# Reduced Signature Adaptive Target Detection in Remote Sensing

Alfred O. Hero

Depts. EECS and BioMedEng University of Michigan - Ann Arbor hero@eecs.umich.edu http://www.eecs.umich.edu/~hero/index.html

### Outline

- 1. Target Detection Examples in EO/SAR
- 2. Linear Multivariate Image model
- 3. Data Reduction via Sufficiency and Invariance
- 4. Case of Homogeneous Clutter
- 5. Case of Inhomogeneous Clutter
- 6. Experimental Results



### Figure 1. X-SAR image of Raco, Michigan (DARA/ESA database)



**Figure 2.** EO image of CCGS Des Groseilliers (98m long) (NSIDC - SHEBA database)



Figure 3. EO image of arctic swath (aprrox 7km wide) (SHEBA database).



Figure 4. Blowup of EO image of arctic swath (SHEBA database).

### Radar Preprocessor



#### **LINEAR MULTIVARIATE IMAGE MODEL**

$$\mathbf{X} = [\underline{X}_1, \ldots, \underline{X}_n]$$

 $\underline{X}_k = m \times 1$  lexicographic ordered *k*-th sub-image

#### $\mathbf{X} = \mathbf{S} \mathbf{A} \mathbf{B} + \mathbf{N}$

- $\mathbf{S} = [\underline{s}_1, \dots, \underline{s}_p] = \text{an } m \times p \text{ matrix of target signatures } (known)$
- $\mathbf{A} = \operatorname{diag}(\underline{a}) = a \ p \times p \ \operatorname{diagonal\ matrix} (unknown)$
- **B** a  $p \times n$  matrix of target locations

**Spatially scanned radar**:  $\mathbf{B} = [1, 0, \dots, 0] (p = 1)$ 



**Multiple dwell radar**:  $\mathbf{B} = [1, \dots, 1] (p = 1)$ 



## Multispectral radar:



P-band

#### **Multivariate Gaussian Noise Model**

**N** :  $(m \times n)$  multivariate Gaussian matrix w/ i.i.d. columns  $(m \times 1)$  each having covariance matrix **R** $(m \times m)$ .

$$cov[vec{\mathbf{N}] = \mathbf{R} \bigotimes \mathbf{I}_n = \begin{bmatrix} \mathbf{R} & \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{R} & \mathbf{O} \\ \mathbf{O} & \mathbf{R} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} & \mathbf{R} \end{bmatrix} (mn \times mn)$$

Note :

$$\mathbf{ANB} \sim N_{mn} \left( \underline{0}, \mathbf{ARA}^T \bigotimes \mathbf{BB}^T \right)$$

 $(\mathbf{A}: m \times m, \mathbf{B}: n \times n)$ 

#### **III. Detection Criteria**

 $\bullet$  Statistical model for observations  ${\bf X}$ 

 $\mathbf{X} \sim f(X; \boldsymbol{\theta})$ 

- Parameter space  $\Theta = \Theta_0 \cup \Theta_1$
- two hypotheses:

$$H_0$$
 :  $\mathbf{X} \sim f(X; \theta_0), \qquad \theta_0 \in \Theta_0$ 

 $H_1$  :  $\mathbf{X} \sim f(X; \theta_1), \quad \theta_1 \in \Theta_1$ 

### Likelihood Ratio Test (LRT)

$$\frac{f_{\boldsymbol{\theta}_1}(\mathbf{X})}{f_{\boldsymbol{\theta}_0}(\mathbf{X})} \begin{array}{c} H_1 \\ > \\ < \\ H_0 \end{array} \eta$$

 $\eta$  selected such that  $P_{FA} = \alpha, \alpha \in [0, 1]$ 

**Note:** LRT is MP test for  $\Theta_0 = {\theta_0}$  and  $\Theta_1 = {\theta_1}$ 

Difficulties:

:

