously differentiable function ofu 2 IR which is convex cap and monotone increasing over

u � 0. Then for anyuo > 0

g(uo)� g(uo)

uo
j�j � g(u) � g(uo) + g

0

(uo)j�j
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where� = u� uo andg
0

(u) = dg(u)=du.

Proof

Sinceg(u) is convex cap the tangent liney(u)
def
= g(uo) + g

0

(uo)(u� uo) upper boundsg. Hence

g(u) � g(uo) + g
0

(uo)ju� uoj:

On the other hand, asg is monotone and convex cap, the functionz(u)
def
= g(uo) +

g(uo)
uo

(u � uo)I(u � uo) is a lower

bound ong, whereI(u � uo) is the indicator function ofu � uo. Hence,

g(u) � g(uo)� g(uo)

uo
ju� uoj:

�

A densityf(x) over[0; 1]d is said to be a block density withmd levels if for some set of non-negative constantsf�igmd

i=1

satisfying
Pmd

i=1 �im
�d = 1,

f(x) =

mdX
i=1

�i1Qi(x)

where1Q(x) is the set indicator function ofQ � [0; 1]d andfQigmd

i=1 is the uniform partition of the unit cube[0; 1]d

defined above.

Proposition 1 Let d � 2 and1 � 
 � d � 1. AssumeX1; : : : ; Xn are i.i.d. sample points over[0; 1]d whose marginal

is a block densityf withmd levels and supportS � [0; 1]d. Then for any continuous quasi-additive Euclidean functional

L
 of order
 which satisfies the add-one bound����E[L
(X1; : : : ; Xn)]=n
(d�
)=d � �L
;d

Z
S
f (d�
)=d(x) dx

���� � O
�
(nm�d)�1=d

�
:

where�L
 ;d is a constant independent off . A more explicit form for the bound on the right hand side is

O
�
(nm�d)�1=d

�
=

8><>:
K1

(nm�d)1=d

R
S f

d�
�1
d (x)dx (1 + o(1)) ; d > 2

K1+�L
;d

(nm�d)1=d

R
S f

d�
�1
d (x)dx (1 + o(1)) ; d = 2

:
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Proof

Let ni denote the number of samplesfX1; : : : ; Xng falling into the partition cellQi and letfUigi denote an i.i.d.

sequence of uniform points on[0; 1]d. By subadditivity, we have

L
(X1; : : : ; Xn) � m�

mdX
i=1

L
 (m[fX1; : : : ; Xng \Qi � qi]) + C1m
d�


= m�

mdX
i=1

L
(U1; : : : ; Uni) + C1m
d�


since the samples in each partition cellQi are drawn independently from a conditionally uniform distribution givenni.

Note thatni has a BinomialB(n; �im
�d) distribution.

Taking expectations on both sides of the above inequality,

E[L
(X1; : : : ; Xn)] � m�

mdX
i=1

E [E [L
(U1; : : : ; Uni)jni]] + C1m
d�
 : (8)

For uniform samplesU1; : : : ; Un in [0; 1]d, n > 0, the following rate of convergence for quasi-additive edge functionals

L
 satisfying the add-one bound (7) has been established for1 � 
 < d [38, The. 5.2],

jE[L
(U1; : : : ; Un)]� �L
 ;dn
d�

d j � K1n

d�1�

d ; (9)

whereK1 is a function ofC1; C3 andC5.

Using the result (9) and subadditivity (8) onL
 , for 1 � 
 < d we have

E[L
(X1; : : : ; Xn)] � m�

mdX
i=1

E

�
�L
 ;dn

d�

d

i +K1n
d�
�1

d

i

�
+ C1m

d�


= m�
�L
 ;dn
d�

d

mdX
i=1

E

��ni
n

�d�

d

�
+ m�
K1n

d�
�1
d

mdX
i=1

E

��ni
n

� d�
�1
d

�
+ C1m

d�
 :

(10)

Similarly for the dualL�
 it follows by superadditivity

E[L�
(X1; : : : ; Xn)]

� m�
�L
 ;dn
d�

d

mdX
i=1

E

��ni
n

�d�

d

�
� m�
K1n

d�
�1
d

mdX
i=1

E

��ni
n

� d�
�1
d

�
� C2m

d�
 (11)

8



for 1 � 
 < d.

