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Abstract

Over the past decade there has been an explosion in the
amount of genomic data available to biomedical researchers
due to advances in biotechnology. For example, using gene
microarrays, it is now possible to probe a person’s gene ex-
pression profile over the more than 30,000 genes of the hu-
man genome. Signals extracted from gene microarray exper-
iments can be linked to genetic factors underlying disease,
development. and aging in a population. This has greatly ac-
celerated the pace of gene discovery. However, the massive
scale and experimental variability of genomic data makes ex-
traction of biologically significant genetic information very
challenging. One of the most important problems is to se-
lect a ranked list of genes which are both biologically and
statistically significant based on a gene microarray experi-
ment. We will describe multicriterion methods that we have
developed for this gene selection and ranking problem.

1. INTRODUCTION

Since Watson and Crick discovered DNA more than fifty
years ago, the field of genomics has progressed from a spec-
ulative science starved for data and computation cycles to
one of the most thriving areas of current research and de-
velopment. It was not until almost 45 years after Watson
and Crick’s discovery that the first entire genome was se-
quenced, the E Coli bacterium containing over 4000 genes,
after several years of effort. In 2001 the first draft of the hu-
man genome, containing more than 30,000 genes, was ob-
tained. In spring 2003 the genome for the SARS corona
virus (SARS-CoV) was sequenced and authenticated in less
than 2 months time.1,2 These recent leaps in progress would
not have been possible without significant advances in gene
sequencing technology. One such technology, which is the
main focus of this paper, are gene microarrays and their as-
sociated signal extraction and processing algorithms.

Gene microarrays provide a high throughput method to
simultaneously probe a large number gene expression lev-
els in a biological sample. Current state-of-the-art microar-
rays contain up to 50,000 gene probes that interact with the
sample producing probe responses that can be measured as
a multichannel signal. When the probes are suitably repre-
sentative of the range of genetic variation of the organism,

this signal specifies a unique gene expression signature of
the sample. Gene microarrays are a very powerful tool which
can be used to perform gene sequencing, gene mapping and
gene expression profiling. They will be critical in determin-
ing the genetic circuits that regulate expression levels over
time and genetic pathways that lead to specific biological
function or dysfunction of an organism.

In this paper we will describe some signal processing
challenges in gene microarray analysis and present a few
approaches we have developed in interacting with our col-
laborators in molecular biology. The focus application of
the paper is the analysis of temporal gene expression profiles
and their role in exploring genetic factors underlying disease,
regulatory pathways controlling cell function, organogenesis
and development. In particular we and our collaborators in
the Dept. of Human Genetics at the University of Michi-
gan are interested in analyzing retinal data to determine ge-
netic factors underlying dysfunction of the eye due to aging,
glaucoma, macular degeneration, and diabetes. Our exam-
ples will be primarily drawn from these areas and we will
focus on the problem of selection and ranking of genes that
are both biologically and statistically significant from exper-
imentally replicated microarray data.

In our past work on signal processing for gene microar-
rays3{7 our primary goal has been be to develop statistically
reliable methods for selecting and ranking temporal gene ex-
pression profiles. The work most closely related to this paper
is our multi-criterion optimization approach togene ranking
using a statistical version of Pareto front analysis.5,7 In this
work two methods for ranking data from multiple microar-
ray experiments were introduced: cross-validation leading
to resistant Pareto front (RPF) analysis, and Bayes smooth-
ing, leading to posterior Pareto front (PPF) analysis. In this
paper we focus on thegene selectionproblem and adopt a
statistical multiple criteria approach similar to our previous
work. We then illustrate these methods for two Affymetrix
GeneChip experiments for probing the genes of the retina. In
these experiments we adopt pairs of criteria which trade-off
high selectively for robustness. Specifically, one selection
criterion is a (multivariate) paired t-test statistic for selecting
gene profiles. This criterion has optimal gene selection prop-
erties under a Gaussian microarray probe response model.
The other criterion is based on distribution-free rank order



statistics. This criterion is robust to violations of distribu-
tional assumptions on the data.