- LRT is not usually CFAR
- LRT is not usually unbiased
- LRT is not usually UMP

#### **<u>GLR test</u>**

GLRT between hypotheses  $\theta \in \Theta_0$  vs.  $\theta \in \Theta_1$ 

$$\frac{\max_{\boldsymbol{\theta}\in\Theta_1} f_{\boldsymbol{\theta}}(\mathbf{X})}{\max_{\boldsymbol{\theta}\in\Theta_0} f_{\boldsymbol{\theta}}(\mathbf{X})} \begin{array}{c} H_1 \\ > \\ < \\ H_0 \end{array} \eta$$

- 1. GLRT is a function of MLEs  $\hat{\theta}_0$  and  $\hat{\theta}_1$
- 2. GLRT is not asymptotically CFAR or UMP unless MLEs are consistent
- 3. GLRT optimization may be intractible
- 4. GLRT performance can be very poor (not even unbiased) in finite sample regime
- $\Rightarrow$  GLRT decision region overinfluenced by ML estimates, eroding  $H_0$  vs.  $H_1$  discrimination ability

#### **Statistical Reduction via Sufficiency**

Minimal Sufficient Statistic

$$\Lambda_{\theta_0,\theta_1}(\mathbf{X}) \stackrel{\text{def}}{=} \frac{f(\mathbf{X};\theta_1)}{f(\mathbf{X};\theta_0)} = g(T(\mathbf{X}),\theta_1,\theta_0)$$

$$\{\mathbf{X}: \Lambda_{\theta_0,\theta_1}(\mathbf{X}) = \lambda\}_{\lambda > 0} = \{\mathbf{X}: T(\mathbf{X}) = t\}_t$$

- $T(\mathbf{X})$  specifies orbit  $\{\mathbf{X} : \Lambda_{\theta_0,\theta_1}(\mathbf{X}) = \lambda\}$  (depends on  $\theta_0$  and  $\theta_1$ ).
- $T(\mathbf{X})$  achieves maximal data reduction while preserving information necessary to estimate  $\theta_0$  and  $\theta_1$  and discriminate between  $H_0$  and  $H_1$ .
- Distribution of  $T(\mathbf{X})$  depends on particular values of  $\theta_0 \in \Theta_0$  and  $\theta_1 \in \Theta_1$ .

#### **Statistical Reduction via Invariance**

Maximal invariant statistic

$$\begin{split} \tilde{\Lambda}(\mathbf{X}) & \stackrel{\text{def}}{=} & \left\{ \frac{f(\mathbf{X}; \theta_1)}{f(\mathbf{X}; \theta_0)} : \theta_0 \in \Theta_0, \theta_1 \in \Theta_1 \right\} \\ & = & \left\{ \tilde{h}(\mathbf{X}) : \theta_0 \in \Theta_0, \theta_1 \in \Theta_1 \right\} \end{split}$$

- $\mathbf{Z} = Z(\mathbf{X})$  specifies orbit of  $\{\mathbf{X} : \tilde{\Lambda}(\mathbf{X}) = \tilde{\lambda}\}$  (depends on  $\Theta_0$  and  $\Theta_1$ ).
- Maximal invariants can be found when  $\Theta_0$  and  $\Theta_1$  have simple topological group structure.

Let *G* be a group of transformations  $g : X \to X$  acting on **X**. Assume that for each  $\theta \in \Theta$  there exists a unique  $\overline{\theta} = \overline{g}(\theta)$  such that

 $f_{\theta}(g(\mathbf{X})) = f_{\overline{\theta}}(\mathbf{X}), \qquad \overline{g}(\Theta_0) = \Theta_0, \ \overline{g}(\Theta_1) = \Theta_1$ 

 $\overline{g}$  is called the induced group action on  $\Theta$ .

 $\mathbf{Z} = Z(\mathbf{X})$  is a <u>maximal invariant</u> iff

1. (invariant property)  $Z[g(\mathbf{X})] = Z(\mathbf{X})$  for all  $g \in G$  and

2. (maximal property)  $Z(\mathbf{X}) = Z(\mathbf{Y}) \Rightarrow \mathbf{Y} = g(\mathbf{X})$  for some  $g \in G$ .

