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ABSTRACT

More and more researchers are beginning to use multiple dis-
similarity metrics or image features for medical image reg-
istration. In most of these approaches, however, weights for
ranking the relative importance between the selected metrics
are empirically tuned and fixed for the entire image domain.
Different parts of a medical image, however, may contain sig-
nificantly different appearance properties such that a metric
may only be applicable in certain image regions but less so in
other regions. In this paper, we propose to adapt this weight-
ing to generate a locally-adaptive set of dissimilarity met-
rics such that the overall metric set encourages proper spa-
tial alignment. Using contextual information or via a learning
procedure, our approach generates a vector weight map that
determines, at each spatial location, the relative importance of
each constituent of the overall metric. Our approach was eval-
uated on 2 datasets of 15 computed tomography (CT) lung
images and 40 brain magnetic resonance images (MRI). Ex-
periments show that our approach of using a locally-adaptive
set of dissimilarity metrics gives superior results when com-
pared against its non-region specific variant.

1. INTRODUCTION

One essential component in medical image registration (MIR)
is the image dissimilarity metric. As no single metric is
suitable for all applications, many definitions have been pro-
posed for different applications, e.g. mutual information,
cross-correlation, sum of squared differences (SD), etc.

In the past decade, researchers have began to com-
bine multiple dissimilarity metrics or image features to
boost registration performance. For instance, Shen and Da-
vatzikos [1] proposed the HAMMER approach that combines
segmentation- and feature- based information for brain im-
age registrations. Liao et al. [2] also combined an improved
version of mutual information, a feature-based metric, and a
local descriptor for brain image registration. In [3], Tang and
Hamarneh matched shapes by combining geometric, topo-
logical, and intensity-based features. For registration of lung
images, Cao et al. [4] combined a measure called vesselness
difference (VD) with a conventional intensity-based measure.

In all aforementioned works, an empirically tuned set of
weights (or a single scalar weight) is used to linearly com-
bine the involved dissimilarity metrics. These weights, how-
ever, are global in the sense that they remain constant across
the image domain. In this paper, we argue that different re-
gions in medical images contain different appearance proper-
ties (i.e. due to the differences in the underlying tissue appear-
ance (e.g. textures) and thus, registration in a particular im-
age region should be driven by the most relevant dissimilarity
metric(s) or image feature(s) in that region. In neuro-images,
for instance, there is no strong reason to use the same met-
ric when measuring dissimilarity in regions belonging to the
white matter, gray matter, or cerebrospinal fluid. Likewise, in
lung image registration, a vesselness-based measure, e.g. [4],
operates best within the lung regions (where vessels reside)
but becomes inferior when it operates on other anatomical re-
gions that lack vessels, as our experimental results in Section
3.1 will demonstrate.

Accordingly, we propose to employ a learning approach
to construct a locally-adaptive metric that fuses multiple dis-
similarity metrics or image feature sets. The learned metric
encodes prior knowledge about each metric’s effectiveness in
driving correct registrations and places different amounts of
emphasis on each component of the fused set according to
local image content. While we may manually design such
locally-adaptive combination of dissimilarity metrics, we also
advocate a learning approach so that the learned metric is de-
rived from a corpus of exemplars, thereby formulating a gen-
eral method that applies to different applications and need not
require manual intervention.

To the best of our knowledge, our work is most similar
to [5] in that it also learns a weighting function to obtain
a spatially adaptive combination of a feature set. However,
their work does not make use of a heterogeneous feature set
as we advocate, and is solely for surface matching. The au-
thors of [6,7] also learn a novel dissimilarity metric from a set
of training images, but both are fundamentally different from
our approach of computing and employing a locally-adaptive
set of dissimilarity metrics.
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2. METHODS

Deformable image registration seeks to recover a transforma-
tion T that best aligns two images Ia and Ib. Generally, the
problem involves minimizing a weighted sum of two penalty
terms, i.e.:

argmin
T

∑
x∈Ω

S(x, T (x), Ia, Ib) + αR(T ) (1)

where S denotes a dissimilarity function between two images
Ia and Ib,R denotes a regularization term that encourages T
to maintain certain smoothness properties (e.g. being contin-
uous or homeomorphic), and α is a weight that balances these
two terms.

