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Abstract this signal specifies a unique gene expression signature of
the sample. Gene microarrays are a very powerful tool which

Over the past decade there has been an explosion in thecan be used to perform gene sequencing, gene mapping and
amount of genomic data available to biomedical researchers gene expression profiling. They will be critical in determin-
due to advances in biotechnology. For example, using geneil’]g the genetic circuits that regulate expression levels over
microarrays, it is now possible to probe a person’s gene ex- time and genetic pathways that lead to specific biological
pression profile over the more than 30,000 genes of the hu-function or dysfunction of an organism.
man genome. Signals extracted from gene microarray exper-
iments can be linked to genetic factors underlying disease,
development. and aging in a population. This has greatly ac-
celerated the pace of gene discovery. However, the massiv
scale and experimental variability of genomic data makes ex-
traction of biologically significant genetic information very
challenging. One of the most important problems is to se-
lect a ranked list of genes which are both biologically and
statistically significant based on a gene microarray experi-
ment. We will describe multicriterion methods that we have
developed for this gene selection and ranking problem.

In this paper we will describe some signal processing
challenges in gene microarray analysis and present a few
approaches we have developed in interacting with our col-
faborators in molecular biology. The focus application of
the paper is the analysis of temporal gene expression profiles
and their role in exploring genetic factors underlying disease,
regulatory pathways controlling cell function, organogenesis
and development. In particular we and our collaborators in
the Dept. of Human Genetics at the University of Michi-
gan are interested in analyzing retinal data to determine ge-
netic factors underlying dysfunction of the eye due to aging,
glaucoma, macular degeneration, and diabetes. Our exam-
1. INTRODUCTION ples will be primarily drawn from these areas and we will

Since Watson and Crick discovered DNA more than fifty focus on the problem of selection and ranking of genes that
years ago, the field of genomics has progressed from a Specare both b|0|Og|Ca”y and Statistica”y Significant from exper-
ulative science starved for data and computation cycles toimentally replicated microarray data.

one of the most thriving areas of current research and de-

velopm_en:[. It was not until almost 45 years after Watson (5ys-7 our primary goal has been be to develop statistically
and Crick's discovery that the first entire genome was se- gjiaple methods for selecting and ranking temporal gene ex-

quenced, the E Coli bacterium containing over 4000 genes,geqsion profiles. The work most closely related to this paper
after several years of effort. In 2001 the first draft of the hu- is our multi-criterion optimization approach t@ne ranking

man genome, containing more than 30,000 genes, was 0byging 5 statistical version of Pareto front analysisin this
tained. In spring 2003 the genome for the SARS €Orona, ok two methods for ranking data from multiple microar-
virus (SARS-CoV) was sequenced and authenticated in lesg,y oy neriments were introduced: cross-validation leading
than 2 months timé:” These recentleaps in progress would " esistant Pareto front (RPF) analysis, and Bayes smooth-
not have been possible without significant advances in gen€ . eading to posterior Pareto front (PPF) analysis. In this
sequencing technology. One such technology, which is the,aher we focus on thgene selectioproblem and adopt a
main focus of this paper, are gene microarrays and their aSyayistical multiple criteria approach similar to our previous
sociated signal extraction and processing algorithms. work. We then illustrate these methods for two Affymetrix
Gene microarrays provide a high throughput method to GeneChip experiments for probing the genes of the retina. In
simultaneously probe a large number gene expression levthese experiments we adopt pairs of criteria which trade-off
els in a biological sample. Current state-of-the-art microar- high selectively for robustness. Specifically, one selection
rays contain up to 50,000 gene probes that interact with thecriterion is a (multivariate) paired t-test statistic for selecting
sample producing probe responses that can be measured agne profiles. This criterion has optimal gene selection prop-
a multichannel signal. When the probes are suitably repre-erties under a Gaussian microarray probe response model.
sentative of the range of genetic variation of the organism, The other criterion is based on distribution-free rank order

