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ABSTRACT

We develop a non-parametric method of nonlinear pre-
diction based on adaptive partitioning of the phase space
associated with the process. The partitioning method is
implemented with a recursive tree-structured vector quanti-
zation algorithm which successively re�nes the partition by
binary splitting where the splitting threshold is determined
by a penalized maximum entropy criterion. A complexity
penalty is derived and applied to protect against high sta-
tistical variability of the predictor structure. We establish
an important relation between our tree-structured model
for the process and generalized non-linear thresholded AR
model (ART). We illustrate our method for two cases where
classical linear prediction is ine�ective: a chaotic "double-
scroll" signal measured at the output of a Chua-type elec-
tronic circuit, and a simulated second order ART model.

1. INTRODUCTION

Tree-based models were �rst introduced as a non-parametric
exploratory data analysis technique for non-additive statis-
tical models [1]. The tree-based model represents the data
in a hierarchical structure where the leaves of the tree in-
duce a non-uniform partition of the data space. Each leaf
can be labeled by a scalar or vector value of a one-step pre-
dictor, a non-linear response variable, or a multi-variable
quantizer output. Once a cost-complexity metric is spec-
i�ed, the tree can then be recursively grown to e�ciently
perform particular tasks such as non-linear prediction, pat-
tern classi�cation, and vector quantization (VQ) [2, 3]. The
tree-based approach has the several attractive features. Un-
like likelihood approaches no parametric model is required,
however if one is available it can be incorporated into the
tree structure as a constraint. Furthermore, unlike higher
order moment approaches a tree model is stable even in the
case of heavy tailed densities. Finally, unlike moment-based
methods the performance of the optimal decision tree is in-
variant with respect to monotonic non-linear transforms of
the data.

This paper presents an approach to tree structured sig-
nal modeling and prediction based on a maximum entropy
recursive partitioning of the signal phase space and the lo-
cal singular value decomposition (SVD). We use the Tak-
ens [4] time delay embedding method to construct a phase
space for the signal which captures the linear or non-linear
dynamics of any �nite dimensional state model. We ap-
ply recursive tree growing techniques to specify an optimal
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tiling of the phase space which represents the best piece-
wise constant approximation to the joint probability density
function under a complexity constraint. The partitioning is
accomplished by adding or deleting branches (nodes) of the
tree according to a maximum entropy principle: we test
that the joint distribution is approximately uniform within
any candidate partition by comparing the conditional en-
tropy of the data points in the candidate partition to the
maximum achievable conditional entropy. By implementing
a local SVD over each node of the tree prior to performing
the uniformity test we obtain a hierarchical signal model
which is very similar to the non-linear auto-regressive (AR)
threshold model, referred to as SETAR in [7]. This thresh-
old model has been proposed for many physical signal mod-
els involving stochastic resonance and bistable/multi-stable
trajectories such as ECG cardiac signals, EEG brain signals,
turbulent ow, economic time series and chaotic signals.

2. DESCRIPTION OF TREE-BASED

APPROACH

Let fX(k)g be a stationary random process and let P de-
note the underlying probability measure. For p a posi-
tive integer and � a positive real number de�ne X(k) =
[X(k); : : : ;X(k � �(p � 1))]T . fX(k)gk is called the phase
trajectory through p-dimensional phase space IRp with em-
bedding parameter � . Let � = f�1; : : : ; �Lg be a parti-
tion of IRp into L cells, let fq

1
; : : : ; q

L
g be representative

points from each of these cells, and de�ne the function Q:

Q(x) = ql if x 2 �l. The random vector Xq(k)
def
= Q(X(k))

is a quantization of X(k) and the discrete probability dis-
tribution function PX

q
(q
l
), l = 1; : : : ; L, is equal to the

theoretical histogram P (X(k) 2 �l), l = 1; : : : ; L, of X.
This theoretical histogram is the most complete statistical
model of the quantized phase trajectories and can be used
to perform optimal non-linear prediction, process classi�-
cation, and other statistical tasks. For example, the well
known minimum mean-squared error predictor of the quan-
tized sample Xq(k) given the values of p� 1 past quantized
samples Xq(k � �) = x1; : : : ;Xq(k � �(p � 1)) = xp�1 is
given by the following function of the histogram:

bXq(k) =

p�1X
l=1

eT1 ql

PX
q
(eT1 ql; x1; : : : ; xp�1)P

8eT
1
q
l

PX
q
(eT1 ql; x1; : : : ; xp�1)

(1)

where e1 = [1; 0; : : : ; 0]T . The mean square error improves
monotonically as the number L of quantization levels, equiv-
alently the number of partition cells, becomes large and the
continuous distribution PX(x) of X(k) becomes well ap-
proximated by the staircase function PX

q
(q

l
) � I(x 2 �l),



where I(A) denotes the 0-1 indicator function of an event
A.