We next develop lower and upper bounds on the expected values in (10) and (11). As the functiong(u) = u� is

monotone and concave over the rangeu � 0 for 0 < � < 1, from Lemma 1

�ni
n

��
� p�i � p��1i

���ni
n
� pi

��� ; (12)

wherepi = �im
�d. In order to bound the expectation of the above inequality we use the following bound

E
h���ni
n
� pi

���i �sE

����ni
n
� pi

���2� = 1p
n

p
pi(1� pi) �

p
pip
n
:

Therefore, from (12),

E
h�ni

n

��i
� p�i � p

��
1
2

i =
p
n: (13)

By concavity, Jensen’s inequality yields the upper bound

E
h�ni

n

��i
� E

h�ni
n

�i�
= p�i (14)

Under the hypothesis1 � 
 � d� 1 this upper bound can be substituted into expression (10) to obtain

E[L
(X1; : : : ; Xn)=n
(d�
)=d]

� �L
;d

mdX
i=1

�
d�

d

i m�d +
K1

(nm�d)1=d

mdX
i=1

�
d�
�1

d
i m�d +

C1
(nm�d)(d�
)=d

= �L
;d

Z
S
f (d�
)=d(x)dx +

K1

(nm�d)1=d

Z
S
f (d�
�1)=d(x)dx +

C1
(nm�d)(d�
)=d

: (15)

Applying the bounds (14) and (13) to (11) we obtain an analogous lower bound for the mean of the dual functionalL�


E[L�
(X1; : : : ; Xn)]=n
(d�
)=d

� �L
;d

Z
S
f
d�

d (x)dx � �L
;d

(nm�d)1=2

Z
S
f
1
2�



d (x)dx

� K1

(nm�d)1=d

Z
S
f
d�
�1

d (x)dx � C2
(nm�d)(d�
)=d

(16)

By definition of the dual,

E[L
(X1; : : : ; Xn)]=n
d�

d � E[L�
(X1; : : : ; Xn)]=n

d�

d � n�

d�

d (17)
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which when combined with (16) and (15) yields the result����E[L
(X1; : : : ; Xn)]

n
d�

d

� �L
;d

Z
S
f
d�

d dx

���� � K1

(nm�d)1=d

Z
S
f
d�
�1

d (x)dx +
�L
;d

(nm�d)1=2

Z
S
f
1
2�



d (x)dx

+
K2

(nm�d)(d�
)=d
+ n�

d�

d ; (18)

whereK2 = maxfC1; C2g. This establishes Proposition 1. �

3.2 Mean Convergence Rate for Density Functions of BV

The total variationV (Q) of a functiong on IRd over a setQ � IRd is defined as [32]

V (Q) = sup
fzig2Q

X
i

jg(zi)� g(zi�1)j; (19)

where the maximum is taken over all countable subsetsfz1; z2; : : :g of points inQ. The functiong is said to be of bounded

variation (BV) overQ if V (Q) <1. By convention,V (�) = 0 for � the empty set.

Denote the total variation off� over a subsetA of [0; 1]d asV�(A). ForfQigmd

i=1 a uniform resolution-m partition of

[0; 1]d into cubesQi of volumem�d define the resolution-m block density approximation�(x) =
Pmd

i=1 �i 1Qi(x) of f ,

where�i = md
R
Qi
f(x)dx. The following elementary result was established in [14].

Lemma 2 For � 2 [0; 1] let f� be of bounded variation over[0; 1]d. ThenZ
j��(x) � f�(x)jdx � m�dV m

� (20)

whereV m
�

def
=
Pmd

i=1 V�(Qi) is the total variation off over the resolution-m partition.

Applying this Lemma, the triangle inequality and (18)����E[L
(X1; : : : ; Xn)]=n
d�

d � �L
 ;d

Z
S
f
d�

d (x)dx

���� (21)

�
����E[L
(X1; : : : ; Xn)]=n

d�

d � �L
;d

Z
S
�
d�

d (x)dx

���� + �L
;d

����Z
S
�
d�

d (x)dx �

Z
S
f
d�

d (x)dx

����
� K1

(nm�d)1=d

Z
S
�
d�
�1

d (x)dx +
�L
 ;d

(nm�d)1=2

Z
S
�
1
2�



d (x)dx
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+
K2

(nm�d)(d�
)=d
+ n�

d�

d + �L
;dm

�dV m
(d�
)=d

� K1

(nm�d)1=d

Z
S
�
d�
�1

d (x)dx +
�L
 ;d

(nm�d)1=2

Z
S
�
1
2�



d (x)dx

+
K2

(nm�d)(d�
)=d
+ n�

d�

d + �L
;dm

�dV m
(d�
)=d: (22)

This bound is finite under the assumptions that
 � d � 1, f (d�
)=d is of bounded variation over[0; 1]d andf1=2�
=d is

integrable overS.

