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ABSTRACT

In image reconstruction and restoration, there exists an in-
herent tradeoff between the recovered spatial resolution and
statistical variance: lower variance can be bought at the
price of decreased spatial resolution. This tradeoff can be
captured for a particular regularized estimator by tracing
out the resolution and variance as a curve indexed by the
estimator’s smoothing parameter. When the resolution of
an estimator is well characterized by the norm of the es-
timator bias-gradient the uniform Cram`er-Rao (CR) lower
bound can be applied. The bias-gradient norm fails, how-
ever, to constrain the width of the estimator point response
function and the uniform CR bound with bias-gradient norm
can give counter-intuitive results. In this paper we present
a modified uniform CR bound on estimator variance which
captures the width of the estimator point response. These
results on the theoretically minimum attainable resolution-
variance curve are useful both for exploring near optimality
of practical image estimation algorithms and for optimizing
the design of image acquisition systems.

1. INTRODUCTION

Image reconstruction and restoration are inherently ill-con-
ditioned problems since physical imaging-sensors are res-
olution limited. Consequently, the full resolution image is
unrecoverable from the measurements, i.e. all finite vari-
ance estimators of the image are necessarily biased. For
such problems there exists an inherent tradeoff between the
recovered spatial resolution of an estimator, overall bias,
and its statistical variance: lower variance can only be bought
at the price of decreased spatial resolution and/or increased
overall bias. The goal of this paper is to relate these three
fundamental quantities in the analysis of imaging systems.

Let � = [�1; : : : ; �n]T 2 � be a vector of unknown,
nonrandom parameters that parameterize the densityfY (y; �)
of the observed random variableY . The parameter space�
is assumed to be an open subset of the n-dimensional Eu-

clidean space IRn. For a fixed�, let �̂p = �̂p(Y ) be an
estimator of the p-th component of�. Let this estimator
have mean valuem� = E�[�̂p], biasb� = m� � �p, and
variance�2� = E�[(�̂p �m�)2]. In the context of image re-
construction and restoration,Y corresponds to a noise and
blur degraded measurement of the true image�, and �̂p is
an estimate of the p-th pixel of the true image�. Bias b�
is due to mismatch between the estimation algorithm and
truth. Variance�2� arises from statistical fluctuations due
to statistical uncertainty in the measured dataY . Resolu-
tion, in our context, is defined as the effective width of the
estimation algorithm point response which will be defined
later.

For a particular choice of estimator, the tradeoff between
bias and variance is often analyzed by sweeping out the
measured biasb� and variance�2� , indexed by the estima-
tor’s smoothing parameter. Although common in the anal-
ysis of imaging system performance, this method has its
drawbacks. First, an estimator can always be found where
the bias and variance are zero at some point�. For exam-
ple, setting the estimator value to an arbitrary constant re-
sults in a zero-variance (but highly biased) estimator. Sec-
ond, the bias valueb� penalizes estimators that may have a
large constant, and thus removable, bias. Third, these types
of tradeoff curves only apply to the particular estimator in
question, and do not say anything about the optimality of
the particular estimator.

One method to determine the efficiency of a particular
estimator is the Cram`er-Rao lower bound on estimator vari-
ance. When the p-th pixel estimator�̂p is unbiased, its vari-
ance�2� is bounded below by�2� � [F�1Y ]p;p, the p-th diag-
onal element of then � n Fisher Information matrixFY of
the measurementsY . However, since almost all estimation
algorithms of interest used in image processing are biased,
this bound is not very useful.

In [1] we presented a lower bound on estimator vari-
ance as a function of the norm of the estimator bias-gradient
krb�k. When the resolution of an estimator is well charac-



terized by the norm of the estimator bias-gradient the uni-
form Cramèr-Rao (CR) lower bound derived in [1] can be
applied. The bias-gradient norm fails, however, to constrain
the width of the point spread function and the use of the uni-
form CR bound with bias-gradient norm can give counter-
intuitive results [2].

In this paper we present a modified uniform CR bound
which captures the width of the estimator point spread func-
tion by placing an additional constraint on the second mo-
ment of the estimator mean-gradientrm�. We character-
ize the estimator which attains this lower bound. For any
fixed total bias and (2nd moment-of-inertia) resolution this
estimator attains minimum variance at that particular res-
olution. This work generalizes the uniform CR bound of
[1]. These results on the theoretically minimum attainable
resolution-variance curve are useful both for exploring near
optimality of practical image estimation algorithms and for
optimizing the design of image acquisition systems.

