
Low Separation Rank Covariance Estimation using
Kronecker Product Expansions

Theodoros Tsiligkaridis and Alfred O. Hero III
Dept. of Electrical Engineering & Computer Science

University of Michigan, Ann Arbor, MI, USA
Email: {ttsili, hero}@umich.edu

Abstract—This paper presents a new method for estimating
high dimensional covariance matrices. Our method, permuted
rank-penalized least-squares (PRLS), is based on Kronecker
product series expansions of the true covariance matrix. As-
suming an i.i.d. Gaussian random sample, we establish high
dimensional rates of convergence to the true covariance as both
the number of samples and the number of variables go to
infinity. For covariance matrices of low separation rank, our
results establish that PRLS has significantly faster convergence
than the standard sample covariance matrix (SCM) estimator. In
addition, this framework allows one to tradeoff estimation error
for approximation error, thus providing a scalable covariance
estimation framework in terms of separation rank, an analog to
low rank approximation of covariance matrices [1]. The MSE
convergence rates generalize the high dimensional rates recently
obtained for the ML Flip-flop algorithm [2], [3].

I. INTRODUCTION

Covariance estimation is a fundamental problem in multi-
variate statistical analysis. It has received attention in diverse
fields including economics and financial time series analysis
(e.g., portfolio selection, risk management and asset pric-
ing [4]), bioinformatics (e.g. gene microarray data [5], [6],
functional MRI [7]) and machine learning (e.g., face recog-
nition [8], recommendation systems [9]). In many modern
applications, data sets are very large with both large number
of samples n and large dimension d, often with d � n,
leading to a number of covariance parameters that greatly
exceeds the number of observations. The search for good low-
dimensional representations of these data sets has recently
yielded breakthroughs in multivariate statistics and signal
processing. This modern theme of studying high-dimensional
objects having small intrinsic dimension has sparked novel re-
sults and methodologies in signal processing. A good example
being compressed sensing, where s-sparse vectors of dimen-
sion d can be recovered with n = Ω(s log(d/s)) appropriately
designed measurements [10], [11], [12]. Similar results have
appeared for the matrix completion problem, where a low-rank
d×d matrix C can be recovered by nuclear norm minimization
given only n = Ω(rd log2(d)) observed entries, assuming
r = rank(C) and C satisfies an incoherence condition [13],
[14], [15].

Kronecker product (KP) structure assumes that the covari-
ance can be represented as the Kronecker product of two
lower dimensional covariance matrices, i.e. Σ0 = A0 ⊗ B0,
with p × p p.d. matrix A0 and q × q p.d. matrix B0 [16],

[17]. When the data is a Gaussian random matrix having
a Kronecker product covariance, the model is called the
matrix normal distribution [18]. The model has applications
in channel modeling for MIMO wireless communications
[19], genomics [20], multi-task learning [21] and collaborative
filtering [22]. The main difficulty in estimating KP-structured
covariances via the maximum likelihood principle is the non-
convex optimization problem that arises; thus, an alternating
optimization approach is usually adopted. In the case of no
missing data, an extension of the alternating optimization
algorithm of Werner et al [17], that the authors call the flip
flop (FF) algorithm, can be applied to estimate the parameters
of this combined sparse and Kronecker product model, called
KGlasso in [2]. Tsiligkaridis et al [2], [3] established the high
dimensional convergence rate of FF and KGlasso, showing
that only n = Ω((p2 + q2) log(max(p, q, n))) samples suffice
for accurate covariance estimation (wrt. Frobenius norm) for
the FF algorithm for the unstructured KP case, and only
n = Ω((p+q) log(max(p, q, n))) is sufficient for the KGlasso
algorithm for the sparse KP structured Gaussian graphical
model.

In this paper, we propose a model that represents the covari-
ance matrix as a sum of Kronecker products, where the number
of terms in the summation, called the separation rank, may
depend on the factor dimensions, and thus could potentially go
to infinity. As in [17], [2] we assume n multivariate Gaussian
observations, with d = pq variables, whose d × d covariance
Σ0 has the sum of Kronecker product representation:

Σ0 =

r∑
γ=1

A0,γ ⊗B0,γ , (1)

where {A0,γ} are p × p linearly independent matrices and
{B0,γ} are q× q linearly independent matrices 1. We assume
that the factor dimensions p, q are known. We note that the
separation rank r satisfies 1 ≤ r ≤ r0 = min(p2, q2). The
model is also relevant to other transposable models arising in
recommendation systems like NetFlix and in gene expression
analysis [9]. The model (1) with r ≥ 1 has been proposed
in spatiotemporal MEG/EEG covariance modeling [23], [24],
[25] and SAR data analysis [26]. We finally note that Van
Loan and Pitsianis [27] have shown that any pq × pq matrix

1Linear independence is understood with respect to the trace inner product
defined in the space of symmetric matrices.