The bound (22) on the mean deviation (21) is actually a family of bounds for different values ofm = 1; 2; : : :. By

selectingm as the function ofn which minimizes this bound we obtain the tightest bound among them.

Proposition 2 Letd � 2, 1 � 
 � d� 1. Assume thatf is a Lebesgue density and thatf (d�
)=d is of bounded variation

over [0; 1]d. Assume also thatf1=2�
=d is integrable. Then for any continuous quasi-additive functionalL
 of order


satisfying the add-one bound����E[L
(X1; : : : ; Xn)]=n
d�

d � �L
;d

Z
S
f (d�
)=d(x)dx

���� � Cd;
 n
�1=(d+1) (1 + o(1))

where

Cd;
 =

8<:
�L
 ;dV

m
(d�
)=d +K1

R
S f

(d�
�1)=d(x)dx +K2Id�1(
); d > 2

(K1 + �L
;d)
R
S f

(d�
�1)=d(x)dx + �L
 ;dV
m
(d�
)=d +K2Id�1(
); d = 2

whereId�1(
) = 1 if 
 = d� 1 andId�1(
) = 0 otherwise.

Proof

The rates depending onm in (22) are(nm�d)�1=d, (nm�d)�1=2, (nm�d)�(d�
)=d andm�d. Without any loss in

generality we can assume thatnm�d > 1. Thus, in the ranged � 1=2 and1 � 
 � d� 1, the slowest of these rates are

(nm�d)�1=d andm�d. We obtain anm-independent bound on the mean deviation (21) by selectingm = m(n) to be the

sequence increasing inn which minimizes the maximum of these rates

m(n) = argminmmax
n
m�d; (nm�d)�1=d

o
: (23)

The solutionm = m(n) occurs when(nm�d)�1=d = m�d, or m = n1=[d(d+1)] (integer part) and, correspondingly,

nm�d = nd=(d+1) andm�d = (nm�d)�1=d = n�1=(d+1). Therefore,����E[L
(X1; : : : ; Xn)]=n
d�

d � �L
;d

Z
S
f
d�

d (x)dx

����
11



� 1

n1=(d+1)

�
K1

Z
S
f
d�
�1

d (x)dx + �L
;dV
m
(d�
)=d

�
+

�L
 ;d

nd=[2(d+1)]

Z
S
f
1
2�



d (x)dx +

K2

n(d�
)=(d+1)
+ n�

d�

d :

This establishes Proposition 2. �

3.3 Concentration Bounds

Any Euclidean functionalL
 of order
 satisfying the continuity property (4) also satisfies the concentration inequality

[38, Thm. 6.3] established by Rhee [31]:

P (jL
(X1; : : : ; Xn)�E[L
(X1; : : : ; Xn)]j > t) � C exp

��(t=C3)2d=(d�
)
Cn

�
; (24)

whereC is a constant depending only onL
 andd. It is readily verified that ifK > C3C
(d�
)=(2d) the right hand side of

(24) is summable overn = 1; 2; : : : whent is replaced byK(n lnn)(d�
)=(2d). Thus we have by Borel-Cantelli

jL
(X1; : : : ; Xn)�E[L
(X1; : : : ; Xn)]j � O
�
(n lnn)(d�
)=(2d)

�
(a:s:):

Therefore, combining this with Proposition 2 we obtain the a.s. bound

Proposition 3 Letd � 2 and1 � 
 � d� 1. Assume that the Lebesgue densityf supported onS � [0; 1]d is such that

f (d�
)=d is of bounded variation over[0; 1]d andf1=2�
=d is integrable overS. Then forL
 a continuous quasi-additive

functional of order
 which satisfies the add-one bound����L
(X1; : : : ; Xn)=n
(d�
)=d � �L
;d

Z
S
f (d�
)=d(x)dx

���� � O

 
max

(�
lnn

n

�(d�
)=(2d)
; n�1=(d+1)

)!
(a:s:):

The concentration inequality can also be used to boundLp momentsE[jL
(X1; : : : ; Xn)�E[L
(X1; : : : ; Xn)]j�]1=�,

� = 1; 2; : : :. In particular, as for any r.v.Z: E[jZj] = R10 P (jZj > t)dt, we have by (24)

E [jL
(X1; : : : ; Xn)�E[L
(X1; : : : ; Xn)]j�] =

Z 1

0

P
�
jL
(X1; : : : ; Xn)�E[L
(X1; : : : ; Xn)]j > t1=�

�
dt

� C3C

Z 1

0

exp

��t2d=[�(d�
)]
Cn

�
dt

= K�n
�(d�
)=(2d); (25)

whereK� = C3C
�(d�
)=(2d)+1

R1
0 e�u

2d=[�(d�
)]

du.

