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ABSTRACT

Accounting for uncertainty in three-dimensional (3D) shapes is
important in a large number of scientific and engineering areas
including: biometrics, biomedical imaging, and multimodality im-
age registration. It is well known that 3D star-shaped objects can
be represented by Fourier descriptors such as spherical harmonics
and double Fourier series. However, the statistics of these spectral
shape models have not been widely explored. This article presents
a spectral theory and its applications in 3D shape modeling. Spher-
ical harmonic (SH) expansions over the unit sphere not only pro-
vide a low dimensional polarimetric parameterization of stochastic
shape, but also correspond to Karhunen-Lo´eve (K-L) expansion of
any isotropic random field on the unit sphere. Spherical harmonic
expansions permit estimation and detection tasks, such as optimal
shape filtering, object registration, and shape classification, which
can be performed directly in the spectral domain with low compu-
tational complexity.

1. INTRODUCTION

Techniques of three dimensional shape modeling have been widely
studied over the past two decades [1]. In many computer vision
related areas, such as pattern recognition, deformation and motion
analysis, image registration and image retrieval, shape modeling
techniques have been integrated with other techniques to achieve
different goals. In this paper, “shape modeling” refers to surface
boundary representations of 3D polar objects. Deterministic sur-
face descriptions, such as polygons, B-splines and Fourier descrip-
tors, have been well established [1]. Among these descriptions,
the parametric representations which are object-centered and use
a linear combination of basis functions, are of special interest to
us. These mappings from spatial object space to parameter space
provide a compact representation of the object and are useful for
shape storage, noise filtering, and pattern recognition. Although
deterministic models are successfully employed in many applica-
tions, they are incapable of reflecting the variations within a class
of shapes. In medical imaging, for instance, anatomical shape can
change significantly during a treatment. It is highly desirable to
have reliable statistical shape models which can characterize typ-
ical ranges of shape variation and capture meaningful statistical
information. Such information can be used to develop optimal al-
gorithms for noise removal, object registration and segmentation,
and establish tight bounds on achievable performance.

Many researchers have explored the area of statistical shape
modeling [2, 3, 4]. The common procedure of these approaches
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is as follows. First, extract shape features or shape parameters
from training data sets. These features may include labeled “land-
mark” points [2]; coefficients of Fourier series model [3]; and dis-
tance map [4]. Next, compute the mean and variance of the shape
or shape parameters from the features extracted in the first step.
Usually principle component analysis (PCA) is used to compute
variance and characterize typical variations of the shape. Finally,
the statistical properties of the shape are incorporated into a im-
age processing algorithm to accomplish registration and segmen-
tation. Our approach is related to Staib’s deformable model [3]
since we also use Fourier series as basis functions to model 3D
shapes. We propose an isotropic random field model for 3D polar
shape objects using spherical harmonics as the eigen-functions of
Karhunen-Loéve expansion. The novelty of our approach lies in
treating the coarse segmentation result as a random field over the
unit sphere and using the spectral theory of random fields over
the sphere to obtain statistically uncorrelated shape parameters.
We apply the developed statistical shape model to two problems
in computer vision. The first one is optimal shape filtering: given
noisy samples of surface boundary points, e.g. coarsely segmented
from an object, find an optimal estimate of the true surface bound-
ary. The second problem is the 3D object registration problem.
Based on Burel’s method [5] and a statistical noise model, we pro-
pose a maximum likelihood estimator which can simultaneously
estimate the spherical harmonic coefficients and register 3D ob-
jects at different orientations.

2. STATISTICAL POLAR SHAPE MODELING

2.1. Fourier Descriptors

The surface of a polar shaped object can be represented by its ra-
dial coordinater with respect to a selected origin inside the object.
Herer is a single valued function of� and�, where(�; �) is a
direction vector on the unit sphereS2, i.e. r : S2 ! IR. (Instead
of (�; �), we sometimes use single variables, such ass andt, to
represent direction vectors inS2.) The unit sphereS2 is defined as
the sphere of radius1 and centered at origin. Fourier descriptors
represent polar shaped objects as a linear combination of orthonor-
mal basis functions. Spherical harmonicsfY m

l (�; �)g are special
functions defined on the unit sphere as

Y
m
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s
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where� 2 [0; �] is the polar angle,� 2 [0; 2�] is the azimuthal an-
gle,Pm

l (x) is the associated Legendre function,l is a non-negative
integer,m is an integer in[�l; l]. Spherical harmonics have been



widely used to model 3D objects [6, 3] because they are orthonor-
mal, complete over the space of polar surfaces and ordered in spa-
tial frequency. However, the statistical properties of this spectral
model have not been widely explored.

