Image Registration

Image registration: the process of aligning images

Purpose: essential for extraction of common spatial information

Typical applications:

- Integrating information from different sensors (eg. fusion)
- Finding changes in images taken at different times / under different conditions (eg. clinic studies)
- Inferring three-dimensional information from images when the sensor / objects have moved (eg. video)

Image registration consists of:

- **Feature space** \mathcal{F} : reduced dimensional representation of common information
- **Search space** \mathcal{T} : the class of spatial transformations
- Dissimilarity metric: a measure of difference between im-

and F_2 , for $T \in \mathcal{T}$, define the dissimilarity metric Given two images I_1 and I_2 , and corresponding feature vectors F_1

$$d_T(I_1, I_2) = ||T(F_1) - F_2||$$

Registration problem: estimate the mapping T such that

$$T^* = \arg\min_{T \in \mathcal{T}} d_T(I_1, I_2)$$

Image registration steps:

- 1. Extract feature vectors $F_1, F_2 \in \mathcal{F}$ from both images
- 2. Apply candidate $T \in \mathcal{T}$, and compute the dissimilarity metric $d = ||T(F_1) - F_2||$.
- 3. Refine T to reduce d.
- 4. Repeat 2 until $d = d_{min}$ achieved.

Image registration requirements:

- Robustness to small differences and outliers
- Computational feasibility
- At least semi-automatic feature extraction and selection

Previous registration methods:

- Correlation and sequential methods
- Fourier methods
- Point mapping
- Model-based matching
- Mutual information method Viola and Wells '96, Maes '97, Thevenaz '98

Registration Via Graph Matching

MST

Let $\mathcal{X}_n = \{X_1, X_2, \dots, X_n\}$ be a set of n feature vectors in \mathbb{R}^d .

• Spanning Tree \mathcal{T} is a connected acyclic graph over \mathcal{X}_n .

Power weighted length for Tree \mathcal{T} :

$$L(\mathcal{X}_n) = \sum_{e_{ij} \in \mathcal{T}} |e_{ij}|^{\gamma}$$

• Minimal Spanning Tree (MST) is the ^{0.4} spanning tree which minimizes $L(\mathcal{X}_n)$.

Figure 1: An MST example

Robustness via k-MST

Let $\mathcal{X}_{n,k} \subseteq \mathcal{X}_n$ contain k points.

- k-point MST is the MST spanning over $\mathcal{X}_{n,k}$.
- The minimal k-point spanning tree (k-MST) is the k-point MST of minimal length over all $\mathcal{X}_{n,k}$.

$$L(\mathcal{X}_{n,k}^*) = \min_{\mathcal{X}_{n,k}} L(\mathcal{X}_{n,k})$$

Figure 2: A k-MST example

Rényi Entropy and MST

Suppose \mathcal{X}_n is a random sample from density f. **Rényi entropy** of fractional order $\alpha = (d - \gamma)/d$:

$$R_{\alpha}(f) = \frac{1}{1 - \alpha} \log \int_{\mathbb{R}^d} f^{\alpha}(x) dx$$

Let $L(\mathcal{X}_n)$ denote the γ -powered MST length function,

$$\lim_{n \to \infty} \frac{L(\mathcal{X}_n)}{n^{\alpha}} = \beta \int_{\mathbb{R}^d} f^{\alpha}(x) dx \qquad \text{(a.s.)}$$

Then

$$\hat{R}_{\alpha}(f) = \frac{1}{1 - \alpha} \left[\log \frac{L(\mathcal{X}_n)}{n^{\alpha}} - \log \beta \right]$$

Register Image With MST

- Given two images I_1 and I_2
- Feature vectors F_1 and F_2
- Underlying densities f_1 and f_2

Image registration requires:

$$T^* = \arg\min_{T \in \mathcal{T}} R_{\alpha}(\epsilon f_1(T(\underline{x})) + (1 - \epsilon)f_2(\underline{x}))$$
$$\epsilon = \frac{\operatorname{Card}(F_1)}{\operatorname{Card}(F_1) + \operatorname{Card}(F_2)}$$

where

Equally,

$$T^* = \arg\min_{T \in \mathcal{T}} L(T(F_1) + F_2)$$

Rényi information divergence:

$$I_{\alpha}(f, f_0) = \frac{1}{1 - \alpha} \log \int \left(\frac{f(x)}{f_0(x)}\right)^{\alpha} f_0(x) dx$$

Divergence resolution:

Experimental Results

Registering brain images taken at different times:

Noisy brain images for registration:

Subsampled images for registration:

(a) k-MST for post-operation brain image

(b) k-MST length curve

Subsampled images after outlier removal:

MST length as a function of rotation angle:

Registration result for brain images:

Geo-registration application:

MST length for EO – terrain height map registration:

Registration result:

Conclusions

- Proposed to register images by minimizing Rényi entropy.
- Implemented image registration by minimizing MST length.
- Employed k-MST to improve the registration robustness.
- Satisfactory algorithm performance was shown by experimental results.
- Will reduce computational complexity by extracting better features.