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Abstract

We consider a geometric coverage process consist-
ing of a random mumber of disks, or grains, having
random radii and positions in the plane. Qur ob-
jective is granulometry: estimation of a parameter
of the disk radius distribution, which is important in
diverse applications such bio-assay, balistics, and nu-
merical tazonomy. These disks are only incompletely
observed due to mutual occlusion, spatial blurring
and additive noise. We use a measurement chan-
nel paradigm to derive an expectation-mazimization
(EM) type estimation algorithm and a distortion-rate
lower bound on estimation error.

I. INTRODUCTION

Here we treat a problem of parametric estimation
from an image consisting of a Boolean process with
spatial blurring and additive Gaussian noise. This
type of geometric model is pertinent to many ap-
plications. The first such application was described
in 1955 by Picinbono [10] for modeling the trans-
parency of a photographic film composed of silver
grains of random diameter for which the number and
spatial positions of these grains are given by a ho-
mogeneous Poisson process. The model introduced
here extends that of [10] by incorporation of a spa-
tial point spread function and an additive noise into
the measurements.

II. THE BOOLEAN MODEL

Let © = [©4,...,0,]" be a vector of random vari-
ables taking values § = [01,...,6,]T in R” and having
a joint density fo(6). Our goal is to develop a MAP
estimator of ©® and to specify lower bounds on the
mean square estimation error (MSE). Estimation of
© is based on an observed image Y = {Y(u) : v € I}
composed of an signal image S and a noise image
W. Here I = [—a,a] X [—a,a] denotes the sup-
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port of the image and |I| = 4a® denotes its area.
The signal S is generated by a marked point pro-
cess dM = {dM(u) : v € I} whose distribution de-
pends on ©. The process dM creates N disks cen-
tered at positions {¢;}" in I and with radii {R;}Y |,
R; € (0,00). Conditioned on © = 6 and N, {U;}¥,
and {R;}¥, are assumed mutually independent and
ii.d. with marginal densities fye(u|f) = 1/|I| and
frje(r]0), respectively. Here N is a Poisson r.v. with
conditional rate E[N|®] = E[N] = A > 0 and in-
tensity A = A/|I| which are indpendent of ©. Un-
der these assumptions the joint distribution of dM is
closed form and estimation of © from dM is easily
studied [8], [12]. This is no longer true when additive
noise and blurring are introduced into the observa-
tions giving rise to a model:

Y(u)=Su)+W(u), vel (1)
where W is a spatially white zero mean Gaussian
noise with spectral power level N, /2, and S(u) is the
blurred Boolean superposition

S(u) = h(u) x g(u; dM). (2)

where h(u) is a spherically symmetric point spread
function and g(u,dM) = 1—T(u) is the opacity func-
tion introduced by Picinbono
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where D(u) is the indicator function of a disc of ra-
dius 1 centered at the origin. Note that g(u;dM) is a
binary function which is non-zero only if there exists
at least one disc covering the point u. In Figure 5
three realisations of the images S and Y are shown
for a linear radial density fgje(r|#) whose slope is
controlled by © € [-1,1]



The Boolean model (3) is also called a ”cover-
age process” model [5] and has been used for many
applications in the life sicences, stereology, balistics
[3]. The problem studied in this paper is known as
granulometry [11] and consists of estimating an at-
tribute of the density fgjg, e.g. the mean surface
area mE[R?|0] of the disks. The additive noise and
blurring model (1), account for the effects of physical
transcription of the image, e.g. electronic, mechani-
cal, or chemical recording processes. Unfortunately,
there is no analytical representation of the joint dis-
tribution of Y,©® and thus optimal estimation © is
much more difficult than for the case of direct obser-
vation of dM.