2.2. Random Field on Unit Sphere

In the computer vision community, 2D rectangular random field
models have been applied to texture synthesis, texture classifica-
tion, and image segmentation. In shape modeling, it is reasonable
to assume that radial functions of coarsely segmented objects are
samples of random fields over the unit sphereS2. However, to the
best of our knowledge, no random field model has been reported
for 3D shape modeling. We guess it is partly because of the dif-
ficulty to characterize an arbitrary random field overS2, which is
defined as follows.

Definition 1 A second order random field overS2 � IR3 is a
functionZ : S2 ! L2(
;F ; P ), where
 is a sample space with
generic element!, F is a �-algebra of subsets of
, andP is a
probability measure onF .

To reduce the complexity of the correlation function ofZ(�; �),
we consider characterizing the shape of polar objects by an isotropic
random field overS2.

2.3. Isotropic Random Field onS2 and its orthogonal repre-
sentation

Let (�1; �1) and(�2; �2) denote two directions separated by angle
 in the spherical coordinate system, as shown in Fig. 1. These
angles satisfy the following trigonometric identity,

cos  = cos �1 cos �2 + sin �1 sin �2 cos(�1 � �2): (2)

The valuecos  is called theangular distancebetween the two
directions(�1; �1) and(�2; �2).
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Fig. 1. Two directions inS2, (�1; �1) and(�2; �2), and the angle
 between them.

Definition 2 A random fieldX(�; �) on the unit sphereS2 is
called isotropic in the wide sense if its mean is constant

EfX(�; �)g = constant (3)

and its correlation depends only on the angular distancecos  de-
fined in (2)

EfX(�1; �1)X
�(�2; �2)g

�
= R() =  (cos ) (4)

The correlation function of such a random field can be thought
as invariant to any rotationg 2 SO(3). HereSO(3) denotes
the group of rotations around the origin inIR3. Isotropic random
field models have been widely studied in many research areas, such
as earth science, astrophysics and electrical field theory. In fact,
this statistical property is satisfied by a large class of 3D shapes.
For example, in biological shape analysis, the orientation of virus
particles in the electron microscope can be completely disordered
[7] and the radial function segmented from such a case forms an
isotropic random field.

Theorem 1 Let z : S2 ! IR be the radial function of a polar
object which center has been aligned with the originO of the co-
ordinate system. If the object center is fixed atO and the orienta-
tion of the object is uniformly distributed, i.e. there is no preferred
direction, the observed radial functionZ is an isotropic random
field. It’s mean and correlation function are determined by

E[Z(t)] = constant =
1

4�

Z
x2S2

z(x)d
x (5)

and
E[Z(s)Z(t)] = RZ(](s; t))

=

R
x2S2

R
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x
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:

(6)

If s = t, (6) will be in the form ofE[Z2(t)] = 1
4�

R
x2S2

z2(x)d
x.

Proof:
Let g be a random rotation operator inSO(3) which has uni-

form distribution overSO(3). The observed radial functionF can
be expressed asF (x) = gf(x). Sinceg is uniformly distributed
in SO(3), the probability that any surface point falls in any sector

(�; �) 2 S2 of area�
S2 is the same and equals
�


S2

4�
. Taking

the limit as�
S2 ! 0 yields equation (5). Similarly, for two
arbitrary directionss andt on the unit sphere, any pair of surface
points which has the same angular distance ascos(](s; t)) will be
equally likely to be found in the directions ofs andt. Therefore
equation (6) gives the proper correlation function ofF . End of
proof.

In [8], Yadrenko pointed out that any isotropic random field
over the unit sphere can be orthogonally decomposed by spherical
harmonics.

