	June , 2001	Riten Gupta and Alfred O. Hero, III Dept. of Electrical Engineering and Computer Science University of Michigan	PERFORMANCE LIMITS OF HYPOTHESIS TESTING FROM VECTOR-QUANTIZED DATA	
--	-------------	---	--	--

Example of a Sufficient Quantizer

Figure 1:

Sufficient quantizer for 1-D piecewise-constant sources.

Some post-Q detection error criteria :
Some post-Q detection error criteria :
1. Bayes risk (Oehler, Gray 95, Pearlmutter *etal* 96)

$$P_e = P_M P(H_1) + P_F P(H_0)$$

2. KL and Chernoff Information (Poor 77, 78; Benitz, Bucklew 89; Jana,
Moulin , Ramchandran 99)
 $L = n^{-1} \log P_e$
3. Sanov Information (Gupta, Hero 99)
 $L_0 = n^{-1} \log P_F, \qquad L_1 = n^{-1} \log P_M$
4. SNR (Picinbono, Duvaut 85; Tsitsiklis 93)

$$11$$
Large Deviations Error Exponents for LRT
Sanov's theorem: for *n* large:
$$\begin{array}{l} \alpha \approx e^{-nL(q,\|q_0)}\\ \beta \approx e^{-nL(q,\|q_0)}\\ \beta \approx e^{-nL(q,\|q_0)}.\end{array}$$
Where, KL distance is
$$L(q_1, q_0) = \int q_0(x) \ln \frac{q_0(x)}{q_1(x)} dx$$
and for $\lambda = f(T), \lambda \in [0, 1]$:
$$q_\lambda(x) = \frac{q_0(x)^{1-\lambda}q_1(x)^{\lambda}}{\int q_0(y)^{1-\lambda}q_1(y)^{\lambda} dy} = \text{``tilted'' density}$$

Note:
•
$$\lambda$$
 determines T and level α of LRT
• λ for minimax LRT satisfies:

$$L(q\lambda \| q_0) = L(q\lambda \| q_1)$$
• Λ λ parameterizes curve (L_0, L_1)
 $\Lambda \cup C = \int_0^1 L_1 dL_0 = \int_0^1 L_1(\lambda) \frac{dL_0(\lambda)}{d\lambda} d\lambda$
 $\Lambda \cup C = \int_0^1 L_1 dL_0 = \int_0^1 L_1(\lambda) \frac{dL_0(\lambda)}{d\lambda} d\lambda$
For Q cells $\{S_i\}_{i=1}^N$ define pmf's of Quantized \mathbf{x}
 $\bar{q}_0(i) = P(x \in S_i \mid H_0), \quad \bar{q}_1(i) = P(x \in S_i \mid H_1)$

High-Resolution Analysis

Define distortions for a $\log_2 N$ bit ${\bf Q}$

$$\Delta L_{0,N} \stackrel{\text{def}}{=} L(\bar{q}_{\lambda} \| \bar{q}_{0}) - L(q_{\lambda} \| q_{0})$$
$$\Delta L_{1,N} \stackrel{\text{def}}{=} L(\bar{q}_{\lambda} \| \bar{q}_{1}) - L(q_{\lambda} \| q_{1})$$

High-resolution representation:

$$\Delta L_{j,N} = N^{-2/k} \left(\lim_{N \to \infty} N^{2/k} \Delta L_{j,N} \right) + o(N^{-2/k})$$

Q is **optimal high-rate** if high-resolution distortion = min

13

Functions Associated with High-Rate Q

 Specific point density function of cell positions (Na&Neuhoff 95):

$$\zeta_s(x) = \frac{1}{NV_i}$$
, for $x \in S_i$,

 Specific inertial profile of cell shape (Na&Neuhoff 95):

 $m_s(x) = \frac{\int_{S_i} ||y - x_i||^2 dy}{V_i^{1+2/k}}$, for $x \in S_i$,

 Specific covariation profile of cell shape:

 $M_s(x) = \frac{\int_{S_i} (y - x_i)(y - x_i)^T dy}{V_i^{1+2/k}}$, for $x \in S_i$.

Figure 5: ROC-optimal and Chernoff-information-optimal point densities (left) and $L_1(L_0)$ curves with ROC-optimal and Chernoff-information-optimal quantizers with N = 8 (right).

19

	Figure 7: Source densities for 2-D anisotropic Gaussian example.	2-D Anisotropic Gaussian Example
		2

2-D Anisotropic Gaussian Example

Figure 8: Two-dimensional anisotropic Gaussian example: (a) $\eta(x)$, (b) log-likelihood ratio $\Lambda(x)$, (c) discriminability $\|\nabla \Lambda(x)\|^2$, (d) ROC-optimal point density, (e) discrimination-optimal point density, (f) estimation-optimal point density.

Figure 10: L_0, L_1) curves for ROC-optimal, estimation-optimal, and discrimination-optimal congruent-cell VQ's with N = 64.

26

H0 with Detection VQ

H0 with Estimation VQ

H1 with Detection VQ

H1 with Estimation VQ

27

H0 with Detection VQ

H0 with Estimation VQ

H1 with Detection VQ

H1 with Estimation VQ

Conclusions for Q/VQ for detection

- AUC criterion introduced: independent of detection threshold
- High rate Q/VQ analysis performed
- Good VQ's have cells aligned along contours of LR
- ullet Optimal high rate Q/VQ strategies determined for various detection criteria
- 1. One-sided discrimination exponent: Kullback Liebler divergence
- 2. Two-sided discrimination exponent: α -divergence
- 3. minimax exponent
- 4. AUC exponent
- Application to longitudinal medical image databases is in progress

28