**Example: detection of scalar signal;** a,  $\sigma^2$  unknown

$$\underline{\mathbf{x}}^T = a[1, 0, \dots, 0] + \underline{N}, \qquad \underline{N} \sim N_n(0, \sigma^2 \mathbf{I}).$$

$$\Theta_0 = \{a = 0, \sigma^2 > 0\}, \quad \Theta_1 = \{a \neq 0, \sigma^2 > 0\}$$

$$\log \Lambda_{\theta_0,\theta_1}(\underline{\mathbf{x}}) = \frac{a}{\sigma_1^2} \underline{\mathbf{e}}_1^T \underline{\mathbf{x}} + \frac{\sigma_1^2 - \sigma_0^2}{2\sigma_0^2 \sigma_1^2} \underline{\mathbf{x}}^T \underline{\mathbf{x}} + const.$$

- 1. **Sufficiency orbits**:  $[\underline{\mathbf{e}}_1^T \underline{\mathbf{x}}, \underline{\mathbf{x}}^T \underline{\mathbf{x}}] = [t_1, t_2]$  (circle in  $\mathbb{R}^3$ )
- 2. <u>Invariance orbits</u>:  $|\underline{\mathbf{e}}_1^T \underline{\mathbf{x}}|^2 / \underline{\mathbf{x}}^T \underline{\mathbf{x}} = z$  (cone in  $\mathbb{R}^3$ )



Figure 5. Sufficiency orbit



**Figure 6. Invariance orbit** 

$$\mathbf{X} = \underline{s} \cdot \underline{b}^T + \mathbf{N} \sim N(\underline{s} \cdot \underline{b}, \mathbf{R} \bigotimes \mathbf{I}_n)$$

 $\underline{s}$  unknown  $m \times 1$ , **R** unknown  $m \times m$ ,  $\underline{b}$  known  $n \times 1$ .

Define:  $\mathbf{Q}_b = \left[\frac{1}{\|\underline{b}\|} \underline{b}, \underline{b}_2^{\perp}, \dots, \underline{b}_n^{\perp}\right] \Rightarrow \mathbf{X} \to \mathbf{X} \mathbf{Q}_b$  gives canonical form

$$\mathbf{X} = \begin{bmatrix} s_1 \\ \vdots \\ s_m \end{bmatrix} \cdot [1, 0, \dots, 0] + \mathbf{N}$$
$$= \begin{bmatrix} \underline{x}_1, \ \mathbf{X}_2 \end{bmatrix}$$
primary secondary



Figure 7. Target in unknown clutter



Figure 8. Target alone



**Figure 9. Transformed Target** 

$$\Theta_0 = \{ \underline{s} = 0, \mathbf{R} > 0 \}, \qquad \Theta_1 = \{ \underline{s} \neq 0, \mathbf{R} > 0 \}$$

Group of transformations leaving decision problem invariant:  $\Rightarrow$  *G* has group action:  $g(\mathbf{X}) = \mathbf{F}\mathbf{X}\mathbf{H}$ ,

**F** invertible 
$$m \times m$$
 and **H** unitary of form:  $\mathbf{H} = \begin{bmatrix} 1 & \underline{0}^T \\ \underline{0} & \mathbf{U} \end{bmatrix}$ 

#### Note:

3.

- 1.  $g(\mathbf{X})$  remains multivariate Normal
- 2. Under  $\overline{g}$ :

$$E_{\theta}[\mathbf{X}] = \underline{s} \cdot \underline{b}^{T} \rightarrow \mathbf{F} \underline{s} \cdot \underline{b}^{T} \mathbf{H} = \underline{\overline{s}} \cdot \underline{b}^{T}$$
$$\operatorname{cov}_{\theta}[\mathbf{X}] = \mathbf{R} \bigotimes \mathbf{I}_{n} \rightarrow \mathbf{F} \mathbf{R} \mathbf{F}^{T} \bigotimes \mathbf{H} \mathbf{H}^{T} = \overline{\mathbf{R}} \bigotimes \mathbf{I}_{n}$$
$$\overline{g}(\underline{s}, \mathbf{R}) = \{\mathbf{F} \underline{s}, \mathbf{F} \mathbf{R} \mathbf{F}^{T}\}$$
$$\Rightarrow \overline{g}(\Theta_{0}) = \Theta_{0} \text{ and } \overline{g}(\Theta_{1}) = \Theta_{1}.$$

