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Abstract

We consider a geometric coverage process consist-
ing of a random number of disks, or grains, having
random radii and positions in the plane. Our ob-
jective is granulometry: estimation of a parameter
of the disk radius distribution, which is important in
diverse applications such bio-assay, balistics, and nu-
merical taxonomy. These disks are only incompletely
observed due to mutual occlusion, spatial blurring
and additive noise. We use a measurement chan-
nel paradigm to derive an expectation-maximization
(EM) type estimation algorithm and a distortion-rate
lower bound on estimation error.

I. Introduction

Here we treat a problem of parametric estimation
from an image consisting of a Boolean process with
spatial blurring and additive Gaussian noise. This
type of geometric model is pertinent to many ap-
plications. The �rst such application was described
in 1955 by Picinbono [10] for modeling the trans-
parency of a photographic �lm composed of silver
grains of random diameter for which the number and
spatial positions of these grains are given by a ho-
mogeneous Poisson process. The model introduced
here extends that of [10] by incorporation of a spa-
tial point spread function and an additive noise into
the measurements.

II. The Boolean Model

Let � = [�1; : : : ;�p]
T be a vector of random vari-

ables taking values � = [�1; : : : ; �p]
T in IRp and having

a joint density f�(�). Our goal is to develop a MAP
estimator of � and to specify lower bounds on the
mean square estimation error (MSE). Estimation of
� is based on an observed image Y = fY (u) : u 2 Ig
composed of an signal image S and a noise image
W . Here I = [�a; a] � [�a; a] denotes the sup-

port of the image and jI j = 4a2 denotes its area.
The signal S is generated by a marked point pro-
cess dM = fdM(u) : u 2 Ig whose distribution de-
pends on �. The process dM creates N disks cen-
tered at positions ftig

N in I and with radii fRig
N
i=1,

Ri 2 (0;1). Conditioned on � = � and N , fUig
N
i=1

and fRig
N
i=1 are assumed mutually independent and

i.i.d. with marginal densities fUj�(uj�) = 1=jI j and
fRj�(rj�), respectively. Here N is a Poisson r.v. with
conditional rate E[N j�] = E[N ] = � > 0 and in-
tensity � = �=jI j which are indpendent of �. Un-
der these assumptions the joint distribution of dM is
closed form and estimation of � from dM is easily
studied [8], [12]. This is no longer true when additive
noise and blurring are introduced into the observa-
tions giving rise to a model:

Y (u) = S(u) +W (u); u 2 I (1)

where W is a spatially white zero mean Gaussian
noise with spectral power level No=2, and S(u) is the
blurred Boolean superposition

S(u) = h(u) ? g(u; dM): (2)

where h(u) is a spherically symmetric point spread
function and g(u; dM) = 1�T (u) is the opacity func-
tion introduced by Picinbono

g(u; dM) =

NY
i=1

D

�
u� Ui
Ri

�
; (3)

where D(u) is the indicator function of a disc of ra-
dius 1 centered at the origin. Note that g(u; dM) is a
binary function which is non-zero only if there exists
at least one disc covering the point u. In Figure 5
three realisations of the images S and Y are shown
for a linear radial density fRj�(rj�) whose slope is
controlled by � 2 [�1; 1]
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The Boolean model (3) is also called a "cover-
age process" model [5] and has been used for many
applications in the life sicences, stereology, balistics
[3]. The problem studied in this paper is known as
granulometry [11] and consists of estimating an at-
tribute of the density fRj�, e.g. the mean surface
area �E[R2

i j�] of the disks. The additive noise and
blurring model (1), account for the e�ects of physical
transcription of the image, e.g. electronic, mechani-
cal, or chemical recording processes. Unfortunately,
there is no analytical representation of the joint dis-
tribution of Y;� and thus optimal estimation � is
much more diÆcult than for the case of direct obser-
vation of dM .

III. Composite Channel Representation

The measurements Y are related to the param-
eters � through the conditional density fY j� =
ffY j�(yj�)gy;� or equivalently through the log-
likelihood function l(�) = ln fY j�(yj�). Since �
is a random vector of parameters we can associate
fY j� with transition probabilities of a measurement
channel C. Let X be an arbitrary random vari-
able. Then from the Bayes identity: fY j�(yj�) =R
X fY jX;�(yjx; �)fXj�(xj�)dx. When X satis�es
fY jX;�(yjx; �) = independent of �, the Bayes iden-
tity aÆrms that C is decomposable into a cascade of
two channels C1 and C2 whose transition probabili-
ties are, respectively, fXj� et fY jX . In the language
of the EM algorithm, discussed below, X is a com-
plete data set that carries more information about �
than does Y [9]. Now, in the context of the model
(1) a natural choice for X is the marked point pro-
cess dM which gives the decomposition illustrated in
Figure 1.