Combining the above with (22), we obtain
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Proposition 4 Let d � 2, 1 � 
 � d � 1, and� > 0. Assume that the Lebesgue densityf supported onS is such that

f (d�
)=d is of bounded variation over[0; 1]d andf1=2�
=d is integrable overS. Then forL
 a continuous quasi-additive

functional of order
 which satisfies the add-one bound

E

�����L
(X1; : : : ; Xn)=n
(d�
)=d � �L
;d

Z
S
f (d�
)=d(x)dx

������1=� � (26)

K1

(nm�d)1=d

Z
S
�
d�
�1

d (x)dx +
�L
;d

(nm�d)1=2

Z
S
�
1
2�



d (x)dx

+
K2

(nm�d)(d�
)=d
+ n�

d�

d + �L
 ;dm

�dV m
(d�
)=d +K1=�

� n�(d�
)=(2d)

Proof:

For any non-random constant�: E[jW + �j�]1=� � E[jW j�]1=� + j�j. Identify

� = E[L
(X1; : : : ; Xn)]=n
(d�
)=d � �L
 ;d

Z
S
f (d�
)=d(x)dx

W = (L
(X1; : : : ; Xn)�E[L
(X1; : : : ; Xn)])=n
(d�
)=d

and use (25) and (22) to establish Proposition 4. �

As them-dependence of the bound of Proposition 4 is identical to that of the bias bound (22), minimization of the

bound overm = m(n) proceeds analogously to the proof of Proposition 2 and we obtain the following.

Corollary 1 Let d � 2, 1 � 
 � d � 1, and� > 0. Assume that the Lebesgue densityf supported onS is such that

f (d�
)=d is of bounded variation over[0; 1]d andf1=2�
)=d is integrable overS. Then forL
 a continuous quasi-additive

functional of order
 which satisfies the add-one bound

E

�����L
(X1; : : : ; Xn)=n
(d�
)=d � �L
 ;d

Z
S
f (d�
)=d(x)dx

������1=� � O
�
max

n
n�1=(d+1); n�(d�
)=(2d)

o�
: (27)

3.4 Discussion

It will be convenient to separate the discussion into the following points.

1. The bounds of Proposition 3 and Corollary 1 hold uniformly over the class of Lebesgue densities havingf (d�
)=d

of bounded variation and integrablef (d�
)=d�1=2 over[0; 1]d. If (d� 
)=d 2 [1=2; (d� 1)=d] then, asS 2 [0; 1]d

is bounded, this integrability condition is automatically satisfied.

13



2. A property of bounded variation classes of functions over IRd , denotedBV, is thatf�0 2 BV impliesf�1 2 BV

when�0 � �1. Thus the integrability assumption in Propositions 3 and 4 can be eliminated by replacing the BV

and integrability hypotheses onf by the stronger assumption thatf1=2�
=d is of bounded variation over[0; 1]d.

3. It can be shown in analogous manner to the proof of the umbrella theorems of [38, Ch. 7] that iff is not a Lebesgue

density then the convergence rates in Propositions 3 and 4 hold when the region of integrationS is replaced by the

support of the Lebesgue continuous component off .

4. Whenf is piecewise constant over a known partition of resolutionm = mo faster rate of convergence bounds are

available. For example, in the case of theLp bound of Proposition 4 the cell variationV mo

(d�
)=d is zero form � mo

and therefore the bound (26) is monotone increasing inm over this range. Therefore the sequencem(n) = mo

minimizes the bound asn ! 1 and the best rate bound is only of ordermax
�
n�(d�
)=(2d); n�1=d

	
. As for

uniform densityf theO(n�1=d) bound on mean rate of convergence is tight [38, Sec. 5.3] ford = 2, we conclude

that for(d� 
)=d � 2=d the asymptotic rate of convergence of the left hand side of (27) is exactlyO(n�1=d) for

piecewise constantf andd = 2.

5. The moment bound (27) is of ordern�1=(d+1) for d � (
 + 1 +
p
(
 + 1)2 + 4
)=2 and of ordern�(d�
)=(2d)

otherwise. As


 + 1 � (
 + 1+
p
(
 + 1)2 + 4
)=2 � 
 + 2;

for d � 2 we conclude that the convergence rate is of ordern�1=(d+1) except for a narrow range of
 contained

inside the interval(d� 2; d).