III. CoMPOSITE CHANNEL REPRESENTATION

The measurements Y are related to the param-
eters © through the conditional density fyje =
{frie(W|0)}y,6 or equivalently through the log-
likelihood function I(f) = In fye(y|f). Since ©
is a random vector of parameters we can associate
fyje with transition probabilities of a measurement
channel C. Let X be an arbitrary random vari-
able. Then from the Bayes identity: fye(ylf#) =
Jx frixelz,0) fxje(x|f)de.  When X satisfies
fyv|x,e(y|r,0) = independent of @, the Bayes iden-
tity affirms that C is decomposable into a cascade of
two channels C; and Cs whose transition probabili-
ties are, respectively, fx|o et fy|x. In the language
of the EM algorithm, discussed below, X is a com-
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Fig. 1. (a) Statistical representation of Y as the output of C
with input ©. (b) Decomposition of C into C1 and Cs.

is not computable in closed form. We propose a lin-
ear approximation which was first introduced in [1]
and consists of making a first order approximation
to Q(A]9), i.e. we replace the non-linear conditional
mean estimator E[ln fxo(X|0)|Y,© = 6] by the lin-
ear least mean square error estimator of In fx e (X|6)
given Y, 0 = 4.

Under the assumption of large I this approxima-
tion takes the form [6]:

QU (0ff) = A / (14 124(Y,9)) frgo (r18) In Frio (r]0)dr

plete data set that carries more information about © q(Y,0) =
than does Y [9]. Now, in the context of the model [E—— 1 Te(w)
(1) a natural choice for X is the marked point pro- (0)mAe ] / /OO H (w0 |2¢T(w|0) +N,/2 w

cess dM which gives the decomposition illustrated in
Figure 1.
IV. AN EM-TYPE MAP ESTIMATOR

The EM algorithm takes the form
Initialization: 6°, k =0

For k=1,...
o [E Step] Estimate
Q0,6") = Elln fxjo(X|0)[Y,0 =07 (4)

o [M Step|] Maximize
0! = argmax, {QO0)+nfo(®)}  (5)

The exact EM algorithm is impossible to imple-
ment _ since
the expectation Q(6|0) = Elln fxo(X[0)]Y,0 = 0]

where FT¢(w) is the 2D Fourier transform of the
residual error e(u) = Y (u) — E[Y (u)|f] over u €
I, and ®7(w|f) is the 2D Fourier transform of
cov(T'(u), T(0)|6) over u € I.

When the radial density is
exponential, frje(rlf) = Be " r > 0, 8 € (0,00)
we find an analytical form for the M-step of the ap-
proximate EM algorithm obtained by replacing @ in

(5) by Q)

k\2 1 k
gr+1 :maX{O, gk (6%)° +2!¢(Y, 0 )}

(6%)2 + 3! q(Y, 6%)

The above equation is obtained under the assumption
of a (improper) diffuse prior density of @. When the
radial density is linear, as in Fig. 5, the M-step is not
explcit and must be found numerically. In Figure 2



the likelihood function trajectory In f(Y'|0%) is illus-
trated for several realizations of Y, ©, a linear radial
density, and © uniform over [—1,1]. Note that con-
vergence is quite rapid in each case. The bias (0.03)
and variance (0.1)? of the EM algorithm correspond
to approximately 10% improvement over a standard
non-linear least squares fit of the model covariance
function to the sample covariance function.
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Fig. 2. Comparison of the likelihood trajectories for several
realizations of Y,© for the same blur function and noise
power as in Fig. 5 and § = 0.5.

V. A SHANNON LOWER BOUND ON MSE

,0,]7 define the to-
tal mean square error MSE = 377 | E[(©; — 6:)2].
Let V and Z be two random variables with mutual
information I(V; Z) = E[ln Py v (Z|V)/Pz(Z)]. Let
p(V, Z) be the squared distance (distortion) between
the source V and an estimate V(Z) based on Z.
Shannon theory asserts that for any upper bound d
on p = E[p(V, Z)] the capacity C = supp, I(V,Z) of
the channel with input V' and output Z must be at
least as large as R, (d) = infp, . .5<4 [(V, Z), which is
called the rate-distortion function. R,(d) is strictly
decreasing over d < dy,q; Where dyq, is the sum of
the a priori variances of the components of V. Thus,
defining the inverse R, (s) we have the lower bound

For an estimator © = [0y, ..

d = MSE > min{dmax, R,"(C)} (6)