In our past work on signal processing for gene microar-



statistics. This criterion is robust to violations of distribu- hybridization of an unknown tissue sample to the gene mi-
tional assumptions on the data. croarray, the abundance of each probe present in the sam-
ple can be estimated from the measured levels of hybridiza-
éion. Two main types of gene microarrays are in wide use:
photo-lithographic gene chips and fluorescent spotted cDNA
arrays. An example of the former is the Affymetfixprod-

uct line. An example of the later is the cDNA microarray
protocol of the National Human Genome Research Institute
(NHGRI).!* A suite of software tools are available from
Affymetrix and elsewhere for extracting accurate estimates
of abundance, called probe responses. When probe responses
2. GENOMICS BACKGROUND are to be compared across different microarray experiments
they must also be normalized. Extraction and normalization
methods can range from simple unweighted sample averag-
ing, as in the Affymetrix MAS4 software, to more sophisti-
t(r:nrclted model-based analyses, such as MHS#)e Li-Wong

. ethod®!? and RMA!*!> Many of the more sophisticated

lie on se_gmgnts, called exons, of the double _stranded DNApackages are available as freeware, e.g., see Strimmer’s web-
helix which lie on a number of chromosomes in the nucleus ;s o, jinks to relevant software written in the R soft-

of every ce_II in the organism. The number of genes in the ware language. When several microarray experiments are
DNA of a given organism can range from a few thousand for
simple organisms to tens of thousands for more sophisticatec
organisms. Each exon contains a gene which is encoded a
a nucleotide sequence of symbols A,C,G,T forming a 4-ary
alphabet.

The outline of the paper is as follows. In Sec. 2 we give
some background on genomics and review gene microarray
in the context of temporal profile analysis. In Sec. 3 we mo-
tivate and describe the multicriterion selection and ranking
approach. In Sec. 4 we apply false discovery rate (FDR) to
multicriterion gene selection. Finally, in Sec. 5 we illustrate
these techniques for experimental data.

We start with some definitions and a brief review of molecu-
lar biology and genetics. The genome refers to the genetic.

Gene expression occurs when the DNA sheds certain of
its genes in the cell nucleus in order to stimulate or inhibit
various functions, e.g., cell growth or metabolism. This stim-
ulation occurs through production of derivatives of DNA, the
MRNA and tRNA, produced by a process called transcrip-
tion and translation. Stimulated by mRNA and tRNA the
ribosome of a cell produces specific amino acids in polype-
tide chains. These chains form proteins that carry out the in-
tended function expressed by the DNA. While the DNA does
not change, the specific genes expressed in this fashion ca
change over time, environmental conditions, and treatments,
The objective of genomics is to identify the very large num-
bers of genes that are expressed by the organism.

Bi hnol h . hvbridizat Figure 1. Probing gene expression at several time points
lotechno 0gy, Such as gene microarray nyori 'Za"of" leads to a temporal sequence of gene microarrays (left). A
Northern hybridization, and gell electrophoresis, is essentlalfeW of the sequences can be extracted at specific probe loca-

to re"?‘t?'y pmb‘? the gene expression of a bl(_)loglcal SaM-tions on the microarrays and plotted as time signals (right).
ple. Bioinformatics provides tools for computational extrac-

tion and analysis of the vast amounts of information in probe

L . . erformed over time they can be combined in order to find
response data. As scientists and genetic engineers becomDe y

: . . : : : .~__genes with interesting temporal expression profiles (see Fig.
increasingly interested in studies of gene expression profllesg g P P P ( 9

. . ) . o 1). This is a data mining problem known variously as "gene
over time, signal processing will become a major bioinfor-

. . . ; selection” and "gene filtering” for which many methods have
matics too_l. We next briefly describe the signals generatedbeen proposeti-19 Crucial for gene ranking is the speci-
by gene microarrays.

fication of a preference ordering for the ranking. A popular
A gene microarray consists of a large numbeof known gene selection and ranking method is based on optimizing