**Maximal Invariant** and **Induced MI** are scalar :

$$z(\mathbf{X}) = \underline{x}_1^T [\mathbf{X}_2 \mathbf{X}_2^T]^{-1} \underline{x}_1, \qquad , \delta(\theta) = \underline{s}^T \mathbf{R}^{-1} \underline{s}, \qquad \text{where} \mathbf{X} = [\underline{x}_1, \mathbf{X}_2]$$

Using reduced data  $z(\mathbf{X})$  we have equivalent hypotheses:

$$\Theta_0 = \{\delta = 0\}, \qquad \Theta_1 = \{\delta > 0\}$$

Density function of  $z(\mathbf{X})$  is non-central F:

$$z(\mathbf{X}) \cdot \frac{n-m}{m(n-1)} \sim F_{m,n-m}(z,(n+1)\delta)$$

Most powerful invariant (MPI) test of level  $\alpha$  for known  $\delta$ :

$$z \stackrel{H_{1}}{\underset{H_{0}}{>}} \frac{(n-1)m}{n-m} \cdot F_{m,n-m}^{-1}(1-\alpha), \quad (UMPI - CFAR)$$

**Known Target Unknown Clutter** 

$$\mathbf{X} = a\underline{s} \cdot \underline{b}^T + \mathbf{N}$$

<u>s</u> known  $m \times 1$ , **R** unknown  $m \times m$ , <u>b</u> known. Map to canonical form via  $\mathbf{X} \to \mathbf{Q}_s^T \mathbf{X} \mathbf{Q}_b$ :

$$\mathbf{X} = a \cdot \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \cdot [1, 0, \dots, 0] + \mathbf{N}$$

 $\Theta_0 = \{a = 0, \mathbf{R} > 0\}, \qquad \Theta_1 = \{a \neq 0, \mathbf{R} > 0\}$ 

Group of transformations leaving decision problem invariant:  $\Rightarrow$  *G* has group action:  $g(\mathbf{X}) = \mathbf{F}\mathbf{X}\mathbf{H}$ ,

**F** invertible  $m \times m$  and **H** unitary  $n \times n$  of forms

$$\mathbf{F} = \begin{bmatrix} \beta_1 & \underline{\beta}^T \\ \underline{0} & \mathbf{M} \end{bmatrix}, \qquad \qquad \mathbf{H} = \begin{bmatrix} 1 & \underline{0}^T \\ \underline{0} & \mathbf{U} \end{bmatrix}$$

#### Note:

1.  $g(\mathbf{X})$  remains multivariate Normal

2. 
$$\overline{g}(a, \mathbf{R}) = \{\beta_1 a, \mathbf{F}\mathbf{R}\mathbf{F}^T\} \Rightarrow \overline{g}(\Theta_0) = \Theta_0 \text{ and } \overline{g}(\Theta_1) = \Theta_1.$$

Let

$$\mathbf{X} = [\underline{x}_1, \mathbf{X}_2] = \begin{bmatrix} x_{11} & \underline{x}_{12} \\ \underline{x}_{21} & \mathbf{X}_{22} \end{bmatrix}$$

**Maximal Invariant** is two dimensional:

$$z_1(\mathbf{X}) = \underline{x}_1^T [\mathbf{X}_2 \mathbf{X}_2^T]^{-1} \underline{x}_1$$

 $z_2(\mathbf{X}) = \underline{x}_{21}^T [\mathbf{X}_{22} \mathbf{X}_{22}^T]^{-1} \underline{x}_{21}$  multiple correlation factor

**Induced Maximal Invariant**:  $\delta = a^2 \underline{s}^T \mathbf{R}^{-1} \underline{s}$ 

Given invariant data  $z(\mathbf{X})$  we have equivalent hypotheses:

$$\Theta_0 = \{\delta = 0\}, \qquad \Theta_1 = \{\delta > 0\}$$

Decision region of MPI test depends on unknown  $\delta$  – no UMPI exists. Some CFAR alternatives:

$$z_{1} \stackrel{>}{\underset{H_{0}}{\overset{>}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\overset{H_{1}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H_{0}}{\underset{H$$

