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ABSTRACT 
 
See Through The Wall (STTW) applications have become of high 
importance to law enforcement, homeland security and defense 
needs.  In this work surface penetrating radar is simulated using 
basic physical principles of radar propagation.  Wavenumber 
migration is employed to form 2D images of objects found behind a 
wall.  It is shown that this technique cannot properly image with the 
wall present because of an unknown phase delay experienced by the 
electromagnetic waves as they pass through the wall.  Two 
approaches are taken to estimate this phase by looking at the direct 
backscatter signal from the wall.  The first is a dual phase approach, 
which uses a non-parametric technique to find the phase at every 
frequency.  The second method is a dual frequency approach.  The 
two frequencies are close enough together that the reflection 
coefficients are approximately equal.  This approximation allows for 
more observations than unknown parameters.  The surface reflection 
coefficient, back wall coefficient, and phase are simultaneously 
determined using an iterative, non-linear (Newton-Raphson) 
successive approximation algorithm.  Comparisons are performed 
for a simple scenario of three point scatterers with and without phase 
correction. 
 
 
 
1. OVERVIEW 
 
   Approximations and simulations are used in this work to gain 
physical insight into the spatial signatures produced by objects 
observed by surface penetrating radar.  The radar system is a 
receiver/transmitter pair that scans along the outside of a building.  
The returns can be used to produce an image (slice) of the interior of 
the room. 
 
   The imaging approach used in this work is wavenumber migration.  
It was first introduced in synthetic aperture radar imaging by [1].  
The method was first developed for seismology [2,3].  The principal 
contribution of this paper is the application of this approach to See-
Through-The-Wall radar imaging.   
 
   The wavenumber migration algorithm works as follows. The 2D 
complex spectrum of the image is constructed by properly 
reformatting the plane waves received by the radar system.  The 
reformatting requires exact knowledge of the phase of the 
propagating waves.  When a wall of unknown thickness and 
permittivity is introduced, the algorithm can no longer focus the 
image because the wall imposes an unknown delay on each plane 
wave due to the  

 
 
 
 
 
decreased and unknown propagation speed within the wall.  To 
properly reformat the waves, the wavenumber migrator must know 
the bulk effect of these two parameters (unknown permittivity and 
unknown thickness) and remove that phase delay from the recorded 
data.   
 
   Adding to the complication of this problem is the fact that the 
reflection coefficients of the wall are unknown.  In this work we will 
assume that the radar return from the wall is composed of a 
reflection from the front surface and a reflection from the back 
surface.  These two returns sum together to form a signal in noise 
with two unknown reflection coefficients and one unknown phase.  
Due to the non-linear nature in which these three parameters 
manifest themselves in the returned signal, some assumptions will 
have to be made in order to estimate them.  Two approaches can be 
considered.   
 
   The first approach assumes that the reflection from the wall 
surface has been removed by some other means.  This greatly 
simplifies the problem and allows for the back of the wall reflection 
coefficient and the phase at all required frequencies to be removed 
using a sine and cosine or dual phase technique.  This approach is, 
therefore, a non-parametric approach that estimates the phase at all 
frequencies.  In practice, it may be a significant technical challenge 
to eliminate the surface reflection contribution as required by this 
method.  Therefore, a second technique is proposed. 
 
   The second technique is a dual frequency approach.  Here it is 
assumed that the frequencies are close enough together so that the 
reflection coefficients of the wall are nearly constant in frequency.  
The phase unknown is reduced to its fundamental unknown part, 
which is the product of the wall thickness (τ) and the square root of 
the wall permittivity (ε2).  By relying on a cross-demodulated signal 
(that is a transmitted cosine mixed with a sine on receive) the wall 
return is naturally rejected.  Two separate soundings are made at the 
two frequencies.  After the cross-demodulation the reflection 
coefficient of the back of the wall and the phase parameter are non-
linearly coupled within the signal.  A non-linear iterative maximum 
likelihood estimation approach is used to separate these two 
parameters via the Newton-Raphson  algorithm.  When this 
algorithm converges, it provides a parametric estimate of the 
thickness-permittivity-squareroot product.  With this estimated 
parameter, the phase delay for any frequency of interest can be 
predicted.   
 