To this lower bound the Shannon bound [2] can be
applied R,(d) < H(V) — 3 In(2rde), where H(V) =
E[-InPy(V)]. Furthermore, Shannon’s data pro-
cessing theorem asserts that if C' is the capacity of a

channel composed of a cascade of two channels with
capacities C and Cy [4], then

C S min{Cl, 02}

Upon application of these two Shannon bounds to (6)
we obtain the following lower bound

MSE > L o) o 2min{or 0} (7)
2me

Now identifying the data Y = Z and the parameters
6 =V in (7) and using the decomposition C' = C; eC
illustrated in Fig. 1 we can evaluate (7) once C; and
C5 are available.

A. Point Process Channel C

Using the fact that among all point processes dM
with the same intensity the Poisson process has high-
est entropy we obtain a bound on C; similar to the
expression obtained in [8, Lemma 4]

frie(rlf)
fr(r)
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C7 is simply the capacity of a purely Poisson channel
which is equal to the maximum mean Kullback dis-
tance between the conditional density fgje(r|f) and
the marginal fr(r). Thus C; = 0 when fge(r|f)
is constant in 6 and thus identical to fg(r). In this
case neither dM nor Y carry any information about
©. For the case of a linear radial density frje(r|f),
0 € [—1, 1], the source density fy which attains capac-
ity C7 is easily determined and has an approximately
quadratic form, as indicated in Figure 3. The result-
ing capacity is the linearly increasing function of A:
Cf = Aa where a =~ 0.0698.

B. Continuous Process Channel Cs

Using the fact that among all continuous processes
Y with fixed covariance function the Gaussian pro-
cess has highest entropy we obtain the following
bound [6]

1] /°° /°° ( q’s(w))
o = 12 In(1+ dw (8)
2 2 —o0 J —o0 ‘N'O/2
where ®g(w) is the power spectral density of the sig-
nal component S.
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Fig. 3. The density f& that mazimises the mutual informa-
tion I(©,dM) and attains capacity for the case of linear
Irjeas shown in Figure 5.

Define the fonction p(u) = (1 — |Ju|/2)** and its
Fourier transform P(||lw||). By making a rectangular
to polar coordinate transformation in (8) we obtain
the simplification

5:7T|[|/Ooopln<l+ﬁ%>dp )

where, My(t) = E[e??] is the characteristic function
of fo and

K = e~ TV3 [Mg(—ﬂ')\/3) - M92(—7r)\/6)e_”>‘/3] .
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Fig. 4. C} and C3 as a function of the intensity A for linear
frje shown in Figure 5 Here fo(0) is uniform on [—1,1].

In Figure 4, C} and C5 are plotted as a function
of the intensity A = A/|I| for uniform density fo(6)

over [—1,1] and the same values for I, N,, and o
as used in Figure 5. Recall that it is the minimum
of Cf and C3 that determine the Shannon bound
(7). Notice that C} increases in \: estimation ©
from direct measurements dM always benefits from
an increase in the number of points N. On the other
hand, C3 takes a maximum value, decaying to zero as
A becomes large: estimates of © based on degraded
measurements Y suffer from an increasing number of
occlusions that must occur as the number of disks be-
come large. This degradation for large A is to be con-
trasted with the case of a linear superposition model
studied in [7].

The Shannon bound as illustrated in Figure 4 sep-
arates estimator performance into two A operating
regions, one for C7 < C3, the Poisson noise limited
region, the other for C5 < Cf, Gaussian noise lim-
ited region. There are thus three regions A € [0,0.1],
A € (0.1,0.65] and A > 0.65: the only region where
the Poisson limited region is attainable from mea-
surements Y is for values A € (0.1,0.65]. The bound-
aries of the A regions depend on |I|, N,, o and fe.
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Fig. 5.  Three realisations of the images S et Y for linear
radial densities (in mm) shown in the first column. Image
size is 20 X 20 mm and intensity increases from black to
white, The intensity A = 0.5 corresponds to an average
of A = 200 discs in each image. In the third column the
SNR is 8dB and the PSF h(u) is a symmetric Gaussienne
of standard width 2 x o0 = 0.66mm.