The outline of the paper is as follows. In Sec. 2 we give
some background on genomics and review gene microarrays
in the context of temporal profile analysis. In Sec. 3 we mo-
tivate and describe the multicriterion selection and ranking
approach. In Sec. 4 we apply false discovery rate (FDR) to
multicriterion gene selection. Finally, in Sec. 5 we illustrate
these techniques for experimental data.

2. GENOMICS BACKGROUND

We start with some definitions and a brief review of molecu-
lar biology and genetics. The genome refers to the genetic
operating system which controls structure and function of
cells in an organism. This genome consists of genes that
lie on segments, called exons, of the double stranded DNA
helix which lie on a number of chromosomes in the nucleus
of every cell in the organism. The number of genes in the
DNA of a given organism can range from a few thousand for
simple organisms to tens of thousands for more sophisticated
organisms. Each exon contains a gene which is encoded as
a nucleotide sequence of symbols A,C,G,T forming a 4-ary
alphabet.

Gene expression occurs when the DNA sheds certain of
its genes in the cell nucleus in order to stimulate or inhibit
various functions, e.g., cell growth or metabolism. This stim-
ulation occurs through production of derivatives of DNA, the
mRNA and tRNA, produced by a process called transcrip-
tion and translation. Stimulated by mRNA and tRNA the
ribosome of a cell produces specific amino acids in polype-
tide chains. These chains form proteins that carry out the in-
tended function expressed by the DNA. While the DNA does
not change, the specific genes expressed in this fashion can
change over time, environmental conditions, and treatments.
The objective of genomics is to identify the very large num-
bers of genes that are expressed by the organism.

Biotechnology, such as gene microarray hybridization,
Northern hybridization, and gell electrophoresis, is essential
to reliably probe the gene expression of a biological sam-
ple. Bioinformatics provides tools for computational extrac-
tion and analysis of the vast amounts of information in probe
response data. As scientists and genetic engineers become
increasingly interested in studies of gene expression profiles
over time, signal processing will become a major bioinfor-
matics tool. We next briefly describe the signals generated
by gene microarrays.

A gene microarray consists of a large numberN of known
DNA probe sequences that are put in distinct locations on a
slide. See one of the references8,9 for more details. After

hybridization of an unknown tissue sample to the gene mi-
croarray, the abundance of each probe present in the sam-
ple can be estimated from the measured levels of hybridiza-
tion. Two main types of gene microarrays are in wide use:
photo-lithographic gene chips and fluorescent spotted cDNA
arrays. An example of the former is the Affymetrix10 prod-
uct line. An example of the later is the cDNA microarray
protocol of the National Human Genome Research Institute
(NHGRI).11 A suite of software tools are available from
Affymetrix and elsewhere for extracting accurate estimates
of abundance, called probe responses. When probe responses
are to be compared across different microarray experiments
they must also be normalized. Extraction and normalization
methods can range from simple unweighted sample averag-
ing, as in the Affymetrix MAS4 software, to more sophisti-
cated model-based analyses, such as MAS5,10 the Li-Wong
method12,13 and RMA.14,15 Many of the more sophisticated
packages are available as freeware, e.g., see Strimmer’s web-
site16 for links to relevant software written in the R soft-
ware language. When several microarray experiments are

Figure 1. Probing gene expression at several time points
leads to a temporal sequence of gene microarrays (left). A
few of the sequences can be extracted at specific probe loca-
tions on the microarrays and plotted as time signals (right).