Theorem 2 ([8]) A mean-square continuous isotropic random field
X(�; �) of zero mean inS2 can be represented as:

X(�; �) =
1X
l=0

lX
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A
m
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with Y m
l (�; �) denoting the spherical harmonics of degreel and

orderm, and

A
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such thatEfAm
l g = 0 andEfAm

l A
�m0

l0 g = �lÆl;l0Æm;m0 where
�l = 2�

R 1
�1
 (t)Pl(t) dt is the coefficient in the Legendre series

of the correlation function, and (cos ) = R() is the correla-
tion function ofX(�; �).

Based on this spectral theorem, the coefficients in the SH expan-
sion of an isotropic Gaussian random field will be independent
random variables for differentl andm. This important property
will be used in two applications in the next section.



3. APPLICATIONS OF STATISTICAL SHAPE
MODELING

3.1. Optimal Shape filtering onS2

Relations 7 and 8 imply that spherical harmonics are eigenfunc-
tions in the Karhunen-Lo´eve expansion of an isotropic random
field over the unit sphereS2 [8]. It is well known that Wiener fil-
tering can be implemented in the original or K-L domains. Based
on the spectral theory of random fields and the spherical geometry
of polar objects, one can also in principle use this theory to de-
compose the radial function and estimate uncorrelated noisy shape
parameters. The detailed procedure is described in the text follow-
ing.

Let F (x) : S2 ! (0;+1) represent the radial function of
a polar object acquired through some segmentation process. It is
assumed that�F = E[F ] and that the zero mean random fieldF �
�F can be decomposed as:

F (x)� �F (x) = S(x) +W (x) (9)

whereS is an isotropic zero mean random field andW repre-
sents an independent white Gaussian noise field. The correlation
function of S can be represented byRS(x; y) = RS(](x; y)).
Strictly speaking, for consistencyS andW must be such that
S + W � � �F w.p.1. We will sidestep this issue by assuming
that the standard deviations ofS andW are much smaller than�F .
By relations 7 and 8, the K-L expansion ofS is a linear combina-
tion of spherical harmonics,

S(x) =
1X
l=0

lX
m=�l

a
m
l Y

m
l (x) (10)

whereaml is independent random variable (for alll; m) with zero
mean and varianceE[aml a

m0

l0 ] = �lÆl;l0Æm;m0 , where�l is deter-
mined by�l = 2�

R 1
�1
RS(x)Pl(x)dx. Let �2W be the variance

of the white Gaussian noise term in 9. The optimal estimator of
the shape parameteraml is the conditional meanE[aml jF

m
l ] which

can be written as:

â
m
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R
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The optimal estimator ofS is a linear combination of spherical
harmonics weighted bŷaml :

Ŝ(x) =
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â
m
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3.2. Joint Shape and Orientation Estimation of 3D Objects

Finding the rotation of a 3D object is a common problem. Con-
sidering the registration of 3D objects in different orientations,
Burel [5] proposed to use SH as orthogonal basis to decompose
the 3D shapes and get invariants for object recognition. Assum-
ing an isotropic Gaussian noise model, we develop a maximum
likelihood (ML) method to jointly estimate the spherical harmonic
coefficients and the Euler angles of 3D rotation based on Burel’s
method.

Any rotation g in SO(3) can be completely determined by
Euler angles�; �; . In terms of group theory, spherical harmonics

expand an irreducible representation space of the rotationg [9].
Let the radial function of a 3D object have a representation:

R(�; �) =
KX
l=0

lX
m=�l

cml Y
m
l (�; �): (13)

for some positiveK. Applying the 3D rotation operatorg to the
object gives a new radial function~R(�; �) = gR(�; �), which can
be written as

~R(�; �) =
KX
l=0

lX
m=�l

~cml Y
m
l (�; �): (14)

The spherical harmonic coefficients~cml in (14) andcml in (13) have
the following relationship:
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In (17), the summation is carried out over all values ofk producing
positive integers under the factorial symbol.

