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ABSTRACT clidean space R For a fixedd, letd, = 6,(Y) be an
estimator of the p-th component 8f Let this estimator
;Jwave mean valueny = E4[6,], biasby = my — 6,, and
variances? = Fy[(6, — my4)?]. In the context of image re-

In image reconstruction and restoration, there exists an in
herent tradeoff between the recovered spatial resolution an

statistical variance: lower variance can be bought at the Utz d restoratiof ds t ) d
price of decreased spatial resolution. This tradeoff can petONstruction and restoratiol, corresponds to a noise an
blur degraded measurement of the true imégandd, is

captured for a particular regularized estimator by tracing timate of the o-th pixel of the true i Biash

out the resolution and variance as a curve indexed by thedN €stimate of € p-th pixel of the frue |.ma@e 1as by
estimator's smoothing parameter. When the resolution of 1S due to mismatch between the estimation algorithm and
an estimator is well characterized by the norm of the es- truth. Variancer? arises from statistical fluctuations due

timator bias-gradient the uniform CramRao (CR) lower to sta_ltistical uncertginty i.n the measured c_Jﬁta Resolu—
bound can be applied. The bias-gradient norm fails, how- t'on’ In our contgxt, IS dgfmed as the effgctlvg width Of. the
ever, to constrain the width of the estimator point responseesnmatlon algorithm point response which will be defined
function and the uniform CR bound with bias-gradient norm later.

can give counter-intuitive results. In this paper we present  Foraparticular choice of estimator, the tradeoff between
a modified uniform CR bound on estimator variance which bias and variance is often analyzed by sweeping out the
captures the width of the estimator point response. Thesemeasured bias, and variancer;, indexed by the estima-
results on the theoretically minimum attainable resolution- tor's smoothing parameter. Although common in the anal-
variance curve are useful both for exploring near optimality ysis of imaging system performance, this method has its
of practical image estimation algorithms and for optimizing drawbacks. First, an estimator can always be found where
the design of image acquisition systems. the bias and variance are zero at some pginfor exam-

ple, setting the estimator value to an arbitrary constant re-
sults in a zero-variance (but highly biased) estimator. Sec-
ond, the bias valué, penalizes estimators that may have a
large constant, and thus removable, bias. Third, these types

1. INTRODUCTION

Ir_ngge reconstrucﬂop and restprau_on are inherently ill-con- of tradeoff curves only apply to the particular estimator in
ditioned problems since physical imaging-sensors are res

ST L _~~"question, and do not say anything about the optimality of
olution limited. Consequently, the full resolution image is d y anything P y

. - _ the particular estimator.
unrecoverable from the measurements, i.e. all finite vari-

ance estimators of the image are necessarily biased. For ©One method to determine the efficiency of a particular
such problems there exists an inherent tradeoff between thé&stimator is the Cragr-Rao lower bound on estimator vari-
recovered spatial resolution of an estimator, overall bias, @nce. When the p-th pixel esﬂma@n? unbiased, its vari-
and its statistical variance: lower variance can only be bough®cec; is bounded below by; > [Fy '], . the p-th diag-
at the price of decreased spatial resolution and/or increase®n@l element of the x » Fisher Information matri¥y of
overall bias. The goal of this paper is to relate these threeth® measurements. However, since almost all estimation
fundamental quantities in the analysis of imaging systems. &lgorithms of interest used in image processing are biased,
Let® = [61,...,0,]7 € © be a vector of unknown, thisboundis not very useful.
nonrandom parameters that parameterize the defisity, ) In [1] we presented a lower bound on estimator vari-
of the observed random varialife The parameter spaée ance as a function of the norm of the estimator bias-gradient
is assumed to be an open subset of the n-dimensional Eu}|Vb4||. When the resolution of an estimator is well charac-



terized by the norm of the estimator bias-gradient the uni- [F{/], ,, as one would expect from an unbiased estimator.

form Craner-Rao (CR) lower bound derived in [1] can be More precisely, [1] showed that the norn= [|Vbg||c of

applied. The bias-gradient norm fails, however, to constrain the bias-gradient with respect to a positive definite matrix

the width of the point spread function and the use of the uni- C is an upper bound on the maximal bias variation over an

form CR bound with bias-gradient norm can give counter- ellipsoidal neighborhood aboutd.

intuitive results [2]. The concept behind the UCRB is that for a fixed value
In this paper we present a modified uniform CR bound of bias-gradient normd > 0, find anoptimalbias-gradient

which captures the width of the estimator point spread func- vector d that minimizes (2) by performing a constrained

tion by placing an additional constraint on the second mo- minimization over the feasible set of bias gradient vectors

ment of the estimator mean-gradi€fiin,. We character- Vb, : ||[Vbg||c <6,

ize the estimator which attains this lower bound. For any

fixed total bias and (2nd moment-of-inertia) resolution this min_ (e, +d)"Ff (e, + d) (3

estimator attains minimum variance at that particular res- dldlics?

olution. This work generalizes the uniform CR bound of

[1]. These results on the theoretically minimum attainable

resolution-variance curve are useful both for exploring near

optimality of practical image estimation algorithms and for

Derivation and proof of the optimalin (3) is given in [1].