performed over time they can be combined in order to find
genes with interesting temporal expression profiles (see Fig.
1). This is a data mining problem known variously as ”gene
selection” and ”gene filtering” for which many methods have
been proposed.17{19 Crucial for gene ranking is the speci-
fication of a preference ordering for the ranking. A popular
gene selection and ranking method is based on optimizing
some single fitness criterion such as: the ratio of between-
population-variation to within-population-variation; or the



temporal correlation between a measured profile and a pro-
file template. A problem with this single criterion ranking
method is that it is often difficult for the molecular biolo-
gist to articulate what he is looking for in terms of a single
quantitative criterion. It is for this reason that our group has
proposed multiple criteria methods for selecting and ranking
gene profiles.3,5,7

3. MULTICRITERIA SELECTION AND
RANKING

As contrasted to maximizingscalarcriteria, multiple objec-
tive gene filtering seeks gene profiles that strike an optimal
compromise between maximizing several criteria. It is of-
ten easier for a molecular biologist to specify several criteria
than a single criterion. For example the biologist might be in-
terested in aging genes, which he might define as those genes
having expression profiles that are increasing over time, have
low curvature over time, and whose total increase from initial
time to final time is large. As another example, one may have
to deal with two biologists who each have different criteria
for what features constitute an interesting aging gene.

Multicriterion Gene Selection: To illustrate, let fitness cri-
teria �1(g); : : : ; �p(g) be defined for each geneg in the mi-
croarray. A reasonable gene selection criterion would be
that the fitness for each selected geneg lies in the quadrant
�1(g) > u1; : : : ; �p(g) > up. Hereu1; : : : ; up are thresh-
olds which are selected by the experimenter to reflect the bi-
ological significance of a particular level of measured gene
fitness�k(g). This is illustrated in Fig. 2 where the selected
sector for two aging criteria (the orthogonalized criteria de-
scribed in Sec. 5.1) is superimposed over the scatter plot of
fitness levels extracted for all the genes probe in the microar-
ray. This scatter plot is called the multicriteria scattergram of
the fitness responses.

Multicriterion Gene Ranking : In a well designed gene mi-
croarray experiment, multicriterion (or other) methods of se-
lection will generally result in a large number of genes and
the biologist must next face the problem of selecting a few
of most “promising genes” to investigate further. Resolution
of this problem is of importance since validation of gene re-
sponse requires more sensitive techniques, such as RT-PCR,
which are much more time consuming and expensive. Some
sort of rank ordering of the selected genes would help guide
the biologist to a solution. As a linear ordering of set of
vector quantities such asf[�1(g); : : : ; �p(g)]gg does not gen-
erally exist, an absolute ranking of the selected genes is of
course generally impossible. However a partial ordering of
these vectors is possible and such a ”partial ranking” can
be formulated as a multiple objective optimization problem.
Multiple objective optimization captures the intrinsic com-

Figure 2. Multicriteria scattergram of gene fitness responses
with overlaid gene selection sector. The choice of position
[u1; u2] of the sector depends on the experimenter’s chosen
biological significance levels for gene discovery.
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Figure 3. A hypothetical multicriterion scattergram for genes
A,B,C,D,E plotted as vectors in the plane described by a pair of
fitness criteria�1 and �2. A, B, C are non-dominated genes and
form the (first) Pareto front. A second Pareto front is formed by
genes D,E.

promises among possibly conflicting objectives in a natural
way. Consider the multicriterion scattergram in Fig. 3 and
suppose that fitness criteria�1 and�2 are to be maximized.
Gene D isdominatedby both gene A and gene B since gene
D has lower fitness in both criteria�1 and�2. Likewise gene
E is dominated by gene B and gene C. On the other hand
genes A, B and C are not dominated by any other gene and
are therefore preferable to genes D and E. Multi-objective
filtering uses this non-dominated property as a way to estab-
lish a preference relation among genes given a set of criteria
f�qgq. More formally, genei is said to be dominated if there
exists some other geneg 6= i such that for at least oneq

�q(i) < �q(g) and �p(i) � �p(g); p 6= q:

The set of non-dominated genes are defined as those genes



that are not dominated. All the genes which are non-
dominated constitute a set of points called the (first) Pareto
front. A second Pareto front can be obtained by stripping
off the points on the first front and computing the Pareto
front on the remaining points. For the example in Fig. 3 the
first Pareto front isfA;B;Cg and the second Pareto front is
fD;Eg.