6. By using a weaker rate of mean convergence bound [38, Thm. 5.1], which applies to all continuous quasi-additive

functionals and uniformf , in place of (9) in the proof of Proposition 2, the mean deviation of any continuous

quasi-additive functionalL
 from its a.s. limit can easily be shown to obey the bound����E[L
(X1; : : : ; Xn)]=n
(d�
)=d � �L
 ;d

Z
S
f (d�
)=d(x)dx

���� � O
�
max

n
n�1=(d+1); n�(d�
)=(2d)

o�
: (28)

Since the termn�(d�
)=(2d) already appears in theLp bound of Proposition 4, Corollary 1 extends to any continu-

ous quasi-additive functionalL
 including the MST, TSP, the minimal matching graph and thek-nearest neighbor

graph functionals.

14



7. A tighter upper bound than Corollary 4 on theLp convergence rate may be derived if a tighterm dependent analog

to the concentration inequality (24) can be found.

4 Convergence Rates for Fixed Partition Approximations

Partitioning approximations to minimal graphs have been proposed by many authors, including Karp [17], Ravietal [27],

Mitchell [23], and Arora [1], as ways to reduce computational complexity. The fixed partition approximation is a simple

example whose convergence rate has been studied by Karp [17, 18], Karp and Steele [19] and Yukich [38] in the context

of a uniform densityf .

Fixed partition approximations to a minimal graph weight function require specification of an integer resolution param-

eterm controlling the number of cells in the uniform partitionQm = fQigmi=1 of [0; 1]d discussed in Section 2. Whenm

is defined as an increasing function ofnwe obtain a progressive-resolution approximation toL
(Xn). This approximation

involves constructing minimal graphs of order
 on each of the cellsQi, i = 1; : : : ;md, and the approximationLm
 (Xn)
is defined as the sum of their weights plus a constant bias correctionb(m)

Lm
 (Xn) =
mdX
i=1

L
(Xn \Qi) + b(m): (29)

In this section we specify a bound on the m.s. convergence rate of the progressive-resolution approximation (29) and

specify the optimal resolution sequencefm(n)gn>0 which minimizes this bound. Our derivations are based on the

approach of Yukich [38, Sec. 5.4] and rely on the concrete version of the pointwise closeness bound (6)

��L
(F )� L�
(F )
�� �

8<: C[card(F )](d�
�1)=(d�1); 1 � 
 < d� 1
C log card(F ); 
 = d� 1 6= 1
C; d� 1 < 
 < d

; (30)

for any finiteF � [0; 1]d. This condition is satisfied by the MST, TSP and minimal matching function [38, Lemma 3.7].

We first obtain a fixedm bound onL1 deviation of theLm
 (Xn)=n(d�
)=d from its limit.

Proposition 5 Letd � 2 and1 � 
 < d� 1. Assume that the Lebesgue densityf supported onS � [0; 1]d satisfies the

properties thatf (d�
)=d is of bounded variation over[0; 1]d andf1=2�
=d are integrable overS. LetLm
 (Xn) be defined

as in (29) whereL
 is a continuous quasi-additive functional of order
 which satisfies the pointwise closeness bound

15



(30). Then ifjb(m)� C1m
d�
 j � O(md�
)

E

�����Lm
 (Xn)=n(d�
)=d � �L
;d

Z
S
f (d�
)=d(x)dx

�����
� O

�
max

n
(nm�d)�
=[d(d�1)]; m�d; n�(d�
)=(2d)

o�
: (31)

Proof:

Start with

E

�����Lm
 (Xn)]=n(d�
)=d � �L
 ;d

Z
S
f (d�
)=d(x)dx

����� � (32)

E

�����L
(Xn)=n d�

d � �L
;d

Z
S
f
d�

d (x)dx

�����+E
���Lm
 (Xn)� L
(Xn)

��� =n d�

d : (33)

Analogously to the proof of [38, Thm. 5.7], using the pointwise closeness bound (30) one obtains a bound on the

difference between the partitioned weight functionLm
 (F ) and the minimal weight functionL
(F ) for any finiteF �
[0; 1]d

b(m)� C1m
d�
 � Lm
 (F )� L
(F ) � m�
C

mdX
i=1

(card(F \Qi))
(d�
�1)=(d�1)

: (34)