 



 

   We adopt a physical optics model for electromagnetic wave  
propagation for a simple environment consisting of three point 
scatterers placed behind the wall.  These simulations are used to 
show the result of correcting the imaging signals with the estimated 
phase.  Images produced without phase correction are also provided 
to demonstrate the need for correcting unknown phase distortion. 
 
 
2. POINT TARGET SIMULATIONS 
 
      The simulation consists of a stepped frequency radar generating 
frequencies from 500MHz to 2.5GHz with equal steps, a 
homogeneous wall, and three point scatterers.  Figure 2.1 shows the 
point scatterer arrangement.  The radar is pointed directly at the 
wall.  The imaging algorithm operates on a measurement of radar 
backscatter at 256 frequencies observed at 201 locations parallel to 
the wall.  We define a local coordinate system (also shown in Figure 
2.1) at a specified center of the generated image. 
 
    We employ a physical optics model of radar wave propagation 
through the medium. Specifically, the radar rf field is 
mathematically modeled as plane waves.  The reflections from the 
wall and back of the wall are governed by Fresnel Reflection 
Coefficients, which are valid 
 
 
 
 
 
 
 
 

Figure 2.1:  Three Point Scatterer Simulations 
 
for time harmonic plane waves.  For this work, refraction effects 
predicted by Snell’s Law have been ignored for simplicity.  Snell’s 
Law predicts that the waves will be bent as they enter and leave the 
non-free space media In this paper we neglect this effect and assume 
that the waves travel straight through the wall regardless of angle of 
incidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2:  Point Simulation – (left) No Wall (right) Wall 
Inserted 

 
   The imaging algorithm used to reconstruct the image of the three 
point scatterers is wavenumber migration.  This method transforms 

the received signals into the 2D frequency space and manipulates the 
phase of each wavenumber.  Interpolations (i.e. resampling) is also 
applied to format the data properly in preparation for a 2D inverse 
FFT.  With correct interpolation and phasing, the energy of point 
scatterers become focused [4]. This can be seen in the free space (no 
wall) simulation shown in Figure 2.2.  The 3 point scatterers are 
clearly well focused into point targets in this simulation.  Their 
amplitudes can be seen to fade for targets that are further away from 
the wall.  This is due to the 1/r2 spherical spreading of the energy in 
the transmitted wave.  In these simulations the radar is just 6 meters 
from the farthest point scatterer.  At these distances beam divergence 
loss  of the transmit energy can’t really be ignored.  The point 
targets have the same  radar cross section (10dB). 
 
   Figure 2.3 shows the motivation of this work.  When the wall is 
inserted between the radar and the point scatterers, the imaging 
algorithm cannot focus the points.  This is due to an unknown phase 
factor that is now present in the data stream.  A simplified model of 
the observations is given by Equation 2.1. 
 
                                                                                    Equation 2.1 
 
The amplitude and phase labeled ap and φp are due to the free space 
propagation between the radar and the nth point scatterer.  The 
complex reflectivity of the scatterer is given in amplitude by ρn and 
φn.  The effect of the wall is to produce an attenuation and phase 
(both of which are unknown) given by aw and φw.   
 
   Under this model the wall  acts as a filter that attenuates some of 
the incident energy. If this is a function of frequency, it would have 
to be estimated, if the goal is to reconstruct the true reflectivity of all 
the pixels in the image.  On the other hand, if the goal is to 
reconstruct the location of the scatterers in the image, the amplitude 
attenuation can be ignored [4].  Of course, in the presence of noise 
or interference the power transmitted by the radar must be enough to 
provide a usable signal-to-noise ratio of the received amplitudes.  
The effect of the phase φw is to distort the reconstructed image. 
Hence the phase must be estimated explicitly prior to image 
reconstruction Note that the wall parameters are the same for all 
simulations in this work: relative permittivity of the wall is 10 and it 
is 0.2 m thick. 
 