Σ0 can be written as an orthogonal expansion of Kronecker
products of the form (1).

The principal contributions of this paper are twofold. First,
we propose a novel convex optimization procedure, called the
Permuted Rank-Penalized Least Squares (PRLS) method, for
estimating covariance matrices with additive KP structure of
the form (1). Second, we derive tight high-dimensional MSE
convergence rates as n, p and q go to infinity. We establish
high dimensional consistency of PRLS with a convergence rate
guarantee of OP

(
r(p2+q2+logmax(p,f,n))

n

)
as contrasted to the

naive SCM rate OP

(
p2q2

n

)
. To the best of our knowledge,

this convex approach has not been proposed or studied in the
high dimensional covariance estimation problem for estimating
matrices of the form (1).

The high dimensional probabilistic analysis requires two
large deviations results (see Lemma 1 and Thm. 2). We
emphasize that our analysis is non-asymptotic, in the sense
that probabilistic bounds are derived that holds with certain
probability and this probability becomes higher as the number
of sample and/or variables tend to infinity.

II. PERMUTED RANK-PENALIZED LEAST-SQUARES

Available are n i.i.d. multivariate Gaussian observations
{zt}nt=1, where zt ∈ Rpq , having zero-mean and covariance
equal to (1). A sufficient statistic for covariance estimation is
the well-known sample covariance matrix (SCM):

Ŝn =
1

n

n∑
t=1

ztz
T
t (2)

A penalized least-squares approach was proposed in [1] for
estimating a low rank covariance matrix by solving:

Σ̂λ
n ∈ arg min

S∈Sd
++

‖Ŝn − S‖2F + λ‖S‖∗

where λ > 0 is a regularization parameter and ‖·‖∗ denotes the

spectral norm. For λ = C‖Σ0‖2
√

r(Σ0) log(2d)
n , where C > 0

is large enough, and n ≥ cr(Σ0) log2(max(2d, n)) for some
constant c > 0 sufficiently large, Cor. 1 in [1] establishes
a tight Frobenius norm error bound, which states that with
probability 1− 1

2p :

‖Σ̂λ
n−Σ0‖2F ≤ inf

S∈Sd
++

‖Σ0−S‖2F+C1‖Σ0‖22rank(S)
r(Σ0) log(2d)

n

where r(Σ0) = tr(Σ0)
‖Σ0‖2

≤ min{rank(Σ0), d} is the effective
rank [1].

Here we propose a similar nuclear norm penalization ap-
proach to estimate low separation-rank covariance matrices.
Motivated by Van Loan and Pitsianis’s work [27], we propose:

R̂λ
n ∈ arg min

R∈Rp2×q2
‖R̂n −R‖2F + λ‖R‖∗, (3)

where R̂n = R(Ŝn) is the permuted SCM of size p2 × q2.
The permutation operator R : Rpq×pq → Rp2×q2 is defined by
setting the (i− 1)p+ j row of R(M) equal to vec(M(i, j))T
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Fig. 1. Original (top) and permuted covariance (bottom) matrix. The original
covariance is Σ0 = A0 ×B0, where A0 is a 10× 10 Toeplitz matrix and
B0 is a 20× 20 unstructured p.d. matrix. Note that the permutation operator
R maps a symmetric p.s.d. matrix Σ0 to a non-symmetric rank 1 matrix
R0 = R(Σ0).

[17], [2]. An illustration of this permutation operator is shown
in Fig. 1.

The minimum-norm problem considered in [27] is:

min
R∈Rp2×q2 :rank(R)≤r

‖R̂n −R‖2F (4)

We note that (3) is a convex relaxation of (4) and is more
amenable to analysis. Furthermore, we show a tradeoff be-
tween approximation error (i.e., the error induced by model
mismatch between the true covariance and the model (??))
and estimation error (i.e., the error due to finite sample size)
by analyzing the solution of (3). We note that (3) is a strictly
convex problem, so there exists a unique solution that can be
found using various methods [28].