IV. An EM-type MAP Estimator

The EM algorithm takes the form
Initialization: �0, k = 0

For k = 1; : : :
� [E Step] Estimate

Q(�; �k) = E[ln fXj�(X j�)jY;� = �k] (4)

� [M Step] Maximize

�k+1 = argmax�
�
Q(�j�k) + ln f�(�)

	
(5)

The exact EM algorithm is impossible to imple-
ment since
the expectation Q(�j�) = E[ln fXj�(X j�)jY;� = �]

Fig. 1. (a) Statistical representation of Y as the output of C
with input �. (b) Decomposition of C into C1 and C2.

is not computable in closed form. We propose a lin-
ear approximation which was �rst introduced in [1]
and consists of making a �rst order approximation
to Q(�j�), i.e. we replace the non-linear conditional
mean estimator E[ln fXj�(X j�)jY;� = �] by the lin-
ear least mean square error estimator of ln fXj�(Xj�)

given Y;� = �.
Under the assumption of large I this approxima-

tion takes the form [6]:

Q̂(1)(�j�) = �

Z 1

0

(1 + r2q(Y; �))fRj�(rj�) ln fRj�(rj�)dr

q(Y; �) =

H(0)��e���m2(�)
1

jI j

Z 1

�1

Z 1

�1

FTe(!)

jH(!)j2�T (!j�) +No=2
d!

where FTe(!) is the 2D Fourier transform of the
residual error e(u) = Y (u) � E[Y (u)j�] over u 2
I , and �T (!j�) is the 2D Fourier transform of
cov(T (u); T (0)j�) over u 2 I .
When the radial density is

exponential, fRj�(rj�) = �e��r; r > 0, � 2 (0;1)
we �nd an analytical form for the M-step of the ap-
proximate EM algorithm obtained by replacing Q in
(5) by Q̂(1):

�k+1 = max

�
0; �k

(�k)2 + 2! q(Y; �k)

(�k)2 + 3! q(Y; �k)

�
:

The above equation is obtained under the assumption
of a (improper) di�use prior density of �. When the
radial density is linear, as in Fig. 5, the M-step is not
explcit and must be found numerically. In Figure 2
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the likelihood function trajectory ln f(Y j�k) is illus-
trated for several realizations of Y;�, a linear radial
density, and � uniform over [�1; 1]. Note that con-
vergence is quite rapid in each case. The bias (0.03)
and variance (0:1)2 of the EM algorithm correspond
to approximately 10% improvement over a standard
non-linear least squares �t of the model covariance
function to the sample covariance function.
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Fig. 2. Comparison of the likelihood trajectories for several
realizations of Y;� for the same blur function and noise
power as in Fig. 5 and � = 0:5.

V. A Shannon Lower Bound on MSE

For an estimator �̂ = [�̂1; : : : ; �̂p]
T de�ne the to-

tal mean square error MSE =
Pp

j=1E[(�i � �̂i)
2]:

Let V and Z be two random variables with mutual
information I(V ;Z) = E[lnPZjV (ZjV )=PZ(Z)]. Let
�(V; Z) be the squared distance (distortion) between

the source V and an estimate V̂ (Z) based on Z.
Shannon theory asserts that for any upper bound d
on � = E[�(V; Z)] the capacity C = supPV I(V; Z) of
the channel with input V and output Z must be at
least as large as R�(d) = infPZjV :��d I(V; Z), which is
called the rate-distortion function. R�(d) is strictly
decreasing over d < dmax where dmax is the sum of
the a priori variances of the components of V . Thus,
de�ning the inverse R�1

� (�) we have the lower bound

d = MSE � minfdmax; R
�1
� (C)g (6)

To this lower bound the Shannon bound [2] can be
applied R�(d) � H(V ) � 1

2 ln(2�de), where H(V ) =
E[� lnPV (V )]. Furthermore, Shannon's data pro-
cessing theorem asserts that if C is the capacity of a

channel composed of a cascade of two channels with
capacities C1 and C2 [4], then

C � minfC1; C2g:

Upon application of these two Shannon bounds to (6)
we obtain the following lower bound

MSE �
1

2�e
e2H(V) e�2minfC1;C2g: (7)

Now identifying the data Y = Z and the parameters
� = V in (7) and using the decomposition C = C1�C2

illustrated in Fig. 1 we can evaluate (7) once C1 and
C2 are available.