DNA probe sequences that are put in distinct locations on asome single fitness criterion such as: the ratio of between-

slide. See one of the referentésfor more details. After  population-variation to within-population-variation; or the



temporal correlation between a measured profile and a pro-
file template. A problem with this single criterion ranking
method is that it is often difficult for the molecular biolo-
gist to articulate what he is looking for in terms of a single
guantitative criterion. It is for this reason that our group has
proposed multiple criteria methods for selecting and ranking
gene profiles:>7

3. MULTICRITERIA SELECTION AND
RANKING

As contrasted to maximizingcalar criteria, multiple objec- e it

tive gene filtering seeks gene profiles that strike an optimal

compromise between maximizing several criteria. It is of-

ten easier for a molecular biologist to specify several criteria

than a single criterion. For example the biologist might be in- Figure 2. Multicriteria scattergram of gene fitness responses

terested in aging genes, which he might define as those genesith overlaid gene selection sector. The choice of position

having expression profiles that are increasing over time, havdu, us] of the sector depends on the experimenter’s chosen
low curvature over time, and whose total increase from initial biological significance levels for gene discovery.

time to final time is large. As another example, one may have g,

to deal with two biologists who each have different criteria
for what features constitute an interesting aging gene.

Multicriterion Gene Selection: To illustrate, let fitness cri-
teria& (g),...,&y(g) be defined for each gengein the mi- ob
croarray. A reasonable gene selection criterion would be
that the fitness for each selected gerles in the quadrant
&(g) > ut,...,&(9) > up. Herew,...,u, are thresh-
olds which are selected by the experimenter to reflect the bi-
ological significance of a patrticular level of measured gene
fitness¢, (g). This is illustrated in Fig. 2 where the selected
sector for two aging criteria (the orthogonalized criteria de- Figure 3. A hypothetical multicriterion scattergram for genes
scribed in Sec. 5.1) is superimposed over the scatter plot 0fs g ¢ p E plotted as vectors in the plane described by a pair of
fitness levels extracted for all the genes probe in the microar-fimess criteriag; and ¢.. A, B, C are non-dominated genes and

ray. This scatter plot is called the multicriteria scattergram of form the (first) Pareto front. A second Pareto front is formed by
the fitness responses. genes D,E.

31

Multicriterion Gene Ranking : In a well designed gene mi- . _ o o

croarray experiment, multicriterion (or other) methods of se- Promises among possibly conflicting objectives in a natural
lection will generally result in a large number of genes and Way- Consider the multicriterion scattergram in Fig. 3 and
the biologist must next face the problem of selecting a few SUPPOSe that fitness criteria and¢, are to be maximized.

of most “promising genes” to investigate further. Resolution G€neé D isdominatecby both gene A and gene B since gene
of this problem is of importance since validation of gene re- D has lower fitness in both criteréa and¢s. Likewise gene
sponse requires more sensitive techniques, such as RT-PCFE is dominated by gene B and gene C. On the other hand
which are much more time consuming and expensive. Somed€nes A, B and C are not dominated by any other gene and
sort of rank ordering of the selected genes would help guide@re therefore preferable to genes D and E. Multi-objective
the biologist to a solution. As a linear ordering of set of filtering uses this non-dominated property as a way to estab-
vector quantities such 4, (g), .., &, (¢)]}, does notgen-  lish a preference relation among genes given a set of criteria
erally exist, an absolute ranking of the selected genes is of{és}q- More formally, gené is said to be dominated if there
course generally impossible. However a partial ordering of €Xists some other geme i such that for at least ong

these vectors is possible and such a “partial ranking” can . .

be formulated asg multiple objective op?imization pro%lem. &) <&(9) and &(0) < &(9), p # 4.

Multiple objective optimization captures the intrinsic com- The set of non-dominated genes are defined as those genes



that are not dominated. All the genes which are non-
dominated constitute a set of points called the (first) Pareto
front. A second Pareto front can be obtained by stripping
off the points on the first front and computing the Pareto
front on the remaining points. For the example in Fig. 3 the
first Pareto fronti§ A, B, C'} and the second Pareto front is
{D,E}.