We propose to build S using a group of image metrics,
which includes dissimilarity between extracted features as a
special case (further details on feature-based metrics are pre-
sented in Section 3.2). Specifically, let there be a set of dis-
similarity metrics, {S1, S2, ..., S|S|}, where each component
might be an image metric computed between an image pair
(e.g. intensity difference, cross-correlation, local mutual in-
formation, etc.), or those that are defined in terms of features
(e.g. vesselness difference [4], Gabor responses, etc.), which
have the form of

Si(x,y, Ia, Ib) = |Fj(x, Ia)−Fj(y, Ib)|2 (2)

where Fj denotes the j-th feature extracted from Ia or Ib.
For brevity, we will now refer to a dissimilarity metric that is
defined on extracted features simply as another metric.

Our approach generates and employs a weight function
W : Ω× |S| 7→ R that maps each spatial location to a vector
where component i of the vector is a relative weight assigned
to Si such that the overall dissimilarity between Ib and Ia
becomes

S(x,y, Ia, Ib) =

|S|∑
i

W (x, i)Si(x,y, Ia, Ib) (3)

where i is the index of the i-th metric component andW (x, i)
denotes the weight at x for the i-th metric, and y = T (x).
The weight function W should be designed so that high im-
portance is only given to metrics at regions where they are
effective in producing proper image alignment and vice versa.
We will illustrate two approaches in generating W : contex-
tual or learned. The contextual approach is adopted if prior
knowledge about the appropriateness of certain metrics is
available. For the example of CT lung registration using VD
and SD where lung masks can be reliably created, one may
then design a weighting scheme that employs specific metrics
in specific regions. Registration results for this scenario will
be presented in Section 3.1. Alternatively, when we do not
have such prior knowledge or when the size of the metric set
is prohibitively large, a learning approach is used where the
weight function is learned from a training set of registered
images. We next detail this learning approach.

2.1. Learning the Weight Function

Let there be a set of N linearly registered images I, where
each spatial coordinate x ∈ Ω corresponds in each image
in the set. The registered images shall provide training data
from which our method estimates the effectiveness of a par-
ticular metric in aligning images properly. Specifically, at ev-
ery spatial location, we collect a set of metric values where
a metric is computed between pairs of aligned images. For
brevity, we denote the samples collected at x for metric i
as Qaligned(x, i). To learn when a metric fails to align im-
ages, we also collect another set of samples of metric values
where a metric is computed between pairs of misaligned im-
ages (which can be generated by applying random warps or
global translations to each of the aligned images in I). We
will denote these samples as Qmisaligned.

Recall our goal of computing a weight functionW that fa-
vors dissimilarity metrics that produce low values at aligned
regions and high values at misaligned areas. Precisely, we
should assign high weights to dissimilarity metrics that re-
main consistently low across images at x and consistently
high outside the periphery of x (i.e. at non-corresponding lo-
cations). Otherwise, the metric should contribute minimally
to S. Therefore, we propose the following energy cost:

Ew1 (W ) =
∑
x∈Ω

|S|∑
i

W (x, i)Maligned(x, i)Valigned(x, i)

Mmisaligned(x, i)
; (4)

subject to
∑
i

W (x, i) = 1, ∀i,W (x, i) ≥ 0 (5)

where Maligned and Valigned are the mean and covariance of
Qaligned and similarly defined for Qmisaligned. Intuitively,
the optimal W minimizing (5) would favor metrics that gen-
erate a low value in Maligned

Mmisaligned
(low dissimilarity values over

high). Note that this cost resembles those proposed in [8], in
which Brown et al. learned a set of local image descriptors
for image classification; due to our relatively smaller sample
size, we therefore omit an additional step of dimensionality
reduction on the training samples. We also propose an alter-
native energy cost that examines the difference between the
means of the samples (rather than their ratio), subject to the
same constraints in (5):

Ew2 (W ) =
∑
x∈Ω

|S|∑
i

W (x, i)e
−
|Mmisaligned(x,i)−Maligned(x,i)|

Valigned(x,i)2 .