The above multiple criterion selection and ranking meth-
ods are applicable to any set of criteria�1; : : : ; �p. How-
ever, these method do not account for any statistical uncer-
tainty. The study of gene expression almost always requires
hybridizing several microarrays from a population to capture
and reduce response variability. This variability can be due to
two factors: biological variability of the population and ex-
perimental variability. It is difficult to separate these two fac-
tors and most analysis is performed with a statistical model
which lumps them together.

4. FDR FOR MULTIPLE CRITERIA

For comparing experiments in a way that accounts for statis-
tical variations it is essential to report a figure of statistical
significance of the each of the findings. Two important quan-
tities indicative of statistical significance are the p-value, as-
sociated with testing a single gene response, and the false
discovery rate (FDR), associated with testing all the gene
probes simultaneously (multiple comparisons). In gene mi-
croarray experiments the biologist is always making multi-
ple comparisons so FDR is the more appropriate quantity.
Let each gene on the microarray have measured aggregate
fitness�1(g) = u1(g); : : : ; �p(g) = up(g), e.g., a statistic
computed as the average fitness ofg over all of the microar-
ray replicates. For ease of presentation, we assume that the
statistical distributionP of �1(g); : : : ; �p(g) is known when
the probe responses are spatially independent and identically
distributed (i.i.d.) random variables over the microarray. In
other words the aggregate fitness statistic is distribution free
under the null hypothesis that all probe responses are i.i.d.
The p-value is computed for a single gene probe, say gene
go, and is the probability that purely random effects, i.e., i.i.d.
probe responses, would have causedgo to be selected. More
precisely the p-value forgo is defined as:

pv(go) = P (�1 > u1(go); : : : ; �p > up(go))

where�1; : : : ; �p are random variables are computed fitness
levels of an i.i.d. random sample. If an experimenter were
only interested in deciding on the biological significance of
a single genego based only on observing that gene, then re-
portingp(go) would be sufficient for another biologist to as-
sess the statistical significance of the experimenter’s finding.
In contrast to the p-value, FDR communicates statistical sig-
nificance of an experimenters decisions made on the basis of

Figure 4. The maximum p-value for multiple criteria gene
selection in the aging gene mouse retina microarray exper-
iment (left). The FDR, computed from the p-value using a
well known formula,20 for the same experiment (right). The
genes are rank ordered in terms of their p-value and FDR
probabilities, respectively.

many gene probes. The FDR is the probability that purely
random effects would have caused specific genes to be se-
lected among all probes on the microarray.

When the null distributionP is unknown, the p-value and
the FDR can be computed empirically by simulation or re-
sampling. More information on FDR can be found in the
references.20{22 In general an experimenter would like the
maximum p-value and the FDR for his selected genes to be
as low as possible to ensure a high level of statistical signifi-
cance. However, as compared to the more conservative FDR,
use of the maximum p-value gives an overoptimistic measure
of significance. This is illustrated in Fig. 4 for the aging gene
microarray study described in the next section. In terms of
Fig. 7 the FDR is related to the probability that at least one of
the many gene responses would fall into the selected sector.

5. APPLICATIONS

Here we illustrate statistical multi-criterion selection and
ranking techniques for data from two gene microarray exper-
iments. The biological significance of the experiment and
the list of statistically significant genes found will be re-
ported elsewhere. Our purpose here is simply to illustrate
the application of our gene selection and ranking techniques.
Both experiments used oligonucleotide-arrays, specifically
the Affymetrix U74 mouse chips, and probe responses were
extracted using the Affymetrix MAS5 data analysis pack-
age.10
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Figure 5. 24 data points (4 replicates at each 6 time points)
for a specific gene extracted from GeneChips in mouse retina
aging study.