The above multiple criterion selection and ranking meth- ' '
ods are applicable to any set of criteig ..., &,. How-
ever, these method do not account for any statistical uncer-
tainty. The study of gene expression almost always requires N R =
hybridizing several microarrays from a population to capture -
and reduce response variability. This variability can be due to
two factors: biological variability of the population and ex-
perimental variability. It is difficult to separate these two fac- ] ) o
tors and most analysis is performed with a statistical model Figure 4. The maximum p-value for multiple criteria gene

which lumps them together. selection in the aging gene mouse retina microarray exper-
iment (left). The FDR, computed from the p-value using a
4. FDR FOR MULTIPLE CRITERIA well known formule® for the same experiment (right). The

. ) . _genes are rank ordered in terms of their p-value and FDR
For comparing experiments in a way that accounts for statis-probapbilities, respectively.

tical variations it is essential to report a figure of statistical
significance of the each of the findings. Two important quan-

tities indicative of statistical significance are the p-value, as- many gene probes. The FDR is the probability that purely

sociated with testing a single gene response, and the falseandom effects would have caused specific genes to be se-
discovery rate (FDR), associated with testing all the genejected among all probes on the microarray.

probes simultaneously (multiple comparisons). In gene mi-
croarray experiments the biologist is always making multi-  When the null distributior? is unknown, the p-value and
ple comparisons so FDR is the more appropriate quantity.the FDR can be computed empirically by simulation or re-
Let each gene on the microarray have measured aggregate@mpling. More information on FDR can be found in the
fitnesse, (g) = u1(g),-..,&(9) = uy(g), €.9., a statistic referenced® 22 In general an experimenter would like the
computed as the average fitnesgaver all of the microar- ~ Maximum p-value and the FDR for his selected genes to be
ray replicates. For ease of presentation, we assume that th@s low as possible to ensure a high level of statistical signifi-
statistical distributionP of & (g), .. ., &,(g) is known when cance. However, as compared to the more conservative FDR,
the probe responses are spatially independent and identicallyse of the maximum p-value gives an overoptimistic measure
distributed (i.i.d.) random variables over the microarray. In Of significance. Thisis illustrated in Fig. 4 for the aging gene
other words the aggregate fitness statistic is distribution freeMicroarray study described in the next section. In terms of
under the null hypothesis that all probe responses are i.i.dFig- 7 the FDRis related to the probability that at least one of
The p-value is computed for a single gene probe, say gendhe many gene responses would fall into the selected sector.
g0, and is the probability that purely random effects, i.e., i.i.d.
probg responses, would have gaU§9d) be selected. More 5. APPLICATIONS
precisely the p-value faf, is defined as:
Here we illustrate statistical multi-criterion selection and
pVigo) = Pl&1 > ua(go), -+, &p > up(g0)) ranking techniques for data from two gene microarray exper-
where¢, . .., &, are random variables are computed fitness iments. The biological significance of the experiment and
levels of an i.i.d. random sample. If an experimenter were the list of statistically significant genes found will be re-
only interested in deciding on the biological significance of ported elsewhere. Our purpose here is simply to illustrate
a single geng, based only on observing that gene, then re- the application of our gene selection and ranking techniques.
portingp(g,) would be sufficient for another biologist to as- Both experiments used oligonucleotide-arrays, specifically
sess the statistical significance of the experimenter’s finding.the Affymetrix U74 mouse chips, and probe responses were
In contrast to the p-value, FDR communicates statistical sig-extracted using the Affymetrix MAS5 data analysis pack-
nificance of an experimenters decisions made on the basis ofge!°