The closed form solution of (3) is given by singular value
thresholding (SVT):

R̂λ
n =

r0∑
j=1

(
σj(R̂n)− λ

2

)
+

ujv
T
j

where uj and vj are the left and right singular vectors of
R̂n. Efficient methods of solving such problems have been
recently studied in the literature [29], [30]. In practice, the
separation rank r0 may not be large 2. Although empirically
fast, the computational complexity of the algorithms presented
in [29] and [30] is unknown, the computation of a rank r
SVD is order O(p2q2r). Faster probabilistic-based methods
for truncated SVD take O(p2q2 log(r)) computational time
[31]. Thus, the computational complexity of solving (3) scales
well with respect to separation rank. We remark that the de-
permuted solution Σ̂λ

n = R−1(R̂λ
n) is symmetric [32].

III. HIGH DIMENSIONAL CONSISTENCY OF RPLS
In this section, we show that RPLS achieves the MSE statis-

tical convergence rate of OP
(
r(p2+q2+logM)

n

)
. This result is

2More details on choosing r are included later in the paper.



clearly superior to the statistical convergence rate of the naive
SCM estimator:

‖Ŝn −Σ0‖2F = OP

(
p2q2

n

)
. (5)

The next result provides a deterministic relation between
the spectral norm of R̂n−R0 and the Frobenius norm of the
the estimation error R̂λ

n −R0.

Theorem 1. Consider the convex optimization problem (3).
When λ ≥ 2‖R̂n −R0‖2, the following holds:

‖R̂λ
n −R0‖2F ≤ inf

R

{
‖R−R0‖2F +

(1 +
√

2)2

4
λ2rank(R)

}
Proof: The proof generalizes Thm. 1 in [1] to nonsquare

matrices and is included in [32].

A. High Dimensional Operator Norm Bound

In this subsection, we establish a tight bound on the spectral
norm of the error matrix

∆n = R̂n −R0 = R(Ŝn −Σ0). (6)

The strong law of large numbers implies that for fixed dimen-
sions p, q, we have ∆n → 0 almost surely as n → ∞. The
next result characterizes the finite sample fluctuations of this
convergence (in probability) measured by the spectral norm
as a function of the sample size n and factor dimensions p, q.
This result will be useful for establishing a tight bound on the
Frobenius norm convergence rate of PRLS and can guide the
selection of regularization parameter in (3).

Theorem 2. (Operator Norm Bound on Permuted SCM)
Assume ‖Σ0‖2 <∞ for all p, q and define M = max(p, q, n).

Fix ε′ = 1
3 . Assume t ≥ max(

√
4C1 ln(1 + 2

ε′ ), 4C2 ln(1 +
2
ε′ )) and C = max(C1, C2) > 0. Then, with probability at
least 1− 2M−

t
4C ,

‖∆n‖2 ≤
C0t

1− 2ε′
max

{
p2 + q2 + logM

n
,

√
p2 + q2 + logM

n

}
(7)

for some absolute constant C0 > 0 3.

Proof: See Appendix B.
Fig. 2 empirically validates the tightness of the bound (7)

under the trivial separation rank 1 covariance Σ0 = Ip ⊗ Iq .

B. High Dimensional MSE Convergence Rate for RPLS

Using bounds in Thm. 2 and Thm. 1, we next provide a tight
bound on the MSE estimation error that decomposes into error
due to model mismatch (first term on RHS of (8)) and error
due to finite sample size.

3The constant in front of the rate can be tightened by optimizing it as a
function of ε′ over the interval (0, 1/2), but is left as a finite constant here.
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Fig. 2. Monte Carlo simulation for growth of spectral norm ‖∆n‖22 as a
function of p for fixed n = 10 and q = 5. The predicted curve is a least-
square fit of a quadratic model y = ax2 + b to the empirical curve. This
demonstrates the tightness of the probabilistic bound (7).

Theorem 3. Define M = max(p, q, n). Set λ = λn =

2C0t
1−2ε′ max

{
p2+q2+logM

n ,
√

p2+q2+logM
n

}
for t > 0 large

enough (see (7)). Then, with probability at least 1− 2M−
t

4C :

‖R̂λ
n −R0‖2F ≤ inf

R:rank(R)≤r
‖R−R0‖2F

+ C ′rmax

{(
p2 + q2 + logM

n

)2

,
p2 + q2 + logM

n

}
(8)

for some absolute constant C ′ > 0.