A. Point Process Channel C1

Using the fact that among all point processes dM
with the same intensity the Poisson process has high-
est entropy we obtain a bound on C1 similar to the
expression obtained in [8, Lemma 4]

C1 � C�
1 = �sup

f�

Z
f�(�)

Z
dr fRj�(rj�) ln

fRj�(rj�)

fR(r)
d�

fR(r)
def
=

Z
f�(�)fRj�(rj�)d�;

C�
1 is simply the capacity of a purely Poisson channel

which is equal to the maximum mean Kullback dis-
tance between the conditional density fRj�(rj�) and
the marginal fR(r). Thus C1 = 0 when fRj�(rj�)
is constant in � and thus identical to fR(r). In this
case neither dM nor Y carry any information about
�. For the case of a linear radial density fRj�(rj�),
� 2 [�1; 1], the source density f� which attains capac-
ity C�

1 is easily determined and has an approximately
quadratic form, as indicated in Figure 3. The result-
ing capacity is the linearly increasing function of �:
C�
1 = �a where a � 0:0698.

B. Continuous Process Channel C2

Using the fact that among all continuous processes
Y with �xed covariance function the Gaussian pro-
cess has highest entropy we obtain the following
bound [6]

C�
2 =

jI j

2

Z 1

�1

Z 1

�1

ln

�
1 +

�S(!)

No=2

�
d! (8)

where �S(!) is the power spectral density of the sig-
nal component S.
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Fig. 3. The density f�
�

that maximises the mutual informa-
tion I(�; dM) and attains capacity for the case of linear
fRj�as shown in Figure 5.

De�ne the fonction p(u) = (1� kuk=2)2+� and its
Fourier transform P (k!k). By making a rectangular
to polar coordinate transformation in (8) we obtain
the simpli�cation

C�
2 = �jI j

Z 1

0

� ln

�
1 + �

jH(�)j2P (�)

No=2

�
d� (9)

where, M�(t) = E[et�] is the characteristic function
of f� and

� = e���=3
h
M�(���=3)�M2

� (���=6)e
���=3

i
:
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Fig. 4. C�
1
and C�

2
as a function of the intensity � for linear

fRj� shown in Figure 5 Here f�(�) is uniform on [�1; 1].

In Figure 4, C�
1 and C�

2 are plotted as a function
of the intensity � = �=jI j for uniform density f�(�)

over [�1; 1] and the same values for I , No, and �
as used in Figure 5. Recall that it is the minimum
of C�

1 and C�
2 that determine the Shannon bound

(7). Notice that C�
1 increases in �: estimation �

from direct measurements dM always bene�ts from
an increase in the number of points N . On the other
hand, C�

2 takes a maximum value, decaying to zero as
� becomes large: estimates of � based on degraded
measurements Y su�er from an increasing number of
occlusions that must occur as the number of disks be-
come large. This degradation for large � is to be con-
trasted with the case of a linear superposition model
studied in [7].
The Shannon bound as illustrated in Figure 4 sep-

arates estimator performance into two � operating
regions, one for C�

1 < C�
2 , the Poisson noise limited

region, the other for C�
2 < C�

1 , Gaussian noise lim-
ited region. There are thus three regions � 2 [0; 0:1],
� 2 (0:1; 0:65] and � > 0:65: the only region where
the Poisson limited region is attainable from mea-
surements Y is for values � 2 (0:1; 0:65]. The bound-
aries of the � regions depend on jI j, No, � and f�.
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Fig. 5. Three realisations of the images S et Y for linear
radial densities (in mm) shown in the �rst column. Image
size is 20 � 20 mm and intensity increases from black to
white, The intensity � = 0:5 corresponds to an average
of � = 200 discs in each image. In the third column the
SNR is 3dB and the PSF h(u) is a symmetric Gaussienne
of standard width 2 � � = 0:66mm.