2. THE BIASED CR BOUND

For a biased estimator̂�p of �p with meanm� the CR bound
has the following form [3], referred to here as thebiased CR
bound.

�2� � (rm�)
T F+

Y (rm�) (1)

whereFY = FY (�) is then� n Fisher information matrix

FY = E�

�
[r� lnfY (Y ; �)] [r� lnfY (Y ; �)]T

	
;

and F+

Y denotes the Moore-Penrose pseudo-inverse of the
possibly singular matrixFY .

For an estimator of the p-th pixel�̂p, the gradient vectors
of the estimator mean valuem� and bias functionb� are
related byrm� = ep + rb�, whereep is the p-th unit
vector(0; : : : ; 0; 1; 0; : : : ; 0)T . Thus

�2� � (ep +rb�)
T F+

Y (ep +rb�) (2)

However, the biased CR bound only applies to estimators
with a given bias-gradient vectorrb�. Thus (2) can not be
used to simultaneously bound the variance of several dif-
ferent estimators, each with comparable butnon-equal bias-
gradients.

3. THE UNIFORM CR BOUND

The bias-gradient vectorrb� can be interpreted as thesen-
sitivity or couplingof the bias in the p-th pixel estimate to
perturbations in the remaining pixels of the image. Thus,
its length or normkrb�k can be interpreted as a measure of
the overall bias in the estimatê�p of �p. Whenkrb�k ! 0,
the biased CR bound given in (2) reduces to[ep]

TF+

Y [ep] =

[F+

Y ]p;p, as one would expect from an unbiased estimator.
More precisely, [1] showed that the normÆ = krb�kC of
the bias-gradient with respect to a positive definite matrix
C is an upper bound on the maximal bias variation over an
ellipsoidal neighborhoodC about�.

The concept behind the UCRB is that for a fixed value
of bias-gradient normÆ > 0, find anoptimalbias-gradient
vector d that minimizes (2) by performing a constrained
minimization over the feasible set of bias gradient vectors
rb� : krb�kC � Æ,

min
d:kdkC�Æ

(ep + d)TF+

Y (ep + d) (3)

Derivation and proof of the optimald in (3) is given in [1].

3.1. UCRB

The uniform CR bound for biased estimators with a given
bias-gradient normÆ and non-singular Fisher information
matrix FY is as follows. Let�̂p be an estimator of the p-th
pixel of the true image�. For a fixedÆ � 0, let the bias-
gradient satisfy the norm constraintkrb�kC � Æ whereC
is a positive-definite symmetric matrix. Then the variance
�2� of �̂p satisfies

�2� � B(�; Æ) (4)

where the variance lower boundB(�; Æ) is given by one of
the following two cases:

1. If Æ2 � rbT� Crb�, then

B(�; Æ) = 0 (5)

2. If Æ2 < rbT� Crb�, then

B(�; Æ) = (ep + d)TF�1Y (ep + d) (6)

where the optimal bias-gradient vectord is given by

d = �[I + �1FY C]�1ep (7)

and�1 is the Lagrange multiplier given by the unique
solution ofÆ2 = dTCd.

Note that the estimator variance lower boundB(�; Æ) is
independentof the choice of estimator, and only depends on
the Fisher informationFY and choice of norm matrixC.

3.2. Example: Limits of Image Restoration

Figure (1) shows a 64x64-pixel image of a Shepp-Logan
head phantom, along with a noise- and blur-degraded simu-
lated measurement. Image blur was simulated by convolv-
ing with a 5x5 pixel extent, shift-invariant, 1.5-pixel FWHM



Fig. 1. True Image (left), Noisy/Blurred Image (right).

symmetric gaussian kernel, along with additive gaussian noise
of variance�2 = 1.

Figure (2) shows the limiting square-root variance vs.
bias-gradient norm of an estimate of pixel (32,32) in the
presence of blur and additive gaussian noise. Two different
cases are considered: a 1.5-pixel fwhm gaussian blur as in
figure (1), along with a 1.75-pixel fwhm blur.
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Fig. 2. Pixel estimation performance in presence of blur and
additive gaussian noise.

In both cases the noise is additive gaussian with unity
variance. The bias-gradient norm matrixC used in calculate
the bias-gradient lengthÆ was the identity matrixI . Note
that the 1.75-pixel fwhm blur case has larger variance then
the 1.5-pixel blur case. Estimating a pixel in the presence
of larger blur is a more ill-posed problem, and would have
a noisier estimate for a given total bias.