 
3.  WALL PHASE DETERMINATION AND CORRECTION 
 
   Two methods are proposed here for determining the phase caused 
by a wall of unknown permittivity and unknown thickness.  Both 
methods utilize a pulsed radar.  The pulses contain a cosine 
waveform with just 1 frequency that lasts 100μsec.  The return 
signal is assumed to be a superposition of two cosine functions.  The 
first is from the surface of the wall and the second is from the back 
of the wall.  Equation 3.1 shows the expected return. 
 
                                                                        
 
                                                                          Equations 3.1 
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The θ parameter is the expected phase delay due to the waveform 
propagating to the wall surface and back to the radar.  It is 
reasonable to expect this value to be known.  The φ parameter on the 
other hand, contains the 

2ετ value that is unknown.  The a0 and a1 
values are related to the reflection coefficients of the front and back 
wall surface.  The noise n(t) is an unknown, performance limiting 
factor. 
 
 
3.1  Dual Phase Approach  
 
   The first approach demodulates the returned pulse with a cosine 
and a sine waveform.  This would be the same as transmitting a 
cosine and a sine signal and demodulating them both with a cosine.  
The result is an in-phase and quadrature measurement. 
 
 
 
 
 
 
                                                                          Equations 3.2 
 
Equations 3.2 show the processing steps and the final scalar values.  
It is assumed that the sampling rate is sufficiently high to prevent 
aliasing.  Note that all the unknown parameters appear in these 
scalar measurements.  A separate measurement must be made at 
each frequency used in the imaging system.   
 
  A significant issue exists in the in-phase value.  The a0 term is the 
reflection coefficient of the wall surface.  This value must be 
determined prior to the application of this dual phase method.  This 
is the so-called “layer peeling”.  The wall surface must be 
determined, then the inner wall structure, then the imaging of the 
area behind the wall.  Here we focus only on the solving of the 
middle problem – the inner wall structure.  With the removal of the 
a0 value, the in-phase measurement becomes what is shown in 
Equation 3.3 
                                                                           Equation 3.3  
 
   Now the form of the in-phase and quadrature values can be divided 
to remove  a1 (unknown).  The result is a tangent of the unknown 
phase.  By taking an arctangent, the desired value is reached.  
Equation 3.4 shows the final form.  Note that the R and Q values 
must be measured at each frequency and Equation 3.4 applied.  This 
gives an estimated wall phase value at every required frequency. 
 
                                                                           Equation 3.4 
 
   Figure 3.1 shows the estimated phase for the three point scatterer 
simulation.  The red line is the actual phase value at each frequency.  
The phase is linear because the wall in this simulation is 
homogeneous and non-dispersive.  The phase ramp is due to the 
linearly increasing frequency.  The advantage of this approach is 
that, were the wall dispersive (meaning that the phase changed non-
linearly in frequency), the required phase at each frequency would 
be sufficiently determined.   
 

  The blue wrapping phase is the estimated value.  The wrapping 
occurs because the range of the arctangent function cannot 
determine the phase outside of the –π to π interval.  However, 
mathematically, it is not necessary to determine the true phase.  Only 
the value within 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1:  (left)  Estimated and True Phase 
(right) Image After Correction with Dual Phase Approach 

 
this range is required  to affect the necessary phase corrections in the 
image processor.  Figure 3.2 shows the resulting image after the 
correction.  Note that the three points have been successfully 
focused. 
 
3.2  Dual Frequency Approach  
 
     The dual phase approach makes an assumption that may not be 
practically achievable.  This is the assumption that the return from 
the front of the wall has been removed (i.e. canceled).  Because of 
this a second approach is introduced here.  Some assumptions must 
also be made for this method. Two frequencies will be used to 
generate a set of non-linear equations that will be solved iteratively 
using a non-linear, successive approximation method.  The 
assumptions here are that the reflection coefficients remain constant 
for the two frequencies. Since these values are slowly varying in 
frequency, this assumption is very nearly true.  As long as the 
frequencies do not get too far apart, this assumption will hold.   
 