(6)

Motivated by the questions raised in [9], we also ques-
tioned whether different weight vectors of neighbouring lo-
cations would affect the performance of the learned metric.
Accordingly, we examined the impact of spatial smoothness1

ofW and examined the impact of imposing spatial regulariza-
tion on W , thus yielding the following optimization problem

1In contrast to our work, [9] proposed spatially adapting α, the weight
between the data cost and the smoothness regularization.



for W :

argmin
W

Ew1|2 (W ) + λ
∑

(x,y)∈E

|S|∑
i

|W (x, i)−W (y, i)|2 (7)

where E is the set of pixel connectivities of the image grid, the
second term enforces spatial regularization on W by penaliz-
ing the difference between the weight vectors of two spatial
neighbours x and y, and λ is an empirically tuned weight that
adjusts the amount of regularization. In Section 3.2, we will
examine the impact of spatial regularization on W on regis-
tration accuracy.

2.2. Graph-based registration

We employ a graph-based approach for image registration
[10], in which we seek to label each spatial coordinate x of
Ia with a displacement vector t such that the entire label field
forms a displacement vector field T . Mathematically, image
registration incorporating the spatially adaptiveW is now for-
mulated as the minimization of the following MRF energy:

argmin
T

∑
x∈Ω

|S|∑
i

W (x, i)Si(x,x+ tx, Ia, Ib) + α
∑

(x,y)∈E
R(tx, ty)

(8)
where tx is the translation assigned to x as specified by T ,
etc.

3. EXPERIMENTAL RESULTS

3.1. Lung image registration

As a proof of concept, we show the use of a contextually gen-
erated weight function for the registration of lung CT images
from the POPI dataset [11]. We follow the approach of [4] of
combining the VD measure with an intensity-based measure,
but rather than employing both metrics in a globally constant
manner, we will weight the metrics in a spatially varying man-
ner. Using contextual information to generate lung masks2,
we created W that places high emphasis on the VD measure
in regions within the lungs and high emphasis on SD for re-
gions outside the lungs. Fig. 1a shows an example weight
function for a target image in the dataset. Then, for each lung
image pair, we computed W from the template image Ia and
registered each source image Ib to Ia.

To assess registration accuracy, we computed the tar-
get registration error (TRE) between expert-defined point-
correspondences, which were also provided in the POPI
dataset. However, all point-correspondences provided were
within the lungs. In order to evaluate registration accuracy
more thoroughly, we examined the quality of the alignment
between lung surfaces, which can be reliably extracted from

2Lung masks were made available in [11]. However, we created our own
lung masks using image intensities (via thresholding based on the Hounsfield
Units and performed subsequent hole-filling procedures) to show general ap-
plicability of our approach.

the images via thresholding. Fig. 1b-c show an example
result from one registration trial. From the figure, we can
see that the use of VD alone gave the worse performance
for the alignment of lung surfaces as reflected by lower DSC
(Dice similarity coefficient). On the other hand, the equally
combined use of VD and SD improved the alignment of lung
surfaces but the TRE between the point-correspondences
within the lungs had increased dramatically. With the use of
contextually weighted combination of VD and SD, registra-
tion achieved a relatively high DSC score while maintaining a
relatively low TRE. In Fig. 1f-g, we report the averaged TRE
and DSC scores as obtained over 15 registration trials. Evi-
dently, while both the equal and weighted schemes achieved
similar DSC scores, the former scheme gave much higher
TRE scores than those achieved by the weighted scheme.
This quantitatively reflects that proper alignment in regions
both inside and outside the lungs can best be achieved by the
spatially adaptive scheme.

3.2. Brain MRI Registration

We next evaluated our learning approach to construct W . For
this experiment, we employed a dataset of 40 rigidly aligned
brain MRI images provided in [12]. We chose this dataset
because it also contains corresponding probabilistic segmen-
tations from which we can measure accuracy of our obtained
registration results.