3.1. UCRB

optimizing the design of image acquisition systems.

2. THE BIASED CR BOUND

For a biased estimatép, of §, with meanm, the CR bound
has the following form [3], referred to here as tiiased CR

The uniform CR bound for biased estimators with a given
bias-gradient nornd and non-singular Fisher information
matrix Fy is as follows. Letd, be an estimator of the p-th
pixel of the true imagé. For a fixedd > 0, let the bias-
gradient satisfy the norm constrajfivb,||c < § whereC

is a positive-definite symmetric matrix. Then the variance

bound o3 of 0, satisfies

o5 > (Vmg) Fy (Vmy) 1)

a5 > B(0,9) (4)
whereFy = Fy (@) is then x n Fisher information matrix  \yhere the variance lower bouri(#, §) is given by one of

the following two cases:
Fy = s {[Voln fy (Y:0)] [Voln fy (V:0)]7} J

1. If 62 > VbLCVby, then
andF{ denotes the Moore-Penrose pseudo-inverse of the - -
possibly singular matrify .

For an estimator of the p-th pixé,l, the gradient vectors
of the estimator mean value, and bias functiorby are
related byVmy = ¢, + Vby, wheree, is the p-th unit
vector(0,...,0,1,0,...,0)T. Thus

B(#,0) =0 (5)
2. Ifé2 < ngCng, then

B(0,8) = (e, + d)"Fy (e, + d) (6)
o5 > (e, + Vba) Ff (e, + Vby) 2

where the optimal bias-gradient vectbis given by

However, the biased CR bound only applies to estimators

d=—[l+\MFyC]7le, (7)
with a given bias-gradient vectdrby. Thus (2) can not be

used to simultaneously bound the variance of several dif-
ferent estimators, each with comparable ton-equal bias-

andJ); is the Lagrange multiplier given by the unique
solution of§? = d¥ Cd.

gradients.

3. THE UNIFORM CR BOUND

The bias-gradient vectdv by can be interpreted as tisen-

Note that the estimator variance lower bouB@, ) is
independentf the choice of estimator, and only depends on
the Fisher informatiofry and choice of norm matrig.

3.2. Example: Limits of Image Restoration

sitivity or couplingof the bias in the p-th pixel estimate to
perturbations in the remaining pixels of the image. Thus, Figure (1) shows a 64x64-pixel image of a Shepp-Logan
its length or norn| Vbg|| can be interpreted as a measure of head phantom, along with a noise- and blur-degraded simu-
the overall bias in the estimadig of 6,. When|| V|| — 0, lated measurement. Image blur was simulated by convolv-
the biased CR bound given in (2) reduce$dd” Ff [¢,] = ing with a 5x5 pixel extent, shift-invariant, 1.5-pixel FWHM
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Fig. 1. True Image (left), Noisy/Blurred Image (right). 2 2 2 22
Fig. 3. Mean gradients image$,= 0.1, = 0.5.
symmetric gaussian kernel, along with additive gaussian noise

of variancer? = 1. i i .
Figure (2) shows the limiting square-root variance vs shows cross-sectional slices through two representative mean-

bias-gradient norm of an estimate of pixel (32,32) in the gradients. Their associated bias-gradients both have the same
presence of blur and additive gaussian noise. Two different?0rMd = 0.5, however their spread or full-width-half-max
cases are considered: a 1.5-pixel fwhm gaussian blur as "€ obviously different.

figure (1), along with a 1.75-pixel fwhm blur. o
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bias-gradient norm (3) Fig. 4. Mean gradient cross-sectiondss= 0.5

Fig. 2. Pixel estimation performance in presence of blurand

additive gaussian noise. 4. MODIEICATION TO UCRB

In both cases the noise is additive gaussian with unity e mean-gradient vectdfm, can be interpreted as the