5.1. Strongly Increasing Profiles

The experiment consists of 24 retinal tissue samples taken
from a population of age-sorted mice at 6 ages (time points)
with 4 replicates per time point. These 6 time points con-
sisted of 2 early development (Pn2-Pn10) and 4 late develop-
ment (M2-M21) time points. DNA from each sample of reti-
nal tissue was amplified and hybridized to the 12,422 probes
on one of 24 Affymetrix U74 GeneChips. The data arrays
from the GeneChips were processed by Affymetrix MAS5
software to yield probe response data. We eliminated from
analysis all genes that MAS5 called out as “absent” from all
chips, leaving 8826 genes for analysis. Figure 5 shows the
24 data points for a particular gene among the 8826 genes
studied. Define the gene response datum extracted from the
m-th microarray replicate at timet for the g-th gene probe
location:

xt;m(g); g = 1; : : : ; G; m = 1; : : : ;M; t = 1; : : : ; T: (1)

whereG = 8826, M = 4, T = 6. Figure 5 shows the
response datafxt;m(g)gt;m for one of the genes extracted
from the GeneChip. The scientific objective of the exper-
iment is to find genes which are strongly associated with
aging and development, i.e. those that are strongly mono-
tonic over time. Template matching methods are not effec-
tive here since they require specification of a profile pattern
and, due to variability in the experiment, this can miss genes
that have the desirable monotonicity characteristics but do
not agree with the specified pattern. Thus we adopted the
following multi-criteria approach. We designed criteria to
key onto three types of profiles: 1) those that are monotoni-
cally increasing; 2) those that are monotonically decreasing;
3) those that display a large end-to-end change. We only de-
scribe the gene selection method for monotonic increasing
case as the treatment of the decreasing case is analogous. In
order to tease out the monotonic increasing profiles we previ-
ously proposed a naturalvirtual profile criterion that counts

Figure 6. 3 of the64 = 4096 virtual profiles that can be
drawn through the 24 gene responses in mouse retinal ag-
ing study. None of these 3 are monotonic. Label at top left
denotes the gene’s Unigene number.

the number of monotonic increasing trajectories among the
64 = 4096 possible trajectories that could pass through the
24 data points7 (See Fig. 6). However, even though it is
arguably a more compelling monotonicity statistic, it has
exponential computational complexityO(MT ) and, to our
knowledge, its p-values are not tabulated. For these rea-
sons, for the gene selection application we prefered to use the
well known Jonckheere-Terpstra (JT) test statistic23 as crite-
rion �1. For end-to-end change we adopted the one sided
paired t-test statistic24 as criterion�2. The JT statistic es-
sentially counts the number of times that a sample at a fu-
ture time point is larger than a sample at a previous time
point and its computation is only of polynomial complexity
(O((T + 1)T=2M2)). The paired t-test statistic is an opti-
mal end-to-end selection criterion when the extracted probe
responses are Gaussian random variables with identical vari-
ances. An implicit assumption underlying the use of the JT
and student-t test statistics is that the probe responses have
identical distributions except for a possible shift in location,
as measured by the mean or median. This assumption is rea-
sonable after normalization of the gene microarrays, e.g. af-
ter using the RMA procedure.14 As our collaborators are
primarily interested in the genes that are implicated in late
development or aging, we dropped the first two time points
in the data set for the analysis described below.