Under the assumption that the segmentation noise is an isotropic
Gaussian random field overS2, the spherical harmonic coefficients
before and after rotation can be modeled as:cml = aml + �ml
and ~cml =

Pl
n=�lD

l
mn(�; �; )a

n
l + ~�ml , wherefaml ; l =

1 � � �K;m = �l � � � lg is the set of true SH coefficients describing
the 3D shape before rotation, and�ml and ~�ml are the zero mean
Gaussian noise with variance�2l and ~�2l . By Theorem 2 in Sec-
tion 2.2,�ml and ~�ml are independent Gaussian random variables
for different l andm. The variances�2l and ~�2l are determined
by: �2l = 2�

R 1
�1
 (t)Pl(t)dt and ~�2l = 2�

R 1
�1

~ (t)Pl(t)dt,

where (t) and ~ (t) are the correlation functions of the respec-
tive isotropic noise fields andPl(t) is a Legendre polynomial.

Therefore, the likelihood functions forcml and~cml are:
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Using the fact�ml and~�ml are independent for differentl and
m, we propose to jointly estimate�, �, , andfaml g via maximum
likelihood:

�̂; �̂; ̂; fâml g =argmin
�;�;;fam
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Note that the maximum likelihood estimate is equivalent to a weighted
least squares fitting problem, which is a nonlinear optimization
here. As is the case with many such implicitly defined estimators,
the minimum can not be found analytically and iterative minimiza-
tion of the objective should be employed.

4. EXPERIMENT RESULTS

4.1. Wiener Filter Shape Denoising

In this experiment, we simulated radial functions of 3D objects,
which are sampled from an isotropic random field overS2 with
additive white Gaussian noise. To evaluate the performance of the
proposed Wiener filtering shape denoising, we compare it with the
performance of average filtering, which was implemented through
a convolution of the noisy shape with an average filter. Fig. 2
plots the results of Wiener filtering and average filtering of the
same random field. Fig. 2(a) shows the bias of Wiener filtering
and average filtering results. The rough surface represents the bias
of the average filtering result, while the darker surface which is
relatively flat represents the bias of the Wiener filtering result. In
Fig. 2(b), the variances of the two filtering results are plotted. It
can be seen that the output of Wiener filtering (darker surface) has
a much smaller variance than the output of average filtering.

0
1

2
3

4

0

5

10
−0.02

−0.01

0

0.01

0.02

θφ

B
ia

s

(a) Bias

0
1

2
3

4

0

5

10
0

0.05

0.1

0.15

0.2

θφ

V
ar

ia
nc

e

(b) Variance

Fig. 2. Comparison of Wiener filtering and linear filtering of
isotropic random field onS2.
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Fig. 3. The performance of joint estimators and the Cram´er-Rao
bound.

4.2. Joint 3D Registration and Shape Estimation

In the second experiment, the proposed maximum likelihood method
is implemented to jointly estimate the 3D rotation and spherical
harmonic coefficients of the noise contaminated objects. The es-
timators’ biases are plotted versus the standard deviation of the
Gaussian noise in Fig.3(a). From the observation, we can see that
the estimator is virtually unbiased. In Fig.3(b), the variance of the
maximum likelihood rotation angle estimator�̂ is compared to the

derived Cram´er-Rao lower bound. It can be seen that the standard
deviation of the estimation error is less than the standard deviation
of the noise process. Therefore, the joint estimation has improved
the estimation performance for the spherical harmonic coefficients.
Since the boundary information in the two sets of images is corre-
lated, this is an expected result. The performance of the rotation
angle estimator is also close to the lower bound, which shows that
the proposed estimator is nearly an efficient estimator.

5. CONCLUSIONS

We proposed an isotropic random field model for random 3D shapes.
This model characterizes the shape information by a correlation
function of the random field, which admits a K-L expansion in
terms of spherical harmonics. We applied such a statistical model
to the problems of optimal shape filtering and object registration.
The results show that Wiener filtering overS2 has a much lower
variance than average filtering. We developed a maximum likeli-
hood method to jointly estimate 3D rotation angles and SH shape
parameters. Since the 3D objects are registered in the frequency
domain via low order SH coefficients, the registration automati-
cally filters out high frequency noise and has low computational
complexity.
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