#### **Two Unknown Clutter Regions**

min = -10.5409, max= 9.9303



Figure 10. Deep hide target on clutter boundary



Figure 11. Transformed target matrix

#### **Multivariate model**:

$$\mathbf{X} = a \cdot \begin{bmatrix} \underline{s}_A \\ \underline{s}_B \end{bmatrix} \underline{b}^T + \begin{bmatrix} \mathbf{N}_A \\ \mathbf{N}_B \end{bmatrix}$$

 $\Rightarrow$  canonical form:

$$\mathbf{X} = a \begin{bmatrix} 1\\ \underline{0}\\ 1\\ \underline{0} \end{bmatrix} \cdot [1, 0, \dots, 0] + \begin{bmatrix} \mathbf{N}_A\\ \mathbf{N}_B \end{bmatrix}$$

 $\Theta_0 = \{a = 0, \mathbf{R}_A > 0, \mathbf{R}_B > 0\}, \qquad \Theta_1 = \{a \neq 0, \mathbf{R}_A > 0, \mathbf{R}_B > 0\}$ 

Group of transformations leaving decision problem invariant: *G* has group action:  $g(\mathbf{X}) = \mathbf{F}\mathbf{X}\mathbf{H}$ ,

• **F** invertible  $m \times m$  of form:

$$\mathbf{F} = \gamma \begin{bmatrix} \mathbf{I}_A & \mathbf{C}_A & & \mathbf{O} \\ \underline{0} & \Gamma_A & & \mathbf{O} \\ & \mathbf{I}_B & \mathbf{C}_B \\ & \mathbf{O} & & \underline{0} & \Gamma_B \end{bmatrix}$$

• **H** unitary  $n \times n$  of form:

$$\mathbf{H} = \begin{bmatrix} 1 & \underline{0}^T \\ \underline{0} & \mathbf{U} \end{bmatrix}$$

Let

$$\mathbf{X} = \begin{bmatrix} \underline{x}_{A1} & \mathbf{X}_{A2} \\ \underline{x}_{B1} & \mathbf{X}_{B2} \end{bmatrix} = \begin{bmatrix} \underline{x}_{A11} & \mathbf{X}_{A12} \\ \underline{x}_{A21} & \mathbf{X}_{A22} \\ \underline{x}_{B11} & \mathbf{X}_{B12} \\ \underline{x}_{B21} & \mathbf{X}_{B22} \end{bmatrix}$$

# Maximal Invariant consists of seven terms

$$z_{1A}(\mathbf{X}) = \underline{u}_A^T \mathbf{D}_A^{-1} \underline{u}_A, \qquad \qquad z_{1B}(\mathbf{X}) = \underline{u}_B^T \mathbf{D}_B^{-1} \underline{u}_B$$

$$z_{2A}(\mathbf{X}) = \underline{x}_{A21}^T [\mathbf{X}_{A22} \mathbf{X}_{A22}^T]^{-1} \underline{x}_{A21}, \quad z_{2B}(\mathbf{X}) = \underline{x}_{B21}^T [\mathbf{X}_{B22} \mathbf{X}_{B22}^T]^{-1} \underline{x}_{B21}$$

$$z_{3A}(\mathbf{X}) = \frac{\underline{u}_A \underline{u}_A^T}{\|\underline{u}_A\|^2}, \qquad \qquad z_{3B}(\mathbf{X}) = \frac{\underline{u}_B \underline{u}_B^T}{\|\underline{u}_B\|^2}$$

$$z_4(\mathbf{X}) = \frac{\underline{u}_A}{\underline{u}_B}$$

Partially Known (Structured) Clutter

$$\mathbf{R} = \begin{bmatrix} \mathbf{R}_A & \mathbf{O} \\ \mathbf{O} & \mathbf{R}_B \end{bmatrix}$$