2001M Retina Gene Study

400
350| °
o Tries Wil Fiohas
300| 8
3 o
° o 8 8
250 8 o
000 g 2 °
o
150|
o

Pn2 Pn10 M2 M6 M16 M21

# meplicates=m=4
# fime pnts=t=%
# profiles=4"G=4055

Figure 5. 24 data points (4 replicates at each 6 time points)
for a specific gene extracted from GeneChips in mouse retina
aging study.
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5.1. Strongly Increasing Profiles Figure 6. 3 of the6* = 4096 virtual profiles that can be

The experiment consists of 24 retinal tissue samples takendravvn through the 24 gene responses in mouse retinal ag-

. . . . Ing study. None of these 3 are monotonic. Label at top left
from a population of age-sorted mice at 6 ages (time points) , .
. . - . ; . denotes the gene’s Unigene number.
with 4 replicates per time point. These 6 time points con-
sisted of 2 early development (Pn2-Pn10) and 4 late develop-

ment (M2-M21) time points. DNA from each sample of reti- - the number of monotonic increasing trajectories among the
nal tissue was amplified and hybridized to the 12,422 probesg+ — 4096 possible trajectories that could pass through the
on one of 24 Affymetrix U74 GeneChips. The data arrays 24 data poinfs (See Fig. 6). However, even though it is
from the GeneChips were processed by Affymetrix MAS5 arguably a more compelling monotonicity statistic, it has
software to yield probe response data. We eliminated fromexponential computational complexigy(}7) and, to our
analysis all genes that MAS5 called out as “absent” from all knowledge, its p-values are not tabulated. For these rea-
chips, leaving 8826 genes for analysis. Figure 5 shows thegons, for the gene selection application we prefered to use the
24 data points for a particular gene among the 8826 genesye|| known Jonckheere-Terpstra (JT) test staftétas crite-
studied. Define the gene response datum extracted from thegjgn ¢&. For end-to-end change we adopted the one sided
m-th microarray replicate at timefor the g-th gene probe  paijred t-test statistté as criterions,. The JT statistic es-
location: sentially counts the number of times that a sample at a fu-
ture time point is larger than a sample at a previous time
point and its computation is only of polynomial complexity
(O((T + 1)T/2M?)). The paired t-test statistic is an opti-
mal end-to-end selection criterion when the extracted probe
from the GeneChip. The scientific objective of the exper- responses are ‘??‘”SSia” rar_1dom variaples with identical vari-
iment is to find genes which are strongly associated with :ggesst.udAgnItrTigcs:ltt satﬁii?i]cpstl?sntﬁgffhrglgr%tbr:aergzgoor:stg: r\gve
aging and development, i.e. those that are strongly mono identical distributions except for a possible shift in location,

tonic over time. Template matching methods are not eﬁ‘ec—aS measured by the mean or median. This assumption is rea-
tive here since they require specification of a profile pattern y L : . P
sonable after normalization of the gene microarrays, e.g. af-

and, due to variability in the experiment, this can miss genes :
that have the desirable monotonicity characteristics but doter using the RMA proceduré. As our collaborators are

not agree with the specified pattern. Thus we adopted theprlmanly interested in the genes that are implicated in late

following multi-criteria approach. We designed criteria to Qevelopmentor aging, we dropped the first two time points

key onto three types of profiles: 1) those that are monotoni-" the data set for the analysis described below.

cally increasing; 2) those that are monotonically decreasing; While the sampling distribution of the JT statistic is
3) those that display a large end-to-end change. We only deknown exactly under an assumption of spatially i.i.d. probe
scribe the gene selection method for monotonic increasingresponses, the sampling distribution for the paired t-test is
case as the treatment of the decreasing case is analogous. frot known exactly unless the responses are Gaussian dis-
order to tease out the monotonic increasing profiles we previ-tributed. Therefore we chose to generate the FDR contours
ously proposed a naturairtual profile criterion that counts  empirically using a resampling method. In this method we

zem(g), 9=1,....,.G,m=1,..., M, t=1,...,T. (1)