Figure (3) shows a plot of mean-gradient images for the
1.75-pixel fwhm blur case, for bias-gradient normÆ = 0:1
(left) andÆ = 0:5 (right). Note that with increasing bias-
gradient norm, the mean-gradient is more spread out.

3.3. Interpretation Difficulties of the UCRB

One problem with the bias-gradient norm as a measure of
estimator resolution is that it is possible for different mean-
gradients to have the exact same bias-gradient norm, but
with dramatically different resolution properties. Figure (4)
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Fig. 3. Mean gradients images,Æ = 0:1; Æ = 0:5.

shows cross-sectional slices through two representative mean-
gradients. Their associated bias-gradients both have the same
normÆ = 0:5, however their spread or full-width-half-max
are obviously different.
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Fig. 4. Mean gradient cross-sections,Æ = 0:5

4. MODIFICATION TO UCRB

The mean-gradient vectorrm� can be interpreted as the

coupling between the mean value of p-th pixel estimate�̂p
and the remaining pixels of the image. Thus a weighted
norm of this coupling would be a natural measure of the
estimator response about the p-th pixel. In fact, [1] showed
that under certain conditions the mean-gradientrm� of a
penalized weighted least-square estimator is equivalent to
its point response. In this case, as with 3.1, we want to
find theoptimalbias-gradient (and thus, mean-gradient) that
results in a minimum variance estimate of�̂p.

4.1. Mean-gradient 2nd-moment

Define the 2nd-moment of the mean-gradientrm� as

2 =

P
i d(p; i)

2(rm�)2iP
i(rm�)2i

(8)



whered(p; i) is the distance between the p-th and i-th pixel
(nominally set equal to the Euclidean distance, although any
other non-negative norm could be used). Since the mean-
gradient is the sum of the unit vectorep and the bias-gradient
rb�, (8) can be written as the ratio of two quadratic forms,

2 =
(ep +rb�)

TM p(ep +rb�)

(ep +rb�)
T (ep +rb�)

(9)

whereMp is a positive semi-definite diagonal matrix whose
(i,i)-th diagonal entry isd(p; i)2.

4.2. UCRB with Mean-Gradient Constraint

The uniform CR bound for biased estimators with a given
bias-gradient normÆ, mean-gradient 2nd-moment measure
 and non-singular Fisher informationFY is as follows. Let
�̂p be an estimator of the p-th pixel of the true image�.
For a fixedÆ;  � 0, let the bias-gradient satisfy the norm
constraint

rbT� Crb� � Æ2

and 2nd-moment constraint

(ep +rb�)
TMp(ep +rb�)

(ep +rb�)
T (ep +rb�)

� 2

Then the variance�2� of the estimator̂�p satisfies

�2� � B(�; Æ; ) (10)

where the variance lower boundB(�; Æ; ) is given by the
following three cases:

1. If Æ2 � rbT� Crb�, then

B(�; Æ; ) = 0 (11)

2. If Æ2 < rbT� Crb� and � �, then

B(�; Æ; ) = (ep + d)T F�1Y (ep + d) (12)

whered is as given in (7) and

2� =
(ep + d)TMp(ep + d)

(ep + d)T (ep + d)
(13)

3. If Æ2 < rbT� Crb� and < �, thenB(�; Æ; ) is as
given in (12), andd =

�[F�1Y + �1C + �2[Mp � 2I ]]�1[F�1Y � �2
2I ]ep (14)

where�1; �2 � 0 are Lagrange multipliers found im-
plicitly through the two equality constraints

(ep + d)T [Mp � 2I ](ep + d) = 0 (15)

dTCd� Æ2 = 0 (16)

4.3. Interpretation

By the addition of a second constraint on the UCRB, we
now define a minimum-variancesurfacethat all estimators
must lie above. For a given estimator, its variance follows a
trajectory in (Æ; ), parameterized its regularization param-
eter. By analyzing the distance the particular estimator lies
above the surface, one can determine how far from optimal-
ity the estimator is.

4.4. Example Calculation

In figure (5) we show the variance bound surface for the
estimation task in 3.2. The image was degraded by a 1.5-
pixel fwhm blur along with additive gaussian noise of unity
variance. The variance-trajectory of a penalized weighted
least-square estimator is superimposed on top. The estima-
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Fig. 5. UCRB surface along with PWLS Estimator Trajec-
tory

tor penaltyP is a 1st-order neighbor roughness penalty. The
estimator was purposely mis-matched from the true system
model in order to show it lying above the bound surface (the
estimator assumed a 1.75-pixel fwhm blur).
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