Now in a practical setting only a �nite set of realizations
of the phase trajectory x(k); k = 1; : : : ;N is available and
the theoretical histogram must be estimated from the data.
In this case performance will not improve monotonically in
L, in particular L � N is necessary to stabilize the his-
togram estimate. A recursive tree growing procedure can
be used to �nd an increasingly dense sequence of partitions
�l = f�l1; : : : ; �

l
Ll
g of IRp which iteratively minimize a mea-

sure of distortion between x(k) and its quantization xlq(k).

In this paper we restrict the cells �lj to be rectangles in IR
p.

Assume that at depth l of the tree we have created a
partition �l and consider the partition cells �li, which we
call the i-th parent nodes at level l. We re�ne the partition
�l by using a maximum entropy binary splitting rule (de-
scribed below) to split each partition cell �li into 2

p smaller
cells which we call children-nodes of the i-th parent. The
sample distributions of data points over the set of children-
nodes are each tested against the uniform distribution (null
hypothesis H0) via the Chi-square goodness of �t test. If
for a cell �li the null hypothesis H0 is rejected, the 2p-ary
split is memorized, along with the resulting sub-cells of �li,
and 2p parent nodes at level l + 1 are created. Otherwise,
the splitting procedure is stopped and the parent node �li
at level l is declared a terminal node. The set of terminal
nodes are called the leaves of the tree. See Fig. 1 for an
illustration of the tree growing procedure.

Binary splitting rule: For each parent node the splitting
rule is implemented by applying a single threshold to each
of the p coordinate axes of the phase space. More specif-
ically, for splitting the parent node �li, the p thresholdsbT1; : : : ; bTp are selected as the sample median of the projec-
tion of the inscribed data cloud onto each of the coordinate
axes e1; : : : ; ep:

bTj = medianfeTj x(k) : x(k) 2 �li; k = 1; : : : ;Ng:

where, for a scalar sequence x1; : : : ; xn, the sample median
is a point such that roughly half of the iterates fall to the
left and half to the right:

medianfxig =

�
x(n=2); neven
x([n+1]=2); nodd

and x(1); : : : ; x(n) denotes the rank ordered sequence.

Under the assumption that the n scalars feTj X(k) :

X(k) 2 �jg
N
k=1 are conditionally i.i.d. with common contin-

uous pdf fxj�j , the sample median bTj is an asymptotically
unbiased and consistent estimator of the theoretical median
Tj , which is the half mass point of the marginal cumulative
distribution function, and it has an asymptotic normal dis-
tribution [6]:

bTj � N

�
Tj ;

1

4n[fxj j�j (Tj)]
2

�
:

It can be shown [8] that the median splitting rule has a
strong optimality property among binary splitting rules: for
large N it maximizes the conditional entropy of the quan-
tized phase space. Furthermore, the rule is optimal in the
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Figure 1: For a p = 2 dimensional phase space embedding,

the root-node is split into 4 subsets and the distribution is

found to be non-uniform. Among the derived subsets, only

the one depicted by the lower left corner square was found

to be non-uniform and split further.

sense of minimizing a lower bound on the average distortion
over �j: E[g(jbXq �Xj)j�j] where g is any non-decreasing
distortion function.

We use the approximate variance expression

var(bTj jn) = 1

4n[fxj jS(Tj)]
2
;

where n is number of points falling into the parent node, to
obtain a stopping rule for terminating a node: the size of

each partition element must be greater than c

q
var(bTj jn)

where c > 1. This stopping rule ensures that the variance

of the binary threshold bTj does not exceed three times the
width of each quantization cell and thus constrains the com-
plexity of the tree. It is simple to show that this leads to
the following simple stopping rule: terminate the node if
the number of points n in its partition is less than c 2p.
This guarantees that the number of terminal nodes of the
�nal tree will be signi�cantly less than the total number of
data points N . In the simulations below we used c = 2.

The �nal tree determines a partition of the phase-space
which is described by the set of leaves (terminal cells) of
the tree �1; : : : ; �L, together with the empirical histogram

(cell occupancy rate): bPX
q
(�j) = N�j =N , where N�j is the

number of samples fx(k)gNk=1 which fall into leaf �j .

3. RELATION TO ART MODELS VIA THE

SVD

Let Xn+1 = FXn(Xn) + "n be the sampled form of a p-
dimensional dynamical system equation. FXn depicts the
dynamical behavior of the system when the state vector
has value Xn, that is F may be state-dependent. " can
be regarded as a realization of an observation noise or as a
deterministic state perturbation. We �rst construct a tree
based on the \training set" Xn; 1 � n � N which creates
cells in the phase space Rp for which the distribution of the
realizations of the state vector have been estimated to be
uniform.