whereG = 8826, M = 4, T = 6. Figure 5 shows the
response datdx; ,,(g)}:,m for one of the genes extracted
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Figure 7. The multicriterion scattergram of pairs
{€1(g9),&(9)}Y4., foriid. resampled GeneChip probe re- Figure 8. Fitness criteria plotted in orthogonalized dual cri-
sponses appears approximately Gaussian distributed with re-teria plane of¢,=JT and & =T2 statistics for detecting in-
gression line as indicated. Hetg is equal to the JT statistic  creasing genes in aging study. Superimposed are the con-
and¢, is equal to T2 which denotes the end-to-end paired t stant contours of FDR and highlighted genes (asterisks) that
test statistic. pass at a FDR level of 0.1.

simulated 500 sets of i.i.d. probe responées,,(9)}¢,m.q

for which the marginal distribution matches the empirical
margin distribution of 2 ,,,(g) }m,, at each time point Us-

ing these 500 simulated GeneChip data sets we determine’

value:0 value:0 value:0

FDR by computing the relative frequency that any gene fit- spotsae, o g 910346795 o 3 ’
ness statistit; (¢), & (g)] falls in a given sector. By varying  *s|  ,  ° 8 253 ° g
the positionfuy, us] of these sectors over the plane constant 4 ° o 7 ° o 2 o 8
FDR contours were determined. To obtain the most dis- ss ° ° 5 B s 2
criminating multicriterion test we made an orthogonalizing = 5 ; . ? . A 5 ; A
transformation to data in the multicriterion plane. This trans- - pvalue:0 Lo Palue000173e 893322vtalue:o.oo7gzel
formation was motivated by the observation that the scatter- 93088 t o o @
grams of the resampled data (see Fig. 7) appeared to be p pooed 8 § 2 2 © i 6 . 8 Z
correlated approximately bivariate Gaussian sample. Using, oY s 8 Z . o o °
aregression of, on¢&; we determined a monotonic transfor- 8 °
mation that converted these resampled scattergrams into ag °; 2 3 a9 2 3 a4 2 3 a
proximately orthogonal bivariate Gaussian scatter plots. This 93123;?'“‘9:0'%82957 . 9744satpvalue:o%:l_ L, P00l
transformation was then applied to the original data set to de- o  ©° 1 g aPe g
termine a set of monotonic increasing genes at a FDR level of ° 8 ° ° 25 s % o
0.1 (see Fig. 8). Shown in Fig. 9 are the 9 top ranked mono- 4% . o ° 4 8 6
tone increasing gene profiles among the 16 genes selectec , J . o

! z : ! ! z : ¢ ! FD%? =0.0893;84 !
5.2. Differentially Expressed Profiles Figure 9. Last 4 time points of gene trajectories associated

The second experiment we describe is concerned with find-With the top 9 ranked genes among those FDR = 0.1 genes
ing genes whose expression profiles change significantly af-Shown by asterisks in Fig. 8.

ter a treatment. Such genes are called "differentially ex-

pressed” after treatment. One variant of this experiment is
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Figure 10. Responses for a gene in knockout mouse (left) vs
wildtype mouse (right) for differential expression study.

MS log difference statistic (log(1+MVPT))
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called a wildtype vs knockout experiment. In this experi-

ment one has a control population (wildtype) of subjects and

a treated population (knockout) of subjects whose DNA has |

been altered in some way. One then collects cell samples

from both populations at different times and generates mi- 0 o5 1 15 2

croarray data sets to find any genes that are differentially ex-

pressed. Figure 10 shows gene probe responses from suchigure 11. Fitness of aging genes plotted in transformed
a wildtype and knockout experiment. We label the wildtype qual criteria plane for detecting differentially expressed
and knockout responség; ., (g) and K¢,m(g) in a similar  genes. Points on the plane are the square root Mack-Skillings
manner to (1) where hef® =4, T = 3. (MS) statistic and the log of 1 plus the multivariate paired