- Case 1. :  $\mathbf{R}_A > 0, \, \mathbf{R}_B > 0$
- Case 2. :  $\mathbf{R}_A > 0$ ,  $\mathbf{R}_B = \sigma^2 \mathbf{I}$ ,  $\sigma^2 > 0$
- Case 3. :  $\mathbf{R}_A > 0$ ,  $\mathbf{R}_B = \mathbf{I}$

$$\mathbf{X} = a \begin{bmatrix} \underline{s}_A \\ \underline{s}_B \end{bmatrix} \underline{e}_1^T + \begin{bmatrix} \mathbf{N}_A \\ \mathbf{N}_B \end{bmatrix}$$

| GLR | Test | <b>Statistics</b> |  |
|-----|------|-------------------|--|
|     |      |                   |  |

| $\mathbf{R}_A$ | $\mathbf{R}_B$        | $\log \operatorname{GLR}: \frac{1}{n} \ln \Lambda = \max_{a} \{\cdot\}$                                                                                                                                                     |  |  |
|----------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ?              | ?                     | $\ln\left[\frac{1+p(0,\underline{s}_{A},\mathbf{X}_{A})}{1+p(a,\underline{s}_{A},\mathbf{X}_{A})}\right] + \ln\left[\frac{1+p(0,\underline{s}_{B},\mathbf{X}_{B})}{1+p(a,\underline{s}_{B},\mathbf{X}_{B})}\right]$         |  |  |
| ?              | $\sigma^2 \mathbf{I}$ | $\ln\left[\frac{1+p(0,\underline{s}_{A},\mathbf{X}_{A})}{1+p(a,\underline{s}_{A},\mathbf{X}_{A})}\right] + m_{B} \cdot \ln\left[\frac{q(0,\underline{s}_{B},\mathbf{X}_{B})}{q(a,\underline{s}_{B},\mathbf{X}_{B})}\right]$ |  |  |
| ?              | Ι                     | $\ln\left[\frac{1+p(0,\underline{s}_{A},\mathbf{X}_{A})}{1+p(a,\underline{s}_{A},\mathbf{X}_{A})}\right] + \frac{1}{n}[q(0,\underline{s}_{B},\mathbf{X}_{B})-q(a,\underline{s}_{B},\mathbf{X}_{B})]$                        |  |  |

where  $m_B$  = number of rows in  $\mathbf{X}_B$ , n = number of columns in  $\mathbf{X}_B$ , and

$$p(a, \underline{s}_{A}, \mathbf{X}_{A}) = (\underline{x}_{A1} - a\underline{s}_{A})^{H} (\mathbf{X}_{A2} \mathbf{X}_{A2}^{H})^{-1} (\underline{x}_{A1} - a\underline{s}_{A})$$
$$q(a, \underline{s}_{B}, \mathbf{X}_{B}) = tr \left\{ (\mathbf{X}_{B} - a\underline{s}_{B}\underline{e}_{1}^{T})^{H} (\mathbf{X}_{B} - a\underline{s}_{B}\underline{e}_{1}^{T}) \right\}$$

## **MI Test Statistics**

$$\mathbf{R}_{A} \quad \mathbf{R}_{B} \quad \text{MI Test} : T = \frac{\begin{bmatrix} \underline{s}_{A} & \underline{s}_{B}^{H} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{K}_{B} \end{bmatrix}^{-1} \begin{bmatrix} \underline{x}_{A1} \\ \underline{x}_{B1} \end{bmatrix}}{\begin{bmatrix} \underline{s}_{A} & \underline{s}_{B}^{H} \end{bmatrix} \begin{bmatrix} \mathbf{K}_{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{K}_{B} \end{bmatrix}^{-1} \begin{bmatrix} \underline{s}_{A} \\ \underline{s}_{B} \end{bmatrix}} \\ \hline \\ 2 & \mathbf{K}_{A} = q_{A} \mathbf{X}_{A2} \mathbf{X}_{A2}^{H}, \quad \mathbf{K}_{B} = q_{B} \mathbf{X}_{B2} \mathbf{X}_{B2}^{H} \\ \hline \\ 2 & \mathbf{C}^{2} \mathbf{I} \quad \mathbf{K}_{A} = q_{A} \mathbf{X}_{A2} \mathbf{X}_{A2}^{H}, \quad \mathbf{K}_{B} = v_{2} \mathbf{I} \\ \hline \\ 2 & \mathbf{I} \quad \mathbf{K}_{A} = q_{A} \mathbf{X}_{A2} \mathbf{X}_{A2}^{H}, \quad \mathbf{K}_{B} = v_{3} \mathbf{I} \\ \hline \end{bmatrix}$$