;ﬁ‘ nr;pce. Thde. bla:sl-grat(;:ent n?r:m irgarﬁfsrid ir:i)::alcNuI?te coupling between the mean value of p-th pixel estimﬁ@te
thet t;1as-19r7a5 1en Ii\?/?] vgllas © he Iy atrt. No eth and the remaining pixels of the image. Thus a weighted
atthe .7o-pixe M blur case has larger variance then ., ¢ g coupling would be a natural measure of the

ti}el 1r.5_rplt;ielr ti)lur fna:reé i|Esgr£:éln?0?3|2lr);e!: dtwoﬂﬁshe;ée estimator response about the p-th pixel. In fact, [1] showed
orlarger biuris a b P ' that under certain conditions the mean-gradient, of a

a nc'leis|e:es:t;|mer1]tev\flgraa ?c')\;eor} i;)teir?-larsé dient images for the penalized weighted least-square estimator is equivalent to
gure (3) sho P 9 9 its point response. In this case, as with 3.1, we want to

1.75-pixel fwhm blur case, for bias-gradient nofre= 0.1 fi : ; . .
- . o . ; ind theoptimalbias-gradient (and thus, mean-gradient) that
(left) andd = 0.5 (right). Note that with increasing bias- results in a minimum variance estimateiof

gradient norm, the mean-gradient is more spread out.

3.3. Interpretation Difficulties of the UCRB 4.1. Mean-gradient 2nd-moment

. . . ine the 2nd- f th -gradi
One problem with the bias-gradient norm as a measure ofDefmet e 2nd-moment of the mean-gradignt, as

estimator resolution is that it is possible for different mean-
gradients to have the exact same bias-gradient norm, but 5 2o d(p,1)*(Vmg)? 3
with dramatically different resolution properties. Figure (4) 7= S (Vimg)? (8)




whered(p, i) is the distance between the p-th and i-th pixel

(nominally set equal to the Euclidean distance, although any,

other non-negative norm could be used). Since the mean
gradientis the sum of the unit vectgrand the bias-gradient
Vby, (8) can be written as the ratio of two quadratic forms,

(Qp + Vbﬂ)TMP(Qp + Vbﬂ)
(Qp + Vbﬂ)T (Qp + Vbﬂ)

v =

9)

whereM,, is a positive semi-definite diagonal matrix whose
(i,i)-th diagonal entry isi(p, ).

4.2. UCRB with Mean-Gradient Constraint

The uniform CR bound for biased estimators with a given
bias-gradient normi, mean-gradient 2nd-moment measure
~ and non-singular Fisher informatiés- is as follows. Let
ép be an estimator of the p-th pixel of the true image
For a fixedd, v > 0, let the bias-gradient satisfy the norm
constraint

Vby CVby < 52

and 2nd-moment constraint

(Qp + Vbﬂ)TMP(Qp + Vbﬂ)
(Qp + Vbﬂ)T(Qp + Vbﬂ)

2

<7

Then the variancej of the estimatof, satisfies
o5 > B(0,6,7) (10)

where the variance lower bour8i(¢, 6, v) is given by the
following three cases:

1. 1f62 > ngCng, then

B(0,6,7) =0 (11)
2. If §* < Vby CVby andy > 7., then
B(0,8,7) = (¢, + )TFy' (e, +d) (12)
whered is as given in (7) and
d)T™M +d
ny — (Qp + —) P(Qp —) (13)

(ep +d)T (e, +d)
. If §% < Vb CVby andy < 7., thenB(d,4,) is as
givenin (12), andl =
—[F3" + M C+ MMy, — IR = Aey?le, (14)

whereA;, A, > 0 are Lagrange multipliers found im-
plicitly through the two equality constraints

(e, + )My —7°l](e, +d) =0
d'Cd—46*=0

(15)
(16)

4.3. Interpretation

By the addition of a second constraint on the UCRB, we

now define a minimum-variancirfacethat all estimators
must lie above. For a given estimator, its variance follows a
trajectory in ¢, v), parameterized its regularization param-
eter. By analyzing the distance the particular estimator lies
above the surface, one can determine how far from optimal-
ity the estimator is.

4.4, Example Calculation

In figure (5) we show the variance bound surface for the
estimation task in 3.2. The image was degraded by a 1.5-
pixel fwhm blur along with additive gaussian noise of unity
variance. The variance-trajectory of a penalized weighted
least-square estimator is superimposed on top. The estima-

N w EN (4]

square-root variance o(d,y)
=

o o
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Fig. 5. UCRB surface along with PWLS Estimator Trajec-
tory

tor penaltyP is a 1st-order neighbor roughness penalty. The
estimator was purposely mis-matched from the true system
model in order to show it lying above the bound surface (the
estimator assumed a 1.75-pixel fwhm blur).
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