The dual criteria chosen were: 1) a Mack-Skillings (MS) T test (MVPT). Superimposed are the constant contours of
statistic for testing for parallel W vs. K responses (profiles) FDR and genes (asterisks) that pass the multi-criterion test
in a two way layout®; and 2) a multivariate paired t (MvPT) ataFDRof0.1.
test statistic for quantifying the amount of difference in the
W vs. K response¥: Similarly to the previous experiment
these two criteria are complementary: the MS test is a dis-
tribution free rank-order statistical test while the MVPT is

|
4o

0.
L2

REEsY

25 3 35 4

optimal under the Gaussian assumption. We applied non- pualue:0 pvalue:0 pvalue:0
linear transformations to these two criteria to stabilize their _ o 200 o 250 .
variances. Similarly to before we used a resampling method g 8w ° § 2001 gol044 8 g
to empirically compute FDR contours in the dual criteria *®| gz, 100 o izz % °
plane. These contours were superimposed on the multicrite- 200 § % " 50 ggm&l . : ol i %
rion scattergram (see Fig. 11) to find the set of genes that are 1 2 3 1 2 3 1 2 3
differentially expressed at a FDR of prescribed level. Fig- pralue0 pualues0 500 pualue:0
ure 12 shows the 9 top ranked differentially expresse gene “* g 300 - o
profiles among the 142 genes selected. zzz LI T g
! X
6. CONCLUSION Clgomg § T8 g 8 e E 8 t
- ! pvalzue:o $ ! pvalzue:o ® ' pvalzue:o :

Signal processing for analysis of gene microarray and otherzooo 200 2500
gene experiments is a growing area and there are enoughseo I 00 o 8 a0 QE
challenges to keep the community busy for years. In our col- 100 t P e ° o g
laborations we have found it crucial to interact closely with s 5 a0 : % s
our biology colleagues to ensure that our signal processing §3453 10 gezd * | garorte o
methods are relevant and capture the biological aims of the ' ? : ' : : " R

experimenter. To illustrate this point, in this paper we have
described one of our projects involving gene selection andFigure 12. Gene trajectories of top 9 ranked FB®.1 genes
ranking. To respond to the needs of our collaborators we hadn Fig. 11. Knockout “0” and Wildtype “*” are as indicated.
to develop a flexible multi-criterion approach to gene selec-
tion and ranking. A single criterion would have much greater



difficulty in capturing the variety of properties that our col- 12
laborators considered biologically significant. To account for
statistical variation, we had to extend multi-criterion opti-
mization to a stochastic setting. We continue to refine our
methods to meet the changing requirements of interacting
with a very rapidly changing field.

13

14.

Acknowledgement

15.

The author would like to thank Prof. G. Fleury at Ecole
Supgrieure d’Electricié’ for the collaboration that has influ-
enced work reported here. | would also like to thank Prof.

A. Swaroop, Dr. S. Yosida, R. Farjo, and A. Mears in the 16.

Dept. of Human Genetics at University of Michigan for their
guidance and support.

17.

REFERENCES

1. P. A. Rota anettal, “Characterization of a novel coronavirus
associated with severe acute respiratory syndro®egnce
vol. 10.1126, , May 1 2003vww.scienceecpress.org

2. M. Marra andetal, “The genome sequence of the SARS-
associated coronavirusScience Expressol. 10.1126, , May
1 2003.www.scienceecpress.org

3. G. Fleury, A. O. Hero, S. Yosida, T. Carter, C. Barlow, and
A. Swaroop, “Clustering gene expression signals from retinal
microarray data,” inProc. IEEE Int. Conf. Acoust., Speech,
and Sig. Prog.Orlando, FL, 2002.

4. G. Fleury, A. O. Hero, S. Yosida, T. Carter, C. Barlow, and
A. Swaroop, “Pareto analysis for gene filtering in microar-
ray experiments,” irEuropean Sig. Proc. Conf. (EUSIPCO)
Toulouse, FRANCE, 2002.