Let �(x) =
Pmd

i=1 �im
�d be the block density approximation tof(x). As fXn \Qigmd

i=1 are independent andE[jZju] �
(E[jZj])u for 0 � u � 1

E[
��Lm
 (Xn)� L
(Xn)

��] � m�
C

mdX
i=1

E
h
(card(F \Qi))

(d�
�1)=(d�1)
i
+ jb(m)� C1m

d�
 j

� m�
n(d�
�1)=(d�1)C
mdX
i=1

(�im
�d)(d�
�1)=(d�1) + jb(m)� C1m

d�
 j

= m
=(d�1)n(d�
�1)=(d�1)C

mdX
i=1

�
(d�
�1)=(d�1)
i m�d + jb(m)� C1m

d�
 j

= m
=(d�1)n(d�
�1)=(d�1)C

Z
S
�(d�
�1)=(d�1)(x)dx + jb(m)� C1m

d�
 j

Note that the bias termjb(m)�C1md�
 j can be eliminated by selectingb(m) = C1m
d�
 . Dividing through byn(d�
)=d,

noting thatjb(m)� C1m
d�
 jn�(d�
)=d � B(nm�d)�(d�
)=d for some constantB

E

�����Lm
 (Xn)� L
(Xn)
n(d�
)=d

����� � (nm�d)�
=[d(d�1)]C

Z
S
�(d�
�1)=(d�1)(x)dx + (nm�d)�(d�
)=dB: (35)
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Combining this with Proposition 4, with relaxed add-one bound condition (see comment 6 in Section 3.4), we can

bound the right hand side of (33) to obtain

E

�����Lm
 (Xn)]=n(d�
)=d � �L
 ;d

Z
S
f (d�
)=d(x)dx

����� �
K1

(nm�d)1=d

Z
S
�
d�
�1

d (x)dx +
�L
;d

(nm�d)1=2

Z
S
�
1
2�



d (x)dx

+
K2

(nm�d)(d�
)=d
+ n�

d�

d + �L
 ;dm

�dV m
(d�
)=d +K1=�

� n�(d�
)=(2d)

+
C

(nm�d)
=[d(d�1)]

Z
S
�(d�
�1)=(d�1)(x)dx + (nm�d)�(d�
)=dB: (36)

Over the range1 � 
 < d� 1 the dominant terms are as given in the Proposition. This establishes Proposition 5.� .

Finally, by choosingm = m(n) to minimize the maximum on the right hand side of the bound of Proposition 5 we

have an analog to Corollary 1:

Corollary 2 Letd � 2 and1 � 
 < d�1. Assume that the Lebesgue densityf supported onS is such thatf (d�
)=d is of

bounded variation over[0; 1]d andf1=2�
=d is integrable overS. LetLm
 (Xn) be defined as in (29) withL
 a continuous

quasi-additive functional of order
 which satisfies the pointwise close bound (30). Then ifjb(m)�C1md�
 j � O(md�
)

E

�����Lm(n)

 (X1; : : : ; Xn)=n

(d�
)=d � �L
;d

Z
S
f (d�
)=d(x)dx

����� �

O
�
max

n
n��=(1+�); n�(d�
)=(2d)

o�
; (37)

where� = 
=[d(d� 1)]. This rate is attained by choosing the progressive-resolution sequencem = m(n) = n
1
d�=(1+�).

4.1 Discussion

We make the following remarks.

1. The function�=(1 + �) in Corollary 2 is increasing in� = 
=[d(d� 1)] over1 � 
 < d� 1 and takes supremum

of 1=(d + 1) at 
 = d � 1. The raten�(d�
)=(2d) dominates in (37) when
 > 
o = d(d � 1)(�d=(d � 1) +p
(d=(d� 1))2 + 4=(d� 1))=2. Thus, as might be expected, the partitioned approximation has a convergence rate

(37) that is always worse than the rate bound (27) but improves as
 increases to
o.
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2. In view of (36) the rate constant multiplying the asymptotic raten�
=[d(d�1)]=(
=[d(d�1)]+1) is an increasing func-

tions
R
S f

(d�
�1)=(d�1)(x)dx. Thus fastest asymptotic convergence can be expected for densities with small R´enyi

entropy of order(d� 
 � 1)=(d� 1).

3. It is more tedious but straightforward to show that theL2 deviationE
h��Lm
 (Xn)=n(d�
)=d � �L
;d

R
S f

(d�
)=d(x)dx
��2i1=2

obeys the identical asymptotic rate bounds as in Proposition 5 and Corollary 2 with identical bound minimizing

progressive-resolution sequencem = m(n).