Proof: See Appendix C.
When there is no model mismatch the approximation error

inf{R:rank(R)≤r} ‖R − R0‖2F is zero and, as a result, in the
large-p, q, n asymptotic regime where p2+q2+logM = o(n),

it follows that ‖R̂λ
n − R0‖F = OP (

√
r(p2+q2+logM)

n ). This
asymptotic MSE convergence rate of the estimated covariance
to the true covariance reflects the number of degrees of
freedom of the model, which is essentially of the order of
r(p2 + q2) total covariance parameters. This result extends
the recent results obtained in [2], [3] for the single Kronecker
product model (i.e. r = 1).

Moreover, we note that r ≤ r0 = min(p2, q2). For the case
of p ∼ q, and r ∼ r0, we have a fully saturated Kronecker
product model and the number of model parameters are of the
order p4 ∼ d2. In this case, the SCM convergence rate (5)
coincides with the rate obtained in Thm. 3.

For covariance models of low separation rank-i.e., r � r0,
Thm. 3 establishes that the high dimensional MSE conver-
gence rate of PRLS can be much lower than that of the naive
SCM convergence rate. Thus PRLS is an attractive alternative
to rank-based series expansions like PCA. We note that each
term in the expansion A0,γ ⊗ B0,γ can be full-rank, while
each term in the standard PCA expansion is rank 1.

Finally, we observe that Thm. 3 captures the trade-
off between estimation error and approximation error. In
other words, choosing a smaller r than the true sep-
aration rank would incur a larger approximation error



inf{R:rank(R)≤r} ‖R−R0‖2F > 0, but smaller estimation error
OP ( r(p

2+q2+logM)
n ) and vice-versa.

IV. SIMULATION RESULTS

We consider dense positive definite matrices Σ0 of dimen-
sion d = 625. Taking p = q = 25, we note that the number
of free parameters that describe each Kronecker product is of
the order p2 + q2 ∼ p2, which is essentially of the same order
as the number of parameters to describe each eigenvector of
Σ0, i.e., pq ∼ p2. The covariance matrix shown in Fig. 3
was constructed by first generating a Gaussian random matrix
C, then symmetrized to form D = C + CT , then a sparse
matrix M was applied as MDMT and finally its spectrum
was perturbed from below to ensure positive definiteness. Fig.
4 compares the empirical performance of the KP estimator and
the truncated eigendecomposition of the SCM for a designed
separation rank 2 and eigendecomposition rank 2, respectively.
We observe that the Kronecker product estimator performs
much better than both the truncated eigendecomposition and
naive SCM estimator. This is most likely due to the fact that
the repetitive block structure of Kronecker products better
summarizes the SCM. We observe from Fig. 3 that for
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Fig. 3. True dense covariance matrix and Spectra. Left panel: True positive
definite covariance matrix Σ0. Middle panel: Kronecker spectrum (eigenspec-
trum of Σ0 in permuted domain). Right panel: Eigenspectrum (Eigenvalues
of Σ0).
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Fig. 4. Normalized MSE performance for covariance matrix as a function
of sample size n. The KP estimator outperforms the truncated eigendecom-
position and the standard SCM. Here, p = q = 25 and NMC = 80. For
n = 49, the KP estimator achieves a 5.433 dB MSE reduction over the
truncated eigendecomposition and 8.99 dB MSE reduction over the standard
SCM estimator. The error floor for the r = 2 eigenspectrum is 0.839 and for
the r = 2 Kronecker spectrum is 0.19.

this arbitrarily structured covariance, the Kronecker spectrum
decays more rapidly than the eigenspectrum, implying a more
parsimonious (lower number of components) representation.

V. CONCLUSION

We have introduced a new framework for covariance esti-
mation; separation rank decompositions using a series of Kro-
necker factors. We established high dimensional consistency
for a penalized least squares estimator with guaranteed rates
of convergence. The analysis shows that for low separation
rank covariance models, our proposed method outperforms
the standard SCM estimator. Future work will be to bound
the approximation error term as a function of the factor
dimensions p and q for different classes of covariance matrices.
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APPENDIX A
LEMMA 1

Lemma 1. (Concentration of Measure for Coupled Gaussian
Chaos) Let X and Y be arbitrary unit-Frobenius norm matri-
ces and let x ∈ Rp2 and y ∈ Rq2 be reshaped versions of X
and Y. In the SCM (2) assume that {zt} are i.i.d. multivariate
normal zt ∼ N(0,Σ0). Recall ∆n in (6). For all τ ≥ 0:

P(|xT∆ny| ≥ τ) ≤ 2 exp

(
−nτ2/2

C1‖Σ0‖22 + C2‖Σ0‖2τ

)
(9)

where C1 = 4e√
6π

and C2 = e
√

2 are absolute constants.