   Our starting point is with the quadrature measurements R and Q at 
two frequencies f1 and f2.  The reason for using quadrature is that the 
a0 unknown is naturally removed during the demodulation process.  
If we also consider the in-phase measurements, we have to solve for 
the added a0 unknown.  Since a0 and a1 are nuisance parameters, we 
utilize only q1 and q2.  The expressions for these measurements are 
given by Equation 3.5.  These are rewritten in the form of functions 
F1, F2 for use in the Jacobian matrix described next.  

                                               
                                                                            Equations 3.5 
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The parameter x1 is the reflection coefficient from the back of the 
wall.  The parameter x2 is the thickness-permittivity-squareroot 
product.  The x2 parameter is of primary interest.  Knowledge of this 
value allows for the phase distortion to be corrected. 
 
Define the two element vectors q and F by contacting the two 
respective terms in Eq 3.5. The problem of estimating the parameters 
x1 and x2 can be formulated as a non-linear least squares problem, 
minx(|q-F(x)|2), equivalent to maximum likelihood under an additive 
Gaussian noise model q=F(x)+noise.     Starting with an initial value 
of x1,x2, we can find the least squares solution using the iterative 
Newton-Raphson approach.  This algorithm uses success 
approximations to iterate to a solution.  The Jacobian matrix shown 
in Equation 3.6 is determined using the non-linear equations F1,F2.  
 
   The Jacobian matrix defines a hyper-plane that is tangent to the 
manifold of the F1,F2 functions at the point of the current estimates 
of x1,x2.  A solution to the equations is found within this plane and 
this solution will be closer to the true answer than the previous 
estimates.  The same is true for the next solution until the estimates 
no longer change.  This is the successive approximation strategy.  
Mathematically, this can be written as in Equations 3.7.   
 

                                                                                   
                                                                                  Equations 3.7 
 
A logical starting point is to choose the initial values of x1,x2 to 
determined by the values we expect (i.e. the mean values) for the 
wall being interrogated.  This incorporates the a priori information 
we have about the wall.  For this simulation only a few iterations are 
required for the estimates to converge.  Figure 3.3 shows the 
convergence in the x1 parameter while Figure 3.4 shows the same for 
x2.  The starting values were 0.8 for x1 and 0.6 for x2.  The actual 
values were 1.0 and 0.6325 respectively.  The estimated values 
reached by the algorithm were 1.3 and 0.6270. 
 
 
 
 
 
 
 
 
 

Figure 3.3  Convergence of Parameters x1 and x2 
   
  The x2 parameter corresponds to the 

2ετ  product, which is the key 
element in the unknown phase experienced by the waves traveling 
through the wall.  Once this parameter is estimated, the image can be 
phase corrected at any frequency.  So, provided that the wall 
structure does not change, only one sounding has to be made in the 

dual frequency approach.  The resulting image is shown in Figure 
3.5.   
 
   Note that the 3 point scatterers are well focused in Figure 3.5.  The 
dual frequency method shows much promise.  Unfortunately, it does 
have challenges to be addressed in future work, namely local 
minima of the objective function \|q-F(x)\|^2.   
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: Image after correction with the Dual Frequency 
approach. 

 
4.  CONCLUSIONS 
 
   Two approaches have been proposed for determining the unknown 
phase produced by plane waves propagating through a wall.  It has 
been shown that this unknown phase prevents proper imaging of the 
scene behind the wall using a See-Through-The-Wall radar.  Both 
approaches were effective in determining and removing the 
unknown phase when their underlying assumptions were satisfied. 
 
   The two approaches were also quite robust when contaminated 
with noise.  Both functioned well at a signal-to-noise (SNR) of  
-10dB.  (SNR here is defined as the mean squared amplitude of 
transmitted sinusoid to the variance of the noise.)  This robustness is 
due to the correlating of the return signal with the transmit signal.  
Each pulse was sampled in such a way that 1000 points were 
collected.  When all these samples are correlated with the signal and 
averaged together, a reduction in noise variance of a 1000 is 
affected. 
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