4. As pointed out in the proof of Proposition 5 the bound minimizing choice of the bias correctionb(m) of the

progressive-resolution approximation (29) isb(m) = C1m
d�
 , whereC1 is the constant in the subaddivity condi-

tion (2). However, Proposition 5 asserts that, for example, usingb(m) = Cmd�
 with arbitrary scale constantC

or even usingb(m) = 0 are asymptotically equivalent to the bound minimizingb(m). This is important since the

constantC1 is frequently difficult to determine and depends on the specific properties of the minimal graph, which

are different for the TSP, MST, etc.

5. The partitioned approximation (29) is a special casek = n of the greedy approximation to thek-point minimal

graph approximation introduced by Ravietal [26] whose a.s. convergence was established by Hero and Michel

[14]. Extension of Proposition 5 to greedy approximations tok-point graphs is an open problem.

5 Application to Entropy Estimation

In this section we apply the previous convergence results to non-parametric entropy estimation. In particular, using the

the convergence rate bounds derived above, Proposition 6 establishes asymptotic performance advantages of the minimal

graph method of R´enyi entropy estimation as contrasted to non-parametric density plug-in methods of entropy estimation.

For concrete applications of Proposition 6 see Heroetal [12].

For a Lebesgue continuous multivariate densityf the Rényi entropy of order� is defined as [30]:

H�(f) = (1� �)�1 ln

Z
f�(x)dx: (38)

Here, as above, we restrict the support off to a subset of[0; 1]d and we only consider the range� 2 (0; 1). The Rényi

entropy converges to the Shannon entropyH1(f) = � R f(x) ln f(x)dx in the limit as�! 1. As� becomes smaller the
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Rényi entropy tends to equalize the influence of the small amplitude regions, e.g. tails, and the large amplitude regions of

f .

We consider entropy estimates of the form̂H� = (1� �)�1 ln Î�, whereÎ� is a consistent estimator of the integral

I�(f) =

Z
f�(z)dz:

Given non-parametric function estimatescf�n of f� based on then i.i.d. observationsX1; : : : ; Xn from f , define the

function plug-in estimatorI�(cf�). Define the minimal-graph estimator̂I� = L
(X1; : : : ; Xn)=(�L
 ;dn
�), where
 2

(0; d) is selected such that� = (d� 
)=d andL
 is continuous quasi-additive. A standard purturbation analysis ofln(z)

establishes that for either of these estimatorsÎ�

jĤ� �H�(f)j =
1

1� �

jÎ� � I�(f)j
I�(f)

+ o(jÎ� � I�(f)j):

Thus as a function ofn the asymptoticLp rate of convergence of̂H� �H�(f) will be identical to that of̂I� � I�(f).

DefineBV(C; d) as the class of functions on[0; 1]d of bounded variation having total variationC.

Proposition 6 Assume that the Lebesgue densityf on [0; 1]d is such thatf� 2 BV(C; d) where� 2 [1=2; (d � 1)=d],

d � 2. Then, forp = 1; 2; : : :, and any plug-in estimatorI�(cf�)
sup

f�2BV(C;d)
E1=p

h���I�(cf�)� I�(f)
���pi � O

�
n�1=(d+2)

�
; (39)

while for the minimal-graph estimator̂I�

sup
f�2BV(C;d)

E1=p
h���Î� � I�(f)

���pi � O
�
n�1=(d+1)

�
: (40)

Proof:

The result (40) follows directly from Proposition 4, modified according to remarks 2 and 6 in Section 3.4. As for (39)

the proof follows from well known results in non-parametric function estimation which we only sketch here. The reader

is referred to Ibragimov and Has’minskii [16] or Korostolev and Tsybakov [20] for more details. Define the H¨older class

�d(�;C) of functionsg on [0; 1]d

�d(�;C) =
n
g(x) : jg(x)� pb�cx (z)j � C kx� zk�

o
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wherepkx(z) is the Taylor polynomial (multinomial) ofg of orderk expanded about the pointx, kxk denotes theL2 norm

andb�c is defined as the greatest integer strictly less than�. �d(1; C) is the set of Lipschitz functions with Lipschitz

constantC and�d(�;C) contains increasingly smooth functions as� increases.

For any estimator̂gn of g based on i.i.d. samplesX1; : : : ; Xn the minimaxLp integrated error over the H¨older class

�d(�;C) satisfies

sup
g2�d(�;C)

E1=p

�Z
(ĝn(x) � g(x))pdx

�
= O

�
n��=(2�+d)

�
: (41)

We show below that, for̂g = cf�n andg = f�, this implies

sup
g2�d(�;C)

E1=p

�����Z (ĝ�(x) � g(x)dx

����p� = O
�
n��=(2�+d)

�
: (42)

The inequality (39) follows from the fact that�d(1; C) � BV(C; d).