5. A. Hero and G. Fleury, “Posterior pareto front analysis for
gene filtering,” in Proc of Workshop on Genomic Signal
Processing and Statistics (GENSIPRpleigh-Durham, NC,
2002.

6. K.I. Siddiqui, A. Hero, and M. Siddiqui, “Mathematical mor-
phology applied to spot segmentation and quantification of 23
gene microarray images,” ifroc of ASILOMAR Conference
on Signals and SystenfRacific Grove, CA, 2002. 24

7. A. Hero and G. Fleury, “Pareto-optimal methods for gene
analysis,” Journ. of VLSI Signal Processing, Special Is-
sue on Genomic Signal Processingpl. accepted, , 2003.
www.eecs.umich.edu/"hero/bioinfo.html .

8. P.O. Brown and D. Botstein, “Exploring the new world of the
genome with DNA microarraysNature Geneticsvol. 21, no.

1 Suppl, pp. 33-37, Jan 1999.

9. D. Bassett, M. Eisen, and M. Boguski, “Gene expression
informatics—it's all in your mine,"Nature Geneticsvol. 21,
no. 1 Suppl, pp. 51-55, Jan 1999.

10. Affymetrix. NetAffx User's Guide 2000.
www.netaffx.com/site/sitemap.jsp .

11. National Human Genome Research Insti-
tute  (NHGRI). cDNA  Microarrays 2001.

www.nhgri.nih.gov/DIR/Microarray

18.

19.

20.

21.

22.

C. Liand W. Wong, “Model-based analysis of oligonucleotide
arrays: expression index computation and outlier detection,”
Proc. of Nat. Academy of Sci. (PNASpI. 98, pp. 31-36,
2001.

C. Liand W. Wong, “Model-based analysis of oligonucleotide
arrays: model validation, design issues and standard error ap-
plication,” Genome Biologyvol. 2, pp. 1-11, 2001.

Y. H. Yang, S. Dudoit, P. Liu, and T. P. Speed, “Normalization
for cdna microarray data,” iffroc of SPIE BIOSSan Jose,
California, 2001.

R. Irizarry, B. Hobbs, F. Collin, Y. Beazer-Barclay, K. An-
tonellis, U. Scherf, and T. Speed, “Exploration, normalization,
and summaries of high density oligonucleotide array probe
level data, Biostatistics To appear.

K. Strimmer. R Packages for Gene Ex-
pression Analysis www.stat.uni-
muenchen.de/ strimmer/rexpress.html

T. Hastie, R. Tibshirani, M. Eisen, P. Brown, D. Ross,
U. Scherf, J. Weinstein, A. Alizadeh, L. Staudt, and D. Bot-
stein, “Gene shaving: a new class of clustering methods
for expression arrays,” Technical report, Stanford University,
2000.

A. A. Alizadeh and etal, “Distinct types of diffuse large B-cell
lymphoma identified by gene expression profilindlature

vol. 403, pp. 503-511, 2000.

M. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. Sugent,
T. Furey, M. Ares, and D. Haussler, “Knowledge-based analy-
sis of microarray gene expression data by using support vector
machines,’Proc. of Nat. Academy of Sci. (PNA8)I. 97, no.

1, pp. 262—267, 2000.

C. R.Genovese, N. A. Lazar, and T. E. Nichols, “Thresholding
of statistical maps in functional neuroimaging using the false
discovery rate,Neurolmagevol. 15, pp. 772—-786, 2002.

Y. Benjamini and Y. Hochberg, “Controlling the false discov-
ery rate: A practical and powerful approach to multiple test-
ing,” J. Royal Statistical Societyol. 57, pp. 289-300, 1995.

J. D. Storey and R. Tibshirani, “Estimating false discovery
rates under dependence, with applications to dna microar-
rays,” Technical Report 2001-28, Department of Statistics,
Stanford University, 2001.

. M. Hollander and D. A. WolfeNonparametric statistical

methodsWiley, New York, 1991.

. D. F. Morrison, Multivariate statistical methodsMcGraw

Hill, New York, 1967.