While the sampling distribution of the JT statistic is
known exactly under an assumption of spatially i.i.d. probe
responses, the sampling distribution for the paired t-test is
not known exactly unless the responses are Gaussian dis-
tributed. Therefore we chose to generate the FDR contours
empirically using a resampling method. In this method we



Figure 7. The multicriterion scattergram of pairs
f�1(g); �2(g)g

G
i=1 for i.i.d. resampled GeneChip probe re-

sponses appears approximately Gaussian distributed with re-
gression line as indicated. Here�1 is equal to the JT statistic
and�2 is equal to T2 which denotes the end-to-end paired t
test statistic.

simulated 500 sets of i.i.d. probe responsesfxt;m(g)gt;m;g

for which the marginal distribution matches the empirical
margin distribution offxt;m(g)gm;g at each time pointt. Us-
ing these 500 simulated GeneChip data sets we determined
FDR by computing the relative frequency that any gene fit-
ness statistic[�1(g); �2(g)] falls in a given sector. By varying
the position[u1; u2] of these sectors over the plane constant
FDR contours were determined. To obtain the most dis-
criminating multicriterion test we made an orthogonalizing
transformation to data in the multicriterion plane. This trans-
formation was motivated by the observation that the scatter-
grams of the resampled data (see Fig. 7) appeared to be a
correlated approximately bivariate Gaussian sample. Using
a regression of�2 on�1 we determined a monotonic transfor-
mation that converted these resampled scattergrams into ap-
proximately orthogonal bivariate Gaussian scatter plots. This
transformation was then applied to the original data set to de-
termine a set of monotonic increasing genes at a FDR level of
0.1 (see Fig. 8). Shown in Fig. 9 are the 9 top ranked mono-
tone increasing gene profiles among the 16 genes selected.

5.2. Differentially Expressed Profiles

The second experiment we describe is concerned with find-
ing genes whose expression profiles change significantly af-
ter a treatment. Such genes are called ”differentially ex-
pressed” after treatment. One variant of this experiment is
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Figure 10. Responses for a gene in knockout mouse (left) vs
wildtype mouse (right) for differential expression study.

called a wildtype vs knockout experiment. In this experi-
ment one has a control population (wildtype) of subjects and
a treated population (knockout) of subjects whose DNA has
been altered in some way. One then collects cell samples
from both populations at different times and generates mi-
croarray data sets to find any genes that are differentially ex-
pressed. Figure 10 shows gene probe responses from such
a wildtype and knockout experiment. We label the wildtype
and knockout responsesWt;m(g) andKt;m(g) in a similar
manner to (1) where hereM = 4, T = 3.

The dual criteria chosen were: 1) a Mack-Skillings (MS)
statistic for testing for parallel W vs. K responses (profiles)
in a two way layout23; and 2) a multivariate paired t (MVPT)
test statistic for quantifying the amount of difference in the
W vs. K responses.24 Similarly to the previous experiment
these two criteria are complementary: the MS test is a dis-
tribution free rank-order statistical test while the MVPT is
optimal under the Gaussian assumption. We applied non-
linear transformations to these two criteria to stabilize their
variances. Similarly to before we used a resampling method
to empirically compute FDR contours in the dual criteria
plane. These contours were superimposed on the multicrite-
rion scattergram (see Fig. 11) to find the set of genes that are
differentially expressed at a FDR of prescribed level. Fig-
ure 12 shows the 9 top ranked differentially expresse gene
profiles among the 142 genes selected.

6. CONCLUSION

Signal processing for analysis of gene microarray and other
gene experiments is a growing area and there are enough
challenges to keep the community busy for years. In our col-
laborations we have found it crucial to interact closely with
our biology colleagues to ensure that our signal processing
methods are relevant and capture the biological aims of the
experimenter. To illustrate this point, in this paper we have
described one of our projects involving gene selection and
ranking. To respond to the needs of our collaborators we had
to develop a flexible multi-criterion approach to gene selec-
tion and ranking. A single criterion would have much greater
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difficulty in capturing the variety of properties that our col-
laborators considered biologically significant. To account for
statistical variation, we had to extend multi-criterion opti-
mization to a stochastic setting. We continue to refine our
methods to meet the changing requirements of interacting
with a very rapidly changing field.
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