Proof: This proof is based on large deviation theory
for Gaussian matrices. Define M = X ⊗ Y. Using the
definition of the reshaping operator R(·) we can write [32]
xT∆ny = 1

n

∑n
t=1 ψt, where ψt = zTt Mzt − E[zTt Mzt].

The statistic ψt has the form of Gaussian chaos of order 2.
To simplify the concentration of measure derivation, we note
that the stochastic equivalent of zTt Mzt is βTt M̃βt, where
M̃ = Σ

1/2
0 MΣ

1/2
0 and βt ∼ N(0, Ipq) is a random vector

with i.i.d. standard normal components. By this decoupling
argument, it follows [32] E|ψt|2 = ‖M̃‖2F + ‖diag(M̃)‖2F ≤
2‖Σ0‖22. It can also be shown (see Appendix A in [33]) that
for all m ≥ 2, E|ψt|m ≤ m!Wm−2vt/2, where where W =
e
√
E|ψt|2 ≤ e

√
2‖Σ0‖2 and vt = 2e√

6π
E|ψt|2 ≤ 4e√

6π
‖Σ0‖22.

An application of Bernstein’s inequality (see Thm. 1.1 in [33])
then concludes the proof.

APPENDIX B
PROOF OF THEOREM 2

Proof: Let N (Sd′−1, ε′) denote an ε′-net on the sphere
Sd′−1 [34]. It can be shown [32] for any fixed ε′ ∈ (0, 1/2):

‖∆n‖2 ≤ (1− 2ε′)−1 max
x∈N (Sp2−1,ε′),y∈N (Sq2−1,ε′)

|xT∆ny|

From Lemma 5.2 in [34], we have card(N (Sd′−1, ε′)) ≤(
1 + 2

ε′

)d′
. Using this cardinality bound, the union bound and

Lemma 1:

P(‖∆n‖2 ≥ ε) ≤ P
( ⋃

x∈N (Sp2−1,ε′)

y∈N (Sq2−1,ε′)

|xT∆ny| ≥ ε(1− 2ε′)
)



≤ 2

(
1 +

2

ε′

)p2+q2
exp

(
−nε2(1− 2ε′)2/2

C1‖Σ0‖22 + C2‖Σ0‖2ε(1− 2ε′)

)
We finish the proof by considering two separate sampling
regimes: Gaussian tails and exponential tails. First, consider
the Gaussian tail regime which occurs when n > ( tC2

C1
)2(p2 +

q2 + logM) and choose ε =
t‖Σ0‖2
1−2ε′

√
p2+q2+logM

n . For this
regime, the bound can be relaxed to:

P

(
‖∆n‖2 ≥

t‖Σ0‖2
1− 2ε′

√
p2 + q2 + logM

n

)
≤ 2M−

t2

4C1

where we used the assumption t ≥
√

4C1 ln(1 + 2/ε′). This
concludes the bound for the first regime. The exponential
tail regime follows by similar arguments [32]. The proof is
complete by combining both regimes and taking C0 > 0 large
enough 4 and noting that t > 1.

APPENDIX C
PROOF OF THEOREM 3

Proof: Define the event

Er =
{
‖R̂λ

n−R0‖2F > inf
R:rank(R)≤r

‖R−R0‖2F+
(1 +

√
2)2

4
λ2nr

}
where λn is chosen as stated. Thm. 1 implies that on the event
λ ≥ 2‖∆n‖2, with probability 1, we have for any 1 ≤ r ≤ r0:

‖R̂λ
n −R0‖2F ≤ inf

R:rank(R)≤r
‖R−R0‖2F +

(1 +
√

2)2

4
λ2r

Using this and Thm. 2, we obtain [32]:

P(Er) = P(Er ∩ {λn ≥ 2‖∆n‖2}) + P(Er ∩ {λn < 2‖∆n‖2})
≤ P(λn < 2‖∆n‖2) ≤ 2M−t/4C

This concludes the proof.
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