Relation (41) implies that there exist positive constantsC1, C2 such that for allg 2 �d(�;C)

lim sup
n!1

���[ĝ(x)� g(x)]n�=(2�+d)
��� <1; (w:p:1); (43)

except possibly on a subset of[0; 1]d of measure zero, and for someg 2 �d(�;C)

lim inf
n!1

���[ĝ(x)� g(x)]n�=(2�+d)
��� > 0; ; (w:p:1) (44)

over some subset of[0; 1]d of positive measure. Therefore, lettingg = f�, using relations (43) and (44), there exist finite

constantsC1 andC2 such that

E1=p

�����Z (ĝ(x) � g(x))dx

����p� � C1n
��=(2�+d)(1 + o(1));

for all g 2 �d(�;C), and there exists a functiong 2 �d(�;C) such that

E1=p

�����Z g��1(x)(ĝ(x)� g(x))dx

����p� � C2n
��=(2�+d)(1 + o(1))

Therefore,

C2n
��=(2�+d)(1 + o(1)) � sup

g2�d(�;C)
E1=p

�����Z (ĝ(x)� g(x))dx

����p� � C1n
��=(2�+d)(1 + o(1))

which establishes (42) and the proof of Proposition 6 is completed. �

We make several comments in connection with Proposition 6.
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1. By Proposition 4 assumption� 2 [1=2; (d� 1)=d] can be relaxed to� 2 (0; (d� 1)=d] with corresponding weak-

ening of the rate bound (40) of the graph-based entropy estimator toO
�
maxfn�1=(d+1); n��=2g�. Specializing

to rms error (p = 2), the slowerO
�
n��=2

�
rate occurs when the variance of the minimal graph estimator exceeds

the bias squared.

2. The assumption� � (d � 1)=d prevents the application of the convergence rate bound (27) in Proposition 6 to

minimal graph estimates of the Shannon entropy(�! 1). In particular, we cannot use it to bound a minimal-graph

analog to the plug-in estimation method proposed by Mokkadem [24] in which Shannon entropy is estimated by

a sequencêI�n(f̂n) of �-entropy estimators where�n < 1 andlimn!1 �n = 1. As mentioned in Remark 4 of

Section 3.4, relaxation of this assumption would require extension to
 < 1 of the fundamental convergence rate

O(n�1=d) in (9) established by Redmond and Yukich [28].

3. The partitioned minimal graph approximation (29) can be adapted to entropy estimation in an obvious way and an

analog to Proposition 6 will hold with (27) replaced by the slowerO(n��=(1+�)) rate bound.

4. If it is knowna priori that the class of functionsf is significantly smoother than theBV class assumed in Propo-

sition 6 then density estimation methods can have much faster convergence. As an extreme example, iff is a

piecewise constant block density over ana priori known partition, a histogram plug-in estimator will have faster

Lp convergence rateO(1=
p
n) while the minimal graph estimator will only haveO(n�1=d) convergence rate. This

dichotomy in entropy estimator convergence rates for smooth versus non-smooth density classes is analogous to

well known behavior of minimax rates for non-parametric and semi-parametric estimation of general functionals,

see work by Bickel and Ritov [5], Donoho and Low [9] and Birg´e and Massart [6].

6 Conclusion

In this paper we have given rate of convergence bounds for minimal-graphs satisfying continuous quasi-additivity. An

application to entropy estimation was treated which established performance advantages of minimal graph estimators

of entropy as contrasted with plug-in estimators. These results suggest that further exploration of minimal graphs for

estimation of R´enyi divergence, R´enyi mutual information, and R´enyi Jensen difference is justifed.

21



References

[1] S. Arora, “Nearly linear time approximation schemes for Euclidean TSP and other geometric problems,” inPro-

ceedings of IEEE Symposium on Foundations of Computer Science, 1997.

[2] D. Banks, M. Lavine, and H. J. Newton, “The minimal spanning tree for nonparametric regression and structure

discovery,” inComputing Science and Statistics. Proceedings of the 24th Symposium on the Interface, H. J. Newton,

editor, pp. 370–374, 1992.

[3] R. Baraniuk, P. Flandrin, A. J. E. M. Jensen, and O. Michel, “Measuring time frequency information content using
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