As described in the previous section the tree growing
procedure is based on partitioning the phase space into rect-
angles until the distributions of points within each cell are
close to uniformly distributed, i.e. separable into p piece-
wise constant marginal distributions. We perform a local
recursive orthogonalization of the data prior to node split-
ting in order to produce trees with fewer leaves. De�ne the



locally orthogonalized vector X�l
j (k) produced at depth l

for some parent node �lj and de�ne �(�lj) as the p� p local
covariance matrix:

�(�lj) = E�l
j

h
(X�l

j � E�l
j
[X�l

j ])(X�l
j �E�l

j
[X�l

j ])T
i

where E�l
j
[�]

def
= E[�jX�l

j 2 �lj]. Let MT
j diag(�j)Mj de-

note the eigendecomposition of �(�lj). The equation for
propagation of the local orthogonalized vector from a cell
�l at depth l to a cell �l+1 at depth l + 1 is:

X
�l+1 = Ml(X

�l � C�l);

where subtraction of C�l = E�l [X] ensures zero mean. By

induction this gives the closed form expression for X�l in
terms of the original data X at the root node:

X
�l = Ml�1X� Cl�1; (2)

where Md =
Qd

i=0
Mi and Cd =

Pd

i=0

hQd

j=i
Mj

i
C�i .

Note that for any parent node �l the covariance ma-

trix of the rotated data X�l(k) is diagonal, which means

that the components of X�l(k) are separable (in the mean
squared sense) but not necessarily uniform. On this ro-
tated data the Chi-square test for uniformity can easily be
implemented on a coordinate-by-coordinate basis. When
the tree growing procedure terminates we will have found
a set of partition cells �l11 ; : : : ; �

lL
L such that each �l = �lj

contains points fX�l(k)gk which are (approximately) vec-
tors of white noises. Thus, in view of relation (2), we obtain
a set of piecewise state-conditioned (and possibly unstable)
AR models forX(k). This speci�es an AR-threshold (ART)
model, which is very similar to the SETAR model [7], for
which the transition from one AR model to another is con-
trolled by a values of all coordinates of the phase space.

4. EXAMPLES

First we illustrate a tree-based one step forward quantized
prediction (as described in section 3) for chaotic time se-
ries. A voltage signal was digitized from the output of a
double scroll electronic circuit from the Chua family. We
chose an embedding dimension p = 4 to generate the phase
trajectory x = [x(k); x(k � �); x(x� 2�); x(k � 3�)]T . The
reconstruction delay � was chosen in such a way to minimize
the mutual information between the coordinates (see [5] and
[4]). The prediction was constructed by growing a tree to
generate the quantization intervals, using the midpoint of
each terminal cell � for the quantization level q, and using
Eq. (1) with the theoretical histogram PX

q
(q

l
) = P (X 2

�l) replaced by the empirical histogram bPX(�l). A training
set of N = 4096 points was used to grow the tree and to
estimate the histogram. Figure 2 shows results which in-
dicate that our tree based method performs as well as the
popular but more complicated nearest neighbor prediction
methods.

Second we consider doing non-linear prediction for the
thresholded AR (ART) model given by the equation

X(k) =

8><
>:

1:71X(k � 1)� :81X(k � 2) + :356 + "k;
X(k � 1) > 0

�:562X(k � 2)� 3:91 + "k;
X(k � 1) � 0

A tree was grown in a 3-dimensional reconstructed phase
space, from a training series of 4000 points. Figure 3 shows
a representation of the �nal tree. Notice that the tree only
contains two leaves and one internal node which almost per-
fectly separates the phase space into its two constituent
linear AR process models. In �gure 4, we show results of
using the tree of Figure 3 for one-step forward prediction.
A classi�cation procedure was performed to determine to
which leaf a given time sample x(k) of the phase trajectory
belongs and we then performed optimal prediction using
the estimated AR(3) model for this leaf. By concatenating
the coe�cients of the estimated AR model into a 3-element
vector A and plotting the vectors of coe�cient estimates in
IRp we see from Figure 5 that the two models are well iden-
ti�ed by the prediction tree. In Figure 5 the amplitude of
each vector is plotted proportionally to the estimated cell
occupancy probability associated with each leaf.
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Figure 2: quantized one step forward prediction for the ex-

perimental double scroll system
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Figure 3: Tree estimated from a 3-d representation of the

system
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Figure 4: Tree-based 1 step forward prediction and predic-

tion errors
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Figure 5: Vector representation of the signal models ob-

tained in the leaves of the tree. The true models are indi-

cated by a `o'