Our validation pipeline was as follows. We performed 40
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Fig. 1. Evaluating the contextual approach. (a) Components of W created
for an image using a Gaussian-smoothed lung mask (kernel width σ). (b)-(e)
Comparison between registrations using different metric schemes: result of
using (b) VD measure only, (c) SD measure only, (d) a weighted combina-
tion of VD and SD that is adaptive to contextual information, and (e) equally
combined VD and SD. While VD and the weighted scheme gave comparable
TRE measures, the use of VD alone gave lower DSC (alignment of lung sur-
faces poor). Conversely, while equal weight gave slightly higher DSC than
the weighted one, its TRE was much higher than the weighted one. (f-g) Box-
plots of TRE between point-correspondences, and DSC scores that examine
the alignment of lung surface points after registration as performed under
different metric schemes. “A”, “A2” denotes the use of adaptively weighted
metric combination (with σ = 3 mm and σ = 6 mm, respectively) and ”Eq”
denotes equal weighting.



trials where each image in the set acted as a template and
the remaining images were randomly separated into a set of
m = 15 training images and a set of n = 40−m test images.
In each trial (c = 1 · · · 40), the weight function Wc of the
template Ic was constructed from a separate set of Qaligned

and Qmisaligned. The former was generated by evaluating
metric Si between each of the

(
m
2

)
pairs of aligned train-

ing images at every spatial location x. For Qmisaligned, we
introduced misalignment between each pair prior to metric
evaluation, i.e. we evaluated S(x,x + tq, Iu, Iv) where tq
is a translation from the set {[a a], [a − a], [−a a], [−a −a]}
with a = {3, 6}, and u 6= v, u, v ≤ m. Next, we computed
Maligned, Valigned, etc. and optimized Wc for Ic using (5)
or (6). Then, for the actual evaluation of our method, we ap-
plied random thin-plate-spline warps (pixel displacements in
range of [-8,8] pixels) to the n test images (and their segmen-
tations Jn) and subsequently performed registration between
the warped test image and Ic by minimizing (8). Quality of
registration result was then measured by computing the re-
duction in mean segmentation error (MSE) between the reg-
istered probabilistic segmentations (as compared to the MSE
evaluated before registration).

Fig. 2 compares the registration results using an equally
weighted metric set and the proposed schemes, i.e. perform-
ing minimization of (5) and (6), with and without spatial reg-
ularization. The metrics employed were sum of intensity dif-
ference (SD), gradient magnitude difference (GMD) and nor-
malized gradients difference (NGD). From the figure, we see
that the use of W with either (6) achieved more accurate reg-
istrations than an equally weighted metric set (p = 0.008 at
95% confidence interval). Interestingly, with spatial regular-
ization, (6) did not improve MSE as significantly well as the
other schemes, while (5) was relatively insensitive to the ef-
fect of spatial regularization on W . Based on the amount of
reduction in MSE, we conclude that W as learned from (5)
gives the best registration results.
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Fig. 2. Comparison of registration results as obtained without and with W
as computed by different schemes. S.R. denotes enforcing spatial regulariza-
tion on W . Note that reduction in MSE is greatest when W , as optimized
with (5), was used.

4. CONCLUSION

We have shown two approaches to fusing and combining mul-
tiple dissimilarity metrics and image features in a weighted
manner for image registration. When we have prior knowl-
edge about the data, our empirical experiments showed that
the accuracy of lung image registrations can be improved us-
ing a contextually computed weight function. When a set of
roughly aligned images are available, we also showed how
the weight function can be learned. Again, our experiments
demonstrated that using a weighted combination of metrics
as optimally determined via a learning procedure gave rise
to higher registration accuracies than those achieved without
such adaptive weighting. We are currently working towards
extending our approach to multi-modal registration. We also
foresee that the use of this locally-adaptive learned metric can
improve the accuracy of groupwise registrations.
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