where

$$q_A = 1 + \underline{x}_{A1}^H (\mathbf{X}_{A2} \mathbf{X}_{A2}^H)^{-1} \underline{x}_{A1} \quad , \quad v_2 = \frac{1}{m_B} \operatorname{tr} \{ \mathbf{X}_B^H \mathbf{X}_B \}$$
$$q_B = 1 + \underline{x}_{B1}^H (\mathbf{X}_{B2} \mathbf{X}_{B2}^H)^{-1} \underline{x}_{B1} \quad , \quad v_3 = n$$

| $\mathbf{R}_A$ | $\mathbf{R}_B$        | MI Tests in the Maximal Invariant Form                                                                                                            |
|----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| ?              | ?                     | $T_1 = \frac{z_{A1}}{1 + z_{A1} + z_{A2}} + \frac{z_{B1}}{1 + z_{B1} + z_{B2}} - coupling$                                                        |
| ?              | $\sigma^2 \mathbf{I}$ | $T_{2} = \frac{z_{A1}}{1 + z_{A1} + z_{A2}} + m_{B} \cdot \frac{ x_{B11} ^{2}}{\operatorname{tr}\{\mathbf{X}_{B}^{H}\mathbf{X}_{B}\}} - coupling$ |
| ?              | Ι                     | $T_3 = \frac{z_{A1}}{1 + z_{A1} + z_{A2}} + \frac{1}{n} \cdot  x_{B11} ^2 - coupling$                                                             |

• Case 1. : Structured Kelly's test

$$T_{Ks} = \frac{z_{A1} + z_{B1} - coupling}{1 + z_{A1} + z_{A2} + z_{B1} + z_{B2}}$$

• Case 2. : Bose and Steinhardt MI test

$$T_{BS} = (n - m_A)z_{A1}(1 + z_{A2}) + \frac{(m_B n - 1)|x_{B11}|^2}{\operatorname{tr}\{\mathbf{X}_B^H \mathbf{X}_B\} - |x_{B11}|^2} - coupling$$

**<u>Simulation</u>** : ROC performance ( $P_D$  vs.  $P_{FA}$ )

- Case 1. : GLRT 1, MI Test 1, Structured Kelly
- Case 2. : GLRT 2, MI Test 2, Bose–Steinhardt
- Case 3. : GLRT 3, MI Test 3









Case 1.

$$SNR = 22dB (SNR_A = 11dB / SNR_B = 22dB)$$
  
 $m_A = 50 / m_B = 50 , n = 51$ 



Case 2.  $(\sigma^2 = 0.1)$  Case 3.  $(\sigma^2 = 1)$ 

$$SNR = 10dB (SNR_A = 3dB / SNR_B = 8dB)$$
$$m_A = 40 / m_B = 60 , n = 61$$



Case 1. (SNR = 7dB)



Case 1. (*n* = 61)

Case 1. (*n* = 81)



Case 2. (SNR = 10dB)



Case 2. (*n* = 51)

Case 2. (*n* = 61)



SAR Clutter image with a target in the boundary at column 300



Target image at azimuth =  $163^{\circ}$  and elevation =  $39^{\circ}$ 



Image realigned along the extracted boundary



MI test values

47

GLR test values

# Typical Realizations



# CONCLUSION

- Detection algorithms for inhomogeneous clutter
  - GLR extended to case of block structured covariance
  - MI test proposed as an alternative
- GLR/MI significantly outperform existing tests (Kelly's test, Bose and Steinhardt's test)
- GLR and MI tests are complementary:
  - 1. GLRT is asymptotically optimal (UMP) for large *n*.
  - 2. MI test ensures robust detection.
  - 3. For small *n* and low SNR: MI outperforms GLRT for low  $P_{FA}$
- Suggests hybrid GLR/MI for optimal performance
- Sensitivity to boundary errors  $\Rightarrow$  need reliable boundary estimates.